
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

MOLECULAR PROFILING OF UROTHELIAL CARCINOMA

Lindgren, David

2006

Link to publication

Citation for published version (APA):
Lindgren, D. (2006). MOLECULAR PROFILING OF UROTHELIAL CARCINOMA. [Doctoral Thesis (compilation),
Division of Clinical Genetics]. Divison of Clinical Genetics, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/7b1c52e9-062b-499a-ae0d-5c3b91fde6f5


MOLECULAR PROFILING OF 

UROTHELIAL CARCINOMA

DAVID LINDGREN

DEPARTMENT OF CLINICAL GENETICS

LUND UNIVERSITY

2006



ISBN 91-85559-27-X 

© DAVID LINDGREN

PRINTED IN SWEDEN 2006 BY MEDIA-TRYCK, LUND



Table of Contents 3 

TABLE OF CONTENTS

TABLE OF CONTENTS........................................................................................................................ 3
ORIGINAL ARTICLES......................................................................................................................... 4
ABBREVIATIONS............................................................................................................................... 5
PREFACE .......................................................................................................................................... 6
INTRODUCTION................................................................................................................................. 7

Urothelial Carcinoma ................................................................................................................ 7
Tumor Pathology and Clinical Manifestation....................................................................... 7
Genetic Changes in Urothelial Carcinomas.......................................................................... 9

Gene Expression Profiling....................................................................................................... 10
Methodological Principles.................................................................................................. 10
Analysis of Microarray Data .............................................................................................. 12

THE PRESENT STUDY ..................................................................................................................... 15
Specific Aims .......................................................................................................................... 15
Materials and Methods ............................................................................................................ 17

Patients and Tissues............................................................................................................ 17
Gene Expression Profiling.................................................................................................. 17

Unsupervised Analyses of Gene Expression Patterns ................................................... 17
Supervised Analyses ..................................................................................................... 19
Biological Interpretation ............................................................................................... 19

Array-based CGH............................................................................................................... 19
Mutation Screening ............................................................................................................ 20
LOH Analysis..................................................................................................................... 20

Results and Discussion ............................................................................................................ 21
ARTICLE I and ARTICLE II................................................................................................... 21
ARTICLE III ......................................................................................................................... 24
ARTICLE IV......................................................................................................................... 25

REVIEWS........................................................................................................................................ 27
Molecular Alterations in Urothelial Carcinoma....................................................................... 27

Recurrent Chromosomal and Genetic Changes .................................................................. 27
FGFR3 .......................................................................................................................... 29
TP53.............................................................................................................................. 33

Molecular Pathways in UC Development .......................................................................... 34
Tumor Clonality and Tumor Spread................................................................................... 36

Gene Expression Profiling of Urothelial Carcinomas.............................................................. 38
Gene Expression Patterns and Tumor Histopathology ....................................................... 38
Gene Expression in FGFR3 and TP53 Mutated Tumors .................................................... 40
Prediction of Disease Recurrence and Progression............................................................. 41

Superficial Tumor Recurrence ...................................................................................... 41
Progression of Superficial Tumors................................................................................ 41
Progression of Muscle-Invasive Disease and Overall Survival ..................................... 42

Normal and Morphologically Altered Bladder Mucosa...................................................... 44
Multifocal and Recurrent Tumors ...................................................................................... 44
Conluding Remarks ............................................................................................................ 45

CONCLUSIONS ................................................................................................................................ 46
SUMMARY IN SWEDISH................................................................................................................... 47
ACKNOWLEDGEMENTS ................................................................................................................... 50
REFERENCES .................................................................................................................................. 52



 Original Articles 4

ORIGINAL ARTICLES

This thesis is based on the below listed original articles, referred to in the text 

by their Roman numerals (I-IV): 

I. Lindgren D, Liedberg F, Andersson A, Chebil G, Gudjonsson S, Borg Å, 

Månsson W, Fioretos T, Höglund M. Molecular characterization of early-

stage bladder carcinomas by expression profiles, FGFR3 mutation status, 

and loss of 9q. Oncogene. 2006 Apr 27;25(18):2685-96. 

II. Lindgren D, Liedberg F, Bendahl PO, Andersson A, Aits S, Frigyesi A, 

Veerla S, Lövgren K, Chebil G, Gudjonsson S, Borg Å, Fernö M, 

Fioretos T, Månsson W, Höglund M. Bladder carcinoma expression 

profiles associated with FGFR3/TP53 mutation status and a MHC calss I 

gene signature that predicts lymph node metastasis and survival. 

Manuscript

III. Lindgren D, Gudjonsson S, Ja Jee K, Liedberg F, Aits S, Andersson A,  

Chebil G, Borg Å, Knuutila S, Fioretos T, Månsson W, Höglund M. 

Recurrent and multiple bladder tumors show conserved expression 

profiles regardless of genomic differences; evidence for establishment of 

a gene expression profile as a primary event. Manuscript

IV. Heidenblad M, Lindgren D, Jonson T, Liedberg F, Chebil G, Gudjonsson 

S, Borg Å, Månsson W, Höglund M. Combined high-density genomic 

and expression profiling of urothelial carcinomas delineate amplification 

target genes in 6p22 and 8q22, specific for advanced tumors, and identify 

novel homozygous deletions on chromosome 9. Manuscript.



Abbreviations 5 
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PREFACE

Urothelial carcinoma (UC) is a heterogeneous disease ranging from low grade 

papillary tumors with a clinically benign disease course to poorly differentiated 

invasive lesions associated with an unfavorable prognosis. Although a number 

of recurrent genetic alterations have been found in bladder cancer, the molecular 

events underlying bladder cancer development and progression are still largely 

unknown. It is therefore of importance to further characterize UC to increase the 

biological understanding of the disease. Moreover, biomarkers with improved 

prognostic potential are needed since current clinical parameters are insufficient 

in predicting outcome for the individual patient.  

