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RT-PCR Reverse transcription PCR 
SAM  Significance analysis of microarray  
ST-HSC Short-term HSC  
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PREFACE 

Hematologic malignancies are characterized by recurrent balanced chromosomal 
abnormalities that lead to deregulated expression of genes located in the proximity 
of the breakpoints or result in tumor-specific fusion genes. In acute leukemia, the 
rearranged genes often involve conserved transcription factors of importance for 
normal hematopoiesis, whereas chronic leukemias typically are characterized by 
rearrangements of protein-tyrosine kinase encoding genes. The genetic rearrangements 
present at diagnosis provide important clinical and pathogenetic information.  

Although leukemias have been extensively characterized, resulting in improved 
risk stratification and better outcomes, there is still a need for a refined risk 
classification to identify patients with a favourable or adverse prognosis, who 
would benefit from alternative treatment modalities. In addition, our knowledge 
of how individual fusion genes elicit their leukemogeneic properties still remains 
quite limited. In this context, gene expression profiling, as determined by microarray 
analyses, has proved to be a powerful tool for identifying clinically and biologically 
important variables. A refined risk-assessment of leukemias will hopefully lead to 
identification of patient subgroups that would benefit from either more or less 
intensive treatment. In addition, improved knowledge about deregulated genetic 
networks in leukemias will provide important pathogenetic information and help 
identifying genes that can serve as molecular targets for novel therapies. 

The general aim of this thesis was to characterize hematologic malignancies 
using gene expression profiling in order to obtain an improved classification and 
an increased understanding of the complex genetic networks that are deregulated 
in acute leukemia. This thesis is divided into three sections; the first part provides 
an overview of hematologic malignancies and the microarray technology, giving a 
general introduction to the field on which the original articles are based. In the 
second section, the specific aims of the thesis, a summary of materials and 
methods, and the results are given with a short discussion, followed by a general 
discussion. The third and final section contains the original articles on which 
this thesis is based.  

 

 
 Lund, December 2005 
 
 
 
 
 

 



8 Introduction   

INTRODUCTION 

Hematopoietic Malignancies 

Molecularly, leukemias are a heterogeneous disease entity with different 
rearrangements and dysregulations of genes with important functions in cellular 
growth, differentiation, and death (apoptosis). At the cellular level, acute leukemias 
are characterized by an expansion of immature white blood cells (blasts) in the 
bone marrow and blood, where a lack of mature blood cells together with a 
suppression of normal residual hematopoiesis, eventually leads to anemia, 
thromobocytopenia, and leukopenia, which result in fatigue, bleeding, and 
infections.  

Hematopoietic malignancies comprise acute and chronic leukemias, 
myeloproliferative disorders, and myelodysplastic syndromes. In Sweden, there 
are approximately 460 cases of acute leukemia per year (www.socialstyrelsen.se). 
In adults, acute myeloid leukemia (AML) predominates, with an incidence that 
increases with age, whereas in childhood, acute lymphoblastic leukemia (ALL) is 
more common. In fact, ALL is the most common malignancy in childhood with 
an age peak around 3-5 years of age and an incidence of about 5 cases per 100 000 
and year (Hjalgrim et al., 2003) 

Leukemias are characterized by the presence of specific genetic alterations 
at diagnosis that are intimately associated with leukemogenesis, clinical and 
morphologic subtypes, and outcome. For example, it is well known that 
t(12;21)(p13;q22) [ETV6/RUNX1] high hyperdiploidy (>50 chromosomes), 
t(8;21)(q22;q22) [RUNX1/RUNX1T1], and t(15;17)(q22;q21) [PML/RARA], are 
associated with a favorable prognosis, whereas t(1;19)(q23;p13) [TCF3/PBX1], 
t(9;22)(q34;q22) [BCR/ABL1], and 11q23/MLL rearrangements confer an adverse 
prognosis, unless intensively treated (Grimwade, 2001; Johansson et al., 2004). 
However, although genetic alterations in hematologic malignancies have been 
extensively studied, much remains to be known about how these genetic lesions 
cause leukemia. This notwithstanding, our present knowledge has recently led to 
the development of alternative treatment strategies. For example, the BCR/ABL1 
chimeric protein is now targeted with imatinib mesylate (Gleevec) in patients 
with chronic myeloid leukemia (CML) (Druker et al., 1996; Deininger et al., 
2005) and there are ongoing clinical trials with inhibitors targeting FLT3 in 
patients with AML (Fiedler et al., 2005; Stone et al., 2005). 
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Normal Hematopoiesis 

In fetal development, hematopoiesis takes place in the yolk sac during the first 
eight weeks of life, after which the yolk sac diminishes, and then in the liver and 
spleen until close to term, after which hematopoiesis is mainly restricted to the 
bone marrow. During childhood, blood cells are produced in all bones of the 
body, but with increasing age, the peripheral parts of the bones are replaced with 
inactive marrow (yellow marrow); in the adult, blood cells are only developed in 
the central parts of the skeleton (Jandle, 1996). 
 The blood is composed of several different cells types, each of which has 
important functions necessary for survival. For example, the erythroid cells transport 
oxygen, platelets are involved in blood clotting, granulocytes and monocytes are 
responsible for the immunological defense response against fungi, parasites, and 
viruses, B-cells produce antibodies as an immunological response against bacteria and 
other microorganisms, and T-cells participate in the activation of B-cells as well as in 
the elimination of virus-infected cells (Kawamoto and Minato, 2004; Chen-Kiang, 
2005). Hematopoiesis is a continuous process and dying cells need to be replaced 
in order to maintain a steady state. Subtle abnormalities affecting hematopoietic 
proliferation, differentiation, and/or apoptosis may eventually result in leukemia. 

Hematopoietic Development and Differentiation 

The generation of mature blood cells throughout life is governed by hematopoietic 
stem cells (HSC), which are rare cells characterized by their potential to self-renew 
and their capacity to differentiate and form cells of all blood lineages. The term 
self-renewal refers to the ability to produce daughter cells with identical characteristics 
as the original stem cell (Ogawa, 1993; Herzog et al., 2003). HSCs can be further 
subdivided into long-term HSCs (LT-HSC) with the capacity of indefinite self-renewal 
and short-term HSC (ST-HSC) that self-renew only for a defined period of time. 
 The differentiation hierarchy of blood cells is tightly regulated by cytokines 
and transcription factors. Ordered expression or downregulation of these regulatory 
molecules drive maturation and lineage commitment (Metcalf, 1993; Zhu and 
Emerson, 2002; Hoang, 2004). One generally accepted model of hematopoietic 
development starts with the LT-HSC, which gives rise to a ST-HSC that differentiates 
into a multipotent progenitor (MPP) with restricted, or no capacity for, self-renewal. 
The MPP may differentiate into a common lymphoid progenitor (CLP) or a common 
myeloid progenitor (CMP), both of which will give rise to lineage-restricted cells 
(Morrison et al., 1997). The CLP is committed to form cells of the B- and T-lineages 
and the CMP differentiate into a myelomonocytic progenitor (GMP) that gives rise 
to monocytes and granulocytes and a megakaryocytic/erythroid progenitor (MEP), 
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which differentiates to megakaryocytes and erythrocytes (Kondo et al., 1997; 
Akashi et al., 2000). Recently, an alternative model has been suggested where the 
pluripotent HSC loses the potential to differentiate to a megakaryocytic and erythroid 
progenitor and subsequently turns into a lymphoid primed multipotent progenitor 
(LMPP). The LMPP express FLT3 and when it loses the potential to differentiate to 
a granulocytic/monocytic progenitor it will generate the CLP (Adolfsson et al., 2005). 
 Hematopoietic cells express specific cell surface markers that are 
characteristic for their lineage and maturation, e.g., CD19+ for B-lineage and CD33+ 
for myeloid lineage. The detailed knowledge about the ordered expression of cell 
surface markers can be used to sort cells using a fluorescence-activated cell sorter 
(FACS). FACS produces a highly enriched cell population of a desired maturation. 

Malignant Hematopoiesis 

It has become generally accepted that cancer is a multistep process, where the 
accumulation of somatically acquired genetic changes disturbs the normal 
homeotic balance of controlled cell differentiation, proliferation, and death 
(Hanahan and Weinberg, 2000). The target cell for malignant transformation is 
in most cancers unknown, but the similarities between stem cells and cancer cells, 
both of which harbor the potential of self-renewal, indicate that the stem cell may 
be the target cell of transformation (Reya et al., 2001; Passegue et al., 2003). This is 
an attractive hypothesis since the stem cell already has self-renewal capacity; hence, 
only a limited number of genetic changes would be needed to give rise to a 
leukemic clone. In addition, stem cells are long-lived and therefore more likely to 
accumulate additional genetic changes. However, it has also been suggested that 
the first genetic hit could take place in a more committed progenitor cell, which 
would then reacquire self-renewal potential, accumulate genetic changes, and give 
rise to a malignant clone (Reya et al., 2001; Passegue et al., 2003).  
 Recent data suggest that the target cell for transformation may vary and 
be dependent on the specific genetic rearrangement. For example, in cases with the 
t(9;22)(q34;q11) [BCR/ABL1] rearrangement, the target cell for transformation is 
most likely an early HSC since the fusion gene has been found in myeloid, 
erythroid, B-, and sometimes also in T-cells (Fialkow et al., 1977; MacKinney et 
al., 1993). In addition, the BCR/ABL1 fusion gene has been found in endothelial 
cells, indicating that the target cell for transformation may even be the very 
primitive and putative hemangioblast (Gunsilius et al., 2000; Fang et al., 2005). In 
contrast, the ETV6/RUNX1 fusion gene, generated through a t(12;21)(p13;q22) 
and found in 25% of B-cell precursor pediatric ALLs, has been found in a more 
mature CD34+, CD38-, and CD19+ population. The expression of CD19 indicates 
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that the target cell for transformation may be a cell already committed to the B-
cell lineage (Castor et al., 2005). 

Genetic Alterations in Leukemia 

A Historical Perspective 

During recent years, it has become increasingly clear that leukemias are 
characterized by recurrent chromosomal rearrangements that are closely associated 
with leukemic subtype and also, in many instances, with prognosis (Johansson et 
al., 2004; Mrozek et al., 2004). Today, more than 350 recurrent chromosomal 
abnormalities have been identified in hematologic malignancies (Mitelman et al., 
2004), providing important clinical and pathogenetic information. The success in 
the identification of chromosomal rearrangements has primarily been a result of 
detailed chromosome banding analyses. However, it took more than ten years 
from the detection of the first chromosomal abnormality until the true nature of 
this aberration was revealed. It was in 1960 that Nowell and Hungerford studied 
the chromosomes in bone marrow samples from patients with CML and 
discovered the presence of a small marker chromosome (Nowell and Hungerford, 
1960). It was soon evident that this was a recurrent cytogenetic alteration in CML 
and it was called the Philadelphia chromosome (Ph1 or Ph) in honor of the city 
in which it was first discovered (Figure 1). However, it was not until the banding 
techniques were introduced in 1970 (Caspersson et al., 1970), that researchers 
could perform detailed analyses of the chromosomes and it could be shown that 
the Ph chromosome in CML in fact was a result of a translocation between 
chromosomes 9 and 22 (Rowley, 1973). In 1985, breakpoint characterization revealed 
that the t(9;22)(q34;q11) leads to the fusion of the BCR gene at 22q11 with the 
ABL1 gene, translocated from 9q34 (Heisterkamp et al., 1985; Shtivelman et al., 
1985). Molecularly, this fusion gene has been shown to lead to a constitutive 
activation of the tyrosine kinase-encoding gene ABL1, which subsequently 
activates intrasignalling pathways resulting in enhanced proliferation, inhibition 
of apoptosis, and altered adhesive properties of the leukemic cells (Salesse and 
Verfaillie, 2002; Melo and Deininger, 2004). The molecular understanding of the 
BCR/ABL1 fusion recently led to the revolutionary development of Imatinib 
(Gleevec), a tyrosine kinase inhibitor of the BCR/ABL1 protein, which today is 
used to treat patients with CML (Melo and Deininger, 2004). 

The discovery of chromosomal alterations that were intimately associated 
with clinically important variables paved the way for the identification of a large 
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Figure 1. Unbanded metaphase of a bone marrow cell from a patient with CML. 
The arrow points at the Ph chromosome. 
 

number of leukemia-associated genetic changes. Today, these specific abnormalities 
are used clinically for the classification of patients to different risk groups, 
receiving different therapies. 

