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Abstract 

Uncertainty rules supply chains. Unexpected changes constantly occur on all 
levels; on strategic levels through globalization, introduction of novel 
technology, mergers and acquisitions, volatile markets, and on operational 
levels through demand fluctuations, and events such as late arrival of in-
bound material, machine equipment breakdown, and quality problems. 
Uncertainty is becoming an increasing problem as the focus on cost 
reductions and efficiency in industry tends to stretch supply chains, making 
them longer and leaner, and thus more vulnerable to disturbances.  

The aim of this thesis is to explore strategies for evaluating and managing 
uncertainties in a logistics context. It has as its objectives; “to propose a 
method for modeling and analyzing the dynamics of logistics systems with 
an emphasis on risk management aspects”, and “to explore the impact of 
dynamic planning and execution in a logistics system”.  

Three main strategies for handling uncertainties are discussed; robustness, 
reliability, and resilience. All three strategies carry an additional cost which 
must be weighed against the cost and risk of logistical disruptions. As an aid 
in making this trade-off, a hybrid simulation approach, based on discrete-
event simulation and Monte Carlo simulation, is proposed. A combined 
analytical, and simulation approach is further used to explore the impact of 
dynamic planning and execution in a solid waste management case. 

Finally, a draft framework for how uncertainty can be managed in a logistics 
context is presented, along with the key reasons explaining why the 
proposed simulation approach has proven itself useful in the context of 
logistics systems. 
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1 INTRODUCTION 

1.1 Background 
The increasing competitive pressure in the global economy has forced 
companies to reduce costs, expand markets and develop new, innovative 
products at an ever more rapid pace. Some of the key strategies for 
supporting this are global sourcing, supplier base reductions, lean 
manufacturing, outsourcing, and improved IT/IS infrastructure. The overall 
result has been improved efficiencies in the industrial sector, but also more 
and more complex and fragile supply chains which require stability and 
predictability to function. Alas, globalization has also resulted in increasing 
market turbulence through more volatile demand, shorter product and 
technology life-cycles, and increased vulnerability to disruptions 
(Christopher and Lee, 2004). This paradox suggests that supply chain 
managers must increasingly devote time and energy to handling 
uncertainties, either through the design of the supply chain, or through 
increased ability to rapidly respond to changing conditions – or both. 

The strategic design of a supply chain has a major impact on its performance 
when unexpected events occur and there are numerous examples of how 
companies have encountered severe problems when their supply chains were 
disrupted. The closure of US airspace after the terrorist event September 11, 
2001, for example, forced the car manufacturer Ford to close down five of 
its plants which led to a 13% reduction in production in the forth quarter 
(Martha and Vratimos, 2002). Similarly, the outbreak of Severe Acute 
Respiratory Syndrome (SARS) challenged supply chain flows from Asia in 
2003 (Arminas, 2003), and more recently, hurricane Katrina hit the US Gulf 
Coast leading to massive disruptions in logistics operations in the area 
(Levans, 2005).  

Traditional models for supply chain design focus on cost efficiencies, and in 
vogue strategies such as Just-In-Time, are extremely vulnerable to 
disruptions (Armbruster, 2003). The cost and risk of not obtaining supply 
can, however be leveraged, to encompass redundancies in inventory and 
supply base. These considerations will be either to increase reliability, i.e. to 
minimize the risk that disruptions occur, or to increase robustness, i.e. to 
ensure high performance despite disturbances. Reliability can be 
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accomplished through local sourcing versus global sourcing, while 
robustness can be achieved through dual sourcing instead of single sourcing. 

Regardless of the level of built-in risk tolerance in the supply chain design, 
undesirable events will occur which need to be managed in order for damage 
to be contained. This translates to a need for responsive behavior to restore 
the supply performance after being disturbed. This property has been 
defined as supply chain resilience (Christopher and Rutherford, 2004). To 
accommodate responsive behavior, the gap between planning and execution 
must be closed and systems which support dynamic planning, i.e. rapid 
planning and execution cycles, are needed. 

1.2 Research purpose and objectives 
The purpose of the thesis is to explore strategies for evaluating and handling 
uncertainties in a logistics context. Based on this purpose, two more tangible 
objectives can be defined: 

 To propose a method for modeling and analyzing the dynamics of 
logistics systems with emphasis on risk management aspects. 

 To explore the impact of dynamic planning and execution in a 
logistics system 

1.3 Scope and demarcations 
The breadth of contemporary research in logistics and supply chain 
management makes it important to delimit the research area by defining the 
scope of this thesis work. The thesis has the following focal points and 
bounds: 

Logistics domain: Management of uncertainty on a tactical level in logistics 
systems. This means that strategically taken decisions, e.g. localizations of 
plants and warehouses, provide boundaries for decisions on a tactical level. 

Simulation domain: Discrete-event simulation, mainly as a method for 
exploring the dynamics and stochastic behavior of logistics systems. 

Performance indicators: Comparisons between different solutions or 
systems are based on monetary performance indicators. 
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2 FRAME OF REFERENCE 

The frame of reference outlines the theories, models, and definitions used in 
the thesis work in order to provide a background and knowledge of the 
researcher’s stance within the research field. 

2.1 Logistics and supply chain management 
2.1.1 Logistics 
Logistics has been a research area since the beginning of the 20th century, 
but the history of logistics dates back much further than that. Throughout the 
history of mankind, the success, or failure, of armies has been attributed to 
logistics capabilities. One of the most successful military commanders of all 
times, Alexander the Great, managed to conquer most of the known world 
largely due to superior logistics planning; his troop movements were 
synchronized with harvest cycles and access to sea transportation, flexibility 
and speed were improved by removing the usual team of servants, spouses 
and wagons from the marching army, and base camps with supplies were set 
up prior to the arrival of the marching army (Van Mieghem, 1998). Much of 
the early developments in the logistics discipline were done based on 
military needs. The first use of the word logistics itself is attributed to the 
French General Antoine-Henri Jomini, who devised a theory of war based 
on the trinity of strategy, ground tactics, and logistics. Military logistics has 
been a source of inspiration for civilian use and still offers many insights 
into business logistics. The US Air Force defines logistics as:  

“The science of planning and carrying out the movement and maintenance 
of forces. In its most comprehensive sense, those aspects of military 
operations that deal with: a. design and development, acquisition, storage, 
movement, distribution, maintenance, evacuation, and disposition of 
material; b. movement, evacuation, and hospitalization of personnel; c. 
acquisition or construction, maintenance, operation, and disposition of 
facilities; and d. acquisition or furnishing of services.” (Air Force Logistics 
Management Agency, 2002) 

The term logistics entered business terminology during the 1960s. Prior to 
that, logistics was referred to as physical distribution. In addition to military 
logistics, commercial logistics in the early days was also influenced by the 
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agricultural sector, and later, by many other disciplines such as industrial 
economics, management science, information technology, management 
strategy, and marketing (Kent & Flint, 1997). A commonly used commercial 
definition of logistics has been provided by the Council of Supply Chain 
Management Professionals (CSCMP):  

“Logistics management is that part of supply chain management that plans, 
implements, and controls the efficient, effective forward and reverse flow 
and storage of goods, services, and related information between the point of 
origin and the point of consumption in order to meet customers’ 
requirements…” (CSCMP, 2005)  

The major differences between the military and the civilian definitions of 
logistics are that customer requirements and efficiency aspects are not 
mentioned in the military version. Military logistics, however, often 
emphasizes that logistics processes occur in dynamic and unpredictable 
environments. As a consequence, logistics processes often require “a 
combination of forecasting ability, the ability to control that which is 
controllable, and the flexibility to adapt to changing conditions and 
unexpected events.” (McGinnis, 1992) 

2.1.2 Supply chain management 
Supply chain management (SCM) is a concept closely related to logistics 
management. Researchers argue over the exact meaning of SCM. Larson 
and Halldórsson (2004) have identified four perspectives of the relationship 
between logistics and SCM; (1) the traditionalist perspective, where SCM is 
a field within logistics, (2) the re-labeling perspective, where SCM is 
another name for logistics, (3) the unionist perspective, where SCM is a 
larger field containing the smaller logistics field, and (4) the intersectionist 
perspective, where SCM and logistics are equally large fields that to some 
extent, overlap. The CSCMP has taken the unionist perspective and defined 
supply chain management in the following way: “Supply Chain 
Management encompasses the planning and management of all activities 
involved in sourcing and procurement, conversion, and all logistics 
management activities. Importantly, it also includes coordination and 
collaboration with channel partners, which can be suppliers, intermediaries, 
third-party service providers, and customers. In essence, supply chain 
management integrates supply and demand management within and across 
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companies …” (CSCMP, 2005). Others confess that they “do not distinguish 
between logistics and supply chain management.” (Simchi-Levi et al, 2000) 

2.2 Uncertainty and risk management 
Uncertainty is term which can be used to describe a multitude of 
phenomena. When faced with a problem, we might be uncertain about our 
knowledge of the situation, we might be uncertain of our preferences 
towards different solutions, and we might be uncertain how to solve it. 
There are many reasons behind uncertainty such as incomplete information, 
conflicting information, approximations, linguistic imprecision, and 
variability. Typically, we are even uncertain about our degree of uncertainty.  

The most common tool for quantifying uncertainties is the mathematical 
concept of probability. This concept is, however, not without controversy 
and two main schools of thought exist. The classical or frequentist view is 
that probability is the frequency with which an event occurs in a long 
sequence of similar trials, while the Bayesian or subjectivist view is that 
probability is the degree of belief a person has that a certain event will 
occur, given all the relevant information currently known to that person. 
Since different people may have different information, and people will 
acquire additional information, there is no one “fixed” probability for an 
event. The subjectivist view, however, allows for analysis in real-world 
cases where no relevant population of trials can be identified. 