The general aim of this thesis was to molecularly characterize UC at the 

transcriptional level using gene expression microarrays. This thesis is divided 

into four major sections. The first section includes a brief introduction to 

bladder cancer and an introduction to the microarray technology, which is the 

key methodology used. In the second part, the specific aims of the thesis, a 

summary of materials and methods, and the results are given with a short 

discussion. In the third section, two reviews on molecular changes in UC are 

given, where the results from the present study are included and discussed in 

relation to previous investigations. The fourth and final section contains the 

original articles (I-IV) on which this thesis is based. 

Lund, August 2006
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INTRODUCTION

UROTHELIAL CARCINOMA

Bladder cancer is the fifth most common malignancy in men after prostate, skin, 

lung, and colon cancer and show a male to female ratio of approximately 3:1.1

There are around 2000 new cases in Sweden each year and the disease only 

rarely affects individuals younger than 30 years; roughly 85% of all newly 

diagnosed bladder cancer patients in Sweden 2004 were 60 years or older.1

Bladder tumors are almost exclusively of epithelial origin, and in the 

industrialized countries more than 90% are of the urothelial carcinoma type 

(UC).

Tumor Pathology and Clinical Manifestation 

Urothelial carcinomas arise in the urothelium which is the epithelial cell layer 

lining the urinary bladder. Pathologically, UC is grouped into different tumor 

stages according to the depth of tumor invasion (Figure 1) and into different 

grades based on the morphological differentiation.2,3 Ta tumors are 

exophytically growing papillary tumors which are strictly confined to the 

epithelial mucosa. Carcinoma in situ (Tis), also superficially confined, is a flat 

lesion composed of poorly differentiated cells (grade 3; G3). Tumors which 

have spread through the basal lamina and into the underlying connective tissue 

layer are termed stage 1 (T1). A subsequent invasion into, and beyond, the 

muscle layers is collectively termed muscle-invasion. Of these, stage 2 tumors 

(T2) are organ confined, i.e., have not extended further than the muscle layers, 

whereas the non-organ confined stages have grown through and extended into 
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the perivesical tissue (stage 3; T3) or into adjacent organs such as the prostate or 

the abdominal wall (stage 4; T4). Most T2 to T4 tumors are non-papillary 

growing, of high grade, and present without any history of papillary low grade 

tumors.3 Furthermore, these tumors are often associated with concomitant fields 

of dysplastic urothelium or Tis.3

Figure 1: Histological staging of UC. 

Approximately 75% of patients with UC present with a non muscle-

invasive disease (stages Ta, T1, or Tis), and of these, the majority is Ta tumors 

of low to medium grade.3-5 A characteristic of UC is the high frequency of 

tumor recurrence (metachronous tumors); more than half of the patients with Ta 

tumors show tumor recurrences.5,6 Despite the high recurrence rate, the disease 

course for many of these patients is highly favorable, and only a minority 

develop a subsequent muscle-invasive disease.5,6 Non muscle-invasive tumors 

are mainly managed by transurethral resection or fulguration of visible tumor 

growth.7 However, in the presence of adverse prognostic signs, such as high 

grade disease, large or multiple (synchronous) tumors, or concomitant Tis, 8-10

intravesical therapy, such as Bacillus Calmette-Guérin (BCG), are often 

administered and have been shown to significantly improve patient prognosis.11

Stage Ta, T1, and Tis tumors are often collectively termed as superficial 

tumors.12 However, in contrast to low and moderately differentiated Ta tumors, 

high grade Ta, T1, and Tis lesions are associated with a much adverse 
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prognosis.8,12-14  Hence, due to the heterogeneity in clinical outcome within this 

group, the term superficial should be used with care.12

Muscle invasive tumors are highly malignant and if left without 

aggressive therapeutic management, the majority of patients die of the disease 

within a few years from initial diagnosis.15 The current standard treatment for 

muscle invasive tumors is radical cystectomy, i.e., removal of the urinary 

bladder, or less commonly, radiation therapy.16 The survival after cystectomy is 

mainly influenced by lymph node status and histopathological tumor stage. The 

10-year recurrence free survival for organ confined lymph node negative 

disease is 80% after cystectomy, in contrast to 30% for lymph node positive T3 

and T4 tumors.17

In UC, individual patient disease course is unpredictive and 

conventional prognostic factors such as tumor grade/stage, size, and 

multiplicity, do not sufficiently predict clinical outcome.8,9 Even the clinically 

benign group of Ta tumors requires close follow-up with check-up cystoscopies; 

examinations that affect patient’s quality of life and are costly. Therefore, an 

improved understanding of the molecular changes that characterize UC is 

important. In particular, it is of importance to identify molecular markers that 

define subgroups of patients who may benefit from either less or more intensive 

treatment modalities, as well as molecular networks that can serve as targets for 

the development of novel drugs or treatment strategies. 

Genetic Changes in Urothelial Carcinomas 

Numerous molecular studies of UC have been performed over the years, 

identifying several recurrent genetic changes.18,19 For example, molecular and 

conventional cytogenetic studies have revealed loss of chromosome 9 as the 

most characteristic karyotypic change in UC. Moreover, oncogenic activation of 

FGFR3 or RAS gene family members, or inactivation of known tumor 
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suppressor genes such as TP53 and CDKN2A are frequently seen. A more 

detailed summary of these characteristic alterations together with the findings 

obtained in the present study will be presented in the review-section of this 

thesis.

GENE EXPRESSION PROFILING

Methodological Principles 

Large scale gene expression analyses have during recent years become an 

appreciated method for exploring molecular characteristics of a wide variety of 

biological states and conditions. Gene expression profiling, a term collectively 

used for techniques which simultaneously measures transcript levels of a large 

number of genes, was first described in 1991 by Lennon and Lehrach20 who let 

radiation-labeled targets hybridize to filter-arrays spotted with cDNA clones. 