Genetic Alterations in Leukemia 

Recurrent chromosomal aberrations, including translocations, inversions, deletions, 
duplications, monosomies, and trisomies are common in leukemia. Translocations 
result in the exchange of genetic material between two chromosomes and may have, 
at least, two different molecular consequences (Figure 2) (Rabbitts, 2001). Genes 
may be juxtaposed to the vicinity of strong regulatory elements, such as the T-cell 
receptor (TCR) or the immunoglobulin heavy chain (IGH) genes. In these cases, a 
translocated and structurally intact “oncogene” becomes activated by strong 
regulatory elements, resulting in inappropriate level and timing of expression. A 
prototypic example is the t(8;14)(q24;q32) in Burkitt lymphoma where MYC comes 
under the control of IGH@ regulatory elements (Rabbitts, 2001). More commonly, 
a translocation results in the fusion of genetic material from two chromosomes 
resulting in the formation of a chimeric gene, a so-called fusion gene. Typically, the 
two genes break at intronic sequences with subsequent ligation. After splicing, a 
chimeric mRNA and protein with altered function as compared to the normal 
counterparts is produced (Rabbitts, 2001). So far, more than 200 fusion genes have 
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Figure 2. Chromosomal translocations may lead to two different molecular consequences. 
A. The structurally intact gene B comes under the influence of strong regulatory elements 
of, e.g., the TCR gene (gene A), resulting in a deregulated expression of gene B. B. If two 
genes break they may fuse and create a fusion gene (A/B), which gives rise to a chimeric 
protein with transforming properties. 

been described in hematologic malignancies (Mitelman et al., 2004). 
The major targets of chromosomal translocations in acute leukemia are 

conserved transcription factors that function as master regulators of normal 
hematopoiesis where they control blood development (Look, 1997; Rabbitts, 2001; 
Scandura et al., 2002). Typically, such rearrangements alter or interrupt the normal 
function of genetic programs controlled by the rearranged transcription factors. 
Recently, it was suggested that acute leukemia is a result of cooperating mutations, 
referred to as class I and class II mutations, respectively, of genes that cause a 
survival advantage and impaired differentiation (Speck and Gilliland, 2002). In this 
model, class I mutations are characterized by mutations in genes encoding tyrosine 
kinases, such as FLT3, KIT, or RAS, whereas class II mutations involve genes 
encoding transcription factors. A transcription factor often rearranged in both 
ALL and AML is RUNX1 – a master regulator of hematopoiesis (Blyth et al., 2005). 
When RUNX1 is rearranged by chromosomal translocations, the fusion gene 
interferes with the normal function of RUNX1 causing impaired differentiation 
(Speck and Gilliland, 2002). In chronic leukemias, genes targeted by translocations 
often involve genes encoding tyrosine kinases, the prototypic example being the 
BCR/ABL1 fusion in CML.  

In leukemias, genes may also become altered through the gain or loss of 
chromosomes. Alternatively, amplification, i.e., the existence of a specific gene or 
sets of genes in multiple copies, may be present. Cytogenetically, amplification is 
seen as extra-chromosomal double minute chromosomes or as intra-chromosomal 
homogeneously staining regions. Typically, the amplified gene(s) provides the cell 
with a growth advantage and has the capacity to accelerate tumor formation, e.g., 
the cell cycle regulator CCND1 (Donnellan and Chetty, 1998). Known examples 
of amplified oncogenes in leukemias include RUNX1 and MLL, although they 
occur at relatively low frequencies (Harewood et al., 2003; Poppe et al., 2004).  
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More frequently, one or several chromosomes are gained in leukemia and 
if the modal number exceeds 50, it is referred to as high hyperdiploidy, which is 
the most common cytogenetic abnormality pattern in childhood ALL (Johansson et 
al., 2004). Next to nothing is known about the pathogenetic effect of chromosome 
gain, but it is likely that it contributes to leukemogenesis through a general gene 
dosage effect (Gruszka-Westwood et al., 2004). 

Loss of chromosomal material may involve small deletions or whole losses 
of one or several chromosomes. Loss of chromosomal material may contribute to 
tumorigenesis through the loss of genes with the capacity to prevent tumor 
formation. Such genes are called tumor suppressor genes (TSGs) and known 
examples include TP53 and RB1. Loss of a TSG is a recessive genetic event where 
both chromosomal copies have to be lost or inactivated in order for a gene to 
lose its function (Knudson, 1971). TSGs are tightly linked to programmed cell 
death and the cell cycle machinery, and upon DNA damage they may induce cell 
cycle arrest and subsequently DNA repair through the activation of DNA repair 
genes. However, if the DNA damage is too severe, TSGs instead induce cell death 
(Macleod, 2000). Hence, loss of a TSG may result in escape of apoptosis and 
eventually in tumor formation.  

Losses of TSGs have been considered the main mechanism by which 
genetic changes result in solid tumor formation. However, it has been suggested 
that fusion genes may be more frequent in solid tumors than previously anticipated 
(Mitelman et al., 2004). Indeed, two recurrent chromosomal rearrangements, 
resulting in the creation of the TMPRSS2/ERG or TMPRSS2/ETV1 fusion genes, 
were recently detected in a large proportion of cases with prostate cancer (Tomlins 
et al., 2005). During recent years, it has also become evident that some genes show 
haploinsufficiency, that is, the loss of one allele is sufficient to cause a phenotypic 
effect (Santarosa and Ashworth, 2004). 
 Genes may be altered through a point mutation, i.e., the change of a single 
base pair in the DNA sequence. The molecular consequences of a point mutation 
depend on which amino acid is affected. Potential effects include loss of function 
of an allele through a mutation that induces a premature stop codon or a gain-of-
function, where the mutation results in oncogeneic activation and constitutive 
signalling, as exemplified by mutations in FLT3 and RAS (Ehrhardt et al., 2002; 
Stirewalt and Radich, 2003).  

Epigenetic alterations may also contribute to malignant transformation 
through gene silencing or activation of genes with important function in tumor 
formation. For example, gene silencing due to methylation of the cell cycle 
regulators CDKN2A/B genes is observed in about 30% of childhood B-lineage 
ALLs (Zhou et al., 1997). In addition, acquired segmental uniparental disomy (UPD) 
has been detected in 20% of AML cases with a normal karyotype, and in several 
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of the cases with UPD, homozygous mutations in leukemia-associated genes, i.e., 
WT1, FLT3, CEBPA, and RUNX1 were seen (Fitzgibbon et al., 2005; Raghavan et 
al., 2005). UPD may also result in altered expression of imprinted genes, i.e., 
genes that are selectively expressed depending of their parental origin. 

MicroRNAs, which are noncoding genes thought to be involved in 
tissue-specific gene regulation, have been suggested to play a role in leukemia as 
well as in other cancers (Calin et al., 2002; Chen, 2005). Two microRNA genes, 
miR15a and miR16, are deleted in a high proportion of cases with chronic 
lymphocytic leukemia (Calin et al., 2005) and were recently shown to regulate 
postranscriptionally the expression of BCL2, resulting in induction of apoptosis 
in hematopoietic cells (Cimmino et al., 2005). The exact role of microRNAs in 
leukemia, however, remains to be elucidated. 

Common Genetic Changes in Acute Leukemia 

The genetic changes found in hematopoietic malignancies serve as hallmarks for 
the leukemic subtype and provide important clinical information. Below, a short 
summary of characteristic genetic alterations in childhood leukemia, being a 
particular focus of the present study, is presented. 

t(1;19)(q23;p13) TCF3/PBX1 

The t(1;19)(q23;p13), which occurs in approximately 3% of pediatric ALL 
(Johansson et al., 2004), was cloned in 1990 by two groups (Kamps et al., 1990; 
Nourse et al., 1990) and shown to result in the TCF3/PBX1 fusion gene. When 
the t(1;19) was first reported, it was considered to be associated with a high risk 
leukemia that presented with leucocytosis, central nervous system involvement, 
and an increased risk of relapse (Crist et al., 1990; Hunger, 1996). However, with 
intensified treatment protocols, the prognosis of patients with this translocation/ 
fusion gene has improved, but it is still considered a high risk genetic feature 
(Uckun et al., 1998). The translocation occurs both in a balanced and unbalanced 
form (Paulsson et al., 2005a) and it has been suggested that the unbalanced variant 
confer a better prognosis (Secker-Walker et al., 1992; Uckun et al., 1998), although 
this remains controversial (Pui et al., 1994). 
 The t(1;19)(q23;p13) targets the basic-loop-helix transcription factor TCF3 
(E2A) on chromosome 19 and the homeobox containing gene PBX1 on 
chromosome 1. TCF3 gives rise to two protein products; E12 and E47 (Murre et 
al., 1989; Murre, 2005), whose expression is critical for B-cell development as 
demonstrated in knock-out mice, where deficiency of Tcf3 causes arrest of B-cell 
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development at an early pro-B cell stage (Bain et al., 1994). In addition, ectopic 
expression of E12 induces the expression of Ebf1 as well as other genes of 
importance for B-cell development, e.g., Il7rα and Rag1 (Kee and Murre, 1998). 
PBX1 is a homeobox-containing transcription factor that normally is not expressed 
in the lymphoid lineages. In mice, it has been shown that Pbx1 is required for the 
maintenance, but not the initiation of definitive hematopoiesis (DiMartino et al., 
2001). PBX1 can bind directly to HOX genes, or to MEIS1, another HOX-cofactor, 
thus interacting with HOX proteins in trimeric complexes (Shanmugam et al., 1999). 
 The TCF3/PBX1 fusion gene retains the transactivation domain of 
TCF3 and the homeodomain of PBX1, and unlike normal PBX1, the fusion 
protein is a transcriptional activator (LeBrun and Cleary, 1994; Sykes and Kamps, 
2004). The fusion protein retains the capability to bind HOX proteins, but can 
no longer bind MEIS1, and it is likely that the fusion gene in complex with HOX 
genes results in deregulated expression of HOX/PBX1 target genes (Knoepfler et al., 
1997; Lu and Kamps, 1997). In addition, the disruption of TCF3, which is critical 
for B-cell development, is likely to contribute to leukemia development. The 
TCF3/PBX1 fusion gene rapidly induces leukemia in mice, but intriguingly, so 
far, the leukemia developing in these mice is of myeloid or T-cell type and never 
a B-cell leukemia (Sykes and Kamps, 2004).  
 In rare cases with the (1;19)(q23;p13), the TCF3/PBX1 fusion transcript 
is absent (Hunger et al., 1991). Recently, a novel translocation involving MEF2D 
at 1q23 and DAZAP1 at 19p13, resulting in the MEF2D/DAZAP1 fusion gene, 
was cloned in a pre-B cell line with the t(1;19) rearrangement but that lacked the 
TCF3/PBX1 fusion gene (Yuki et al., 2004). 

RUNX1 Rearrangements 

RUNX1 is frequently involved in chromosomal rearrangements in hematologic 
malignancies. In pediatric B-precursor ALL, RUNX1 is rearranged by the t(12;21) 
(p13;q22), seen in about 25% of the cases (Harrison et al., 2005). This translocation 
fuses the ETV6 (TEL) gene on chromosome 12 with RUNX1 (AML1) on chromosome 
21 (Golub et al., 1995; Romana et al., 1995). This fusion gene has been reported to 
correlate with a good prognosis (Shurtleff et al., 1995), although some recent studies 
have reported a high incidence of this fusion transcript in relapsed ALLs (Seeger 
et al., 1998). RUNX1 alterations are also frequent in AML, e.g., through the 
t(8;21)(q22;q22) where RUNX1 is fused to the RUNX1T1 (ETO) gene on 
chromosome 8 (Erickson et al., 1992). 
 The transcription factor RUNX1 encodes the heterodimeric partner of 
CBFB, which enhances the DNA-binding properties of RUNX1 and protects it 
from ubiquitin-mediated proteolysis. Together, CBFB and RUNX1 constitute a 
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component of the core binding factor (CBF) transcription factor complex (Blyth 
et al., 2005) and regulate transcription of a large number of genes with pivotal 
roles in all lineages of hematopoiesis, e.g., IL3 (Uchida et al., 1997) and Sfpi1 (Pu1) 
(Okada et al., 1998). RUNX1 may also function as a transcriptional repressor 
through the binding of Groucho-related co-repressors (Imai et al., 1998) and 
through interaction with mSin3A (Lutterbach et al., 2000). 
 RUNX1 has a strong DNA binding domain (Runt), which is retained in 
all fusion genes. In the t(12;21), the 5´part of ETV6 is fused to almost the entire 
RUNX1 (Golub et al., 1995; Romana et al., 1995). ETV6 is widely expressed in most 
normal tissues and when fused to RUNX1, the expression of RUNX1 will be driven 
by the ETV6 promoter. The leukemogenic potential of RUNX1 fusion proteins is 
probably coupled to the interaction and inhibition of the normal function of the 
CBF-transcription factor complex (Lutterbach and Hiebert, 2000; Speck and 
Gilliland, 2002). Moreover, the fusion protein has an increased affinity for CBFB 
as compared to the wild-type allele, resulting in repression of RUNX1-target genes. 
Mouse models with ETV6/RUNX1 have shown that expression of the fusion 
protein causes impaired differentiation, mainly in the pro-B-cell compartment, but 
does not result in a complete differentiation block (Fischer et al., 2005). 
 Amplification of RUNX1 is uncommon in ALL (1.5%), but has recently 
been shown to be associated with a poor prognosis (Harewood et al., 2003; 
Robinson et al., 2003; Harrison et al., 2005). Inactivating mutations of RUNX1 
occur in 10% of AMLs, being particularly frequent in AML M0 (22%) (Roumier 
et al., 2003). Interestingly, heterozygous mutations of RUNX1 are responsible for 
the autosomal dominant genetic disease, familial platelet disorder, characterized 
by platelet defects and a predisposition to develop AML (Song et al., 1999).  

