
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Harmonic Transfer Function Model for a Diode Converter Train

Möllerstedt, Erik; Bernhardsson, Bo

Published in:
IEEE Power Engineering Society Winter Meeting, 2000.

DOI:
10.1109/PESW.2000.850062

2000

Link to publication

Citation for published version (APA):
Möllerstedt, E., & Bernhardsson, B. (2000). A Harmonic Transfer Function Model for a Diode Converter Train. In
IEEE Power Engineering Society Winter Meeting, 2000. (Vol. 2, pp. 957-962). IEEE - Institute of Electrical and
Electronics Engineers Inc.. https://doi.org/10.1109/PESW.2000.850062

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/PESW.2000.850062
https://portal.research.lu.se/en/publications/1ce1d731-f288-4daa-80e6-6776dbfab0ad
https://doi.org/10.1109/PESW.2000.850062


A Harmonic Transfer Function Model for a Diode Converter Train 
Erik Mollerstedt Bo Bernhardsson 

Department of Automatic Control 
Lund Institute of Technology (LTH), Lund, Sweden 

E-mail: {erik,bob}@control.lth.se 

Abstract 
A method for analysis of electric networks with nonlin- 
ear and switching components is presented. The method 
is based on linearization around the nominal AC volt- 
age, which results in linear time periodic (LTP) models. 
For nonlinear and switching components, there is cou- 
pling between different frequencies, which may cause 
stability and resonance problems. The models capture 
this coupling and can thus be used for small signal sta- 
bility and robustness analysis. A short introduction t o  
transfer functions for LTP systems is given. 

To illustrate the method, an LTP model for the Ad- 
tranz locomotive Re 4/4 is derived. The system consists 
of an AC-side with a transformer, and a DC-side with a 
DC-motor and a smoothing choke. The AC-side and the 
DC-side are connected by a diode bridge rectifier. The 
model clearly shows the coupling between frequencies. 

Keywords: Power networks, load modeling, nonlinear 
analysis, periodic systems. 

I. INTRODUCTION 

Modern trains use power electronic converters to shape 
the supplying AC-voltage. These switching converters in- 
troduce harmonics in the supplying network. Under un- 
fortunate operating conditions, the introduced harmon- 
ics may interact with other trains. This may trigger res- 
onances and cause instability. Known incidents have oc- 
curred in: 

Italy: Electrical line disturbances in 1993-95. 

Denmark Several protective shutdowns of the 

0 Great Britain: Problem with the signaling sys- 

0 Switzerland Several modern converter locomo- 
tives shut down due to network resonance in 
1995. 

0 Germany: S-bahn in Berlin exceeded the limits 
for harmonica1 perturbations in 1995. 

This is not a problem for train networks alone, but for 
all power networks with components that modulate the 
frequency, for instance HVDC systems [6]. 

When analyzing electric networks, one is often re- 
stricted to time domain simulation. Very accurate and 
thoroughly validated models have been developed for use 

net in 1994. 

tem in 1994-95. 

with, for instance, EMTP and EMTDC. However, no mat- 
ter how accurate the models are, there is no way that 
simulations alone can guarantee that all critical param- 
eter values and operating conditions are found so that 
new incidents can be avoided in the future. Simulations 
can only give a yes or no answer to stability, and do not 
say anything about robustness to  a set of uncertainties. 
Thus, no uncertainty in model parameters is allowed, no 
ixnmodelled dynamics, and all possible operating condi- 
tions must be analyzed. 

In control design, robustness has been a main con- 
cern for a long time. There now exist powerful tools for 
robustness analysis such as p-analysis, &,-design and 
also nice methods for model aggregation, which makes 
modularized modeling and analysis easier. Most of these 
methods are only available for linear systems. The use 
clf power electronics, however, implies that traditional 
linear analysis does not apply. The switching introduces 
coupling between different frequencies. For proper anal- 
ysis, the models have to consider this coupling. 

The supplied AC-voltage leads to a periodic excita- 
tion of the system. A natural approach is to linearize 
around the nominal voltage. This results in a linear 
model, however not time invariant but time periodic. 
These linear time periodic (LTP) models capture the 
coupling between frequencies and can thus be used for 
analysis of networks including nonlinear and switching 
components. 