These array-based techniques provided a huge advantage compared to 

previously used approaches, such as Northern blot21 and PCR-based methods, 

which only could monitor the expression of single genes. In 1995, Schena et

al.22 successfully showed that the technique could be significantly improved by 

printing cDNA clones on glass slides and by hybridizing fluorescently labeled 

cDNA targets. Shortly thereafter, the first gene expression study using this 

technique on a human malignancy was published, studying the expression levels 

of 1000 genes in a melanoma cell line.23 Currently, a variety of different settings 

are available for array-based expression profiling providing a probe density per 

array of hundreds of thousands of elements. Hence, gene expression profiling 

may be performed on a large scale and, at least theoretically, cover the complete 

transcriptome.  

Gene expression analysis using microarray technology relies on the 

nature of single stranded DNA to base pair with its complementary sequence.24
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In practice, a large number of probes, each representing a part of a gene, are 

immobilized on chemically modified glass slides using robotic arrayers. The 

probes used are typically cDNA clones of 500-3000 base pairs or in vitro-

synthesized oligomers of 70-80 bases.25-28 Alternatively, the commercially 

available Affymetrix GeneChips rely on fabrication of small olignonucleotide 

sequences directly on a chip, providing a much higher density than for printed 

glass arrays.29

Microarray experiments using cDNA or oligonucleotide probes printed 

on glass slides basically use the same methodological principle. In short, 

differentially labeled targets, derived from RNA samples from e.g., tumor and a 

common reference sample, are hybridized to a glass slide containing the 

probes.25-27 Most commonly, the labeling reaction is performed by reverse 

transcription of the RNA samples with the simultaneous incorporation of 

fluorescent dyes. Typically, the tumor sample is labeled with Cy3 and the 

reference sample is labeled with Cy5. The differentially labeled cDNA targets, 

are purified, pooled, and subsequently incubated on the probe containing 

microarray slide. Hybridized slides are thereafter washed in solutions of 

increasing stringency to promote disassociation of mismatched target-probe 

heteroduplexes. Subsequently, target hybridization signals are quantified in a 

high-resolution laser scanner by excitation of the fluorescent dyes and detection 

of the emitted light. The scanner images are thereafter analyzed using image 

analysis software. The competitive hybridization between the tumor and 

reference targets will reflect the abundance of the specific targets and thus, for 

each probe present on the array, a relative expression ratio between the tumor 

and reference sample is obtained.25-27

A common problem with microarray analysis is that large amounts of 

RNA are needed for efficient hybridization. Many biological samples are small 

and therefore it may be difficult to obtain enough RNA for analysis. To 

overcome this problem, RNA amplification has become a widely accepted 
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method to obtain sufficient material for hybridization. Most commonly, this is 

performed by utilizing the T7 RNA polymerase promoter for in vitro

transcription of antisense RNA (aRNA).30,31

Analysis of Microarray Data 

After collection of primary data, the expression values must be normalized to 

adjust for methodological biases, e.g., for variation in the quantity of initial 

RNA input and for differences in the detection efficiencies of the fluorescent 

dyes.32,33 In its simplest way, this may be performed by using total intensity 

normalization, which rescales the two channels so that the total quantity of 

hybridization for each channel is the same.32 However, since the measured 

intensities often are non-linear, regression methods such as the LOWESS are 

more appropriate.32-34 Following normalization, the expression ratio, typically 

the log2 of the tumor intensity divided by the reference sample, is calculated. 

Hence, a gene twice as abundant in the tumor sample as compared to the 

reference sample will have an expression value of 1, whereas a gene half as 

abundant will have an expression value of -1. 

Each microarray hybridization generates gene expression values for 

thousands of genes, and a multitude of statistical analysis methods for 

interpretation and comparisons of data have been described. Basically, two 

different main approaches exist, unsupervised and supervised analyses.32

Unsupervised methods involve exploration of the gene expression profiles 

without the use of any a priori knowledge and are thus suitable for i.e., the 

identification of subgroups based on their gene expression, or covarying genes 

of possible biological relevance. The perhaps most commonly used method is 

hierarchical clustering analysis (HCA) in which a hierarchical dendogram is 

constructed, reflecting the similarities in expression profiles between samples 

and/or genes.35 The HCA is often presented as a so called heatmap; a chart in 
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which genes, color coded according to their relative expression, are ordered 

horizontally and samples are ordered vertically. Apart from HCA, grouping of 

genes expressed in a similar fashion across experiments may be performed 

using other algorithms, such as k-means clustering36 or the quality cluster 

algorithm (QT clust).37 Multidimensional scaling (MDS),38 principal component 

analysis (PCA),39 and correspondence analysis (COA)40 are other ways to 

explore and visualize global gene expression similarities between samples. In 

these methods, the expression data are reduced into two- or three-dimensional 

subspaces with as little loss of information as possible.  

Supervised methods aim to identify gene signatures specific for pre-

defined groups, e.g., distinct histological subtypes or groups with different 

clinical outcome. Such class comparisons are often performed on a gene-by-

gene basis using standard statistical methods such as student’s t-test and Mann 

Whitney U-test, or related methods such as significance analysis of microarrays 

(SAM),41 specifically developed for the application of microarray data. 

However, since the number of genes tested greatly exceed the number of 

samples, it is vital to take the multiple statistical testing problem into 

consideration; a good compromise between the false discovery rate (FDR) and 

the false negative rate (FNR) is needed, i.e., it is important to keep the number 

of falsely identified genes to a minimum while not discarding too many true 

positive genes.42 More refined statistical strategies are often applied for the 

identification of gene signatures that may be used for classification of unknown 

samples into predefined groups. Common discriminatory techniques are support 

vector machines (SVM),43 artificial neural networks (ANN),44 or prediction 

analysis of microarray (PAM).45

An important aspect of microarray analysis is the biologic interpretation 

of the data. Often, relatively large gene lists of coexpressed genes or gene 

signatures specific for tumor subtypes are identified. Because of confounding 

factors, such as the multiple testing problem or methodological biases, each 
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gene list is likely to include false positive genes, and therefore biologic 

interpretations relying on single genes have to be made with caution. 