11q23/MLL Rearrangements 

Rearrangements of the MLL (Mixed Lineage Leukemia) gene at chromosome 
band 11q23 are common in leukemia, in particular among infants where 80% 
harbor such a rearrangement (Rubnitz et al., 1994). In older children, the frequency 
is much lower (4-8%) (Rubnitz et al., 1997; Forestier et al., 2000a). MLL abnormalities 
are also frequently seen in AML, in particular therapy-related AML arising after 
previous treatment with drugs targeting topoisomerase II (Felix, 1998). Leukemias 
with MLL rearrangements are quite often bilineage/biphenotypic expressing both 
lymphoid and myeloid surface antigens, and are seen in all hematopoietic lineages 
(Gregorini et al., 1998). Today, more than 40 different cloned partner genes are known 
to be involved in rearrangements with MLL (Mitelman et al., 2005). Generally, 
abnormalities of MLL correlate with a poor outcome, although recent data indicate 
that prognosis varies among the different fusion genes generated, with t(9;11)(p21;q23) 
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conferring a better prognosis in children with AML (Rubnitz et al., 2002; Pui et 
al., 2003). In addition, infants with MLL rearrangements have an adverse prognosis 
irrespective of the specific MLL abnormality (Pui et al., 2002, 2003). 
 The normal MLL protein is cleaved post-translationally into an N-
terminal fragment with repressor activity and a C-terminal part with strong 
transcriptional activity. The C- and N-terminal parts of MLL dimerize and constitute 
the basic part of a large multiprotein complex that regulates and maintain the 
transcription of HOX genes, which are critical regulators of hematopoiesis (Yu et 
al., 1998; Nakamura et al., 2002; Hsieh et al., 2003). In addition, HOX genes regulate 
hematopoietic development and are expressed in hematopoietic cells during distinct 
stages of differentiation (Magli et al., 1991; Sauvageau et al., 1994). In line with the 
fundamental roles of HOX genes in hematopoiesis and the role of MLL to maintain 
HOX gene expression, it was recently shown that Mll is required for definite 
hematopoiesis (Ernst et al., 2004). 
 MLL fuses to a wide range of partner genes that may be subdivided into 
two types; nuclear genes (e.g., AFF1 (AF4), MLLT3 (AF9), MLLT1 (ENL), CREBBP) 
or cytoplasmic genes (e.g., MLLT4, ARHGEF12 (LARG), GAS7, CBL). Most of the 
nuclear genes are transcriptional activators, and there are now several studies reporting 
that the 3´ partner gene contributes to the oncogeneic property of MLL fusion genes, 
providing MLL chimeras with a gain-of-function rather than a loss-of-function 
(Ayton and Cleary, 2001). Among the cytoplasmic genes that fuse to MLL, none have 
roles in transcriptional regulation and little is known about the oncogeneic properties 
of these fusion genes. However, it was recently shown that the leukemogenic 
potential of cytoplasmic MLL fusion genes is contributed by oligomerization, 
that results in transcriptional activation of MLL target genes (So et al., 2003). Gene 
expression studies have shown that MLL chimeras give rise to a common gene 
signature with a high expression of genes, such as HOXA9, HOXA10, and MEIS1 
(Armstrong et al., 2002; Ross et al., 2004; Andersson et al., 2005a, b; Kohlmann et al., 
2005). The finding that also cytoplasmic MLL fusion genes result in transcriptional 
activation of MLL target genes fits well with the finding of a common gene 
expression signature. Intriguingly, however, cases with partial tandem duplication 
(PTD) of MLL have a different gene expression profile as compared to cases where 
MLL is rearranged through a translocation, suggesting that alternative mechanisms 
contribute to malignant transformation in cases with MLL PTD (Ross et al., 2004). 

High Hyperdiploidy 

In childhood leukemias, high hyperdiploidy (>50 chromosomes) occurs in 
approximately 30-45% of B-cell precursor ALL (Forestier et al., 2000a; Moorman 
et al., 2003). This is the most common genetic abnormality pattern in pediatric 
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ALLs and is associated with a favorable prognosis with a 5-year event free survival 
of 70-80% (Forestier et al., 2000b; Moorman et al., 2003). Cytogenetically, high 
hyperdiploidy is characterized by a nonrandom gain of chromosomes with trisomy 
or tetrasomy 21 being the most frequent (Heerema et al., 2000). Other chromosomes 
commonly gained include X, 4, 6, 8, 10, 14, 17, and 18 (Heerema et al., 2000; 
Paulsson et al., 2005b). Attempts have been made to identify cytogenetic subgroups 
among the high hyperdiploid ALLs that correlate with outcome, suggesting that 
gain of chromosome 4, 10, 17, and 18 (Harris et al., 1992; Heerema et al., 2000; 
Moorman et al., 2003; Sutcliffe et al., 2005) are associated with a favorable prognosis. 
The presence of structural rearrangements has also been suggested to have a 
negative prognostic impact (Pui et al., 1989; Forestier et al., 2000b); however, this 
has been questioned (Raimondi et al., 1996; Moorman et al., 2003). 
 Little is known about the molecular consequences of hyperdiploidy, 
but it has been suggested that a general gene dosage effect of certain loci on the 
gained chromosomes contribute to leukemic development (Gruszka-Westwood et 
al., 2004). Imprinting - selective expression of a gene dependent on its parental 
origin – has also been suggested to play a role in the pathogenesis of hyperdiploidy 
(Haas, 1996). However, recent studies addressing this possibility have not found 
any evidence of preferential gain of a chromosome depending on the parental 
origin (Paulsson et al., 2003, 2005b). Gene expression studies of trisomies have 
shown that there is a general dose effect, but, in addition, some genes located on 
the duplicated chromosomes display either a substantially higher or a lower 
expression than expected, suggesting that alternative mutational mechanisms exist 
that cause deregulatated gene expression (Gruszka-Westwood et al., 2004; Andersson 
et al., 2005b). 

Gene Expression Profiling 

Historical Overview and Background 

Gene expression profiling is a collective terminology for technologies that measure 
the expression of a large number of genes in a single or in a few experiments. In 
the past, gene expression analyses could only be performed on a gene-by-gene 
basis. Technological improvements made it possible, however, to obtain expression 
data of a large number of genes in a single experiment and to perform two-color 
hybridizations where the relative expression of genes could be measured in relation 
to a common reference (Lander, 1999). Currently, several different methods exist 
for monitoring gene expression; e.g., real-time quantitative PCR, filter based 
microarrays, and glass microarrays. Although all these methods measure the level 
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of expression of genes, they have intrinsic differences that should be taken into 
account when choosing a method for a particular experiment. For example, real-
time PCR analysis can be both time-consuming and labor intensive when many 
genes are studied and are hence more suitable for investigating a smaller number 
of genes. With the introduction of filter based arrays (Lennon and Lehrach, 1991; 
Maier et al., 1994) it became possible to investigate the expression of a larger 
number of genes in a single experiment. However, it was not until the 
introduction of glass microarrays that the gene density increased considerably. In 
1995, Schena and colleagues demonstrated that two-color cDNA microarrays 
could be used for high-throughput monitoring of gene expression changes in 
plants (Schena et al., 1995). Subsequently, in 1996, the same group investigated 
the expression of heat-shock induced genes in human T-cells using slides 
containing 1000 genes (Schena et al., 1996). The same year, the first microarray 
study of human cancer was performed on a melanoma cell line (DeRisi et al., 
1996). In parallel with the cDNA array technology, microarray slides with short 
synthesized oligonucleotides also became available. Oligonucleotide slides offer the 
possibility of having several different sequence-specific oligonucleotides 
synthesized and are now used, e.g., for exon specific arrays. One of the first 
companies offering slides with synthesized oligonucleotides was Affymetrix, 
which uses a photolithography method to generate high density oligonucleotide 
slides (Lipshutz et al., 1999). In 1996, the density of the arrays was approximately 
1000-2000 genes, a number that has increased dramatically to 30 000-100 000 
elements on the arrays. With increased densities, gene expression profiling 
provides a unique possibility of high-throughput screening, and a large number 
of human cancers have now been analyzed using microarrays, providing 
important biological insights into the genetic pathways becoming deregulated in 
human malignancies. In addition, gene expression profiling of hematologic 
malignancies has shown that cytogenetic subclasses of leukemia show distinct and 
unique gene expression profiles that can be used to assign patients to genetic 
riskgroups at diagnosis. Below, an introduction to microarray analysis, with a 
special emphasis on cDNA microarrays, will follow. 

Methodological Principles of cDNA Microarray 

The microarray technology is based on the distinct nature of the DNA to base 
pair with a complementary sequence and form a double helix (Southern et al., 1999). 
This fundamental principle has been used for a long time in molecular genetic 
research, for example in northern blot analysis. Northern blot has been the standard 
method of choice for measuring gene expression and involves immobilization of 
the target RNA on a membrane and labeling of a probe from the gene of interest  
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Figure 3. Methodological principles of the cDNA microarray technology. RNA extracts 
from the tumor and reference samples are reversely transcribed into cDNA, a reaction in which a 
fluorescent dye is incorporated. The samples are combined and hybridized to a microarray 
slide, which is then washed and subsequently scanned in a laser scanner. The laser excitates the 
fluorochromes and a detector measures the emission light. Two black and white images are 
created, one for each fluorochrome, and these are then combined to a pseudocolored image, 
in which red represents relative upregulation and green relative downregulation as compared to 
the reference. A gene with equal expression in the tumor and reference will be colored in yellow.  

