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Abstract- In this paper, we propose an adaptive observer for 
dynamically positioned ships, that can be used together with 
the controller shown by Fossen and Gr~vlen [3], to design an 
observer-based adaptive control scheme. The resulting closed- 
loop system is globally asymptotically stable with respect to the 
ship positions and velocities, and globally stable with respect to 
the unknown parameters. 

I. INTRODUCTION 

Fossen and Gravlen proposed an observer-based back- 
stepping method that allows the decomposition of nonlinear 
output feedback control into an observer and a state feedback 
control [3]. However, the observer design does not cover 
unstable ship dynamics, and an extension for these cases has 
been proposed [2], under a detectability condition. The adap- 
tive observer proposed is a modified version of the reduced- 
order observer proposed by Erlic and Lu [ I] for manipulator 
control, and does not require any condition for its application, 
except a bound for the unknown parameters. In this case, 
however, a full-order observer is required, in order to have a 
good filtering of x and y, which are measured by DGPS, with 
a noise in the range of 1-3 [m]. The yaw angle $ is assumed 
to be measured by using a gyro compass, which is quite 
accurate (the noise being less than 0.1 [deg]). Furthermore, 
the proposed adaptive observer permits implementation of 
an adaptive version of the control law proposed in [3]. In 
this paper, we will show derivation of an observer for output 
feedback control of the ship positioning dynamics considered 
by Fossen and Grovlen [3], [2]. An adaptive version of the 
observer will be considered. 

11. PROBLEM FORMULATION AND ASSUMPTIONS 

We use system models and problem formulations from [3], 
VI. 

Ship Model and Properties: The earth-fixed positions 
(z,y) and yaw angle $j of the vessel is expressed in vector 
form as v = [z,y,$lT, and the body-fixed velocities are 
represented by the vector v = [U,  W , T ] ~ .  The elements 
in r ]  and v describe the surge, sway, and yaw modes, 
respectively. Using the problem formulation from [3], we 

have the following system model 

with the Jacobian matrix 

cos$ -sin$ 0 
J (v )  = [si;$ CO;$ y ]  

0 -1 0 

0 0 0  
1 0 01 - - eJ*, J =  

and the inertia matrix 

mll 0 
= [ 0 m22 

0 m 3 2  

and positive definite matrices 

J ( v )  is the yaw rotation matrix, Ad is the inertia matrix, K 
represents the mooring forces and T is the control vector 
of forces from the thruster system [3]. We suppose that 
some parameters of the matrices Ad, D, K are unknown 
but constant, and that positions v only are available to 
measurement. For purposes of adaptation, it is suitable to 
reformulate Eq. (2) as 

~ f i  + DV + KV = 7 = pop,  v, 7)  + p(fi, v, v)e (8) 

where 0 E RP is the unknown parameter vector, supposing 
bounds for A I ,  D and K ,  to be known, that is 

0 < Afmm < l lA f l J  < Almuz  (9) 
0 < D,,, < IlDll < D,,,, (10) 
0 < JJKII < K,nu, (1 1) 
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Note that J - ' (q )  = J T ( q ) ,  and llJ(q)II = 1. 
Remark I :  As in [2], [3], Eq. (2) can be rewritten as 

i/ = A17 + A ~ v  + BT (12) 

where A1 = -Ad-lK, B = AI- l ,  but, 
from a viewpoint of parameter identification, Eq. (2) is a 
better description of the system. If, for instance, only the 
inertia matrix A l  is unknown, using (2) we shall have to 
estimate only the matrix A I ,  but using (12) we shall have to 
estimate A I ,  A2 and B ,  because all these matrices contain 
Ad. 

A2 = -hI-*D, 

111. OBSERVER DESIGN AND STABILITY ANALYSIS 
We propose the following adaptive observer for the system 

(13) 
B = F'(T - 5 5 -  kj) + K ~ ( v  - 5) (14) 

(1) and (2): 

J ( r l ) i i  + Kl(V - e) 
A 

e = -rpT(t7ii, e)[. - ii] (15) 
h 

where e, G, 8 are the position, velocity, and parameter esti- 
mates, respectively, r = rT > o a gain matrix 

((6,5,& T )  = M-'(T - 55- ze), K1 > 0, K2 > 0 

K 1  , K2 being constant gain matrices. Subtracting (13) from 
( I ) ,  and (14) from (2), we have the observation error dynam- 
ics 

h 

6 = J ( 7 ) V -  Klij (16) - .  - - 
A45 = - M ( F  - K25) - DF - K? 