Furthermore, for a large gene list it is easy to focus only on well-known genes 

and thereby miss important but less well characterized genes. One way of 

exploring the biologic properties of an isolated gene cluster is to use annotation 

systems in which genes have been systematically ordered into groups based on 

their specific characteristics, e.g., cellular function or location. Such annotations 

are provided by, for example, the Gene Ontology (GO) consortium 

(http://www.geneontology.org/) or the KEGG database (http://www.genome. 

jp/kegg/). One advantage of grouping genes into classes with biological 

relevance is the possibility of calculating a statistical measure of enrichment 

within a given list of genes, thereby providing a highly useful way of biologic 

interpretation.
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THE PRESENT STUDY

In this section, the major aims of this thesis are presented followed by a 

summary of the patient material and the methods used. Thereafter, a short 

summary and discussion of the obtained results are given.  

SPECIFIC AIMS

The general aim of this thesis was to explore transcriptional events associated 

with bladder cancer development and progression using gene expression 

microarrays. More specifically, the aims were: 

- to establish gene expression profiles of a large series of bladder tumors, 

representing all histological stages and to investigate possible transcriptional 

events associated with tumor histopathology and morphology (ARTICLES I and 

II),

- to correlate expression data with molecular alterations that previously have 

been shown to be frequent in UC, such as FGFR3 and TP53 mutation status, 

and allelic loss on chromosome 9. With this data, the aim was to establish a 

more refined view of the molecular alterations characteristic for UC (ARTICLES

I and II), 

- to identify gene signatures associated with tumor recurrence in superficial 

tumors (ARTICLE I) and the presence of lymph node metastasis in patients 

submitted to radical cystectomy (ARTICLE II),
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- to gain an insight into the development of syn- and metachronous UC using a 

combined analysis of gene expression patterns, genomic copy number profiles, 

LOH analysis for chromosome 9, and FGFR3/TP53 mutation status (ARTICLE

III),

- to perform a high-resolution screening for target oncogenes in UC using 

genomic copy-number profiles overlaid with expression data (ARTICLE IV). 
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MATERIALS AND METHODS

Patients and Tissues 

The present study comprises a total of 190 urothelial tumor samples collected 

from 163 patients undergoing transurethral resection at the University Hospital 

of Lund, Sweden. The studies were approved by the Research Ethics Committee 

of Lund University and informed consent was obtained in all cases. Samples 

were collected by cold-cup biopsies from the exophytic part of the bladder 

tumor. Histopathological staging and grading were reviewed according to the 

2002 TNM46 and 1999 WHO47 classification systems by one single pathologist.  

Gene Expression Profiling 

Two different microarray platforms were used in the four articles included in 

this thesis. In ARTICLE I, a cDNA array spotted with 25,648 cDNA clones 

corresponding to 11,592 unique genes was used. In ARTICLES II and IV the 

expression analyses were performed on oligonucleotide arrays printed with 

36,288 70-mers from the OPERON v 3.0 set corresponding to 18,466 unique 

genes. ARTICLE III included samples hybridized to both platforms. All arrays 

were obtained from the Swegene DNA microarray resource centre at Lund 

University.  

Unsupervised Analyses of Gene Expression Patterns 

Tumor-tumor associations based on gene expression profiles were visualized by 

HCA (ARTICLE I-III), MDS (ARTICLE I), and COA (ARTICLE II). HCA is 

perhaps the most commonly used method to visualize microarray data. It is, 

however, important to note that different distance measures and clustering 

methods, as well as filtering and normalization methods will influence the 
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clusters formed. Furthermore, clustering will be performed irrespectively if 

natural clusters exist or not, and the validity of the formed clusters is not easily 

determined. It is therefore mandatory to evaluate the basis of the formed 

clusters, such as possible biologic differences. In ARTICLE I-III, HCA was 

performed using 1-Pearson correlation and Wards’ algorithm or complete 

linkage for cluster formation. COA (ARTICLE II) is analogous to other 

projection methods such as PCA and MDS and enables projection of the gene 

expression matrix into a low dimensional subspace that accounts for the main 

variance in the data.40 It is based on Chi-square distances of discrete values and 

the representation obtained is similar to representations obtained by PCA. The 

advantage of COA is, however, that it enables projection of both genes and 

tumors within the same space.40 Hence, genes and tumors that co-localize to the 

same space show positive associations.  

The QT clust algorithm was used to identify clusters of co-expressed 

genes (ARTICLE I and II). QT clust works by forming a candidate cluster of the 

first gene and grouping genes with the highest correlation iteratively in a way 

that minimizes the cluster diameter (d; defined as 1-Pearson correlation), until 

no further genes may be added without exceeding a predetermined d-value.37

This procedure is performed with all genes in the data set as a seed. The largest 

cluster is then retrieved and the procedure repeated excluding the genes selected 

for the preceding cluster. This makes sure that the largest and most coherent 

clusters of genes are formed. For this algorithm, we used a d-value of 0.35 and 

cluster size restricted to at least 20/25 reporters; the d-values were adjusted 

empirically to result in a reasonable amount of formed clusters showing high 

correlation.
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Supervised Analyses 

In ARTICLES I, II, and IV, discriminatory comparisons between different group 

assignments were performed using the SAM algorithm. To evaluate the 

predictive strength of the gene signature associated with lymph node status 

(ARTICLE IV), the score for each tumor was bias corrected using leave-one-out 

cross validation (CV). Optimally, a training set is used for defining the class-

predicting expression signature, whose predictive strength is subsequently 

determined in an independent sample test set. However, in microarray 

experiments the number of samples in each group is often too small for 

obtaining training and test sets. In these situations, CV approaches may be more 

suitable.48 In these methods, one sample is left out when constructing the gene 

list to be used for scoring. The predictor score for the withdrawn sample is 

thereafter calculated and the sample is classified. This procedure is repeated 

until all samples have been classified.48 In the present investigation we used 

gene lists of fixed length (50 genes) in all CV-loops, since this number of genes 

corresponded to a good compromise between FDR and FNR. 