 

with radioactive nucleotides. The labeled probe is allowed to hybridize to the 
immobilized target RNA and the result is visualized using a phosphoimager. 
Northern blot is a robust method, but has the disadvantage that only a single 
gene can be investigated in each experiment. With the introduction of cDNA 
microarrays, where the probes are immobilized on a glass slide and the target 
cDNAs are hybridized to the slide, the number of genes that can be investigated 
at each experiment increases significantly. In cDNA microrrays, RNA from two 
targets, i.e., the sample of interest and a reference sample are labeled with two 
different dyes and hybridized to a slide containing the probes (Cheung et al., 1999; 
Duggan et al., 1999). Two-color microarray experiments provide the possibility to 
measure the relative expression of a large number of genes as compared to a 
common reference used in all hybridizations. In contrast to the more conventional 
northern blot, cDNA microarray is a high-throughput technique where several 
thousands of genes can be studied in only one single experiment, providing a 
snap-shot of the genes expressed in a tissue at a certain time point. 
 The generation of microarrays involves robotically printing of cDNA 
clones of 500-3000 base pair onto aminosilane-coated glass slides. Total RNA is 
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extracted from the tissue of interest, purified, and reversely transcribed into 
cDNA. RNA is also prepared from a reference sample, used in all hybridizations. 
The reference sample should show abundant gene expression, ideally expressing all 
genes on the microarray. To achieve this, it is common to use a pool of cell lines 
from different tissues, either made in-house or commercially available. When the 
RNA is reversely transcribed to cDNA, a fluorescent dye is incorporated, typically 
Cy3 for the test sample and Cy5 for the reference. The test and reference samples 
are then combined and allowed to hybridize to the cDNA clones on the microarray. 
Hybridization occurs in a competitive manner where the amounts of the samples 
bound to the probes depend upon their level of expression. The slides are washed 
in solutions with increased stringency to remove unbound cDNA and non-
stringent binding between moderately matching sequences and are finally scanned 
at high resolution in a laser scanner where the fluorescent dyes are excitated and 
the emission light measured. The quantified emission is saved as two black and 
white images, one for each wavelength, which are then combined to a pseudocolored 
image (channel 1/channel 2) where red represents relative upregulation and green 
relative downregulation of the test sample as compared to the reference (Figure 3) 
(Cheung et al., 1999; Duggan et al., 1999; Harrington et al., 2000) 

Data Management 

Before the data generated from microarray experiments can be extracted and 
analyzed, they need to be normalized to compensate for technical and methodological 
biases. Several different methods exist for normalization; common to them all is 
that they rescale data to balance for potential differences in the amount of RNA 
labeled and to remove or dampen technical biases, such as differences in the 
detection of the dyes depending on the spatial location over the slide (Quackenbush, 
2002; Yang et al., 2002). After normalization, a data set-specific filtering is performed 
to remove spots (genes) with a poor quality. 
 The data set-specific filtering can be performed using various quality 
cut-offs. For example, spots with a low intensity or with a diameter below a 
certain threshold may be filtered away. It is also common to consider only genes 
with a signal-to-noise or a log-ratio above a certain threshold. Such cut-offs are 
sensitive to threshholding, and genes with a high quality, but not fulfilling these 
criteria, may be filtered away. To avoid this, an alternative way of obtaining high 
quality data is to use an error-model (Andersson et al., 2005a, b, c). The error model 
uses signal-to-noise and fold change to correct for poor quality. Genes with a 
high uncertainty are moved towards the average of the gene and are hence more 
likely to be filtered away in a subsequent variation filter. After filtering for 
variance to remove genes with a low variation across experiments, a presence 
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filter is applied. The data are now considered to be of high quality and ready to 
be analyzed using sophisticated methods that compare gene expression data and 
explore the similarities and relations between samples. 
 Methods used for comparison of gene expression data can be divided 
into unsupervised and supervised methods. Unsupervised methods include 
algorithms that are used for exploration of gene expression data and where no 
previous knowledge about the distribution of data or group assignment is used 
for analysis. In particular, unsupervised methods can be used to propose novel 
hypotheses and to find novel subgroups (Quackenbush, 2001). Examples of 
traditional mathematical methods used for unsupervised analysis of microarray 
data include hierarchical clustering analysis (HCA) (Eisen et al., 1998), 
multidimensional scaling (MDS) (Khan et al., 1998), and principal component 
analysis (PCA) (Alter et al., 2000). HCA is a two-dimensional algorithm that, in 
the context of gene expression analysis, group samples with a similar gene 
expression pattern close to each other horizontally, with genes being organized 
vertically in a “heat map” reflecting their level of expression (Eisen et al., 1998). MDS 
and PCA are algorithms that reduce the high dimensionality of gene expression 
data into the two or three dimensions that contain most variance, with the distance 
between the samples reflecting their similarities at the gene expression level. 
 In supervised methods, on the other hand, previous knowledge of the data 
is used when class assignment is made, and they include discriminatory analyses 
(Ringnér et al., 2002). Discriminatory analysis requires that the data involves samples 
from at least two groups and include straightforward statistical analyses such as the 
T-test, but can also be performed using more sophisticated learning algorithms, 
e.g., support vector machines (SVM) (Brown et al., 2000), k-nearest neighbor (k-NN) 
(Dudoit and Fridlyand, 2002), and artificial neural networks (ANN) (Khan et al., 2001). 
Hence, supervised methods are used when the purpose of the data analysis is to 
construct a classifier for prediction of an unknown sample to an already defined 
class. Such methods have been successfully used in gene expression profiling of 
leukemia to predict the class of leukemic samples to clinically important variables, 
e.g., leukemia type, type of genetic change, and minimal residual disease (MRD) 
status (Yeoh et al., 2002; Ross et al., 2003, 2004; Valk et al., 2004; Andersson et al., 
2005b; c; Cario et al., 2005; Haferlach et al., 2005; van Delft et al., 2005). 

Gene Expression Profiling of Hematologic Malignancies 

Since the introduction of microarray analysis, several investigations of gene 
expression profiles in hematologic malignancies have been performed, yielding 
insight into the genes dysregulated in leukemia. So far, most gene expression 
studies have been performed on adult leukemias (Virtaneva et al., 2001; Schoch et al., 
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2002; Debernardi et al., 2003; Kohlmann et al., 2003; Bullinger et al., 2004; Chiaretti 
et al., 2004; Staber et al., 2004; Valk et al., 2004; Haferlach et al., 2005), and only a few 
large-scale gene expression studies have focoused on pediatric leukemias (Yeoh et al., 
2002; Ross et al., 2003, 2004; Holleman et al., 2004; Andersson et al., 2005b, c; van 
Delft et al., 2005). Below, the most significant gene expression studies of hematologic 
malignancies are summarized, with a special emphasis on pediatric leukemia. 
 In 1999, the first article was published showing that leukemias can be 
classified, using supervised learning algorithms based on their gene expression 
profiles, into B-lineage ALL, T-cell ALL, and AML (Golub et al., 1999). Two years 
later, Armstrong and coworkers proposed that leukemias with 11q23/MLL 
abnormalities constitute a distinct and unique leukemia type (Armstrong et al., 2002). 
Subsequently, in 2002, the largest gene expression study of pediatric ALLs was 
published, investigating 360 pediatric ALLs and showing that such leukemias 
harbor distinct gene expression profiles and that classifiers could be built that 
predicted the class of an unknown sample with a high accuracy (Yeoh et al., 2002). 
In the same study, gene expression signatures associated with relapse in T-cell 
ALLs and in high hyperdiploid leukemias were identified. Furthermore, among 
leukemias with uncharacterized genetic changes, a novel subgroup was found. A 
smaller subset (132 cases) of the ALLs analyzed by Yeoh and collegues (2002) were 
reanalyzed the following year on higher density arrays, verifying that the expression 
profiles present at diagnosis can be used to classify leukemias into genetic risk 
groups with high accuracy (Ross et al., 2003). The following year, the largest study 
of pediatric AML was published (Ross et al., 2004), showing that distinct gene 
expression profiles associated with specific genetic abnormalities present at 
diagnosis could be identified in this subset of leukemia as well. These expression 
profiles were subsequently used to construct predictors that could assign an 
unknown sample to a known genetic class with an overall classification accuracy 
of 93%. By combining the AML and ALL data set previously analyzed by the 
same group (Ross et al., 2003), it was shown that 11q23/MLL-positive cases cluster 
primarily according to lineage. However, supervised analysis revealed the presence 
of a unique and common gene expression signature that was independent of lineage 
(Ross et al., 2004). Interestingly, it was also shown that AMLs with a partial tandem 
duplication (PTD) of MLL failed to cluster with the other MLL-positive cases, 
suggesting that such AMLs have a different mechanism of transformation (Ross et 
al., 2004). Several studies have subsequently verified that specific and distinct gene 
expression signatures correlate with lineages and genetic changes in hematologic 
malignancies (Moos et al., 2002; Schoch et al., 2002; Kohlmann et al., 2003; Yagi et al., 
2003; Fine et al., 2004; Andersson et al., 2005a, b, c; Haferlach et al., 2005; Kohlmann et 
al., 2005; van Delft et al., 2005). Moreover, global gene expression analyses of 
hematopoietic cell lines of diverse origin, but with the same primary genetic changes, 
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have shown that such cell lines display similar gene expression profiles despite their 
diverse origin and numerous passages in vitro (Fine et al., 2004; Andersson et al., 2005a). 
 Although most microarray studies of hematologic malignancies have 
focused on the identification of genes associated with the specific genetic aberrations 
characteristically seen in leukemia, some have tried to use gene expression profiling 
to identify genes that are associated with response to treatment. For example, in a 
study investigating 173 pediatric ALLs for in vitro sensitivity to prednisolone, 
vincristine, asparaginase, and daunurubicine to identify genes associated with 
treatment resistance or sensitivity (Holleman et al., 2004), the genes associacted with 
drug resistance correlated with patient outcome; several of the genes identified 
had not previously been implicated in resistance for the drugs tested. In ALL, it has 
previously been reported that a high tumor load at day 29 of treatment significantly 
increases the risk of relapse (van Dongen et al., 1998; Björklund et al., 2003). Only 
two expression studies have tried to predict MRD status among childhood ALLs 
(Willenbrock et al., 2004; Cario et al., 2005). In the largest one (Cario et al., 2005), cases 
with no detectable MRD were compared to cases with a high MRD. A classifier of 62 
clones was identified that could predict MRD status with a high accuracy. It was also 
recently shown that MRD status could be predicted in T-cell ALLs at the time of 
diagnosis (Andersson et al., 2005c). 
 Collectively, microarray analyses have successfully been utilized for 
classification purposes, both as regards leukemia type and specific genetic lesion 
present at diagnosis, with a high accuracy. It has, however, proved more difficult 
to identify gene expression profiles that could, already at the time of diagnosis, 
predict which patients who will relapse and to find novel subgroups of leukemia. 
Gene expression studies of hematologic malignancies have also resulted in 
important biological insights into the genetic programs becoming deregulated in 
leukemia and in an increased understanding of leukemia development and 
progression.  



26 Specific Aims of the Study 

THE PRESENT STUDY 

This section includes the specific aims of the thesis, a summary of the materials 
and methods, and the results together with a short discussion. A general 
discussion with emphasis on acute pediatric leukemia and gene expression 
profiling is given at the end of this section. 

Specific Aims of the Study 

The general aim of this thesis has been to characterize hematologic malignancies 
using gene expression profiling to improve the classification and to increase our 
understanding of the genetic mechanisms that control and contribute to 
leukemia development and progression. More specifically, the aims were: 

- to investigate if immortalized hematologic cell lines with the same specific 
genetic alterations maintain a characteristic gene expression pattern despite 
their diverse origin and numerous passages in vitro (Article I),  

- to study the gene expression patterns in pediatric acute leukemias and to 
investigate the expression pattern of these genes in normal hematopoietic cell 
subpopulations (Article II), 

- to construct gene expression classifiers that can predict the class of an unknown 
leukemia sample to clinically important subgroups (Article III), and 

- to use gene expression profiling to identify the genes deregulated as a consequence 
of the t(12;14)(p13;q11) in T-cell ALLs (Article IV). 
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MATERIALS AND METHODS 

Patient Material, Purified Hematopoietic Subpopulations, and Cell Lines 

The childhood acute leukemias analyzed in the present study (Articles I, II, III, 
and IV) were all diagnosed at Lund or Linköping University Hospitals, and the 
studies were reviewed and approved by the Research Ethics Committees of Lund 
and Linköping Universities, Sweden. Bone marrow (BM) or peripheral blood (PB) 
were collected at the time of diagnosis and put in TRIzol (Invitrogen, Carlsbad, 
CA). All samples were, as part of routine diagnostic procedures, analyzed 
cytogenetically and molecularly at the Department of Clinical Genetics, Lund, 
Sweden. The ALLs were analyzed for the presence of 11q23/MLL rearrangements, 
BCR/ABL1, ETV6/RUNX1, and TCF3/PBX1 fusions. The AMLs were screened for 
11q23/MLL rearrangements. Fluorescence in situ hybridization (FISH) investigations, 
using probe cocktails for the chromosomes commonly gained in high hyperdiploid 
ALLs, were performed on cases with either normal karyotypes or without analyzable 
metaphases. All cell lines used were cultured according the manufacturers’ 
instructions and harvested 24 hours after medium exchange. 