For periodic signals, an LTP model gives a linear 
relation between the Fourier coefficients of the inputs 
and the outputs. This is the reason why frequency 
domain methods are popular for steady state analysis 
of power networks. LTP models for steady state analysis 
have been developed for numerous electric components, 
fix instance transformers with nonlinear saturation 
curves [ll, 12,1], KVDC converters [13,2,16] and static 
var compensators [17]. 

When the harmonic balance solution for a network 
is obtained via Newton iterations (81, and [5], the Jaco- 
bians are LTP models that improve the convergence of 
the solution. Newton’s method of harmonic balance has 
been used for analysis of power networks under vari- 
ous names, Harmonic Power Flow Study in [E] ,  it is 
called Unified Solution of Newton Dpe in [l], and Har- 
monic Domain Algorithm in 131. Harmonic balance with 
relaxation is called Iterative Harmonic Analysis in [4], 
and Newton’s method with a diagonal Jacobian is called 
A. Multiphase Harmonic Load Flow Solution Technique 
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in [17]. 
In [14] and [7] a transfer function for LTP systems 

is derived and used to analyze vibrations in helicopter 
rotors. Via this transfer function many stability and ro- 
bustness results for linear time invariant systems can 
be generalized to hold also for LTP systems. These refer- 
ences also give a nice historical background and relates 
the method to Floquet theory, Liapunov exponents and 
to so called lifting methods. 

In this paper, a transfer function for a diode converter 
locomotive is derived, and it is shown how the Nyquist 
criterion can be used to guarantee stability when the loco 
is connected to the power system. For related work see 
also [lo] where the harmonic transfer function method is 
used to study harmonic interaction for a four-quadrant 
converter locomotive. 

- 
... ... ... ... 

: H-l,-I(S) H-l ,O(S)  H-l*l(S) ... 

H ( s )  = i HO,-l(S) Ho,o(s) HO,l(S) -.. ! 

U. ANALYSIS OF LTP SYSTEMS 
For linear time invariant systems, many stability and 
robustness results are based on the transfer function 
operator. To generalize these results to LTP systems, we 
need a corresponding transfer function. 

Let the input, u(t) ,  be an exponentially modulated 
periodic (Em) signal with period T 

’ 

where woT = 2 ~ .  In Appendix A it is shown that 
system maps an EMP input to an EMP output, 
the output too is an EM” signal 

est y n p w o r  = yne(s+jnoo)t Y ( t )  = 
n n 

an LTP 
that is, 

If the EMP input signal U and output signal Y are 
written on vector form 

U(S) = [... U-1 U0 U1 . . . I  Test ,  

Y ( S )  = [... Y-1 YO Y~ . . . I  

111. A DIODE CONVERTER TRAIN 
$l2 ;3iiei;Acq Choke 

Diode 
- bridge 

DC motor UDC 
UIine % 

TrafO 

Fig. 1 A simulink model for the diode converter loco. The 
harmonic transfer function derived in Section III describes the 
harmonic interaction between the variable ZAC,  UAC , iDc and 
UDC, see Fig. 7 

An LTP model for the Adtranz locomotive Re 4/4 is 
derived. A Simulink model for the locomotive, which 
consists of a transformer, a diode bridge rectifier, a 
smoothing choke and a DC motor, is shown in Fig. 1. 

11. A Diode Bridge Rectifier Model 
The diode bridge rectifier ensures that the AC-side and 
the DC-side are related by a time varying modulation 

(2) 
v D C ( t )  = B(t)UAC(t)r 
iAC ( t )  = c ( t )  iDC ( t ) .  

![?le current and voltage on both sides of the rectifier are 
shown in Fig. 2. 