Biological Interpretation 

To investigate possible biological properties of the gene clusters identified in 

ARTICLES I and II, the EASE software was applied.49 EASE enables 

identification of significantly enriched GO categories in a given list of genes. 

Step-down Bonferroni multiplicity-corrected p-values <0.05, calculated using 

EASE statistics, were considered significant. 

Array-based CGH 

Array based comparative genomic hybridization (CGH) uses the same 

microarray-based principles as gene expression profiling.50 Typically, large 

genomic bacterial artificial chromosome (BAC) clones are printed on glass 

slides, and genomic DNA from a test sample and a reference sample with 
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normal karyotype are differentially labeled with fluorescent dyes and 

subsequently hybridized to the slide. The large number of clones possible to 

print on one array slide provides array CGH with a much better resolution than 

conventional CGH. In ARTICLE IV, whole-genome tiling resolution 32k BAC-

arrays (Swegene DNA microarray resource centre at Lund University) were 

used to investigate genomic alterations in 38 UCs.  

Mutation Screening 

Mutation screening of FGFR3 and TP53 was carried out with direct sequencing 

using standard procedures. All FGFR3 regions in which mutations have been 

reported for UC (exons 7, 10, and 15)18 were sequenced. For TP53, exons 4-9 

were sequenced; a region covering the DNA-binding domain of TP53 and in 

which the vast majority of mutations have been identified.51,52 For samples 

included in the cDNA microarray experiments (ARTICLE I, and III), mutation 

analyses were carried out using cDNA from amplified RNA as template: 

identified mutations were sequence verified in samples from which genomic 

DNA was available. Samples hybridized to the oligonucleotide array (ARTICLES

II-IV) were sequenced with genomic DNA as template and mutations were 

verified via reverse sequencing. 

LOH Analysis 

LOH analysis was performed on tumors from which both tumor DNA and 

matching blood samples were available. A total of 17 highly polymorphic 

microsatellite markers, evenly distributed over both arms of chromosome 9, 

were selected (ARTICLES I-III). In ARTICLE I, two markers close to TP53 at 

chromosome 17 were also analyzed. Allelic imbalance was defined as a more 

than 50% reduction in allele signal intensity and LOH was defined as the 

presence of at least two consecutive markers showing allelic imbalance. 
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RESULTS AND DISCUSSION

ARTICLE I and ARTICLE II 

For ARTICLES I and II, the experimental settings and aims were largely the 

same. In both studies, gene expression profiling using microarray was used to 

explore the transcriptional diversity in UC. In addition, we investigated possible 

associations between the expression profiles and tumor stage/grade, or mutation 

status of FGFR3/TP53 and LOH for chromosome 9. In ARTICLE I, non muscle-

invasive tumors (Ta and T1) were analyzed whereas ARTICLE II focused on T1-

T4 tumors. Below, a summary of the combined findings in these two studies is 

presented.

The mutation screening of FGFR3 and TP53 was performed on 150 out 

of 163 tumors (Table 1). As expected, FGFR3 mutations were found to be 

inversely associated and TP53 mutations to be positively associated with tumor 

stage/grade.53-61 Also, in line with previous investigations,61,62 FGFR3 mutations 

were highly correlated with FGFR3 overexpression; in fact FGFR3 expression 

was the most discriminatory transcriptional alteration when comparing 

FGFR3mut and FGFR3wt cases.

Table 1. Mutation frequencies of FGFR3 and TP53 in UCs from 150 individual patients. Cases 

are stratified into tumor stage and grade, respectively. 

Mutation Ta T1 T2-T4  G1 G2 G3 

FGFR3mut 68% 34% 19%  80% 59% 20% 

TP53mut 8% 37% 40%  9% 12% 43% 

When investigating tumor mutation status in relation to expression 

profiles it was observed that the mutational patterns of FGFR3 and TP53 were 

strongly associated with global gene expression. The MDS of Ta/T1 tumors 

(ARTICLE I) showed a highly polarized pattern where FGFR3mut tumors 

clustered together and were separated from TP53mut cases (Figure 2a). This 
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pattern was also evident in the COA representation of T1-T4 tumors (ARTICLE

II); tumors with FGFR3mut clustered separately from tumors with TP53 

impairment (either by TP53mut or MDM2 overexpression) in the COA 

representation, seemingly independent of histological and morphological status 

(Figure 2b). Moreover, both the MDS and the COA representations indicated 

that tumors with concomitant FGFR3 and TP53 mutations (FGFR3mut/TP53mut)

were more similar to FGFR3mut/TP53wt than to FGFR3wt/TP53mut tumors. The 

difference in gene expression profiles was largely dependent on a gene 

signature specific for cell-cycle related transcripts that showed increased 

expression in tumors with TP53 impairment. The fact that FGFR3mut/TP53mut

tumors showed lower expression of this signature as compared to 

FGFR3wt/TP53mut tumors further strengthens the hypothesis that 

FGFR3mut/TP53mut cases are genetically progressed FGFR3mut tumors rather 

than TP53mut tumors with subsequent accumulation of FGFR3mut.