Article I 
Forty hematologic cell lines were analyzed, 30 of which harbored the following 
primary genetic changes t(4;11)(q21;q23) [MLL/AFF1], t(6;11)(q27;q23) [MLL/MLLT4], 
t(9;11)(p21;q23) [MLL/MLLT3], t(11;19)(q23;p13) [MLL/MLLT1], dup(11)(q23q23) 
[PTD of MLL], t(X;11)(q13;q23) [MLL/MLLT7], t(1;19)(q23;p13) [TCF3/PBX1], 
del(4)(q12q12) [FIP1L1/PDGFRA], t(8;21)(q22;q22) [RUNX1/RUNXT1], t(8;14)(q24;q32) 
[IGH@/MYC], t(8;14)(q24;q11) [TRA@/MYC], t(9;22)(q34;q11) [P190 and P210 
BCR/ABL1], t(10;11)(p12;q14) [PICALM/MLLT10], t(12;21)(p13;q22) [ETV6/RUNX1], 
t(15;17)(q22;q21) [PML/RARA], and inv(16)(p13q22) [CBFB/MYH11]. In addition, 
BMs from 11 children with AML or ALL, harboring MLL/MLLT1, MLL/AFF1, 
TCF3/PBX1, P190 BCR/ABL1, ETV6/RUNX1, MLL/MLLT3, or RUNX1/RUNX1T1, 
were investigated. 

Articles II and III 
Samples from BM (n=108) or PB (n=13) were obtained at the time of diagnosis 
from 121 children with ALL (87 B-lineage and 11 T-cell) or AML (n=23). In 
addition, six normal bone marrows (NBMs) and 10 selected purified 
hematopoietic subpopulations, collected from healthy donors, were included in 
the analysis. In Article II, all normal cells were obtained from the Department of 
Hematology, Lund, Sweden. CD34+ cells were isolated from the mononuclear cell 
fraction by immunomagnetic beads (MACS, Miltenyi Biotec, Bergisch Gladbach, 
Germany). Mononuclear cells and CD34+ cells were further fractionated by cell 
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sorting on a FACS Aria flow cytometer (Becton Dickinson Biosciences, San Jose, 
CA). From mononuclear cells, CD3+/CD4+ [helper T-lymphocytes], CD3+/CD8+ 
[suppressor T-lymphocytes], CD19+ [mature B-lymphocytes], CD15(+)/CD33+ 
[neutrophils intermediate maturation], CD15++/CD33(+) [mature neutrophils], and 
CD71/GPA+ [erythroblasts] were isolated. From the CD34+ cells, CD34+/CD19+ 
[early pre-B-cells], CD34+/CD117+/CD45RA- [common myeloid progenitors], 
and CD34+/CD117+/CD45RA+ [granulocyte/macrophage progenitors], were obtained. 

Article IV 
Eight childhood T-cell ALLs, two of which harbored the t(12;14)(p13;q11), were 
analyzed. Seven of the cases were also included in Articles II and III and were 
diagnosed and treated at the Department of Pediatrics, Lund, Sweden. The 
remaining case was obtained from Saint Louis Hospital, Paris, and details about 
this case have been published elsewhere (Le Coniat et al., 1997). 

Minimal Residual Disease Status 

A subset of the pediatric leukemias investigated in Articles II and III was, as part 
of routine analyses, investigated for MRD status at day 0, 29, 50, and 100 of 
treatment. The ALLs from Lund (n=61) were monitored for MRD status by real-
time quantitative PCR of patient-specific immunoglobulin and/or T-cell receptor 
gene rearrangements, as described in van Dongen et al (1998). The ALLs from 
Linköping (n=16) were monitored using flow cytometry as described previously 
(Björklund et al., 2003). The MRD status was translated to a scale from 1-6, where 
MRD of 1 corresponds to 0.001%, 2 to 0.01%, 3 to 0.1%, 4 to 1%, 5 to 10%, and 
6 to 100% leukemic cells. In Article III, cases were classified based on MRD status 
at day 29 and were arbitrarily divided into two groups designated “Low” (MRD 
of 1-2) or “High” (MRD of 3-6). 

RNA Isolation and Amplification 

In Articles I-IV, total RNA was extracted using the TRIzol reagent (Invitrogen) and 
further purified using RNeasy columns (Qiagen, Valencia, CA). The Universal 
Human Reference RNA (Stratagene, La Jolla, CA), used as a reference for all 
microarray hybridizations, was prepared according to the instructions provided 
by the manufacturer. The patient material in Articles I-IV and the reference used 
for all hybridizations were linearly amplified using the RiboAmp - RNA 
Amplification kit (Arcturus, Mountain View, CA). 
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cDNA Array Production and Microarray Slides 

The cDNA microarray slides were generated by growing bacterial clones 
containing cDNA clones, which were then purified and amplified using reverse-
transcription PCR (RT-PCR). Purified and concentrated PCR products were 
robotically deposited on aminosilane-coated slides using the MicroGrid II 
(BioRobotics, Genomic Solutions, Huntingdon, UK). Slides were generated as 
part of the activites at the Swegene DNA Microarray Resource Center at Lund 
University, Sweden (http://swegene.onk.lu.se). In Articles I-IV, all patient samples 
were hybridized to 27K slides. The cell lines (Article I) were hybridized to 32K 
slides using the same clone set and design as the 27K slides.  

cDNA Synthesis, Labeling, and Hybridization 

In Article I, cDNA synthesis and labeling of the poly(A) RNA obtained from the 
cell lines were performed using the CyScribe Post-labeling Kit according to the 
manufacturer’s instructions (Amersham Biosciences, Uppsala, Sweden). The Cy5 
and Cy3 targets were pooled, and 12 μg pd(A) (Amersham Biosciences), 20 μg Cot-1 
DNA (Invitrogen), 6 mg yeast tRNA (Invitrogen), and 1.5 μl 50 x Denhardt´s 
solution (Nalgene, Cleveland, Ohio) were added. The labeled targets were dried 
and resuspended in 40 μl DIG Easy Hyb (Roche, Mannheim, Germany), and pre-
hybridization of the slides was performed in 5×SSC, 0.1% SDS, and 1% BSA in 
42°. Targets from the reference and cell lines were hybridized simultaneously for 18 
hours at 42° in a humidified chamber (Corning, Acton, MS). The slides were washed 
and scanned in the G2565AA Agilent DNA Microarray Scanner (Agilent Technologies, 
Palo Alto, CA). In Articles II-IV, the samples were labeled as above but for 
prehybridization, hybridization, and posthybridization washes, the Pronto Universal 
Microarray Reagent System (Corning) was used. Images were analyzed using the 
GenePix4.0 software (GenePix, Foster City, CA) and the obtained data matrix was 
uploaded onto the BioArray Software Environment (BASE) (Saal et al., 2002). 

Microarray Data Analyses 

Quality Filtering  

In Articles I-IV, reporters flagged as bad or absent in the GenePix software were 
filtered away within BASE, and normalization was performed using the Lowess 
algorithm (Yang et al., 2002). To correct for poor quality spots, an error model 
was used. Briefly, the error model moves uncertain measurements towards the 
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mean across assays for the position. The effect is two-fold. First, since expression 
values close to the mean are less important when finding correlation to classes, the 
correction reduces the risk that a gene with a few uncertain outlier measurements 
is incorrectly ranked as highly relevant for a class. Second, if the measurement of 
a position is uncertain in several assays, many values are moved towards the 
mean, with a subsequent decrease of the variance for that position. The poorly 
measured reporter is then more likely to be excluded in the following variation 
filter. After error correction, the data were filtered for variation and presence.  

In Article I, a standard deviation of 0.3 and 100% presence was required. 
To analyze the cell line and primary leukemia data sets together, which were 
hybridized on slides of two different designs (32K and 27K, respectively), the cell 
lines and acute leukemias were mean-centered individually, and for the few 
reporters that occurred in duplicate, measurements were merged.  

In Articles II and III, the data were analyzed as above, but a 95% presence 
was required and reporter multiplets were merged before analysis. To correct for an 
initially observed deviation of the gene expression values with regard to sample 
referral site, the data were mean-centered with respect to hospital (Lund vs Linköping). 
In Article III, a standard deviation of 0.5 was required before subsequent analyses. 

In Article IV, no further filtering of the data with regard to variation and 
presence was performed after normalization and error model correction. 
Molecular characterization using FISH analyses of two cases with t(12;14)(p13;q11) 
revealed that the breakpoints on chromosome 14 were located within the T-cell 
receptor alpha/delta locus and in the vicinity of the CCND2 gene on 12p. 
Because the molecular consequence of this rearrangement most likely was 
deregulation and activation of an oncogene at 12p by the strong regulatory 
elements of the T-cell receptor, cDNA microarray analyses were used to investigate 
the expression of genes within a 5 Mb region on 12p spanning the breakpoints. 

Normalization 

Before gene expression data can be compared and analyzed, the data must be 
normalized in order to minimize systematic variations in the measured gene 
expression levels. By reducing such variations, biological differences between two 
samples can be more easily distinguished and reliably analyzed (Quackenbush, 
2002; Yang et al., 2002; Smyth and Speed, 2003).  

Normalization adjusts for differences in the labeling and detection 
efficiencies of the two fluorochromes. In addition, the data are adjusted to compensate 
for differences in the quantity of the RNA used for labeling. During normalization, 
ratios are log transformed to obtain a continuous spectrum of values (Quackenbush, 
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2001). Log transformed values treat up- and downregulated genes equally, and a 
gene that is upregulated by a factor of 2 will have a log2(ratio) of 1 and a gene 
downregulated by a factor of 2 will have a log2(ratio) of -1. Naturally, a gene with 
an equal expression in both the query and the reference sample will have a 
log2(ratio) equal to zero. After normalization, the data for each gene are given as 
a gene expression ratio, i.e., the normalized value of the tumor sample divided by 
the normalized value for the reference sample. Several different algorithms are 
available for normalization of gene expression data, most of which assume that 
all genes or a smaller set of house-keeping genes on the array have an average 
expression level equal to one. Two widely used normalization methods for gene 
expression analyses are total intensity and the Lowess algorithms (Quackenbush, 
2002; Yang et al., 2002). Briefly, in the total intensity algorithm, the assumption is 
made that the amount of RNA used for labeling is the same both for the query 
sample and the reference. Moreover, an equal number of genes are assumed to be over- 
and underexpressed in the query sample relative to the reference. The normalization 
factor is then used to rescale the intensities for each gene (Quackenbush, 2002).  

In all four articles, normalization was performed using the Lowess 
algorithm, which is a regression algorithm that can compensate for non-linear 
relations between sample and reference. Ideally, in a microarray experiment, the 
scatter plot of the intensities of test and reference sample should cluster along a 
straight line and have a slope of 1. However, due to technical issues, detection 
differences of the fluorochromes exist that may be intensity-dependent. In addition, 
local intensity differences on the slides may be present due to the spatial location 
of the clones on the slide, related to variations in the printing process. The Lowess 
algorithm has been shown to correct efficiently for such biases (Yang et al., 2002). 

Hierarchical Clustering Analysis 

HCA is one of the most commonly used methods for analysis and visualization 
of microarray data. This is a two-way dimensional technique that groups samples 
and genes based on their similarity. Hence, samples or genes which are similar to 
each other cluster next to or close to each other. The generated data matrix is 
presented as a “heat-map” where each sample is represented by a column and each 
gene as a row (Eisen et al., 1998). Typically, a gene that shows a relative over-
expression compared to the reference is colored in red and a gene that show a 
relative underexpression in green. Genes with values close to zero are colored in black.  
 There are different clustering methods, which are designated divisive and 
agglomerative clustering. Divisive methods start with all cases in one cluster, 
which is then broken down into smaller clusters until each case is in a unique 
branch. In contrast to divisive clustering, agglomerative methods start with a single 
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member of a cluster and then gradually join different members together to form 
new clusters. Several different algorithms can be used for clustering; two commonly 
used include average- and complete-linkage (Quackenbush, 2001; Shannon et al., 2003). 
 HCA has for years been one of the most popular methods used for 
analysis and visualization of microarray data. It is important to realize, however, 
that the clustering method and distance used for similarity measurements 
influences the size and shape of the clusters formed. Moreover, clustering 
algorithms will produce clusters from any data, and it is difficult to validate the 
strength of cluster membership, and hence hard to estimate the stability of the 
clusters formed (Shannon et al., 2003). In addition, preprocessing of data, such as 
normalization, quality filtering, and number of genes used for input, also influences 
cluster formation. Despite these potential drawbacks, clustering analysis remains a 
valuable and commonly used method for the analysis and visualization of gene 
expression data. 