On a fundamental level, two types of uncertainty can be distinguished, 
aleatory, or stochastic uncertainty and epistemic, or knowledge-based 
uncertainty. The aleatory uncertainty represents randomness in nature and 
has been given many different names in literature, e.g. variability, 
randomness, stochastic or irreducible uncertainty. The epistemic uncertainty 
on the other hand represents a lack of knowledge about fundamental 
phenomena, and is thus often referred to as ambiguity, knowledge-based, or 
reducible uncertainty. From a practical point of view, one distinction 
between the two types of uncertainty is that knowledge-based uncertainty 
can be reduced, e.g. by gathering more information, while stochastic 
uncertainty cannot. Another important difference is that the stochastic 
uncertainty partially cancels itself out in a risk analysis, but knowledge-
based uncertainty does not. 
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On a less profound level, and more applicable in a modeling context, Parry 
(1996) discusses three major groups of uncertainty: 

 parameter uncertainty 
 model uncertainty 
 completeness uncertainty 

Parameter uncertainty is a consequence of incomplete information about the 
value of parameters used in a model. Parameter uncertainty can be handled 
by assigning a probability distribution to the parameter describing the 
uncertainty in the value, or by conducting a parametric sensitivity analysis to 
examine the effects of deterministic changes on the output. Parameters 
which are subject to natural variability are usually treated by the former 
method, while the latter method is recommended for parameters which 
represent decision variables, i.e. variables the decision maker can control, 
e.g. buffer size, or value parameters, i.e. parameters which represent 
preference aspects, e.g. discount rate (Morgan and Henrion, 1990). Model 
uncertainty originates from the fact that any model is unavoidably a 
simplification of reality, and thus is false. This is closely related to epistemic 
uncertainty. Finally, completeness uncertainty is a consequence of scope 
limitations, and is as such not an uncertainty in itself. Completeness 
uncertainty is, however, difficult since it deals with the unanalyzed 
contribution to the overall uncertainty. 

The concept of risk is related to uncertainty as risk by definition is “the 
possibility of suffering harm or loss.” (The American Heritage® Dictionary 
of the English Language: Fourth Edition.  2000) Early influential references 
often distinguish the difference between risk and uncertainty by stating that 
risk is something which can be assigned a probability, while uncertainty is 
something unique and whose probabilities are unknowable (Knight, 1921; 
Luce and Raiffa,1957). More recent references adopt the Bayesian view 
(e.g. Covello and Merkhofer, 1993) and define risk as “A characteristic of a 
situation or action wherein a number of outcomes are possible, the 
particularly one that will occur is uncertain, and at least one of the 
possibilities is undesirable.”, and uncertainty as “a situation where a number 
of possibilities exist and one does not know which one of them has occurred 
or will occur.” Others have pointed out that risk is a single value 
representing the probability that a certain (often negative) event will occur, 
while uncertainty is a probability distribution function representing a range 
of possible values (Simpson et. al., 2000).  
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From a more technical perspective, risk can be defined as the probability of 
an event multiplied by the (negative) consequences of the event. Kaplan 
(1997) suggests that risk is defined by the answer to the three fundamental 
questions: (1) “What can go wrong?”, (2) “How likely is that to happen?”, 
and (3) “What are the consequences?”. The technical view of risk has, 
however, been criticized for neglecting important social, psychological, and 
cultural aspects. What people perceive as undesirable events depends on 
their values and preferences, the interaction and consequences of human 
activities are more complex than probability numbers can capture, and the 
calculation of risk with equal weights for probability and magnitude implies 
indifference between high-consequence, low-probability- and low-
consequence, high-probability events. This has been shown not to be true. 
Nevertheless, technical risk analyses serve a major purpose in facilitating 
decision making (Renn, 1998). 

 

Figure 2.1  Risk Management (IEC, 1995) 

2.2.1 Risk management 
Risk management is the systematic approach to identifying, analyzing, and 
acting on risks. It incorporates all steps from the initial identification of risks 
to the final decision on risk-reducing actions and risk monitoring. The 
process can be divided into three key steps, see figure 2.1. (IEC, 1995). 



8 

2.2.2 Risk analysis 
Risk analysis is the structured process of (1) identifying sources of risk and 
undesirable events, (2) estimating their probabilities, (3) estimating their 
consequences, and (4) calculating the associated risks. A wide array of 
methods exists for identifying sources of risk, e.g. comparative methods 
(e.g. checklists), fundamental methods (e.g. Failure Mode and Effects 
Analysis (FMEA)), and logical diagram methods (e.g. fault tree analysis). 
Nevertheless, the identification of risk sources appears to be the least- 
mentioned risk technique, despite the fact that it is seen as the most 
important step (Elkington and Smallman, 2002). Once the potential risk 
sources have been established, their respective probabilities are estimated 
through the use of historical data or expert opinions, and the resulting 
consequences, should an unwanted event occur, are assessed. Qualitative 
methods are generally used for identifying sources of risk, while 
semiquantitative methods are used for estimating probabilities and 
consequences. The final step of calculating the risks is normally quantitative 
and can be either deterministic or stochastic. In the case of stochastic 
analysis, uncertainties are incorporated by modeling input parameters as 
probability distributions which are propagated through the analysis to the 
corresponding uncertainty of the result. 

2.2.3 Risk evaluation 
During risk evaluation, the decision maker determines whether the identified 
risks are tolerable, and investigates alternative options. A few guiding 
principles exist, although in practice is it often impossible to apply them all 
(Haeffler et al 2000): 

 Reasonableness principle: An operation should not involve risks if 
this can be avoided or if the risk level can reasonably be decreased.  

 Proportionality principle: The risks an operation involves should not 
be disproportionately large in relation to the benefit the operation 
results in.  

 Distribution principle: The risks should be reasonably distributed in 
a society in relation to the advantage the operation results in.  

 Catastrophe avoidance principle: The risks should result in 
accidents, with limited consequences which can be managed by 
available rescue resource in the society, rather than a large 
catastrophe.  
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The tools used during risk evaluation are sensitivity analysis, the study of 
how the risk quantitatively relates to different risk sources, or scenario 
analysis, analyzing possible future events by considering alternative possible 
outcomes. In the case of stochastic risk analysis, the output distribution 
shape can also be studied. 

2.2.4 Risk reduction and control 
The basic objectives of the risk reduction and control step are to consider 
whether a risk is worth accepting, and if so, to develop risk minimization 
actions which focus on lowering the probability of occurrence and/or 
lessening the consequence, in order to reduce the overall magnitude of the 
risk.  

It should be mentioned that risk reduction is not the only option available to 
decision makers. Other risk-handling strategies may be to accept the risk as 
is, to trade the risk through e.g. an insurance policy, or simply to neglect the 
risk. 

2.3 Supply chain uncertainty 
Risk management and contingency planning may be well known and used in 
many firms on an individual basis. Nevertheless, these firms have often 
overlooked the critical exposures along their supply chains (Jüttner et al, 
2003). In a situation of increasing supply chain vulnerability, this makes 
adopting a risk and uncertainty perspective to perhaps one of the most 
important capabilities a firm needs to have today (Barry, 2004). 

“Supply chain uncertainty refers to decision making situations in the supply 
chain in which the decision maker does not know definitely what to decide 
as he is indistinct about the objectives; lacks information about (or 
understanding of) the supply chain or its environment; lacks information 
processing capabilities; is unable to accurately predict the impact of possible 
control actions on supply chain behaviour; or, lacks effective control actions 
(non-controllability).” (van der Vorst and Beulens, 2002) 

Supply chain uncertainty can be categorized in different ways. One 
framework for dividing uncertainties based on a framework by Mason-Jones 
and Towill (1998) has been suggested by Christopher and Peck (2004): 

 Uncertainty internal to the focal firm 
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 Process, i.e. disruptions in internal processes, e.g. machine 
breakdown 

 Control, i.e. rules, systems and procedures for controlling 
internal processes, e.g. batch sizes, order quantities, stocking 
policies etc. 

 Uncertainty internal to the supply chain (but external to the focal 
firm) 
 Demand, i.e. disturbances in the flow of products, information or 

cash between the focal firm and the market 
 Supply, i.e. the upstream equivalent of the above 

 Uncertainty external to the supply chain 
 Environmental, e.g. political instability, terrorism, natural 

disasters, regulatory changes, strikes etc. 

A concept closely related to supply chain uncertainty is supply chain 
vulnerability. It has been defined as “the existence of random disturbances 
that lead to deviations in the supply chain of components and materials from 
normal, expected or planned schedules or activities, all of which cause 
negative effects or consequences”. (Svensson, 2000) In a proposed frame-
work for categorizing supply chain vulnerability, Svensson distinguishes 
between the sources of disturbance, i.e. atomistic (i.e. direct) and holistic 
(i.e. indirect), and the categories of disturbance, i.e. quantitative and 
qualitative. 

Uncertainty management in logistics 
There are many strategies for managing uncertainty to be found in the 
logistics literature and a broad vocabulary to describe supply chains which 
are designed with uncertainty in mind. Three terms, however, seem to be 
more prevalent than others; reliability, robustness, and resilience. In 
practice, as well as in literature, the terms are often used interchangeably, 
and although overlapping areas exist, they can have quite different meanings 
in the context of supply chains. The terms are briefly described in the 
sections below.  

2.3.1 Reliability 
Reliability is the ability of a system to perform its required functions under 
stated conditions for a specified period of time (IEEE, 1990). Increased 
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reliability generally means a reduced risk of disruptions occurring. The 
concept, however, does not cover the system’s ability to handle disturbances 
once they have taken place. One of the most important design techniques to 
achieve reliability is redundancy. Basically, this means that if one part of the 
system fails, there is a backup system. Although redundancy significantly 
increases the reliability of a system, it is expensive and provides no value, 
except in those rare occasions when disruptions actually occur. Due to the 
cost, it is often limited to the critical parts of a system. In the context of 
supply chains, redundancy would equate to having backup suppliers or 
backup transportation modes. Other design techniques rely on understanding 
the reasons behind disruptions at a detailed level so the processes can be re-
designed in order to minimize risks, or on “derating”, i.e. using requirements 
which significantly exceed the normal specification for the expected need. 
An illustration of the former technique would be to use local suppliers 
instead of suppliers located in another continent, and the latter would be to 
require suppliers to have considerably shorter lead times than what is 
actually needed. 

2.3.2 Robustness 
Robustness is the degree to which a system can function correctly in the 
presence of invalid inputs or stressful environment conditions (IEEE, 1990). 
Furthermore, “robustness signifies insensitivity against small deviations in 
the assumptions.” (Huber, 2004) Taguchi (1986) is a pioneer in developing 
methods for designing robust systems. His parameter design methodology is 
generally used in manufacturing environment to achieve robustness by 
designing products or processes so that they consistently exhibit a high level 
of performance and are minimally sensitive to noise. A parameter design 
generally involves two types of factors: control and noise factors 
(uncontrollable factors). Parameter design examines how control factors 
should be set in order to achieve the desired function of the system, while 
minimizing the negative impact of the noise factors. In terms of logistics 
system, decision variables such as buffer sizes and inventory policies are 
control factors, while lead-time variation, machine breakdown, and strikes 
are examples of noise factors. 