The diodes in the diode bridge are not ideal, which 
means that it takes some time for the AC-current to 
change sign. During this period current flows through all 
diodes. This is called commutation. The result is that the 
commutation functions, B ( t )  and C ( t ) ,  are not square 
waves. Typical shapes are shown in Fig. 3. To avoid de- 
tailed modeling of the converter, these modulation func- 
tions can be obtained via simulation or measurement. 
TVe have used data fkom time domain simulation using 
Simulink’s Power System Blockset toolbox. For a diode 
hridge rectifier, the switching instants are determined 
by the zero-crossings of the AC-voltage. A voltage dis- 
tortion will hence affect the switching instants and thus 
the periodicity. 

Linearizing (2) around the periodic functions, Bo ( t )  
and Co(t) and the nominal signals, u i c  ( t )  and iLc ( t ) ,  
gives 

AUDC ( t )  = Bo(~)AuAc ( t>  + AB(t)vic  ( t ) ,  (3) 
A i ~ c ( t )  = Co(t)AiDc ( t )  + Ac( t )& ( t ) .  (4) 

The deviations &om the periodicity, A B ( t )  and AC(t ) ,  
are due to  distortion of VAC. The effect of AB(t) is ne- 
glectable since u $ ( t )  is small around the zero cross- 
ing. The effect of AC(t) is analyzed in the next section, 
see (9). The analysis will show that an HTF for the diode 
tlridge has the following structure 

AvDc(s) = BO(S)AVAC(S), ( 5 )  
MAC ( S )  = cO(s)AlDC (s) +D(s)AvAC (SI, (6 )  
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Thus, the HTF is a static Toeplitz matrix 
0 5  

0 

Fig. 2 Simulation of AC- and DC-voltages and currents for 
the diode converter loco, see also (2). Small-signal lineariza- 
tion around these nominal trajectories leads to the model in 
Fig. 4. 

7 ,  2 .  

1 5 '  . . I .  . 1 5  2 

. . .  . . .  
-15 .:. . . . , . .. . -1 5 : . . . . 

- 025 0 3  035 0.4 = ob 0 3  035 0 4  

Fig. 3 Modulation functions, Bo(t) and Co(t). Changes in 
uAc change the switch instances but not the form of the 
modulation functions. 

where D(s)  is due to non-periodic switching. The rectifier 
can hence be described by the block diagram in Fig. 4. 

Fig. 4 A block diagram of the linearized diode rectifier. The 
HTF models Bo(s), Co(s) and D(s) are derived in the text 
and have been verified by time domain simulations. The diode 
rectifier model is connected with the DC dynamics in Fig. 5. 

B Deriving the HTF for the Rectifier 
The periodic h c t i o n s  Bo(t) and Co(t) can be expressed 
by their Fourier series Bo(t) = xr=O=-ooBkdkOot. With 
AVAC ( t )  being an EMP signal we get 

and similarly for CO ( s )  . 
We will now analyze the part of iAc that is due 

to changes in switching instants, AC(t)ik,(t) .  A good 
.approximation is that a change in switching instant does 
not affect the shape of the modulation function, but only 
:shies it in time. 

dCo(t> At, C ( t )  = Co(t - At) M Co(t) - - 
dt  

The change in switching at time tk only affects the 
current until the next switch occurs around tk+l = 
4th + T / 2 .  A switch change Atk at time tk gives 

where n ( t )  is a unit pulse with width T / 2 .  

the voltage distortion. Let the nominal voltage be 
We must now relate the zero crossing change, At, with 

0 uAc ( t )  = Vo sin wot, 

with zero-crossings at tk = k T / 2  = kz/wo. A distortion 
A u A c ( ~ )  gives a change in switching time, At. This 
change is approximately given by the voltage distortion 
at the nominal switching time, tk 

Using (7) and (8) and assuming a constant itc ( t )  = 
ikc(t0) now gives 

= J h( t, T ) AUAC ( T ) d r ,  (9 )  

where h ( t , r )  is the impulse response. If all zero- 
crossings are considered, the impulse response is hence 
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given by 

(10) 

The time periodic transfer function becomes 

H(s , t )  = e-" h(t ,  r)es5dr Fig. 5 The diode converter with the DC dynamics d(s) 
connected. The resulting F, Hdb(s), is then connected with 
a model of the transformer Ztraf(s) ,  see Fig. 6. 