Principal Component Analysis and Isomap 

PCA is a well-known algorithm for studying “relationships between variables” and 
has during recent years been successfully applied to gene expression data for 
exploration of similarities between samples or genes. Microarray analyses generate 
high dimensional data and PCA is a powerful method for reducing dimensionality. 
In PCA, only the two or three dimensions containing the largest variance are 
kept, and samples or genes are then plotted using the two or three principal 
components, thereby efficiently visualizing relationships between samples/genes. 
As in hierarchical clustering, samples with similar gene expression profiles cluster 
closer together than samples that are different from each other. In Article II, PCA 
was used on a set of purified hematopoietic cells of different lineages and maturation 
stages, revealing that cells clustered with respect to lineage and maturation. The 
pediatric ALLs with specific primary genetic changes were studied together with 
the normal cells by projecting the centroid (the mean of all samples in a given 
group) for each genetic change onto the three principal components determined 
from PCA on the normal cells only. This analysis revealed similarities between 
the normal and malignant cells and provided information on the degree of 
maturation of the malignant cells. 
 In Article I, MDS using geodesic distances (Isomap) was used to visualize the 
similarities between samples. This method has previously been shown to efficiently 
visualize relationships between samples in microarray data (Nilsson et al., 2004). 
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Gene Discriminatory Analyses 

In Articles I and II, genes associated with lineage and genetic subtype were ascertained 
using signal-to-noise statistics (Golub et al., 1999). This algorithm emphasizes that 
the correlation (r) of a gene to a class is given by: r = [μ1(g) - μ2(g)]/[σ1(g) + σ2(g)], 
where μ denotes the mean expression; g the gene; σ the standard deviation of 
gene g, and the number the class. The larger value of r, the higher the correlation 
of a gene to a given class. In Articles I, II, and III, the P-values were estimated using 
permutation testing; typically, 1000-5000 permutations were performed. 

Supervised Learning Algorithms 

In Articles II and III, the supervised learning algorithm k-NN was utilized to build 
classifiers that could predict a class of an unknown leukemic sample. As briefly 
mentioned earlier, supervised methods use a priori knowledge of the samples to 
identify genes correlating with a known class. Typically, the class may be a cancer 
subtype or a prognostic marker. When the classifier is built, it is common to 
divide the data set into two groups, one serving as a training data set and the 
other as a validation set. It is important to split the data set before gene selection, 
since the samples in the validation data set otherwise will influence the gene 
selection process, which may result in overfitting. Typically, overfitting results in 
non-reproducibility of the results obtained (Ransohoff, 2004). Instead of dividing 
the data set into a training and validation set, a crossvalidation procedure may be 
used, in which one or several samples are withheld from the building process of the 
classifier; then, the class of the withheld samples are predicted (Radmacher et al., 2002).  
 k-NN is a widespread supervised method used for classification of gene 
expression data. In brief, the distances between a test sample and samples of known 
classes are calculated, typically using Euclidian distances. The class of the test 
sample is determined by the number of closest neighbors (k) of a known class. To 
evaluate the performance of the classifiers, a leave-one-out crossvalidation procedure 
was used. In Article II, gene expression classifiers were built that could predict the 
genetic subtype among the B-lineage ALLs (e.g., TCF3/PBX1, ETV6/RUNX1, or high 
hyperdiploidy) with a high accuracy. In Article III, gene expression predictors 
were constructed for lineage, all genetic subtypes among the B-lineage ALLs, and 
for the AMLs. In Article III, we also attempted to classify the leukemias based on 
clinical parameters, such as risk group assignment, risk of relapse, and prediction 
of MRD at diagnosis. 
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RESULTS AND DISCUSSION 

GENE EXPRESSION PROFILING OF LEUKEMIC CELL LINES 

REVEALS CONSERVED MOLECULAR SIGNATURES AMONG 

SUBTYPES WITH SPECIFIC GENETIC ABERRATIONS 
 (ARTICLE I) 

Immortalized hematopoietic cell lines with characteristic fusion genes are widely 
used to model different aspects of leukemogenesis and have been fundamental 
tools in the cloning, characterization, and functional analyses of a large number 
of leukemia-associated fusion genes (Drexler et al., 2000). It is known that cell 
lines acquire additional genetic aberrations in culture and little is known to what 
extent pathogenetically important transcriptional programs remain conserved 
upon establishment and passaging of individual cell lines. Using cDNA microarrays, 
we determined the gene expression profiles of 40 cell lines, with various primary 
genetic abnormalities, as well as of primary leukemias harboring the same changes. 
Unsupervised analysis revealed that hematopoietic cell lines of diverse origin, but 
with the same primary genetic changes, co-segregated, strongly suggesting that 
pathogenetically important regulatory networks remain conserved. Moreover, primary 
leukemias co-segregated with cell lines carrying identical genetic rearrangements, 
further supporting that critical regulatory pathways remain intact in hematopoietic 
cell lines despite their diverse origin and numerous passages in vitro. Recently, Fine 
et al (2004) studied a set of hematopoietic cell lines and B-lineage ALLs, and 
showed that cell lines and leukemias with identical genetic aberrations co-
segregate upon cluster analyses. In this study, we confirmed and further extended 
these observations by investigating a larger number of cell lines, derived from all 
hematopoietic lineages, and by analyzing a larger number of specific genetic 
aberrations. Transcriptional signatures correlating with clinical subtypes/primary 
genetic changes were identified and annotated based on their biological/ 
molecular properties and chromosomal localization, providing biological insights 
into the downstream genes deregulated by the primary genetic change.  
 Surprisingly, the myeloid cell lines HL-60, SIG-M5, and OCI-AML2 
segregated with cell lines harboring 11q23/MLL rearrangements. Although this, 
in principle, could be a reflection of their lineage specificity, Southern blot analysis 
was performed to investigate if the MLL gene was rearranged in these cell lines. 
Interestingly, one cell line, OCI-AML2, established from a patient with AML M4, 
had a rearranged MLL gene, not previously reported. The similarity in gene 
expression pattern of HL-60 and SIG-M5 with MLL-positive cell lines indicates 
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that they have activated downstream genes similar to MLL target genes, warranting 
further investigations. 

Genes encoding tyrosine kinases are frequently implicated in human 
cancer (Futreal et al., 2004), and given the development of selective tyrosine 
kinase inhibitors (Gschwind et al., 2004), such genes have been targeted and 
extensively studied in vitro as well as in vivo. The expression profile of tyrosine 
kinase-encoding genes was therefore selectively investigated, identifying several 
differentially expressed members, segregating with primary genetic changes, which 
may be targeted with tyrosine kinase inhibitors. For example, FGFR3 was found 
to be upregulated in CML cell lines in blast crisis (BC). Interestingly, FGFR3 was 
recently shown to be highly expressed in transplanted CML patients in relapse 
(Dvorakova et al., 2001) and in CD34+ CML cells (Dvorak et al., 2003). 

The identified conserved signatures are likely to reflect regulatory 
networks of importance for the transforming abilities of the primary genetic 
changes and offer important pathogenetic insights as well as a number of targets 
for future rational drug design. 

MOLECULAR SIGNATURES IN CHILDHOOD ACUTE 

LEUKEMIA AND THEIR CORRELATIONS TO EXPRESSION 

PATTERNS IN NORMAL HEMATOPOIETIC SUBPOPULATIONS 
(ARTICLE II) 

Global gene expression profiles of a consecutive series of 121 childhood acute 
leukemias (87 B-lineage ALL, 11 T-cell ALL, and 23 AML), six NBMs, and ten 
normal hematopoietic subpopulations of different lineages and maturations were 
ascertained using 27K cDNA microarrays. The inclusion of normal hematopoietic 
cells provided a unique possibility to compare the gene expression patterns in 
primary leukemias with those seen in distinct normal hematopoietic cell sub-
populations.  

Unsupervised analysis using HCA revealed that 64 (85%) of the 75 acute 
leukemias with primary genetic aberrations segregated according to their genetic 
changes, i.e., TCF3/PBX1, IGH@/MYC, ETV6/RUNX1, 11q23/MLL, and high 
hyperdiploidy. Two leukemias with a constitutional chromosome 21 co-segregated 
with cases harboring the ETV6/RUNX1 fusion gene, indicating that leukemias in 
children with Down syndrome and ETV6/RUNX1-positive cases are similar at the 
global gene expression level.  

Supervised discriminatory analyses were used to identify differentially 
expressed genes correlating with lineage and primary genetic change, providing  
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Figure 3. Unsupervised analyses of normal and malignant cells. A. Hierarchical 
dendogram using Pearson correlation and average linkage of the normal cells showing 
that samples cluster according to lineage and that the CD34+ samples co-segregate and are 
separated from the more mature cell populations. B. The centroids of pediatric leukemias 
harboring specific genetic changes were projected into the principal components resulting 
from PCA of the normal cells only, thus enabling visualization of the similarities of the 
malignant cells in relation to the normal cell subpopulations. 
 
biological insights into the different genetic subtypes of childhood leukemias. 
For example, in t(1;19)-positive ALLs – but not in the other genetic subtypes – an 
enrichment of cell cycle- and cell proliferation-associated genes was seen. Only two 
B-lineage ALLs harbored IGH@/MYC, but it is noteworthy that both displayed 
a distinct signature with elevated expression of MYC and deregulated expression of 
a number of genes known to be targeted by MYC, e.g., BCL2 and HMGA1 (Wood 
et al., 2000; Eischen et al., 2001). In ALLs with ETV6/RUNX1, pathway analysis 
of the upregulated genes showed enrichment of genes involved in the 
phosphatidylinositol signaling system and in beta-catenin signaling. A striking 
feature of the hyperdiploid ALLs was the significant correlation between the 
chromosomal location of the upregulated genes and the presence of trisomies/ 
tetrasomies involving chromosomes X, 4, 6, 10, 14, 17, 18, and 21, likely reflecting a 
gene-dosage effect. Finally, among leukemias with 11q23/MLL rearrangements, a 
common transcriptional program was identified, irrespective of lineage, with 
elevated expression of HOXA10, HOXA4, MEIS1, and PBX3. 

The gene expression profiles of normal hematopoietic cells were also 
studied. HCA revealed that the normal cells segregated according to lineage and that 
cells expressing the CD34 marker clustered together in a distinct branch (Figure 3A). 
Using PCA, a differentiation axis was exposed, reflecting lineages and maturation 
stages of normal hematopoietic cells. By applying the three principal components 
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obtained from PCA of the normal cells on the centroids of the leukemic samples, 
the degree of maturation of childhood leukemias with characteristic genetic 
changes could be visualized (Figure 3B). For example, the t(1;19)-positive ALLs 
clustered close to the CD34+/CD19+ cells, indicating an arrest at an early 
differentiation stage, despite their common lack of the CD34 marker. The 
t(12;21)-positive cases, on the other hand, clustered closer to the pre-B-cells, 
consistent with a recent report showing that this fusion gene arises in a committed 
B-cell progenitor (Castor et al., 2005). 

To investigate the genes differentially expressed in the different genetic 
subtypes, the top 200 genes for each genetic subtype were investigated in the 
NBMs and the purified hematopoietic cells of different lineages and maturations. 
Interestingly, several of the genes were found to be preferentially expressed in the 
leukemias and not in the normal hematopoietic cells, suggesting that leukemic 
cells display a deregulated activation of transcriptional programs, not active in 
normal cells. However, some genes highly expressed by the leukemic cells were 
also highly expressed in normal cells but of a different lineage than the leukemic 
samples. Moreover, some clusters of genes, highly expressed by the leukemias, 
were found that were also highly expressed only in selected cell populations. 

Apart from showing that leukemias segregate according to lineage and 
genetic subtype, this study also provided an extensive investigation of the genes 
correlating with primary genetic changes. For the first time, the expression 
patterns of these genes were also investigated in normal hematopoietic cells of 
different lineages and maturations, identifying genes preferentially expressed by 
the leukemic cells, suggesting an ectopic activation of a large number of genes. 
These genes likely reflect regulatory networks of pathogenetic importance and 
may also provide attractive targets for future directed therapies. 

MICROARRAY-BASED CLASSIFICATION OF A CONSECUTIVE 

SERIES OF 121 CHILDHOOD LEUKEMIAS: PREDICTION OF 

LEUKEMIC AND GENETIC SUBTYPE AS WELL AS OF MINIMAL 

RESIDUAL DISEASE STATUS  

(ARTICLE III) 

To build gene expression predictors that could classify the ALLs/AMLs analyzed 
in Article II, the supervised learning algorithm k-NN was utilized. Leukemic 
samples were classified according to lineage and genetic subtype, i.e., TCF3/PBX1, 
ETV6/RUNX1, high hyperdiploidy, and 11q23/MLL rearrangements, with high 
accuracies (97% and 98%, respectively). Validation experiments in an independent 
data set verified the high prediction accuracies of the classifiers. B-lineage ALLs 
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with uncharacteristic cytogenetic aberrations or with a normal karyotype displayed 
heterogeneous gene expression profiles, resulting in low prediction accuracies.  