- Di7Kij - iiJK2ii 

where i j  = q - ;i and 5 = v - G are theposition an2 velo_city 
estim_ation_errors, re:pectively, and Af = M - hi, D = 
0-0) K =, K - K .  Let us define the parameter estimation 
error e = 0 - 8 and consider the following Lyapunov function 
candidate 

(17) V(F75,$)  = ~ ( ~ ~ + g A f 5 + $ ? 1 i ? )  > 0 

its time derivative along the solutions of Eq. (16) being 
2 

v = ?G+Pili$+Pr-% 
= 

- 

- T K i @ -  5*(D + AlK2)5 + ? ( J ( Q )  - K ) 5  
-T v (n i t  - + ik + kj) + Pr% (18) - -  

Using the property (8) and noting that e = -e for constant 
parameters, (1 8) becomes 

v = -?KIF- -T v (MK2 + D)5 + ? ( J ( Q )  - K ) 5  

- P(pT(r, ii, 5j)i; + r-lg), (19) 

and furthermore, using l3q. (15) and assumptions (9), (10) 
and ( l l ) ,  we have 

2 v I -E1 11q1 - (E2 + Dmzn)l15112 
+ (1 + ~ m a z ~ l l F l l l l ~ l l ~  (20) 

Fig. 1. DP of a supply vessel: tracking of a time-varying reference trajectory 
(left); DP of a supply vessel: measured and filtered positions (right) 

where g1 = Xmin(K1) and a2 = Xmin(KFAIT + AfK2)/2. 
Rewriting Eq. (20) as 

v 5 -[ll?ll, l l ~ l l l Q ~ ~ ~ ~ ~ ~ ~ ~ l l ~ l l ~  11~l11'~ (21) 

it can be verified readily that Q is positive definite if 

and in this case we have global asymptotic stability with 
respect to the ship positions and velocities, and global 
stability with respect to the unknown parameters. 

Rentark 2: The observer (13), (14) and (15) is not directly 
implementable because of the presence of the unknown signal 
v into the equations (14) and (15). However, a discrete-time 
approximation of the above observer can be implemented as 
shown in Appendix A. 

Observer Backstepping 

Refemng to [3], we define a smooth reference trajectory 
Qd = [ X d ,  yd7 '$dIT satisfying 

qd>ljd,qd E (23) 

Since the measurement of 17 is affected by sensor noise and 
the observer guarantees that e + q, the tracking error q - ?j'd 
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Fig. 2. 
velocities (right). 

DP of a supply vessel: tracking errors (left); actual and estimated 

is replaced by q -  qd,  and is used for vectorial observer 
backstepping. Defining 21 = T -  v d  we have 

il J(q)c  4- KIF - 7jd. (24) 

The main idea of backstepping is to choose one of the state 
variables as virtual control. It turns out that 

(25) 

is an appropriate choice for the virtual control, being 
defined as the sum of the next error variable 22, and a1 

interpreted as a stabilizing function. Hence 

Cl = J(v)C = 22 + a1 

We choose the following stabilizing function 

where C1 is a constant strictly positive feedback design 
matrix, usually diagonal, and D1 is a positive diagonal 
damping matrix defined as 

d l k r k l  0 
D 1 =  [ 0 d2k,Tk2 0 O ] (28) 

0 0 d3k,Tk3 

where d, > O ( i  = 1 . . . 3 ) ,  and k , ( i  = 1 . . . 3 )  are the 
column vectors of K T  = [ k l ,  k2,  k3] .  The damping term 

-Dlzl  has been added because KIF in (24) can be treated 
as a disturbance term to be compensated for. Then we can 
write 

21 = -(C1 + Dl)Zl+ z2 + Klq. (29) 

To specify the desired dynamics of 22, we have from Eq. 
(25) 

and j5 = p - p? we can write 

and 

Now we choose the control law as follows 

7 = -ZJT(r]) [ - ( C i  + D I ) ~ Z I  + (CI + D1)zp 

- qd  + c 2 z 2  + D2z2 + z l ]  

- GS(P^))ii + Eq+ &, (36) 

where C2 is a constant strictly positive feedback design 
matrix, usually diagonal. Substituting (36) into ( 3 9 ,  we have 

(37) 22 = -C2~2 - 0 2 2 2  - 21 + + 025 
where 

a1 = (Ci+Di)Ki (38) 
a2 = J(v)(W) + K2) (39) 