Figure 2. Expression patterns of UC are highly associated with FGFR3 and TP53 mutation status.  

a) Unsupervised MDS representation of Ta and T1 tumors based on the 6749 genes, and b) 

unsupervised COA representation of TaG3 and T1-T4 tumors based on the 3334 genes. Cases are 

color-coded according to FGFR3 mutation status and TP53 impairment. 
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In line with previously published expression studies of UC,63-71 we 

found a general association between tumor stage/grade and the global gene 

expression patterns. This was illustrated by HCA and MDS in ARTICLE I, and 

by HCA and COA in ARTICLE II. Thus, the cosegregation of tumors of similar 

grades and stages in unsupervised analyses indicate that large gene signatures 

correlate with tumor histopathology. Specifically, overexpression of genes 

related to extracellular matrix (ECM) and immunological transcripts correlated 

with tumor invasiveness. Conversely, low grade Ta tumors revealed low 

expression of cell-cycle genes and high expression of ribosomal transcripts. 

Apart from a general downregulation of a large number of genes on 

chromosome 9 (ARTICLE I), we did not find any specific transcriptional event 

associated with LOH for chromosome 9. However, we noted that a subset of 

low grade Ta tumors, which all showed FGFR3 mutation and retention of 

chromosome 9, were highly similar in gene expression (ARTICLE I). This group 

of tumors also showed the lowest expression of cell-cycle genes and hence, this 

may indicate that the loss of chromosome 9 is associated with tumor 

progression rather than neoplastic initiation. 

Finally, discriminatory analyses were applied to explore transcriptional 

events associated with clinical variables. In ARTICLE I, a gene signature 

associated with short recurrence-free follow-up for superficial tumors was 

described. The gene list was highly enriched for genes associated with cell-

adhesion. In ARTICLE II, discriminatory analyses identified a gene signature 

whose high expression predicted absence of lymph node metastasis in patients 

submitted to radical cystectomy. In fact, this gene signature was superior to 

clinical stage in predicting lymph node metastasis. Furthermore, the 

discriminatory genes showed an impressive predictive power for overall 

survival when combined with histopathological tumor stage. It is noteworthy 

that a large proportion of these genes were associated with the antigen 

presenting machinery (APM). We therefore hypothesize that the low expression 
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of APM-related transcripts in tumors with metastasis may reflect an immune 

escape phenotype,72,73 which is not able to trigger immune responses vital for 

the suppression of tumor spread.   

ARTICLE III 

To explore the genetic relation between syn- or metachronous tumor 

development, 49 tumors from 22 patients were studied with gene expression 

profiling. The majority of tumors were also investigated using CGH, LOH 

analysis of chromosome 9, and mutation analysis of the FGFR3 and TP53

genes. Although CGH, LOH, and mutation analyses indicated a clonal 

relationship between most syn- and metachronous tumors from individual 

patients, the combined analyses pointed to a complex genetic progression 

model; no simple karyotypic relationship was detected between initial and 

recurring or synchronous bladder tumors. Thus, the present findings corroborate 

previous results that the chronology of tumor presentation is not reflected in the 

genetic progression of the tumors.74 In contrast, expression profiling revealed a 

strong similarity between syn- and metachronous tumors; samples from the 

same patient almost exclusively clustered close to each other in unsupervised 

HCA when compared with a large reference set of tumors of similar stages and 

grades. A more detailed investigation revealed that the strong expressional 

correlation between syn- and metachronous tumors was close to the correlation 

seen between normal urothelial samples from different individuals, implying 

that the small differences observed are largely caused by experimental variation. 

The only exception was tumors that progressed from Ta/T1 to T2, possibly 

reflecting the shift in tumor microenvironment connected with muscle invasion.   

The observation that tumors with more complex genomes frequently 

appear earlier than clonally related, but less evolved, tumors, suggest that 

genetically altered cells, with clonally related but differently evolved genomes 
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may co-exist in the urothelium, and that cells in these fields independently may 

produce overt tumors.75 Indeed, studies have shown that hyperplastic and 

dysplastic intraurothelial lesions in patients with UC commonly share genetic 

alterations with adjacent tumors.76-81 In addition, it has been observed that 

genomic imbalances and gene mutations are also present in histologically 

normal-looking mucosa surrounding the tumor.76-85 Given the remarkably stable 

expression profiles of syn- and metachronous tumors within individual patients, 

the formation of a fixed expression profile may be considered as a possible 

primary event in the development of UC. 

ARTICLE IV 

Genomic copy-number profiles were obtained for 38 UCs using array-based 

CGH. With the aim to identify oncogenes of importance for UC progression, 

commonly amplified regions specific for high grade and invasive tumors were 

delineated and compared with gene expression data collected using microarray 

analysis and real time PCR. The most frequent amplification was found in 35% 

of high grade cases and localized to 6p22. The high resolution provided by the 

32k BAC-arrays, revealed a minimal overlap of 1 Mb that was present in 90-

100% of cases; a region containing OACT1, E2F3, CDKAL1, and SOX4 as the 

only mapped genes. Using cases with no copy-number gain of this region as 

reference, it was further shown that primarily CDKAL1 and E2F3, and to a 

somewhat lesser extent SOX4, showed a strong association between 

amplification and gene overexpression. We conclude that CDKAL1, E2F3, and 

SOX4 may be considered as possible oncogenes in UC with possible importance 

for an aggressive phenotype. 

Two additional amplicons were specific for advanced tumors, at 8q22 

(4.5Mb) and at 2p55 (1Mb), respectively. Intriguingly, these two regions 

occurred in a mutually exclusive pattern and contained several related genes and 

were therefore seemingly paralogous. Further analyses revealed that 
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amplification of YWHAZ (14-3-3-zeta) at 8q22 and YWHAQ (14-3-3-theta) at 

2p55 both correlated with gene expression. Thus, the results highlight gene 

members of the 14-3-3-family to be of possible for tumor progression in UC. 