MRD status in T-cell ALLs with a high (>0.1%) MRD at day 29 (n = 9) 
could be predicted with 100% accuracy already at the time of diagnosis. Gene 
ontology (GO) analyses showed that cases having a high MRD showed a 
significant enrichment of genes involved in the JAK/STAT-cascade, e.g., JAK3, 
STAT2, and STAT5A, among the upregulated genes. Interestingly, JAK3 is known to 
play an important role in T-cell development, and targeted deletion in mice leads 
to severe defects in thymocyte development (Eynon et al., 1999). In humans, JAK3 
mutations cause severe combined immunodeficiency with complete absence of T- 
and natural killer cells (Notarangelo et al., 2000). Furthermore, dysregulation of Jak3 
in mice causes increased resistance to apoptosis (Wen et al., 2001). In addition, many 
genes belonging to the cytochrome P450 superfamily, involved in drug metabolism, 
were highly expressed. It is tempting to speculate that these genes are responsible 
for the slow treatment response in T-cell ALL, although this remains to be elucidated. 

A major problem in clinical practice is to identify patients with an 
increased risk of relapse. To detect such patients already at diagnosis would most 
likely be beneficial, making it possible to use a different treatment strategy already 
up-front. However, we failed to predict relapses in high hyperdiploid ALLs, in 
AMLs with MLL rearrangements, and in T-cell ALLs. The reasons for this are 
most likely manifold, including small patient groups, few relapses, and/or 
heterogeneous expression patterns associated with relapse in these subtypes. 
However, a gene expression profile distinguishing diagnostic samples from relapse 
samples in ETV6/RUNX1-positive ALL was identified.  

In pediatric leukemias with uncharacteristic cytogenetic aberrations or a 
normal karytotype, HCA identified two subgroups: one consisting mainly of 
cases remaining in complete remission (CR) and one containing a few patients in 
CR and all but one of the patients who relapsed. Significance analysis of 
microarray (SAM) was used to identify genes associated with the two groups, 
identifying 72 genes. GO and pathway analyses revealed a highly significant 
enrichment of cell cycle-related genes among the lowly expressed genes in group 
2, possibly indicating impaired cell proliferation in these samples which could be 
coupled to a decreased sensitivity towards drugs that are effective on proliferating 
cells. No distinct cytogenetic pattern was found to be characteristic for the two 
groups. Notably, however, three cases in group 1 harbored a dic(9;20)(p11-13;q11), a 
rearrangement that has been suggested to be associated with a favorable prognosis 
(Clark et al., 2000). Because the analyses were carried out on a rather small group of 
patients, further studies are clearly needed to validate these findings.  
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DEREGULATION OF CYCLIN D2 BY JUXTAPOSITION 

WITH T-CELL RECEPTOR ALPHA/DELTA LOCUS IN 

t(12;14)(p13;q11)-POSITIVE CHILDHOOD T-CELL ACUTE 

LYMPHOBLASTIC LEUKEMIA 

(ARTICLE IV) 

In this study, two pediatric t(12;14)(p13;q11)-positive T-ALLs were characterized 
using FISH, cDNA microarray, and Real-Time PCR. FISH was used to map the 
region and revealed breakpoints (BPs) in the T-cell receptor alpha/delta locus (14q11) 
and in the vicinity of the CCND2 gene at 12p13. To investigate the expression of 
genes in 12p13, cDNA microarray analysis was performed on one of the cases. 
The gene expression analysis was focused on a 2 Mb region spanning the BP and 
the relative level of expression of the genes in this region over the chromosome 
was investigated. Expression data for eight genes, including CCND2, surrounding 
the 12p BP were compared with those in other T-ALLs. The t(12;14)-positive T-
ALL displayed a remarkably increased expression of CCND2 compared to the 
controls, whereas the expression of the other genes was similar in all T-ALLs. 
Expression of CCND2 and two additional genes (PARP11 and FGF23), close to 
the 12p BP, was also investigated with real-time PCR of the two t(12;14)-positive 
cases and four controls. Neither PARP11 nor FGF23 displayed expression 
differences among the T-ALLs, whereas CCND2 was clearly overexpressed in both 
t(12;14)-positive cases as compared to the mean expression level in the controls. 
CCND2 plays an important role in cell cycle progression and forms complexes 
with CDK4 and CDK6, whose activity is necessary for the G1/S-transition of the 
cell cycle. In addition, CCND2, has been shown to phosphorylate the RB1 
protein (Ortega et al., 2002). While this manuscript was being prepared for 
submission, Clappier and coworkers (2005) reported a Real-Time quantitative 
PCR screening of T-ALLs, identifying three cases with CCND2 overexpression, 
one harboring a t(12;14), further supporting the involvement of CCND2 in this 
translocation. 

The t(12;14) is the first neoplasia-associated translocation shown to result 
in overexpression of CCND2 and it is also the first example of a T-cell neoplasm 
with a targeted deregulation of a member of a cyclin-encoding gene family. 
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GENERAL DISCUSSION 

Since the discovery of the Ph chromosome in CML in 1960 (Nowell and 
Hungerford, 1960), close to 350 recurrent chromosomal aberrations have been 
described in hematologic malignancies (Mitelman et al., 2004). It has become 
increasingly clear that the specific genetic rearrangements detected in leukemias 
are intimately correlated with leukemic subtype and often also associated with 
prognosis. Today, the genetic abnormalities present at diagnosis are used together 
with other clinical parameters, such as age, white blood cell count, central nervous 
system involvement, and response to treatment, for stratification of patients to 
individual risk groups. Apart from providing important clinical information, the 
cytogenetic characterization of hematologic maliganancies has also been instrumental 
for the isolation of fusion genes of importance in leukemogenesis. The trans-
forming properties of several fusion genes have been elegantly demonstrated 
using different mouse models (Rabbitts, 2001), but it still remains unclear how 
individual fusion genes elicit their leukemogenic properties.  

The malignant state of cancer cells with their altered activity of pathways 
with important roles in cellular differentiation, proliferation, and death is 
suspected to be reflected in the global gene expression levels. In addition, the 
gene expression pattern in hematologic malignancies, characterized by the presence 
of specific translocations, is likely to mirror lineage-specific genes, reflecting the 
differentiation block seen in leukemia. There are now several gene expression 
studies of hematologic malignancies providing data showing that acute leukemias 
with specific genetic changes display unique and distinct gene expression profiles. 
Furthermore, a large number of genes have been identified that are associated with 
genetic subtypes, and sometimes also with prognostically important variables (Yeoh 
et al., 2002; Ross et al., 2003, 2004; Bullinger et al., 2004; Valk et al., 2004; Andersson 
et al., 2005a, b, c; Cario et al., 2005; Haferlach et al., 2005; van Delft et al., 2005).  

Immortalized leukemic cell lines have been fundamental tools in the 
cloning and characterization of fusion genes in hematologic malignancies (Drexler 
et al., 2000). However, it has been unknown to what extent hematopoietic cell 
lines, despite their diverse origin and numerous passages in vitro, maintain the 
expression profiles associated with the primary genetic change. In Article I, it was 
shown that immortalized leukemic cell lines maintain a gene expression pattern 
characteristic of the primary genetic change, which is in line with a previous, but 
smaller, investigation (Fine et al., 2004). The finding of a maintained gene 
expression pattern in immortalized hematopoietic cell lines is important because 
they are likely to continue to serve as fundamental tools for investigating basic 
and applied aspects of leukemia cell biology. Given the recent developments of 
drugs targeting genes encoding tyrosine kinases in cancer, e.g., BCR/ABL1, KIT, 
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and FLT3, targeting of such genes in combination with gene expression profiling 
is likely to provide important biological insights into the pathways controlled by 
these tyrosine kinases. In addition, gene knock-down studies using RNA interference 
in combination with microarrays provide a powerful tool to monitor the regulatory 
networks deregulated in leukemia.  

The molecular characterization of primary leukemia samples using gene 
expression profiling has focused on three main questions: (i) Is it possible to 
predict a class of an unknown sample to an already defined tumor class, referred 
to as “class prediction”? (ii) Can we find new tumor subtypes, referred to as “class 
discovery”? (iii) Can we increase our understanding of the underlying biology of 
the complex regulatory genetic networks and pathways deregulated in leukemia? 
 Class prediction has proved successful in leukemia, and several studies 
have constructed gene expression predictors using different supervised methods 
such as k-NN, SVM, and ANN (Yeoh et al., 2002; Ross et al., 2003, 2004; Andersson 
et al., 2005b, c; Haferlach et al., 2005; van Delft et al., 2005). In the present study, 
the supervised learning algorithm k-NN was used to build gene expression 
classifiers that could predict the leukemic and genetic subtype of an individual 
patient. It was shown that lineage and genetic change could be predicted with 
very high accuracies (97 and 98%, respectively), in line with recent reports (Yeoh 
et al., 2002; Ross et al., 2003, 2004; van Delft et al., 2005). However, when cases 
with uncharacteristic genetic changes were included, the classification accuracy 
dropped markedly, indicating that such cases have heterogeneous gene expression 
profiles. Classifiers were also built for different clinically important variables, 
most of which resulted in low prediction accuracies. The MRD status at day 29, 
could, however, be predicted at diagnosis in T-cell ALLs with 100% accuracy. 

The high classification correctness of hematologic malignancies most 
probably reflects the strong influence of the primary genetic changes on the 
transcriptional networks in leukemia. However, although several large data sets of 
leukemia have been molecularly investigated, it has proved difficult to predict 
clinically important variables. The gene expression classifiers published so far for 
prediction of relapse or MRD have not been successful on independent data sets 
(Chiaretti et al., 2004; Andersson et al., 2005c). This may be a reflection of small 
patient subgroups resulting in identification of genes that cannot be reproducibly 
identified in independent studies. In addition, if the gene expression patterns are 
heterogeneous, or do not have a large impact on the expression profiles, it will be 
harder to find genes that can serve as good predictors across data sets (Ransohoff, 
2004). One way to overcome the problem of small patient subgroups would be to 
perform meta-analytical studies and combine data sets generated from different 
groups. 
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As to the second question, addressing the possibility of finding new 
molecular subgroups using global expression profiling, only a few studies have 
identified novel subgroups, and their true nature remains to be verified in 
independent studies (Yeoh et al., 2002; Tsutsumi et al., 2003; Yagi et al., 2003; 
Bullinger et al., 2004; Valk et al., 2004; Andersson et al., 2005c). In Article III, HCA 
identified two groups of patients with uncharacteristic genetic changes, designated 
groups 1 and 2. GO analyses revealed enrichment of cell cycle-related genes, 
upregulated in group 1. This group mainly contained cases remaining in CR after 
treatment, whereas group 2 consisted of six diagnostic cases that remained in CR, 
one relapse sample, and two samples from diagnostic cases that later relapsed. It 
is tempting to speculate that a decreased expression of cell-cycle related genes in 
group 2 could be coupled to a decreased sensitivity to drugs targeting proliferating 
cells, a finding which could have important clinical implications. This, however, 
remains to be confirmed. The identified gene signature was applied on the samples 
designated “others” in the data set from Ross et al (2003); however, our set of genes 
was not able to separate the novel subgroup described by Ross and collegues (2003).  

The final question addresses the possibility to improve our knowledge 
about the transcriptional programs becoming deregulated in leukemia using gene 
expression profiling. It has proved more difficult than initially hoped to draw 
biological conclusions out of the vast data generated from such studies (Ebert 
and Golub, 2004). This may in part be due to the fact that microarray data are 
subjected to substantial technical and biological noise. Moreover, it is likely that 
subtle gene expression patterns are hidden among the dominant patterns associated 
with lineage and differentiation, making it difficult to uncover important regulatory 
pathways. In addition, there has been a lack of gene expression studies of normal 
hematopoietic cells, which are fundamental in order to understand the perturbed 
transcriptional profiles that are deregulated in leukemia. Without detailed knowledge 
about the normal regulation of blood cells, it is difficult, perhaps even impossible 
to interpret the gene expression profiles found in malignant cells. Hence, gene 
expression studies of normal hematopoietic cells manipulated in vitro to differentiate 
and/or proliferate, and a careful monitoring of the gene expression changes during 
these processess would probably provide important information of the genetic 
regulatory mechanisms of normal and leukemic cells.  