2.3.3 Resilience 
Resilience is a term often used in materials sciences where it refers to the 
capacity of a material to absorb energy when it is deformed elastically and 
then, upon unloading, recovers its shape. In analogy, resilience has been 
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defined in the context of logistics as “the ability to bounce back from a 
disruption.” (Sheffi, 2005) Resilience is thus closely linked to the notion of 
flexibility. Christopher and Peck (2004) have proposed a broader definition 
where resilience is “the ability of a system to return to its original state or 
move to a new, more desirable state after being disturbed.” This definition 
also includes an adaptability aspect.  

Resilience can be achieved by either creating redundancy or increasing 
flexibility. While redundancy represents sheer cost as discussed in the 
previous section, flexibility not only increases resilience in unstable times 
but also provides benefits in the normal course of business, e.g. better 
responsiveness in situations with high demand and supply volatility (Sheffi, 
2005). 

2.4 Lack of knowledge 
Despite the widely acknowledged increase of uncertainty in today’s supply 
chains, a more structured approach to investigate this area can only be traced 
back a few years and the area is still largely unexplored (Jüttner et al., 2003; 
Peck, 2005). Furthermore, researchers have quite different views on how to 
deal with supply chain uncertainty. Christopher and Lee (2001) argue for 
visibility as a vital factor for managing supply chain risk. Wilding (1998) 
takes the position that understanding complexity is the key, while Towill 
(1999) argues for the removal of complexity in the design. Another 
approach, supply continuity planning, is proposed by Zsidisin et al. (2005) 
and still another, early supplier involvement, by Zsidisin and Smith (2005). 
A large proportion of the research so far uses a soft systems approach. A 
hard systems approach using predictive simulations is, however, called for 
as a next step (Peck, 2005). 
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3 RESEARCH METHODOLOGY 

The logistics discipline can be regarded as an interdisciplinary science 
combining concepts, principles, methodologies, and approaches from other 
disciplines (Stock, 1997). This chapter will outline the research perspectives 
and methodologies used in this thesis. As the choice of methodology is not 
purely a technical question, but rather a reflection of individual beliefs and 
ideals, a personal motivation will also be included. 

3.1 Methodological approach 
In the logistics discipline, the basic methodological approach has been the 
systems approach (Gammelgaard, 1997). “The systems approach is a critical 
concept in logistics. Logistics is, in itself, a system; it is a network of related 
activities with the purpose of managing the orderly flow of material and 
personnel within the logistics channel.” (Lambert, Stock & Ellram, 1998) 
Although other methodological schools exist, the analytical school and the 
systems school seem to dominate in logistics research (Gammelgaard, 
2004). The approach taken in this thesis is the systems approach. 

3.2 Systems approach 
Systems theory is an interdisciplinary field which studies groups of 
connected, associated, or interdependent components forming a complex 
whole – a system. The systems approach is concerned with viewing systems 
in a holistic manner. To gain insight into the performance of a system, the 
linkages and interactions between the components which comprise the 
whole must be understood, rather than dividing the system into pieces which 
are analyzed on their own, and assuming that the whole is the sum of its 
parts. This is essential, since many system changes leads to counterintuitive 
system responses; a change in one area of a system can adversely affect 
another area of the system in unexpected ways. The systems approach is 
fundamental, especially for those who have made organizations, a special 
type of system, their principal subject of study (Ackoff, 1971).  

General systems theory was initially proposed by Ludwig von Bertalanffy as 
a reaction against reductionism (von Bertalanffy, 1969). General systems 
theory attempts to formulate general principles valid for all systems in an 
effort to guide and unify research in several disciplines, by providing a 
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common framework and terminology. Similar thoughts were developed in 
cybernetics, the mathematical theory of communication and control of 
systems through regulatory feedback, which later evolved into control 
theory (Ashby, 1956, Beer, 1959). Systems theory is also closely related to 
system dynamics, a method for understanding the dynamic behavior of 
complex systems. The method recognizes that the structure of the 
relationships between the components, e.g. feedback loops and time delays, 
is often just as important in determining the behavior of a system as the 
individual components themselves (Forrester, 1968). 

System sciences were later split in two branches; hard systems and soft 
systems approaches (Checkland, 1993). The former can be defined as the 
use of computerized analysis of mathematical models for a better 
understanding of diverse system phenomena. In the beginning, mathematical 
methods dominated, while simulation was regarded as a “method of last 
resort” (Wagner, 1969). With the advances in computer technology, the 
importance of simulation has grown. The latter, the soft systems approach, 
was a reaction to the work of hard systems theorists and their failure to solve 
problems involving human beings. The soft systems approach is thus 
concerned with systems which cannot easily be quantified, especially those 
involving people interacting with each other or with systems. It is a useful 
approach for understanding motivations, viewpoints, and interactions but it 
cannot provide quantified answers (Checkland, 1993). 

Systems can be categorized as either being open, i.e. having interfaces to the 
surrounding environment where matter, energy or information can be 
exchanged, or closed, i.e. it is self-contained so that outside events have no 
influence upon the system. It must be recognized that logistics systems 
involving humans are open systems, and are therefore affected by the 
environment in which they exist.  

Furthermore, systems can be divided into thermodynamic systems, i.e. based 
on matter and energy, or conceptual systems made up of ideas and 
information. The use of the systems approach in this research can be 
summarized as being the overarching framework for the study of logistics 
systems, which are thermodynamic systems, with the intent of building 
conceptual systems modeling the “real thing”. 
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3.3 Simulation methodology 
Simulation has been defined as the “imitation of the operation of a real-
world process or a system over time.” (Banks, 1998) It consists of 
developing a conceptual system model describing the real system in 
sufficient detail, and translating it into a software model which can be 
executed by a computer. The purpose is to create a computer model which 
allows investigations of system performance and behavior over time, when 
different rules and policies are applied (Shapiro 2001). One of the 
advantages of simulation is that it allows one to explore different scenarios 
(Banks et al., 2001).  

Generally, a simulation model is a mathematical model that can be classified 
in three dimensions as being (Anu 1997, Banks 1998, Banks et al. 2001, 
Law & Kelton 1982): 

 Static versus dynamic 
A static simulation model represents a system at a specific “frozen” 
point in time, whereas a dynamic simulation model represents a 
system which changes over time. 

 Deterministic versus stochastic 
A deterministic simulation model is completely defined and has a 
unique output to any set of input parameters. In a stochastic 
simulation model the behavior of the simulation model is determined 
by stochastic variables. 

 Continuous versus discrete 
In a continuous simulation model, variables change continuously 
over time, whereas in discrete simulation models the variables only 
change at discrete points in time i.e. when an event occurs and 
changes the state of the system. 

For the chosen research topic, discrete-event simulation has been selected. It 
is considered an appropriate simulation technique for the modeling of 
stochastic behavior in logistics operations over time, where the focus is on 
events in the system, e.g. the arrival of a truck, or the breakdown of machine 
equipment. 
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Figure 3.1. Steps in a simulation study (Banks et al., 2001). 



17 

3.3.1 Simulation methods 
A number of comprehensively described simulation methods exist in 
literature (e.g. Banks et al., 2001; Robinson, 1994; Musselman, 1998). They 
are typically structured around a number of project phases or steps which 
should be performed in a certain sequence. A simple, three-step, model-
centric view has been presented by Fishwick (1995): (1) model design, (2) 
model execution, and (3) model analysis, while a more detailed model has 
been presented by Banks et al. (2001), see figure 3.1. While not all 
simulation studies follow this exact sequence, they provide an overarching 
guideline for how to perform a simulation project (Musselman, 1998).  

Although simulation methodology is at the core of this thesis, attempts have 
been made to construct parallel analytical models in order to triangulate the 
results and thus reduce methodological shortcomings. The validity of the 
research is thereby strengthened. 

3.4 Personal motivation 
The choice of research methodology is not purely a technical question, but 
also a reflection of personal preferences. Before commencing on my 
research journey, I worked 10 years in the manufacturing industry. The main 
theme of what I was doing can be labeled as operational development, i.e. 
improving business performance by identifying and correcting poorly 
working processes. My experiences are that operational development is an 
often unreliable process - considered more of an “art” than a “science”. 
Consequently, rank and personal beliefs are often the dominant factors 
which determine the course of action, rather than a sincere attempt to 
evaluate different options in an objective way. The lack of facts-based 
management I have experienced is not limited to the companies I have 
worked for, but seems to be a universal problem. “For the most part, 
managers looking to cure their organizational ills rely on obsolete 
knowledge they picked up in school, long-standing but never proven 
traditions, patterns gleaned from experience, methods they happen to be 
skilled in applying, and information from vendors.” (Pfeffer and Sutton, 
2006) Pfeffer and Sutton (2006) further suggest that “when managers act on 
better logic and strong evidence, their companies will beat the competition.”  

The question then becomes; what constitutes better logic and strong 
evidence, and how can this be achieved? I believe that both qualitative and 
quantitative research methodologies can contribute to better logic and strong 
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evidence in a business context. Furthermore, I am well aware of the fact that 
“not everything that can be counted counts, and not everything that counts 
can be counted.” (quote attributed to Albert Einstein) In the context of 
understanding system behavior, however, I believe that simulation is an 
indispensable tool. Sterman (2002) has articulated the same view even more 
forcefully; “Simulation is essential for effective systems thinking, even 
when the purpose is insight, even when we are faced with a “mess” rather 
than a well-structured problem.” The reason, Sterman argues, is fundamental 
limitations in the intellectual capacity of humans; “Indeed, our experimental 
studies show that people are unable to accurately infer the behavior of even 
the simplest system, systems far simpler than those emerging from 
qualitative modeling work.” Simulation models based on data and subject on 
the other hand to thorough analysis result in more reliable conclusions about 
dynamic systems and help to reveal errors in our mental simulations (ibid). 