Homozygous deletions were detected at nine separate chromosomal 

locations. Deletion of the CDKN2A/CDKN2B region at 9p21 was most frequent 

(32%), covering all stages and grades. Other known tumor suppressor genes 

found homozygously deleted were PTEN at 10q23 and RB1 at 13q14, deleted in 

one case each. Noteworthy, four of the six remaining homozygous deletions 

were found on chromosome 9, indicating that chromosome 9 is particularly 

susceptible for homozygous deletions. A homozygous deletion at 9q21 was 

observed in two cases. We therefore screened a cohort of 48 UCs for sequence 

mutations in a gene within this region, OSTF1, but did not find any missense 

mutations. 
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REVIEWS

Numerous studies of molecular changes in UC have been performed over the 

years. In line with other neoplasms, investigations have revealed a variety of 

recurrent genetic changes. Below, results obtained in the present investigation 

will be discussed in relation to previously published studies. The first section 

encompasses frequent alterations associated with UC, as well as recent 

advances in the understanding of tumor evolution and clonality. The second 

section gives a comprehensive review of gene expression profiling studies 

performed on bladder cancers. 

MOLECULAR ALTERATIONS IN UROTHELIAL CARCINOMA

Recurrent Chromosomal and Genetic Changes 

A recent review of 188 published karyotypes of urothelial tumors concluded 

that, cytogenetically, chromosome 9 was the most frequently involved 

chromosome, being numerically or structurally aberrant in 45% of the 

investigated cases.86 Most often, monosomy 9 or loss of whole chromosome 9 

arms is seen.86 Molecular cytogenetic studies using CGH corroborate the 

frequent loss of chromosome 9 material in UC,87-90 and conclude that TaG1 and 

TaG2 tumors show few additional genomic changes.89,90 In contrast, cytogenetic 

and CGH studies have shown that T1-T4 and high grade tumors display a 

multitude of chromosome aberrations.86-89 Apart from chromosome 9, recurrent 

structural changes in advanced tumors involve gain of 1q, 3q, 5p, 8q, 17q, and 

20q, and loss of 5q, 6q, 8p, 11p, and 11q.87,90,91 It has also been shown that the 

number of chromosomal aberrations significantly correlate with future stage 
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progression in T1 tumors.88 Thus, a complex karyotype may be considered an 

adverse sign in UC.

The frequent loss of chromosome 9 material is also reflected by allelic 

loss, as shown by LOH studies.92-100 Much effort has been directed to the 

identification of tumor suppressor genes on chromosome 9. However, it has 

been difficult to isolate small regions of common deletion. To this date, four 

candidate regions have been proposed. In the present study, array CGH analysis 

of 38 UCs revealed homozygous deletion of the CDKN2A loci at 9p21, coding 

for the well characterized cell-cycle inhibitors p16 and p14ARF, in 32% of 

cases.IV Similar high frequencies of homozygous deletion has been reported 

previously.101,102 Thus, CDKN2A seem to be an important tumor suppressor loci 

that contribute to UC development. The other three regions involve 

9q22.3,92,95,99,100,103 9q32,95,96,104 and 9q34.92,98 However, the importance of the 

candidate tumor suppressor genes within these regions (PTC, DBCCR1, and 

TSC1, respectively) is at present not clear. Homozygous deletion of these genes 

are infrequent,97,105,IV and mutation rates are low; TSC1 and PTC both show 

missense sequence mutation in less than 5% of the cases,106-108 and no mutation 

in the DBCCR1 coding region has been found.97,104 Nevertheless, studies using 

cell lines have shown that DBCCR1 is commonly silenced by 

hypermethylation104 and that exogenous expression of this protein suppresses 

proliferation.109 Furthermore, ptc+/- transgenic mice showed earlier onset of 

neoplastic bladder transformation than wild type mice after exposure to 

chemical carcinogens, suggesting that PTC haploinsufficiency may be of 

importance for UC development.110

Apart from CDKN2A on 9p and the putative tumor suppressor genes on 

9q, several important regulatory genes are recurrently found inactivated in UC. 

For example, mutations or homozygous deletion in the PTEN gene has been 

identified in 23% of late-stage cases,111 and for the RB1 gene, LOH and aberrant 
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protein expression is frequent in muscle-invasive tumors.112-114 Aberrant RB1 

expression has also been shown to correlate with poor prognosis.115

A number of recurrently amplified chromosomal regions have been 

observed in UC and UC-derived cell lines. CGH studies followed by fine-

mapping by semiquantative PCR or fluorescence in situ hybridization (FISH) 

have delineated two common amplicons at 8q22 and 6p22, respectively.90,116,117

Subsequent array CGH investigations have verified and further delineated the 

boundaries of these amplicons.118-120,IV Within the 6p22 region the CDKAL1,

E2F3, and SOX4 have been described as the target oncogenes.117,121,IV In the 

present study, we observed that the 8q22 amplicon was mutually exclusive to 

another amplicon at 2p55.IV Interestingly, these regions contained two related 

genes, YWHAZ (14-3-3-zeta) and YWHAQ (14-3-3-theta), respectively, which 

both showed high correlation between overexpression and amplification. We 

therefore suggest that gene members of the 14-3-3-family may be oncogenes 

important for high grade disease. Amplification or overexpression of other 

genes have been reported, e.g., ERBB2,122-124 TOP2A,124 CCND1,118,120,125,126

MDM2,52,118,127 and CMYC.120,126 Moreover, using direct sequencing, point 

mutations causing oncogenic activation of RAS gene family members (HRAS,

KRAS2, and NRAS) has been found in 13% of UCs.128 However, the two most 

commonly mutated genes in UC are the oncogenic activation of the FGFR3 and 

inactivation of the TP53 genes, respectively. Below, a detailed description of 

these genes is given. 