s 
= e-sti&(to) -~ dCo( t )  C(-l)kn(t - tk)estk, 

VOW0 d t  . 
R 

which gives 

d t  

Fig. 6 The electrical network described by a feedback con- 
nection. The relation between harmonic disturbances on the 
line and in the AC-current is given by HIMo (s), see x 

( 1  - ~ ( l - ~ ) ~ o T / 2 ) j ~ ~ o C l e - ( S + ~ ( k - l ) ~ o ) t d t  

The Hl" D ( s )  is then obtained as in Appendix A. &s) = diag ( . . . G(s - j @ o )  G(s) G(s + j W o )  . . .I1 
(11) 

C The DC-Side 
A DC motor consists of two windings, the rotating 
armature winding and field winding. Due to the rotation 
an eledro-magnetic force, e,, is induced in the armature 
winding, e, = KlQ(iS)o7 the flux as is a function of the 
stator current and 

For a series excited DC-motor is = i,. Assuming the 
speed of the train to be constant, a linearized model for 
the DC motor can be seen as a resistor, Ae, = Rind&,  
where R i n d  depends on i8 and WO. The transfer function 
from DC-voltage to  DC-current is hence given by 

is the rotor speed. 

where, L = L, + L, f Le is the sum of the choke 
inductance and the inductances in the armature and 
field windings, and similarly R = R, + R, + R e  + R i n d .  

D Assemblying the Loco 
The model for the diode converter including the DC side 
dynamics is shown in Fig. 5. The HTF, &b(S) ,  for the 
diode bridge rectifier and the DC side dynamics is hence 
given by 

AIAC (s)  = H d b ( S ) A V A C  ( s )  

= (CO(s)G(s)BO(s) + D ( s ) ) A v A C ( s ) ,  

The transformer is modeled as an ideal transformer 
plus an equivalent impedance on the low voltage side. 
'The effect of the impedance is shown in Fig. 6 and gives 
4 I A C  (s) = HIoco(s)AVline(s), where 

H l O C O ( S )  = (1 + Hdb(s )~~: t ra f ( s ) ) - lHdb(s ) .  (12) 

100 

-100 -100 

Fig. 7 The amplitude plot of the HTF HiMo. Notice the 
large out-diagonal bands, illustrating the nonlinear coupkg 
between different frequencies in %'line and ZAC . 

In Fig. 7, the amplitude of Hloco is plotted. The 
diagonal structure shows that there is only coupling 
between frequencies separated by 33: Hz. 
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XW)t i A c  for K = 4 
I .. I . . 

0 

Fig. 8 The Harmonic Nyquist plot, i.e. the eigenvalues of 
Zgrd Hlmo Go) for -o0/2 5 o 5 o/2, for the loco attached to 
the line. Notice that the curve indicates a harmonic amplitude 
margin of A, = 5. This corresponds well with the results from 
time domain simulations. 

W. A NYQUIST CRITERION FOR LTP SYSTEMS 
On matrix form it is clear that an LTP system formally 
can be treated as a LTI system with infinitely many 
inputs and outputs. Transmission zeros and poles can 
thus be derived from theory for multi-input multi- 
output (MIMO) systems, see for instance [9]. These poles 
determine the stability of the system. 

A Nyquist criterion for LTP systems based on HTFs 
was presented in [14]. It is based on the generalized 
Nyquist criterion for MIMO systems. It states that 
stability of the closed loop system can be determined 
by plotting the eigenvalue curves of the open loop HTF, 
H ( j w )  for -0012 < w < ~ 0 1 2 .  If the open loop system is 
stable, and the Nyquist curve does not enclose the point 
-1, then the closed loop system is stable. 

Consider the locomotive connected to a fictive (non- 
passive) line environment, modeled as an impedance 
given by Zgra(s)  = 5000K/(s2 + 5s + 5000). The open 
loop system is given by Z g r ~ d ( ~ ) H ~ o c o ( s }  where Z g r i d ( S )  is 
defined as in (11). 