From my personal experience in industry, I have also seen many projects fail 
despite grand visions and perfectly devised strategies, usually not on the 
basis of single major causes, but rather many, often perceived as 
insignificant, trifles - the devil is truly in the detail. For these reasons, I have 
chosen a quantitative approach with a bottom-up perspective, i.e. my focus 
is on the operational and tactical levels in logistics with the intent of 
capturing the small, but potentially critical, details which might be 
overlooked from a more strategic, top-down perspective. 
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4 RESULTS 

There are three appended research papers which are an integral part of this 
thesis and where the bulk of research can be found. For the reader’s 
convenience, this chapter contains brief summaries of the papers. 

Paper One - The effect of dynamic scheduling and routing in a 
solid waste management system  

Solid waste collection and hauling account for the greater part of the total 
cost in modern solid waste management systems. In a recent initiative, 3,300 
Swedish recycling containers have been fitted with level sensors and 
wireless communication equipment, thereby giving waste collection 
operators access to real-time information on the status of each container. In 
this study, analytical modeling and discrete-event simulation have been used 
to evaluate different scheduling and routing policies utilizing real-time data. 
In addition to the general models developed, an empirical simulation study 
has been performed on the downtown recycling station system in Malmoe, 
Sweden. From the study it can be concluded that dynamic scheduling and 
routing policies exist which have lower operating costs, shorter collection 
and hauling distances, and reduced labor hours compared to the static policy 
of fixed routes and predetermined pick-up frequencies employed by many 
waste collection operators today. The results of the analytical model and the 
simulation models are coherent, and consistent with experiences of the waste 
collection operators. 

Paper Two - Managing uncertainty in supply chain operations – 
a hybrid simulation approach 

The ‘golden standard’ for a supply chain simulation is a complete, 
microscopic, discrete-event simulation replicated over the full parameter 
space of the model, which would allow for a complete search of solutions 
and associated risks. Such an endeavor is, however, computationally 
unfeasible for any complex supply chain model. In this paper, the novel 
approach of building hybrid simulations in which discrete-event simulation 
is combined with Monte Carlo simulation through the use of regression 
meta-models is presented. The meta-models are used in the search for near-
optimal values of decision variables considering multiple responses, and to 
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assess the robustness of the solution. The described hybrid simulation has 
been used in an empirical simulation study of an assembly-type supply chain 
through three tiers of suppliers. Hybrid simulation can serve as a tool for 
exploring the sources and nature of stochastic behavior in supply chains, and 
the trade-offs in decision making. The approach is computationally efficient 
and facilitates scaling to large, complex supply chain models. A formal 
analysis of the accuracy of the hybrid simulation has, however, not been 
performed and this will be an important challenge for future work. 

Paper Three - Notes on the validity and generalizability of 
empirical simulation studies 

Simulation as a research methodology is becoming increasingly important in 
the study of logistics systems. Empirical simulation studies, however, are 
often criticized for lacking scientific rigor in terms of the validity and 
generalizability of the results. This applies in particular to the study of 
future, “what if”-scenarios. The aim of this paper is to explore and discuss 
the issue of achieving validity and generalizability of empirical simulation 
study results based on the experiences from an empirical solid waste 
simulation study done in Malmö, Sweden. The results of this single case 
indicate that a combination of analytical model building and simulation 
model building not only increases the validity of the model, but also enables 
a better assessment of the generalizability of the model results. No 
conclusive evidence can, however, be presented from a single case, and 
although progress seems to have been made, assessing and inferring 
generalizability of results from empirical simulation results will remain an 
intricate and perilous activity.  
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5 DISCUSSION AND CONCLUSIONS 

The aim of this thesis has been to explore strategies for evaluating and 
managing uncertainties in a logistics context – an aim which certainly opens 
up a wide spectrum of research opportunities. The objectives; “to propose a 
method for modeling and analyzing the dynamics of logistics systems with 
an emphasis on risk management aspects”, and “to explore the impact of 
dynamic planning and execution in a logistics system”, narrow down the 
scope to a more tangible level. Nevertheless, it is still a challenge to cover 
the area and bring the results to a coherent unity.  

As supply chain complexity increases as a result of globalization, market 
volatility, the introduction of novel technology, outsourcing, and mergers 
and acquisitions, so does the level of uncertainty. The focus on cost 
reductions and efficiency tends to stretch supply chains to become longer 
and leaner, thus making them more vulnerable to disturbances. While a 
continued search for cost reductions and efficiency gains is essential in an 
intensely competitive world, the challenge is to find methods in which 
uncertainty management is considered concurrently. Three main strategies 
for handling uncertainties have been discussed; robustness, reliability, and 
resilience. With traditional accounting, all three strategies usually carry an 
additional cost, e.g. incurred through additional buffers and safety stock, 
extra costs related to dual sourcing instead of single sourcing, and operating 
with free capacity to improve flexibility. 

If cost efficiency is supply chain managers’ number one priority, then 
organizations may arrive at lean, but vulnerable, solutions. The dilemma can 
be avoided by leveraging the cost and risk of logistical disruptions, i.e. 
decision makers must make conscious decisions to sacrifice cost efficiency 
in return for their improved capability to handle uncertainties. Making this 
trade-off implies that the decision is made with the full comprehension of 
both the advantage and disadvantage of the particular choice, i.e. the 
expected cost of risk recovery and the cost of uncertainty management must 
be assessed and weighed against each other. 

The hybrid simulation methodology presented in paper two proposes a 
method for modeling and analyzing the dynamics of logistics systems with 
emphasis on risk management aspects. The hybrid simulation approach is 
based on discrete-event simulation and Monte Carlo simulation which 
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allows the trade-off between cost on one side, and robustness and reliability 
on the other side, to be quantified.  

Figure 5.1 The scope of the studies positioned 
in a draft uncertainty management framework 

In the empirical simulation study of a supply chain through three tiers of 
suppliers, the approach was used to identify and assess risks, locate robust, 
near-optimal solutions, and assess the impact of uncertainties in so that 
trade-offs, e.g. between lead time and capital employed, could be quantified. 
Both atomistic and holistic sources of disruptions were included in the 
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model, while only quantitative disruptions were analyzed. Qualitative 
disruptions, e.g., quality problems, were not included due to a scope 
limitation of the actual study. Furthermore, the empirical simulation study 
did not explicitly include any resilience aspect. It does, however, not mean 
that the hybrid simulation approach is not capable of modeling adaptive 
behavior. On the contrary, as paper one demonstrates, discrete-event 
simulation is very well suited to studying the effects of dynamic, responsive 
behavior in logistics systems, i.e. key elements for achieving resilience. In 
addition, the results from a hybrid simulation study may very well lead to a 
rethinking of supply policies and development of contingency plans, 
regardless of whether these actions to improve resilience are part of the 
simulation model or not. 

In the solid waste management case, in paper one, the impact of dynamic 
planning and execution in a logistics system is explored. In the case, demand 
uncertainty is partly removed by the introduction of “intelligent” containers 
with level sensors and telecommunication equipment. Various adaptive 
planning policies are evaluated against the static planning according to 
which the system is operated today. The reduction of uncertainty is proven 
to have an economic value through new scheduling and routing policies, but 
requires the operator of the system to have a certain level of flexibility. The 
economic value of the adaptive policies is increasing by increasing volatility 
in demand. The value and choice of policy are, however, dependent on 
system properties such as size, density, and demand.  

The scopes of the two papers are marked in figure 5.1 and positioned in the 
wider perspective of uncertainty management. The arrows in the figure 
indicate different trade-off situations between cost efficiency and 
uncertainty-handling strategies, and also between different uncertainty- 
handling strategies. The studies performed indicate that a simulation 
modeling approach is a suitable method to explore and evaluate the different 
options. There are five key reasons for why this methodology has proven 
itself useful in the context of logistics systems. 

System complexity 

Logistics systems are typically highly complex with many interfaces within 
and outside a single business entity. There are often many factors linked in a 
web of feedback loops which affect the performance of the system. As a 
result, imposed changes in the system often lead to counterintuitive system 
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responses. Methods which rely on simple input-output models therefore 
often fail since they cannot capture the complexity of the system. Discrete-
event simulation, however, allows these aspects to be modeled and analyzed.  

Stochastic behavior 

Logistic systems behave stochastically, i.e. the effects of the activities vary 
randomly over possible outcomes, regardless of the complexity of the 
system. This property of the system can be modeled using discrete-event 
simulation, and by running the system several times with the same (or 
varying) initial conditions, the variability in the response variables can be 
determined. 

Visualization of the system 

Many logistics problems concern bottleneck situations, lead time reductions 
and related issues, where mere statistics such as average delivery time can 
be misleading. In these cases, simulation approaches have an advantage over 
steady-state analytical solutions in that they can dynamically display the 
level of oscillations, effects of transients etc. 

Verification of solution 

Simulation modeling is by no means the only method which can assist in the 
design of logistics systems. There are plenty of other qualitative and 
quantitative methods to aid decision makers. As paper three suggests, 
however, a multi-method approach, where simulation modeling is one 
component, can lead to a methodological triangulation where the validity of 
the results can be examined and the generalizability of the results assessed. 

Assessment of sensitivity 

Regardless of the methodology used to generate a solution, supply chains 
are complex systems where small changes in the input assumptions may lead 
to significant differences in performance. For that reason, the sensitivity of 
any solution must be assessed in a rigorous manner. 
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5.1 Contributions 
The contributions of the research have been separated into the three 
categories; practical, theoretical, and methodological contributions. 

5.1.1 Practical contributions 
The modeling approaches used in this thesis are highly practical and should 
be applicable in many industrial settings. Hopefully, this research can help 
practitioners to appreciate simulation modeling and show them how it can be 
applied to improve processes inside a company and across a supply chain in 
order to aid decision makers to formulate the necessary trade-offs between 
cost efficiency and uncertainty hedging. 

5.1.2 Theoretical contributions 
Some theoretical contribution to the field of logistics is presented in paper 
one, where the impact of real-time information, i.e. demand visibility, and 
responsive planning policies in a logistics systems, is quantitatively 
evaluated.  

5.1.3 Methodological contributions 
The hybrid simulation approach provides a computer-efficient framework 
for combining discrete-event simulation with risk management methods 
where the impact of uncertainties can be assessed in a logistics context.  

The methodological triangulation approach, discussed in paper three, 
outlines the benefits of combining analytical and simulation modeling for 
both improving the validity of the results and assessing the generalizability 
of conclusions drawn from a study.  