The damping matrix D2 is defined in terms of Q1 and as 

0 2  = diag[d4(wTwl + wzw4) ,  dg(wFw2 + wTwg), 

where Qy = [a1, w2, wg], QT = [wq, w5, wg] and di > 0 (i = 
4.. .6) .  

d 6 ( a T W 3  + wrw6)]  (40) 
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IV. CLOSED-LOOP STABILITY ANALYSIS 

We can write the error dynamics as 

i =  -(Cz + Dz + E). + W1ij-t W2Y (41) 

i j  = J(q)Y-K1ij  (42) 

- DY - Ki j  - AlK2i7 (43) 

- - - 
A ! l t  = - - A l ( B  - K2Y) - DB - K i j  

where 

z = [ 1 ,  c, = [ ;2 ] (44) 

Dz = [: j2]> E = [  -I 0 1  (45) 

Wl = [ E; 1 ,  w 2  = [ ;2 1 .  
22 

O I  

Consider the following Lyapunov function candidate 
1 
2 V ( Z ,  q, Y, i7) = -(tTZ + Fq+ ~ % i 7  + Pr-lF) (47) 

its time derivative along the solutions of (41), (42) and (43) 
is 

V = -zTC,z - zTDzz  + zTW1q+ zTW2i7 
- FK1G- F ( A l K 2  + D)Y + F ( J ( q )  - K)ii 

- P(pT(c, G,  si>^ + r-lQ (48) 

where we have used the fact that zTEz = 0. Now, using 
(15), and adding the zero terms 

1 
4 
1 
4 

(49) - (FG~~-?G~$ = o 

-(GTG2F-YG2i7) = 0 (50) 

(48) becomes 

V = -zTCZz - zTDZz + zTWlG+ zTW2i7 
1 1 

- - ( T G l G +  YG2i;) - T(K1-  ZGl)? 4 
-T 1 

- v ( M K 2 S D - q G 2 ) Z  

+ ; i r (J (q)  - IC)Y. (5 1) 

GI = g i I ,  G2 = gzI (52) 

Defining the matrices G I  and G2 as 

where 

(53) 

As shown in Appendix B, the quadratic form 

Q = -zTDZz + zTW1ij+ zTW2Y 

- - ( T G I F +  FGzY)  5 0 (54) 
1 
4 

Fig. 3. DP of a supply vessel: velocity estimation errors 

Hence, Eqs. (51)-(54) and we can write 

(55)  
1 
4 

g(AlIC2 + D - -G2)i7 + ;iT(J(q) - K)i7 

V 5 -zTCzz - F ( K 1  - -Gl)G 

1 
4 

- 

and using assumptions (9), (lo), (1 1) we have 
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It can be verified that Q is positive definite if 

and in this case we have global asymptotic stability with 
respect to the ship positions and velocities, and global 
stability with respect to the unknown parameters. 

Remark 3: Using (65), (66) and (67) for the implemen- 
tation of the adaptive observer, the implementation of con- 
troller (36) involves simply the calculation of ~ ( t )  at time 
instant t = iA. 

V. SIMULATION RESULTS 
To show the performance of the proposed adaptive 

observer-controller, we consider the case of dynamic posi- 
tioning of an off-shore supply vessel [4, Fig.81, described 
by 

1 A I = [  0 8.2831. lo6 0 

I 
5.3122. lo6 0 0 

0 0 3.7454.109 
5.024. lo4 0 0 

D = [  0 2.7229. lo5 -4.399. lo6 
0 -4.399. lo6 4.1894. 10' 

K = O  (59) 
We suppose that the inertial parameter m 11 is unknown, that 
is 0 = mil. The observer-controller parameters are chosen 
according to 

K~ = 10-~1, K~ = 10-~1, r = 103, 
C1 = 0.11, C2 = 0.11, d, = 0.1 (i = l , . .  . , 6 ) .  

Reference trajectories are generated by using a third-order 
filter with poles in -0.1, that is 

0.13 
(s + 0 .q3  

F ( s )  = 

Furthermore, the sampling time A is 0.1 [SI, and white 
noise is added to the measurements in order to illustrate the 
filtering properties of the observer. Results in Figs. 1-4 show 
a good Performance of the proposed adaptive observer-based 
controller. 