Investigation of the gene expression profiles of normal cells was partly 
addressed in Article II where malignant gene signatures were studied in normal 
hematopoietic cells. In that study, the gene expression profiles of a large series of 
pediatric leukemias as well as of normal hematopoietic cell subpopulations were 
investigated. The inclusion of normal cells provided a unique possibility to 
compare the malignant gene expression profiles identified for the genetic subtypes 
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Figure 4. The expression of the top 200 genes in normal hematopoietic cells. A. The top 
200 ETV6/RUNX1-associated genes applied on normal cells. The gene symbols for the genes 
highly expressed by the leukemic cells are given in the picture. B. Enhanced dendogram of 
the clustering of the top 200 genes. 
 
in the normal cells. Unsupervised analyses showed that the leukemias segregated 
according to lineages and genetic changes, supporting previous reports (Yeoh et 
al., 2002; Ross et al., 2003, 2004; Andersson et al., 2005a). For the first time, 
malignant gene signatures were investigated in normal hematopoietic cells of 
different lineages and maturations. The main finding of this analysis was that 
leukemic cells express a large number of genes not found in the normal 
hematopoietic subpopulations, suggesting that leukemic cells display a deregulated 
activation of transcriptional programs not active in normal cells. In addition, genes 
were found highly expressed in the leukemias that also showed elevated expression 
in normal cells of a different lineage, suggesting an aberrant activation of genes not 
normally expressed in cells of that lineage (Figure 4). It is likely that the genes identified 
may not only reflect pathogenetically important regulatory pathways but that they 
also may provide attractive targets for future directed therapies. 
 In conclusion, the microarray technology is rapidly developing and with 
increasing numbers of probe sets and exon specific probes, it is likely that gene 
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expression profiling will improve our knowledge of the transcriptional programs 
that are altered in leukemia. In parallel with technical improvements, it is important 
that mathematical and bioinformatic tools are developed to allow improved data 
management and interpretation. Moreover, enhanced understanding of the 
transcriptional programs regulating the fine tuned expression of genes during 
normal cellular responses is needed before we can truly understand the underlying 
biology of the gene expression signatures of malignant cells. Although the 
enigma of the complex regulatory networks deregulated in leukemia cannot be 
solved solely by measuring mRNA expression levels, it is likely that the combined 
knowledge gathered through gene expression studies together with proteomic and 
other genomic tools available will provide valuable clues to the pathways that are 
involved in leukemia development and progression. Such analyses will hopefully 
also identify new molecular subgroups that may benefit from either more or less 
intensive treatment modalities and identify targets for future rational drug design. 
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CONCLUSIONS 
In this thesis project, gene expression profiling was used to characterize molecularly 
immortalized hematopoietic cell lines, primary pediatric leukemias, and normal 
hematopoietic cells. The main conclusions of the present study may be summarized 
as follows: 

Article I 

 - Immortalized hematopoietic cell lines with the same primary genetic changes, 
display similar gene expression profiles, despite their diverse origin and 
numerous passages in vitro, suggesting that pathogenetically important 
regulatory networks remain conserved.  

Article II 

 - Based on their global gene expression patterns, pediatric leukemias segregate 
according to their lineage and primary genetic change. 

 - Several deregulated pathways were identified in the different genetic subtypes 
of the pediatric leukemias 

 - A large number of genes are preferentially expressed only by the leukemic 
cells, indicating ectopic activation of genes, likely to reflect regulatory 
networks of pathogenetic importance. 

 - Genes were highly expressed in malignant cells as well as in normal immature 
CD34-positive cells, possibly reflecting the cellular origin of the leukemia 
or, alternatively, an aberrant or maintained expression of genes that are 
active in immature hematopoietic cells. 

Article III 

 - Gene expression classifiers could be built that with high accuracy predicted 
lineage and specific genetic change in childhood leukemias. 

 - The MRD status in T-cell ALLs at day 29 of treatment could be predicted 
with 100% accuracy at diagnosis.  

 - In leukemais with uncharacteristic genetic changes, unsupervised analyses 
identified two novel subgroups that differed with respect to the expression 
of cell cycle related genes. 

Article IV 

- In t(12;14)-positive T-ALLs, breakpoint mapping using FISH and gene 
expression analyses revealed that CCND2 was juxtaposed to the vicinity of 
the TCR alpha/delta locus, resulting in aberrant expression of CCND2. 
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SUMMARY IN SWEDISH 

Varje år insjuknar ca 460 personer i akut leukemi (blodcancer) i Sverige. Leukemi 
är en sjukdom som drabbar celler med viktiga funktioner i vårt immunförsvar 
och kännetecknas av att omogna celler ansamlas i framförallt benmärg och blod. 
Bristen på mogna och fungerande vita blodceller i benmärgen leder till en ökad 
infektionsbenägenhet, ökad risk för blödningar och blodbrist. Frekvensen av 
leukemi hos vuxna ökar med åldern och den vanligaste typen av leukemi hos 
äldre är akut myeloisk leukemi (AML). Hos barn ser mönstret annorlunda ut, 
med högst förekomst i 3-5 års ålder och barn drabbas framförallt av akut lymfatisk 
leukemi (ALL).  
 Vår arvsmassa (generna) finns lagrad som DNA i kromosomerna vilka 
finns i cellkärnan i varje cell i vår kropp. Cancer är en sjukdom som kännetecknas 
av förvärvade genetiska förändringar (mutationer) i DNA och där en ansamling 
av dessa vanligtvis sker vid cancerutveckling. Leukemier kännetecknas av specifika 
kromosomförändringar och sedan den första genetiska avvikelsen beskrevs 1960 
av Nowell och Hungerford har nu fler än 350 återkommande genetiska förändringar 
identifierats vid leukemi. En vanlig genetisk avvikelse utgörs av så kallade 
translokationer, vilka innebär att genetiskt material från två olika kromosomer 
sätts samman och därigenom ger upphov till en ny sammanslagen gen, en sk 
fusionsgen. Fusionsgenen i sin tur bildar ett förändrat protein med cancer-
omvandlande egenskaper. Eftersom fusionsgener många gånger består av sk 
transkriptionsfaktorer, det vill säga gener som styr andra geners uttryck, leder 
uttrycket av fusionsgenen till förändring i regulatoriska nätverk som styr viktiga 
funktioner för cellens tillväxt, utmognad och överlevnad. Förekomsten av en 
fusionsgen ger information om vilken typ av leukemi det rör sig om och många 
gånger erhålls viktig prognostisk information. Ibland kan den specifika fusions-
genen dessutom ha betydelse för vilken typ av behandling som den enskilda 
patienten får. Trots att leukemier har studerats under lång tid är kunskapen om 
hur uttrycket av en fusionsgen ger upphov till leukemi relativt begränsad. I 
mitten på 1990-talet introducerades microarray-teknologin (på svenska 
”mikromatris”), vilken har kommit att revolutionera vår möjlighet att studera 
hur cancer förändrar cellernas genetiska program. Microarraytekniken gör det 
möjligt att i ett enda försök studera uttrycket av tusentals gener och ger således 
ett molekylärt avtryck av de gener som är uttryckta i en vävnad vid ett visst 
tillfälle. Cancer är en sjukdom som kännetecknas av att genetiska program som 
styr cellens utmognad, delning och död är störda. I leukemier är det ofta gener 
som kodar för konserverade transkriptionsfaktorer med viktiga funktioner i cellernas 
utmognad som är förändrade, vilket karakteristiskt kan ses som en blockering vid 
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ett visst mognadsstadium. Genuttrycksmönstret i leukemicellerna kommer därför 
att reflekteras av vilka gener som är förändrade och vid vilken mognad cellerna 
blockerats. Eftersom arrayteknologin är så kraftfull finns det hopp om att den 
ska kunna användas diagnostiskt för att klassificera leukemier till kända grupper 
och för att identifiera undergrupper med bättre eller sämre prognos. Vidare ger 
den viktig information om de genetiska program som är förändrade till följd av 
leukemiuppkomsten. 

Den övergripande målsättningen i denna avhandling har varit att använda 
microarrayteknologin för att utveckla diagnostiska klassningsverktyg samt studera 
de gener som förändrats vid leukemi. Vidare var målsättningen att finna nya 
undergrupper av leukemier med en bättre eller sämre prognos. Fyra delarbeten 
ingår i avhandlingen; i det första studerades genuttrycksprofilerna hos ett stort 
antal leukemicellinjer (Artikel 1). Cellinjer är viktiga modellsystem för att studera 
hur leukemier uppkommer och för att undersöka vilka genetiska program eller 
signalvägar som är störda vid leukemi. Det är känt att genetiska förändringar 
ansamlas när cellinjerna odlas i laboratoriet, men det har varit okänt huruvida de 
bibehåller det ursprungliga genuttrycksmönstret som kännetecknar den primära 
genetiska avvikelsen i leukemicellerna. Ett stort antal cellinjer och patienter med 
specifika genetiska förändringar undersöktes och visade att leukemicellinjer 
bibehåller ett genuttrycksmönster som speglar den primära genetiska förändringen 
trots att de har olika ursprung och har odlats under lång tid i skilda laboratorier. 
Denna kunskap är viktig eftersom leukemicellinjer är några av våra främsta 
verktyg för att studera de genetiska nätverk som förändrats vid leukemi. 

I ett andra arbete studerades 121 barnleukemier och ett stort antal normala 
blodceller av olika typer och mognadsstadium (Artikel II). Denna undersökning 
visade att barnleukemier med karakteristiska genetiska avvikelser hade unika 
genuttrycksmönster. Vidare studerades uttrycksmönstret av gener som var associerade 
med primära genetiska förändringar i normala hematopoietiska celler av olika 
typer och mognadsgrad, vilket visade att flertalet gener var selektivt högt 
uttryckta i leukemicellerna. Detta kan tyda på att leukemierna aktiverar gener 
som inte är uttryckta under normal utmognad. Det är troligt att dessa gener är 
viktiga för leukemiuppkomsten och att de därmed också eventuellt kan fungera 
som mål för utveckling av framtida terapier.  

I delarbete tre var syftet att använda matematiska/statistiska metoder för 
att undersöka om genuttrycksmönstret i leukemicellerna kunde användas för att 
förutsäga vilken typ av leukemi ett prov tillhörde samt om viktiga kliniska 
parametrar kunde förutspås redan vid diagnostillfället (Artikel III). Leukemierna 
kunde klassificeras med hög precision avseende vilken typ av leukemi och genetisk 
avvikelse det rörde sig om, något som visar att genuttrycksanalyser kan utgöra ett 
viktigt instrument för klinisk diagnostik av leukemier. Man vet idag att kvarvarande 
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leukemiceller dag 29 efter inledande behandling ökar risken för återfall och av 
den anledningen undersökte vi det om dessa patienter gick att identifiera redan vid 
diagnostillfället. På basis av genuttrycksmönstret vid diagnos var det möjligt att 
klassificera T-cellsleukemier beroende på om de skulle ha kvarvarande leukemiceller 
dag 29. En sådan prediktor kan i framtiden vara ett betydelsefullt kliniskt verktyg 
för att förbättra riskgrupperingen för denna leukemiform.  

I det fjärde arbetet undersöktes brottspunkterna i en karakteristisk 
translokation – t(12;14)(p13:q11) – i två fall av T-cellsleukemi hos barn (Artikel IV). 
Fluorescent in situ hybridisering visade att brottspunkten i kromosom 14 låg i T-
cellsreceptor alpha/delta lokus och i närheten av genen CCND2 på kromosom 
12. Microarray analys användes därefter för att undersöka uttrycket av 8 gener 
runt brottspunkten på kromosom 12. Denna analys visade att CCND2, en gen 
som är viktig för celltillväxt, var högt uttryckt i jämförelse med andra T-
cellsleukemier, medan de andra generna uppvisade ett likartat uttryck i alla 
leukemierna. Detta fynd, som kunde bekräftas med sk realtids-PCR, är det första 
exemplet på dereglering av en cyclinrelaterad gen i T-cellsleukemi. 

Sammanfattningsvis har studierna i denna avhandling bidragit till en 
ökad kunskap om de genuttrycksmönster och regulatoriska nätverk som förändras 
vid leukemi. Ett stort antal gener med ett selektivt högt uttryck i leukemiceller 
kunde identifieras, vilka ger viktig information om vilka genetiska program som 
är störda vid leukemi. Förhoppningsvis kan dessa gener i framtiden utgöra attraktiva 
mål för utveckling av nya behandlingsformer.  
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