5.2 Future research 
The scope of the studies in figure 5.1 provides a draft framework for how 
uncertainty can be managed in a logistics context. It is, however, by no 
means a complete picture and needs further development, hence the title of 
this licentiate thesis. Further research is needed in the following areas: 

 Exploring methods and models which can be used to identify, assess, 
and measure logistics uncertainty 
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 Exploring how qualitative disruptions can be included in dynamic 
models for evaluating logistics systems 

 Exploring the requirements for implementing dynamic planning and 
execution in logistics systems 

 Exploring the trade-off between resilience versus reliability and 
robustness 

 Conducting a formal analysis of the accuracy of the hybrid 
simulation approach 

 Improving the computing efficiency of the hybrid simulation 
approach, e.g. through replacing the Monte Carlo simulation with 
Latin hypercube sampling 
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ABSTRACT 
The ‘golden standard’ for a supply chain simulation is a complete, 
microscopic, discrete-event simulation replicated, over the full parameter 
space of the model, which would allow for a complete search of solutions 
and associated risks. Such an endeavor is, however, computationally 
unfeasible for any complex supply chain model. In this paper, a novel 
approach to building hybrid simulations in which discrete-event simulation 
is combined with Monte Carlo simulation through the use of regression 
meta-models is presented. The meta-models are used in the search for near-
optimal values of decision variables considering multiple responses, and to 
assess the robustness of the solution. The described hybrid simulation has 
been used in an empirical simulation study of an assembly-type supply chain 
through three tiers of suppliers. Hybrid simulation can serve as a tool for 
exploring the sources and nature of stochastic behavior in supply chains and 
the trade-offs in decision making. The approach is computationally efficient 
and facilitates scaling to large, complex supply chain models. A formal 
analysis of the accuracy of the hybrid simulation has, however, not been 
performed and this will be an important challenge for future work. 



 

INTRODUCTION 
Uncertainty rules supply chains. Changes constantly occur on all levels; 
strategically through globalization, introduction of novel technology, 
mergers and acquisitions, volatile markets, and on an operational level 
through demand fluctuations, and events such as late arrival of in-bound 
material, machine equipment breakdown, and quality problems. Because of 
the unpredictable nature of supply chain performance, supply chain 
managers try to counter it on an operational level by risk mitigation actions 
such as adding safety margins to lead times, keeping excess inventory, etc., 
and a multitude of “fire-fighting” activities once disruptions have occurred. 
The purpose of supply chain management is to deal effectively with 
uncertainties in order to drive down overall supply chain cost, and any 
attempt to design supply chains operations must therefore consider the 
robustness of the solution, i.e., (1) the level of built-in risk-tolerance, and (2) 
the availability of mechanisms for containing damage once an undesirable 
event has occurred (Gaonkar and Viswanadham, 2003). This paper will 
focus on the first part of the built-in level of robustness, but the results 
developed using this approach can also be used to enhance risk monitoring 
and to help build decision support systems for exception management. 

LITERATURE REVIEW 
Supply chain design has been a challenging problem for many years and the 
variation inherent in any supply chain is a major complicating factor. A 
large body of literature deals with analytical modeling and optimization of 
supply chains under uncertain conditions. Analytical models often employ 
mathematical programming techniques which typically minimize cost for a 
given service level by optimizing the strategic design and/or operational 
policies of a supply chain. Vidal and Goetschalckx (1997) and Beamon 
(1998) feature reviews of analytical supply chain models. Uncertainty can be 
handled either directly by stochastic programming (Dupacova, 2002) or 
robust optimization (Mulvey et al., 1994), or indirectly by ex poste 
sensitivity analysis. Although most researchers agree that inclusion of 
variability in the problem formulation is preferred to post-optimality studies, 
at least from a theoretical standpoint, if not from a practical one, issues such 
as variable transportation and manufacturing lead times, stochastic demand, 
varying quality, and changing market prices and costs have proven difficult 
to include in optimization models. Indeed, some stochastic factors may be 



 

included under some assumptions. The problem is, however, that analytical, 
real-world problems are already hard to solve in their deterministic form, 
which makes their stochastic formulations close to impossible to achieve, at 
least for some time (Stadler, 2005). Instead, sensitivity analysis for 
discovering the impact of data perturbations has been suggested as being the 
preferred, practical way to analyze system uncertainty (Vidal and 
Goetschalckx, 2000). Although analytical models can be valuable in solving 
certain classes of supply chain problems, they are often too simplistic to be 
of practical use for solving complex supply chain problems (Hung et al., 
2006). 

Simulation modeling has become a popular alternative when analytical 
methods do not suffice. This is due to its capability of simulation modeling 
to capture more realistic supply chain characteristics. In fact, it has been 
suggested that simulation modeling is the superior method if the intricacy of 
complicated interactions within a supply chain is to be understood (Hwarng 
et al., 2005). Simulation, however, is not by itself an optimization tool, nor a 
risk assessment tool, although it can be extended in these directions. 
Simulation-based optimization has attracted considerable attention and is an 
active research field. Literature surveys can be found in Carson and Maria 
(1997) and Andradottir (1998). The approach of using meta-models for 
optimization, such as in the hybrid simulation approach, is discussed in 
Azadivar (1999), Fu et al. (2000) and Cheng and Currie (2004). The works 
of Dabbas et al. (2001) and Tyan (2004) provide applications of this 
methodology for multiple response problems. These studies do not, 
however,  address the issue of solution robustness, i.e., the trade-off between 
optimal parameter setting, and near-optimal parameter settings which stay 
near-optimal for a wider range of settings to accommodate uncertainties. A 
combination of simulation modeling, a search for near-optimal solutions, 
and risk assessment has been presented as a new paradigm for robust 
planning in supply chains (Van Landeghem and Vanmaele, 2002). The 
robust planning method bears a great resemblance to the hybrid simulation 
approach presented in this paper, but differs in that the hybrid simulation 
approach utilizes meta-models to improve scalability to large supply chain 
models and to alleviate the search for near-optimal solutions.  

THE HYBRID SIMULATION APPROACH 
The hybrid simulation approach aims to identify and explore uncertainties 
inherent in supply chains, allowing supply chain managers to determine 



 

values for critical decision variables, e.g. inventory levels, such that 
response variables, e.g., service levels and capital employed, become near-
optimal and are insensitive to changing conditions. Furthermore, risks 
should be identified and evaluated a priori in order to allow proactive 
variability-reducing actions. The basic method of the hybrid simulation 
approach is shown in figure 1 and the steps involved are explained below: 

 

Figure 1. The hybrid simulation approach 



 

1. Build a conceptual model of the supply chain 
The conceptual model is an abstract of the real-world system under 
investigation and defines which part of the system should be modeled, 
which components and events should be included, and which input/output 
transformations should take place. The construction of a conceptual model 
requires, of course, a certain degree of simplification and is thus part science 
and part art. The goal is to achieve a model which represents the real system 
in sufficient detail to support decision making and improve managerial 
insights. 

2. Data collection  
Gather data of sufficient quality, quantity, and variety to be able to model 
the stochastic behavior of input variables, e.g., demand, lead times etc., and 
probabilities of relevant events and the distribution of their magnitude, e.g, 
mean time between failure (MTBF) and mean time to repair (MTTR). 
Together with the conceptual model these data will be the foundation for 
building the simulation model in step 3. There are, however, many cases 
where no data or only limited data are available, and the analyst has to resort 
to “guesstimates”. These uncertainties relating to data assumptions are 
subsequently assessed during step 6. 

3. Build a discrete-event simulation model 
Translate the conceptual model into a computer model which can be used to 
generate experimental data. This involves selecting appropriate software and 
the actual programming and debugging of the code. Before one proceeds to 
the next step, the model should be verified and validated to ensure that the 
model represents the true system closely enough to be used as a substitute 
for the purpose of experimenting and predicting system behavior, and to 
create credibility of the model among users and decision makers. (Banks et 
al., 2001) 

4. Construct meta-models using  
design of experiments 
Design of experiments is a structured method for determining the 
input/output relationship of a simulation model (Chung, 2004). It starts by 
defining the design of experiment, i.e., which factors should be included, 
which levels should be used, and which response variables should be 



 

measured. It is important to include both controllable decision variables and 
uncontrollable input variables which might constitute risks. Note that 
uncontrollable does not mean that the variable cannot be controlled during 
simulation, only in the real system, e.g., currency exchange rates cannot be 
controlled in the real system, but the impact of changing exchange rates can 
be simulated. Once the design has been decided, experimental runs are 
executed in the discrete-event simulation model and regression meta-models 
are built on the resulting responses. 

5. Determine the “most appropriate”  
values of decision variables 
Decide on the “most appropriate” values of the decision variables. The 
mathematical technique of steepest ascent, i.e., changing the variables along 
the gradient of the fitted model, can be used to evaluate the impact on the 
separate response variables. A formal optimization can be performed if a 
single, overall criterion function can be formulated by quantifying the trade-
offs between the different response variables. However, bear in mind that 
optimality is not necessarily desired, rather a near-optimal solution which is 
robust in the face of changing conditions, e.g., for a specific currency 
exchange rate, sourcing from country A may be the optimal solution. For a 
different exchange rate, country B might be optimal. In contrast, a robust 
solution may stipulate that sourcing is carried out in the same currency 
(country) as the majority of sales, in order to minimize the impact of 
unpredictable exchange rates.  

6. Assess the solution robustness  
through Monte Carlo simulation 
The meta-models are deterministic and calculate the value of the response 
variables for one precise scenario of the input variables. In reality, however, 
all input variables are rarely known with full certainty and some may not be 
controllable, or even measurable. In order to assess the robustness of the 
solution, a Monte Carlo simulation is executed where the deterministic input 
variables in the meta-models are replaced with stochastic distributions 
representing the potential values and associated probabilities the input 
variables may take. The robustness of the solution can be assessed by 
reviewing the variability in the response variable, and the associated 
sensitivity analysis identifies which factors it is most critical to monitor. The 



 

reason for using meta-models instead of the discrete-event simulation model 
is to reduce computer time and thus improve scalability.  