In Fig. 8, the Nyquist plot for the HTF' of the 
locomotive and the grid is plotted for K = 1. The 
curve crosses the negative real axis at s FUN -0.2. The 
Nyquist criterion states that the system is stable for 
K < A, = 110.2 = 5. A time domain simulation 
shows that the system is stable for K = 4 but not 
for K = 6. This indicates that the Nyquist criterion 
does a good job in predicting harmonic stability of the 
full nonlinear locomotive. The derived model can now 
be used for analysis, such as harmonic interaction with 
other trains on the same line. 

V. CONCLUSIONS 

The Harmonic transfer function method of modeling lin- 
ear time periodic systems has been described. A HTF 
model has been derived for a diode converter locomotive. 
The model has been verified with time domain simula- 
tions and is a good starting point for further analysis of 
resonance risks and harmonic interaction. 
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APPENDIX A. ANALYSIS OF LTP SYSTEMS 

The transfer function plays a central role in stability and 
robustness analysis as well as control design. For LTI- 
systems, the transfer hnction is a linear operator on the 
class of exponentially modulated sinusoids 

u(t )  = uoest, y(t) = Ho(s) UOeSt = Yoest. 

To get a transfer function for LTP systems, we need 
a corresponding class of test signals. For an LTP sys- 
tem on state space form, Floquet decomposition reveals 
that a suitable test signal is the class of exponentially 
modulated periodic (EMP) signals, see [14] 

u(t> = est umejmuot = ~ ,e (s+ jmuo) t  . (13) 
m m 

Not all systems have a state space representation. A 
;general LTI? system can be defined by its impulse 
response, h(t, z). The periodicity of the system implies 
that 

h(t + T ,  z + T )  = h(t, z), (14) 

where T is the period time. Assume the input, U(s ) ,  
is given in Laplace domain. The corresponding time 
domain signal is 

'his gives the following output 

y( t )  = Sm h(t, z)u(z)dz 
-co 
00 a-kjco . 

= LW h(t, Z) - J eS'U(s)dsdz 
2n.i a-jco 

= A 
J 2n.i a-jw 

eS'H(s, t )  ~ ( s ) d s .  

Here, H(s ,  t )  is a time periodic transfer function 
co 

H(s , t )  = e-'' es5h(t, r)dr  

which is periodic in t .  The periodicity implies that H(s ,  t )  
can be written as a Fourier series with the fimdamental 
frequency 0 0  = 2 r / T  

H(s ,  t )  = B k ( S ) d k U O t ,  
k 
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The output can now be written [TI s. Hwang. Frequency Domain System Identification OfHelicopter 
Rotor DJ"im inwrporationg Models with Tihe Periodic coef- 
fiuats. PhD thesis, Dept. of Aerospace Engineering, University 
of Maryland, 1997. 

(81 K S. Kundert and A. Sangiovanni-Vincentelli. "Simulation of 
nonlinear circuits in the frequency domain." BEE fians. OB 
Computer-Aided Design, 5 4 ,  pp. 521-535, 1986. 

191 J. M. Maciejowski. Multivariable Feedback Design. Addison- 
Wesley, Reading, Massachusetts, 1989. 

1 a+Jm 
- -- 2!TcJ' l,, Hh(' - jkwo)estU(s -jkwo)ds' 

1101 H. Sandberg. "Nonlinear modeling of locomotive propulsion sys- 
tem and control." Master mesis TFRT-5625, Department of Au- 
tomatic Control, Lund, 1999. 

Here, we recognize the definition of the inverse Laplace 
transform. In Laplace domain, the output is hence 

From this we conclude that for LTP-systems there is 
coupling between frequencies that are separated by a 
multiple of the fxndamental frequency of the system, 
00. Laplace transformation of the EMP signal defined 
by (13) gives 

U = 2nC Umas+jmcu, 
m 

Equation (15) gives that the output too is an EMP signal 

where 

yn = CI;T,-m(so + j m ~ o ) ~ m .  
m 

The doubly-infinite matrix in Section IT is hence given 
by 

H n , m ( s )  = f in - -m(S  +jmoo). (16) 
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