VI. DISCUSSION 
The approach presented here aimed towards an extension 

of Fossen and Grevlen [3] covering the case of unstable ship 
dynamics, parameter uncertainties and smooth time-varying 
parameters. As the stability analysis of the the system under 
influence of disturbances is not complete, this objective is 
not quite fulfilled. It remains to show effects of measurement 
noise with changes in the stability analysis of the closed-loop 
system and the observer. 

Another issue is the effect of discretization and discrete 
approximation with effects on stability and performance. 

Limits to stability of the discrete approximation remain to 
be analyzed. 

VII. CONCLUSION 
In this paper an adaptive observer has been proposed 

and combined with an adaptive controller for dynamically 
positioned ship control. Global asymptotic stability of both 
the observer and the control law and global stability of the pa- 
rameter update law have been proven by applying Lyapunov 
stability theory. In order to have a good filtering of noisy 
position measurements, a full-order observer has been used. 
Although only an approximate implementation of the pro- 
posed adaptive observer-controller is possible, this solution 
overcomes the difficulties in designing adaptive observers for 
nonlinear systems in which the unknown parameters and the 
unmeasured states are coupled. Therefore, the approximated 
implementation of this control scheme approaches the real 
one as the sampling interval approaches zero. The proposed 
adaptive observer does not require any conditions for its 
application, except a bound for the unknown parameters. In 
particular it is an extension of the scheme proposed in [3], 
as it covers unstable ship dynamics, parameter uncertainties 
and smooth time-varying parameters. Furthermore simulation 
results show good filtering and tracking properties also in 
presence of highly noise contaminated measurements. 

APPENDIX A-DISCRETE-TIME APPROXIMATION OF THE 
ADAPTIVE OBSERVER 

Integrating (13), (14) and (15), we have 

%t) = ?( to)  + st [J(v>P + Kl(77 - ij)ldt 

Lo 
+ / v ( t )  K 2 J T ( q ) d q  (61) 

1: 
- r I,,) V T ( L  P, ?)JT(v)drl ,  

1 - A  

L A  

+ /"'"' K2JT(v)d77 (63) 

LA 
- r / v ( t )  pT(< ,  c, e )JT(q )dv .  

t o  
t 

P ( t )  = P(to) + [<(e, P, C, 7) - K z P ] d t  

d t o )  

$(it) = $(to)  + I? p*(<,P,?))iidt 

P ( t )  

and replacing t o  with t - A, A > 0, we can write 
t 

6(t) = 5j(t - A) + [J(q)c + Ki(v - ?)]dt (62) 

c(t) = G ( t  - A) + [[(e, 8, C, T )  - K 2 c ] d t  

7C-A) 

F( t )  = F(t - A) + I? (pT([, G, e)j)Gdt 

(64) 
v(t-A) 
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Assuming that A is sufficiently small, (62), (63) and (64) 
suggest a discrete implementation of the proposed observer 
as follows 

qi) = ;i(i - 1) + 
+ 

P(Z) = 

A(J(i  - l ) C ( i  - 1) + K 1 f j ( i  - 1)) 
( I  - AK2)C(i - 1) + A<(i - 1) 

(65) 

+ K2JT( i  - l)(Q(i) - Q ( i  - 1)) (66) 
&i) = i$i - 1) + r p T ( i  - i ) [ ~ ~ ( i  - 1) 

- J T ( i  - l ) ( Q ( i )  - v(i - l))] (67) 

Renlark 4: Obviously (65), (66) and (67) are only an 
approximation of the proposed observer (13), (14) and (15). 
However, they are implementable and stand for a good 
representation of the observer if the sampling interval A is 
sufficiently small. 

APPENDIX B-PROOF OF INEQUALITY (54) 

Consider the quadratic form of Eq. (54) expanded as 

Q = - zTDzz  + zTW1fj+ zTW2G 

- - ( T G I F +  GTG2G) 
1 
4 

zFKlij+ zTQl f j+  zTR2iT - %;7"fj- s G T i T  

Using definitions (28),  (38), (39) and (40) together with z 1 = 

[,?I, 22, I3IT and z2 = [Z4, IS, I s]T .  Eq. (69) can be rewritten 
as the following negative definite quadratic form 

- - - z T D ~ z ~  - zTD2.22 (68) 

+ 4 4 

Q = - zTDZz  + z T W i f j +  zTW2G 
1 - q ( T G 1 i j t  FG2G)  

(69) 
1 1 3 

= -E [di(.Ziki - %gT(Ziki  - -9 2di 
i=l 

because all the quadratic terms in (69) are less than or equal 
to zero. 
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