7. Evaluate if the solution is acceptable  
The solution has to be judged according to certain criteria particular to the 
supply chain problem at hand. In general, what is sought after are solutions 
which are insensitive to varying conditions, in particularly to changes in 
non-controllable or non-measurable variables. If the robustness of the 
suggested solution is below expectations, a new solution point must be 
selected and evaluated by iterating back to step 5. In addition, if the 
suggested solution is outside the region of the experimental design, i.e., the 
meta-models are used for extrapolating the responses, new meta-models 
should be constructed by iterating back to step 4. 

EMPIRICAL SIMULATION STUDY 
To demonstrate the performance of the hybrid simulation approach on a 
realistic problem, the approach has been applied to a real-world supply 
chain. The supply chain in the simulation study consists of a large 
enterprise, one of its first-tier suppliers, a second-tier supplier (which also is 
a fully owned subsidiary of the enterprise) and seven third-tier suppliers, see 
figure 2. The enterprise develops, produces, and markets packaging 
machines for liquid foods. The supply chain can be characterized as a low-
volume assembly-type supply chain. 

Figure 2. High-level conceptual model of the supply chain 

The system operates in two modes from the two ends of the supply chain; 
the module supplier and downstream sites operate via a pull mode, e.g., 
material is ordered and assembled when orders are received. In contrast, the 
upstream component suppliers operate via a push mode according to agreed 
manufacturing batch quantities using a make-to-stock policy. To facilitate 
the capacity planning, the market company releases monthly sales forecasts 



 

which are communicated throughout the supply chain. However, the quality 
of the forecasts is poor, and lumpy demand is one major source of 
uncertainty in the supply chain. Another source of uncertainty is the frequent 
design changes which may cause obsolescence at the component suppliers’. 
Although the component suppliers partly obtain obsolescence cost coverage 
from the enterprise, this risk may affect how the suppliers execute their 
internal order fulfillment and inventory policies. From the perspective of the 
enterprise, the decisions taken by the component suppliers might be 
considered as non-controllable, and even non-measurable, decision 
variables. A survey of all orders received during 2003 and 2004 for the 
specific packaging machine studied revealed that more than 50% of the 
deliveries were delayed compared to the agreed lead times, with a total 
average delay of 3.5 weeks per order. 

 

Figure 3. Actual versus simulated total  
lead times as seen by the market company 

Discrete-event simulation model 
The simulation model depicts the conceptual model with entities 
representing orders, work in process, inventory, and material supplied by 



 

external suppliers, and resources representing the suppliers manufacturing 
and transporting capabilities including policies for controlling 
manufacturing and stock-keeping. The computer simulation model was built 
in Visual Basic with a Microsoft® Excel GUI. The choice of platform was 
specified by the enterprise. The simulation model was verified and validated 
via the following three techniques: First, the model logic was verified by 
using debugging tools such as trace and step-wise execution of the program 
code while variables such as order and inventory status were observed. 
Second, people who were knowledgeable about the real system confirmed 
that the simulation model appeared to be correct and behaved as expected 
when input parameters were changed. Finally, a comparison of input-output 
transformations was performed for the total lead time, see figure 3. The R-
square value is 56% and the residual analysis revealed four orders with a 
considerable difference between actual lead time and simulated lead time. In 
discussions with the enterprise, it was concluded that the reasons for these 
deviations were due to events outside the scope of the simulation model, e.g. 
rush orders, delays caused by customers or other entities outside the model. 
If these four data points are removed, the R-square value increases to 82% 
and the normality assumptions on the residuals can be validated. 

Meta-models 
In order to build the input-output relationship of the discrete-event 
simulation mode, a fractional factorial design consisting of 1024 simulation 
runs with different parameter settings were performed to evaluate the impact 
of 26 input parameters on five response variables. The input parameters used 
were the yearly demand, demand variability, manufacturing batch quantity 
agreements between the suppliers, safety stock levels, and manufacturing 
and transportation lead times throughout the supply chain. The response 
variables were the total lead time, capital employed, total stock keeping cost, 
deliveries out of agreement, and penalty costs. Linear meta-models were 
built for each response variable. The linearity assumption was verified 
through the use of center points in the experimental design. The R-squared 
values were between 90 percent and 95 percent for the lead time, capital 
employed, and stock keeping cost models, and approximately 70 percent for 
the out of agreement and penalty cost models. The meta-models allow for 
conscious decision making when determining near-optimal values for the 
different decision variables, for example, when making the trade-off 
between lead time and stock keeping. 



 

Monte Carlo simulation 
The software @Risk was used to perform risk assessment through Monte 
Carlo simulation. The order quantity agreements and safety stock levels 
were modeled using discrete uniform distributions, while lead times were 
modeled using exponential distributions, and the yearly demand was 
modeled using a normal distribution. 10000 iterations were performed on 
each meta-model and the resulting histogram of the response variable and 
the sensitivity analysis in the form of a plotted tornado graph, see figure 4. 
The time required to perform the 10000 iterations is less than a single run of 
the discrete-event simulation model. 

Figure 4. Risk assessment of the total lead time and a sensitivity analysis 

Empirical simulation study summary 
The main results of the empirical simulation study were; (1) that the trade-
off between overall lead time and tied up capital in the supply chain could 
be quantified, (2) managerial insights into the effect of different decisions 
made by the third-tier suppliers, e.g., policies for keeping inventory and 
managing safety stocks, and the negative impact of lumpy demand, which 
has implications for marketing and sales activities, (3) the pinpointing of 
risks was such that the enterprise could focus its monitoring actions on the 
right suppliers and components while paying less attention to other less 
critical variables, and (4) that a 20% reduction in inventory levels was 
possible without adversely affecting the overall lead time. 



 

CONCLUSIONS 
This paper has presented a hybrid simulation approach to identify risks, 
locate near-optimal solutions, and assess risks in a supply chain. The 
practicality of the approach has been tested during the empirical simulation 
study. Indeed, the concept of building meta-models represents a 
simplification, but the approach preserves stochastic behavior which allows 
for a straightforward evaluation of the impact of input variables on multiple 
responses. Furthermore, the construction of meta-models not only serves the 
purpose of permitting a calculation of the “most appropriate” values of the 
different decision variables, but also identifies risk variables. That is to say 
that if a input variable has a significant effect on a response variable it also 
serves as a potential risk if the decision variable cannot be determined 
precisely, or if its value changes for some reason. This risk is assessed 
during the Monte Carlo simulation on the meta-models and the sensitivity is 
quantified. This allows supply chain managers to iteratively search for more 
robust solutions, or to prioritize risk mitigation actions correctly, and define 
risk monitoring plans accordingly. Finally, the approach is computationally 
efficient, which enables scaling to very large supply chain models. A formal 
analysis of the accuracy of the hybrid simulation has not, however, not been 
performed and this will be an important challenge for future work. 
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ABSTRACT 

Simulation as a research methodology is becoming increasingly important in 
the study of logistics systems. Empirical simulation studies, however, are 
often criticized for lacking scientific rigor in terms of the validity and 
generalizability of the results. This applies in particularly to the study of 
future, “what if”, scenarios. The aim of this paper is to explore and discuss 
the issue of achieving validity and generalizability of empirical simulation 
study results based on the experiences from an empirical solid waste 
simulation study done in Malmö, Sweden. The results from this single case 
indicate that a combination of analytical model building and simulation 
model building not only increases the validity of the model, but also enables 
a better assessment of the generalizability of the model results. No 
conclusive evidence can however be presented from a single case, and 
although progress seems to have been made, assessing and inferring 
generalizability of results from empirical simulation results will remain an 
intricate and perilous activity. 

Key Words: Validation, Generalizability, Simulation, Empirical 
 research, Methodology. 



 

INTRODUCTION 
The increasing availability of powerful computers and easy-to-use 
simulation software allow researchers to build ever-more complex empirical 
simulation models of logistics systems and supply chains. Consequently, 
methods such as Discrete Event Simulation (DES) and Agent Based 
Modeling (ABM) are becoming increasingly important in logistics research. 
This is also reflected in the growing number of articles published on this 
topic in operations management journals (Shafer and Smunt, 2004). 

Empirical simulation studies, as a research methodology are, however, often 
criticized for lacking scientific rigor in terms of the generalizability and 
validity of the results. This applies in particularly to the study of future, 
“what if”, scenarios. This critique is unfortunately legitimate. Simulation 
studies used as a stand-alone method present obvious problems; “There is a 
very real risk that computational models become ends in themselves, both 
the subject and object of study.” (Goldspink, 1997) Furthermore, 
practitioners and researchers in the field of verification and validation seem 
to agree that one of the major issues concerning simulation studies (both in 
research and industry) is that “complex simulations are usually not validated 
at all, or are only subjectively validated; for example, animated output is 
eyeballed for a short while.” (Joines et al., 2000) 

The exact nature of ‘validity’ and ‘generalizability’ in this context is highly 
debated as no single definition of the terms exists. In this paper, the 
following definitions will be used: 

Validity is the degree of accuracy to which a simulation model 
describes and explains the phenomena in the real system that it is 
intended to model. The definition has been inspired by Hammersley, 
M. (1987).  

Generalizability is defined as the “extent to which it is possible to 
generalize from the data and context of the research study to broader 
populations and settings” (Hedrick et al., 1993) 

The aim of this paper is to explore and discuss the challenge of achieving 
generalizability and validity of empirical simulation study results through 
the use of a single case, an empirical simulation study where different 



 

logistical policies for collecting and hauling solid waste were evaluated. The 
paper begins with a brief section of verification and validation methodology, 
a section on generalizability of research results. Thereafter follows a 
presentation of the empirical simulation study, followed by the application 
of validation and verification methodology in the case. The paper ends with 
a concluding discussion on how generalizability and validity can be 
achieved in empirical simulation studies. 

VERIFICATION AND VALIDATION  
OF SIMULATION MODELS 
One of the most challenging parts of a simulation study is the process of the 
verification and validation of the simulation model. The goal of the 
verification and validation process is twofold; (1) to create a model of reality 
which represents the true system closely enough to be used as a substitute 
for the purpose of experimenting and predicting system behavior, and (2) to 
make the model credible to users and decision makers (Banks et al., 2001). 
If done correctly, the verification and validation process will ensure the 
validity of the simulation results. There is, however, no standard theory, nor 
is there a standard toolbox for verification and validation. There does 
however exist a large number of software practices, statistical techniques 
and philosophical theories which can be used for verification and validation 
(Kleiijnen, 1995). In Banks (1998) more than 75 different verification and 
validation techniques are presented. It is not the purpose of this paper to 
review all these techniques so that in the section below, only some high-
level steps will be presented.  

Verification 
Verification is the process of building the simulation model correctly, i.e., to 
ensure that the conceptual model of reality is correctly translated into a 
computer representation of the model. In a sense, verification aims to create 
a ‘perfect’ computer program without any bugs. Verification is also 
sometimes referred to as ‘internal validation’. Several tools and techniques 
exist for verification purposes. 

Good programming practice 
Any good programming practice generally used by software engineers is 
typically also applicable for the development of simulation models; e.g. 



 

object-oriented programming, modular programming, structured code 
reviews, the use of logic flow diagrams, the use of debug tools for stepping 
through critical code passages, halting execution and reviewing model 
variables, conditions, and checking intermediary results, etc.  

Comparing simulation output with analytical results 
In many situations, the simulation model can be simplified so that an 
analytical solution can be calculated. The simplified version of the 
simulation model can then be executed and the result compared to the 
calculated value. For example; many logistics simulations model reality as 
complex queuing systems. Consequently, queuing theory can be used to 
calculate steady state expectations for resource utilization, waiting times etc, 
for simplified versions of the model, and subject to certain assumption with 
regards to, for example, the distribution of arrival and service times. In this 
way, certain parts of the model can be verified analytically.  

Computer animation 
Most simulation packages enable the user to create animations which 
display how the simulated system is operating. By reviewing the animations, 
programming errors may be detected. Classical examples of this type of 
errors are automate guided vehicles (AGVs) which ‘magically’ pass through 
each other, and objects which disappear into or appear out of nowhere due to 
programming errors. 

Validation 
Validation is the process of building the right model, i.e., to ensure that the 
conceptual model is an accurate representation of the real system. 
Validation, however, does not aim to create a ‘perfect’ model since the 
‘perfect’ model would be equal to the system itself. Validation rather aims to 
create a model which is ‘good enough’ for the intended purpose. What is 
described here as ‘validation’ is also sometimes referred to as ‘external 
validation’. One can distinguish three aspects of validation; (1) conceptual 
model validation, i.e., “to determine that the theories and assumptions 
underlying the conceptual model are correct and that the model 
representation of the problem entity is ‘reasonable’ for the intended 
purpose”, (2) operational validation, i.e., “determining that the model’s 
output behavior has sufficient accuracy for the model’s intended purpose 
over the domain of the model’s intended applicability”, and (3) data 



 

validation, i.e., “ensuring that the data necessary for model building, 
evaluation and testing, and conducting the model experiments to solve the 
problem are adequate and correct” (Sargent, 2003). To perform validation of 
a simulation model, the following three-step approach, formulated by Naylor 
and Finger (as referenced in Banks et al., 2001, p. 376), is widely used.  

Build a model with high face validity 
The first step is to create a model which on the surface appears to be correct 
to people who are knowledgeable about the real system. This can include 
qualitative reviews of system outputs, and sensitivity analysis to confirm 
that the model is behaving as expected when one or many input variables are 
changed.   

Validate model assumptions 
Model assumptions can be divided into two classes; structural assumptions 
and data assumptions. The data assumptions are validated through the 
collection of reliable and representative sample data from the real system 
and the use of proper statistical analysis for comparing the real data with the 
hypothesized distribution in the simulation model. The structural 
assumption, which involves how the system is operating, is typically 
validated through observations of the real system and discussions with 
people who are knowledgeable about the real system. 

Comparison of input-output transformations 
During this phase of the validation process, the model is validated through 
the execution of the simulation model using certain input conditions 
obtained from the real system and comparing the simulation output with data 
from the real system. Several statistical techniques exist for the purposes of 
making this comparison. For input-output transformation validation to be 
conducted, it is a necessary condition that the system exists in reality, and 
that system data can be collected from it. If the simulation study involves 
future scenarios, these cannot be validated by comparing input-output 
transformations. In many cases, however, the future system is a modification 
of an existing one which can be validated using this methodology. If the 
modifications are minor (in terms of the computer representation of the 
system) and the original (unmodified) system can be validated using this 
methodology, one may also be reasonably confident in the validity of 
modified system. 



 

It should be noted that the classic article by Naylor and Finger has been 
criticized on the basis of the underlying philosophical positions, and due to 
the difficulties which arise in the common situation where the real system 
does not exist (Kleindorfer et al, 1998). 

GENERALIZABILITY OF EMPIRICAL 
SIMULATION STUDY RESULTS 
If validation of an empirical simulation model is difficult, claiming that the 
results from such a study would apply in another context is even harder. It 
may, however, be possible to infer generalizability within certain bounds or 
recognize typical patterns for a system which may apply elsewhere. 
Nevertheless; “The risk of any one computational model being ‘a mere 
example’ unfortunately exists” (Kollman et al. 1997 in Goldspink, 1997). 

Yin (1994) defines two types of ‘generalization’; (1) ‘statistical 
generalization’ as the process of generalizing the findings from a sample to 
the population it represents; and (2) ‘analytical generalization’ as 
generalizing the findings of a study to create theory. Due to the effort and 
cost of making empirical simulation studies, such a study can be compared 
to a single case study, and typically, only ‘analytical generalization’ applies 
to the study results. Analytical generalization, or ‘theoretical generalization’ 
as it is sometimes referred to as, is then the extension of insights from the 
empirical simulation study to other situations or populations. 

CASE: THE SOLID WASTE  
COLLECTION SIMULATION STUDY 
Background 
Since 1994, Sweden has had a producer’s responsibility for packaging 
waste. All companies which manufacture, import or sell packaging are 
responsible for ensuring that the packaging waste can be collected and 
recycled. Together, these companies have formed five material handling 
companies working together under the name Packaging Collection Service, 
with the task of organizing and administering this responsibility. In order to 
collect the packaging waste, the Packaging Collection Service has set up 
recycling stations at more than 7,000 locations throughout the country. A 



 

typical recycling station has a number of containers where nearby 
households can discard plastic, paper, cardboard, corrugated board, metal, 
and glass packaging. The collection, hauling, and sorting of packaging waste 
are contracted out to local entrepreneurs. The containers are typically 
collected by front-loading compacting vehicles. Due to heavy congestion, 
this vehicle type cannot, however, be used in downtown areas and 
consequently some inner city containers are of a different design and are 
collected using smaller, less efficient, non-compacting, open-sided vehicles 
which use a crane for waste collection. 

Recently, the material handling companies for corrugated board and 
cardboard, Returwell and Svensk Kartongåtervinning respectively, fitted 
their containers with level sensors and wireless communication equipment in 
order to assess the quality of the service provided by the entrepreneurs, and 
to give them the opportunity to plan their logistics operation more 
efficiently. The investment was paid in full by the material handling 
companies. Approximately 3,300 “smart” containers have been distributed 
to recycling stations around Sweden. The sensor is mounted under the lid of 
the container. The sensor is activated once an hour and assesses the level of 
the container by means of four infrared light emitting diodes. If three of the 
four beams are broken, a first text message is transmitted through the GSM 
network to the waste collection operator. A second text message is 
transmitted when all four beams are broken and a third text message is sent 
when a tilt sensor indicates that the container has been emptied. In order to 
assure the quality level of the service, the operator is charged a penalty if the 
time between the second and third text message exceeds 24 hours on 
weekdays and 48 hours on a weekend.  

The purpose of the simulation study was to evaluate different logistical 
policies for collecting and hauling solid waste that utilize the real-time 
demand data, and compare them to the static policy which was used prior to 
the introduction of level sensors in the system.  

Data for the simulation study was collected through observations and 
interviews with planners and drivers operating the stations in Sweden’s third 
largest city, Malmö. Demand data from the downtown recycling system was 
collected over a period of 6 months, from November 2003 until May 2004. 
Supplementary interviews were conducted with two other operators of 
similar systems in order to investigate their usage of real-time data. 



 

The simulation model 
The simulation model consists of containers, vehicles, and a recycling 
facility. The key attributes of the containers are mean waste fill rate 
[kg/day], standard deviation of fill rate [kg/day], current weight [kg], 
capacity [kg], and location. Each container is fitted with a level sensor 
which triggers an alarm signal when the container exceeds the 75% level 
(“yellow alarm”), and when it is 100% full (“red alarm”). The key attributes 
of the vehicles are the current weight of its load [kg], capacity [kg], average 
speed [km/h], time to perform different actions, e.g. check station, set up 
vehicle for collection, collect, reset vehicle, empty vehicle at recycling 
facility [min], distance cost [SEK/km], and hourly cost [SEK/km]. The key 
attribute of the recycling facility is its location.  

 

Picture 1. The Malmö Simulation Model 

Two different Euclidian geometries were used in the evaluation. The first 
geometry was a general city model where the collection points were 
equidistantly located around a circle with a recycling plant which lies 



 

outside the circle. The second geometry used in the simulation was a model 
of the actual system in Malmö, Sweden, see picture 1. 

At the beginning of each simulation run for the first Euclidian geometry, a 
random system was created, based on input values for system size in terms 
of the number of containers and geometry parameters, minimum and 
maximum values for the waste generation, and standard deviation of fill rate. 
The mean waste fill rates per container are drawn from a uniform 
distribution with the minimum and maximum values for the waste 
generation as parameters. The simulation results are based on a waste 
generation minimum value of 4 kg/day, a maximum value of 20 kg/day and 
a standard deviation of 50% of the mean fill rate if nothing else is indicated. 
During the simulation, each location generates waste according to a normal 
distribution and adds it to the containers. When the waste quantity exceeds 
the threshold values 75% and 100%, a planning event is triggered and 
vehicles might be re-scheduled and rerouted to the recycling points 
according to different planning policies. If a container is full and not 
collected within a specified time, 24 hours on weekdays and 48 hours during 
the weekend, a penalty is charged. As with the real system, collection and 
hauling are only conducted in the daytime on weekdays. The duration of the 
simulation was 104 weeks and as it is a terminating system, no warm-up 
period was used.  

The primary performance indicators used include the total operational cost 
of the system, penalty cost, labor hours, collection and hauling distance, 
number of tours, and number of containers collected, all on an annual basis. 
All simulation runs were replicated 5 times and the mean values of the 
performance indicators were computed. 

Four different collection policies were used in the evaluation; (1) the static 
routing and scheduling used today by the waste collection operator; (2) a 
dynamic policy where vehicles are scheduled and routed based only on 
information from the level sensor; (3) a dynamic policy where scheduling is 
controlled by the level sensors, while the routing is based on a heuristic 
search for full and almost full containers; (4) a policy with fixed scheduling 
and dynamic routing to full and almost full containers.  



 

Static scheduling and routing [1] 
This policy mimics the actual operations of the system practiced today with 
fixed collection days and routes. The procedure for solving the static 
scheduling and routing problem is based on the heuristic algorithm proposed 
by Christofides and Beasley (1984). Briefly, the method is based on an 
initial choice of the frequency of container collection followed by a 
grouping of collection days aiming at minimizing the total collection cost for 
the time period. The mean and standard deviation of the waste generation 
are assumed to be known to the planner. Once a solution has been obtained, 
the system is simulated using the static schedules and routes for the duration 
of the simulation. 

Dynamic scheduling and routing  
to full containers [2] 
This policy is fully event-driven and initiates a tour to full containers within 
24 hours from the receipt of a “red alarm”. In order to avoid overfull 
containers and subsequent penalties during weekends, a special rule for 
Fridays was introduced so that containers where the “yellow alarm” has 
been triggered were also collected. As with all dynamic scheduling policies, 
it is assumed that the collection system has sufficient capacity to handle the 
collection requests regarding the containers within 24 hours. 

Dynamic scheduling and routing  
to almost full containers [3] 
This policy is similar to policy 2, and initiates a tour to full containers within 
24 hours from the receipt of a “red alarm” or a “yellow alarm” on a Friday. 
The vehicle is, however, not routed exclusively to full containers, but also to 
nearby containers which have an estimated level greater than a set threshold 
value. If the threshold value is set to 100%, this policy becomes equivalent 
to policy 2. The level of each container is predicted by the assumed known 
mean fill rate for the container and is calibrated at the time of the “yellow 
alarm” (or by the absence of the alarm). The rule aims to utilize the vehicle 
more efficiently during the collection day.  



 

Static scheduling and routing 
to almost full containers [4] 
The static scheduling and routing to almost full containers policy is based on 
a static scheduling using the same collection days as policy 1 has chosen. 
The routing is, however, done dynamically to full and almost full containers 
using the same logic as policy 3. 

Simulation results 
In the simulation study presented, the effect of some basic scheduling and 
routing policies in the collection of solid waste has been examined. From the 
study, it was concluded that dynamic scheduling and routing policies exist 
which have lower operating costs, shorter collection and hauling distances 
and which collect fewer containers, compared to the static policy employed 
by many waste collection operators, for system sizes ranging from a few 
containers up to 1000 containers, and realistic levels of variation. Further, 
dynamic scheduling and routing have the highest potential to decrease costs 
in the face of irregular demand. It was also shown that increasing variability 
of the inflow increased the collection and hauling costs regardless of the 
policy, but the increasing uncertainty impacts the static scheduling and 
routing to a much greater extent than the dynamic policies. Further, for large 
and dense systems, the dynamic scheduling and routing policy 2 is the 
optimal solution. However, when the number of containers is decreased 
and/or the distance between the containers is increased, this policy rapidly 
loses its benefits. For smaller systems, the dynamic policy 3 is more suitable 
and cost reductions in the range of 10% to 20% can be expected for the type 
of systems evaluated in the study.  

VALIDITY OF THE SOLID WASTE 
SIMULATION RESULTS 
Verification and validation 
One of the most critical data assumptions in the solid waste collection model 
was related to modeling of waste generation which created the demand for 
collection. Data on recycling waste per recycling point in the real system 
was therefore collected over a period of 6 months, from November 2003 
until May 2004. In the simulation model, it was assumed that the amount of 



 

waste in a container after a certain time would follow a normal distribution 
curve. The selection of normal distribution is a consequence of the central 
limit theorem which states that the sum of many stochastic variables of 
arbitrary probability distributions approaches a normal distribution curve. 
With the exception of the time around Christmas, when the generation of 
packaging waste is extremely high, this assumption was validated using a 
Kolgomorov-Smirnov Goodness of Fit test for the Normal Distribution on 
the collected data. 

Data on the collection and hauling was collected through observations and 
time studies done on the drivers. Data on level sensor alarms were retrieved 
from the operator’s mail system. Unfortunately, most of the automatically 
generated mails concerning alarms had been deleted so only a limited 
number of alarms was recorded. These alarms were compared to the waste 
generation data for the specific location to obtain confirmation that the 
records matched each other. No statistical validation was however 
conducted.  

The observations also formed the foundation of the structural assumptions 
for how the collection and hauling operation was performed. These 
assumptions were later validated in interviews with the planner and drivers 
operating the real system. In these meetings, face validity of the model was 
also obtained. 

A detailed input-output transformation validation of the model and the real 
system was not done due to the lack of data on tour level. Instead, 
aggregated data on a yearly basis was available, allowing the model to be 
validated (and calibrated) on this level. This validation was naturally only 
done for the static policy according to which the operation of the real system 
was performed.  

To assess the validity of the other policies using real-time data from the 
level sensors, the changes in the computer representation of the model have 
to be considered. Although the changes in the system seem huge, i.e. 
changing the triggering of a tour from a static schedule to a dynamic alarm 
from a level sensor, and changing from a static route to a dynamic route, the 
actual changes in the program code are small; (1) a change in the start 
condition of a tour from checking the simulation clock to checking alarms, 
and (2) minor changes in the list of waypoints of the tour. The latter change 
was also possible to validate by comparing the simulation output for policy 



 

1 and policy 4 for different levels of the threshold value for when a 
container should considered ‘full enough’ to be added to the list of 
waypoints. As expected, policy 1 and policy 4 produce identical results 
when the threshold value is set to 0%. Although policies 2 and 3 cannot be 
quantitatively validated, the minor programming change required for 
implementing these policies means that a great  deal of the validity obtained 
for policy 1 and policy 4 carries over to these policies as well. 

Development of an analytical model 
In order to verify the solid waste simulation model, an analytical model of a 
system with N containers was also developed using probability theory. It 
was assumed that the amount of waste in a container after a certain time 
would follow a normal distribution curve. This assumption was supported by 
the empirical data collected. Further, it was assumed that all containers are 
collected during each tour, that the truck has sufficient capacity to empty all 
containers, and that the containers are equal in terms of capacity, mean fill 
rate, and standard deviation of the fill rate. For the dynamically controlled 
system, it was further assumed that the response time for collection was 
negligible. This dynamically controlled system thus operates according to 
policy 3 with a threshold value of 0%.  In order to compute the static 
scheduling, an acceptable risk level, α, for exceeding the container capacity 
has to be set. The mean time between collections [MTBC] is then defined by 
equations 1.1 and 1.2. Since the real system does not operate 24 hours a day, 
seven days a week, the system was made time-discrete by truncating the 
MTBCstatic scheduling value and calculating a weighted average value for the 
MTBCdynamic scheduling, thus allowing the system to operate in the daytime on 
weekdays only.  
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α  : risk of exceeding container capacity  

dayμ  : mean inflow per container and day [kg/day] 

dayσ  : standard deviation of inflow per container and day [kg/day0.5] 

M  : container capacity [kg] 

N  : number of containers 

The simulation model output was then compared to the analytical model. To 
match the assumptions of the analytical model, the vehicle capacity 
limitation in the simulation was removed and the waste generation 
parameters for all containers were set as equal. In total, 6,724 simulation 
runs of varying system sizes ranging from 5 to 50 containers, mean fill rates 
ranging from 5 to 25 kg/day, and standard deviations ranging from 0 to 10 
kg/day were compared to the analytical model with an mean average percent 
error (MAPE) of less than 0.2%. This demonstrated a very good match 
between the two modeling approaches, and was a strong indicator that the 
simulation program was indeed correctly coded.    

DISCUSSION 
In the case presentation, some key steps in achieving validity in the 
simulation study results have been highlighted. What became apparent 
during this empirical simulation study was the value of the analytical model, 
not only for verification purposes, but also for assessing the generalizability 
of the results. Although, or maybe because, the analytical model is simple 
and far from sufficient for characterizing a realistic solid waste management 
system, it can act as a vehicle for thoughts on other situations or populations 
where the results may apply, e.g. the analytical model may just as well apply 
in a situation where a manufacturer is considering different policies for 



 

replenishing vendor-managed inventory. This is not readily apparent from 
the empirical simulation model alone. 

Furthermore, the results and conclusions drawn from the simulation study 
can be compared to the analytical model. While some conclusions from the 
empirical simulation study are supported by the analytical model, others are 
not, e.g. the conclusion that “dynamic scheduling and routing have the 
highest potential to decrease costs in the face of irregular demand” and that 
dynamic solutions are more robust with respect to increasing volatility are 
supported by the analytical model, while cost reduction figures and detailed 
policy comparisons are not. One may then argue that conclusions supported 
by both the empirical simulation and the analytical model are better 
candidates for more generalized statements, than statements based on the 
empirical simulation model alone.  

Analytical modeling combined with simulation modeling is, however, rare. 
Sometimes analytical models are used for verification purposes on a 
submodule level of a simulation program, but hardly ever on the full model. 
This is understandable, since one of the key reasons for performing a 
simulation study in the first place, as opposed to an analytical calculation, is 
that the problem cannot be formulated as a mathematical problem, or that 
the mathematical problem is apparently intractable or provably unsolvable. 
What is often missed is that an analytical solution is sought after for a 
simplified version of the model, and in the process of simplifying a 
simulation model, an assessment of what is general and what is specific to 
the model can be done, thus enabling a more knowledgeable discussion of 
the generalizability of the empirically simulation results 

Although this paper argues that a thorough verification and validation 
process, with an emphasis on the importance of analytical modeling, not 
only increases the validity of the model, but enables a better assessment of 
the generalizability of the results, no conclusive evidence can be presented 
from a single case, nor can one hope that it is possible to use this 
methodology in all cases. Assessing and inferring generalizability of results 
from empirical simulation results will remain an intricate and perilous 
activity. Nevertheless, the author hopes that the methodology presented will 
be used and expanded in order to reduce the customary criticism of 
empirical simulation model results. 
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