FGFR3

In 1999, Cappellen and coworkers found that a significant proportion of UCs 

display specific missense mutations in the fibroblast growth factor 3 gene 

(FGFR3).129 Numerous studies subsequently confirmed their findings and 

FGFR3 mutations are now recognized as one of the most characteristic genetic 

alterations seen in UC. 53-62,128,130-134,I,II
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FGFR3 belongs to a family of at least four transmembrane receptor 

tyrosine kinases, FGFR1-FGFR4.135 The fibroblast growth factors (FGFRs) are 

activated by the fibroblast growth factors (FGFs), which in concert with heparin 

or heparan sulfate proteoglycan induce receptor dimerization, and 

autophosphorylation of tyrosine residues in the cytoplasmic domain of the 

receptor molecule.135 At least 23 different FGFs have been identified. 

Furthermore, different splice variants for each receptor have been found, each 

with different affinity for the various FGF ligands.136 The FGFR3 gene contains 

19 exons of which exons 2-18 encode the FGFR3 protein product.137 Two major 

tissue specific splice variants have been reported; the IIIb and the IIIc variant, of 

which IIIb is preferentially expressed by epithelial cells.129,138 The specific 

details of FGFR3 signaling are however not yet fully resolved. Studies have 

shown that SH2 mediated activation of the RAS-ERK and the PI3K-AKT 

signaling pathways may be important.139,140 Also, it has been suggested that cell-

specific differences in FGFR3 signaling may depend upon differences in STAT 

activation.136

Intriguingly, mutations in FGFR3 have previously been found to be 

associated with several germline human skeletal disorders such as thanatophoric 

dysplasia type I and II (TDI and TDII), achondroplasia, hypochondroplasia, and 

severe hypochondroplasia with developmental delay and acanthosis nigricans 

(SADDAN).141,142 The severity of these syndromes varies according to the 

specific FGFR3 mutation and in vitro studies have shown that the identified 

mutations lead to constitutive activation of the receptor.143-145 In UC, the 

R248C, S249C, G372C, and Y375C mutations constitute approximately 95% of 

all identified mutations18 (Figure 3). All of these involve amino acid changes 

from a non-cystein to a cystein, creating ligand independent homodimerization,

though de novo disulphide linkage142,146 Furthermore, they are associated with 

TD, possibly reflecting that these mutations have the greatest effect on the 

protein.143 Indeed, studies have shown that the most profound FGFR3 activation 
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is seen for the mutations causing the lethal TD disorder.143,144 Clearly, activating 

mutations in the FGFR3 gene cause reduction of chondrocyte 

proliferation.147,148 Conversely, cell lines transfected with a S249C mutant 

FGFR3 IIIb have been demonstrated to induce tumor formation when 

xenografted into nude mice.62 It is therefore interesting that identical activating 

mutations of FGFR3 may either suppress or promote proliferation, implying 

that the effects of FGFR3 signaling must be highly cell-type specific.  

Figure 3: Schematic view of the FGFR3 gene. The FGFR3 protein consists of three extracellular 

immunoglobulin-like domains (IgI-IgIII), a transmembrane domain (TM) and a split intracellular 

tyrosine-kinase domain (TKI and TKII).136 Somatic mutations identified in UC are given in 

relation to the gene structure. The distribution of FGFR3 mutations is obtained from a total of 849 

cases; 784 previously published cases as reviewed by Knowles,18 and 65 cases with FGFR3

mutations identified in the present study.I,II For each mutation, the germline associated form of 

skeletal dysplasia is also indicated; thanatophoric dysplasia type I and II (TDI and TDII), 

achondroplasia (ACH), hypochondroplasia (HCH), Crouzon syndrome and acanthosis nigricans 

(CSAN), and severe hypochondroplasia with developmental delay and acanthosis nigricans 

(SADDAN).  
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Apart from a low proportion of cervical carcinomas129,149,150 and 

multiple myelomas,151 FGFR3 mutations are not commonly found in other 

malignancies.150,152 Recently, however, FGFR3 mutations have been identified 

in 39% of seborrheic keratoses,153 85% of adenoid seborrheic keratoses,154 and 

33% of nonorganoid, nonepidermolytic epidermal nevi,155 which are benign 

skin lesions with papillary growth. These skin lesions are related with another 

skin lesion, acanthosis nigricans, which is found in patients with some of the 

FGFR3-associated germline skeletal disorders.141 It has also been demonstrated 

that targeted expression of an activated fgfr3 mutant to the epidermis of mice, 

induce the development of benign epidermal tumors.153

In UC, a striking association between FGFR3 mutation and tumor stage 

and grade has consistently been observed.53-61,I,II In a large study comprising 260 

primary UCs, FGFR3 mutations were found in 77% of Ta, but only in 31% of 

T1 and in 15% of T2-T4 tumors.56 A similar distribution was also observed 

within the present study (Table 1). Even within the group of stage T1 tumors 

differences are seen with respect to FGFR3 mutation status; T1 tumors with 

microinvasion show a significantly higher mutation rate than extensively 

invading T1 tumors.131 Furthermore, mutations have been identified in 75% of 

urothelial papillomas, a benign urothelial lesion.55 This suggests that the FGFR3

mutation contribute to papillary tumor formation of urothelial and epidermal 

lesions, but probably does not alone contribute to a malignant phenotype.  

The possible importance of FGFR3 signaling in UC raises the 

possibility of using therapeutic drugs directed at FGFR3 or downstream 

mediators of signaling such as RAS. For example, CHIR-258, a FGFR3 

inhibitor has been shown to inhibit growth of multiple myeloma cell lines with 

activated FGFR3, both in vitro and in in vivo mouse models, results favoring 

future clinical studies.156
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TP53

TP53 is one of the most vital genes in a cell’s protection from DNA damage and 

aberrant growth signals. Impairment of TP53 function is seen in most human 

malignancies, commonly by DNA point mutations or deletions of the coding 

sequence, but also by alterations of regulatory proteins such as MDM2 or 

p14ARF, or by inactivation through viral infection.157 In the present study, we 

observed TP53 mutations in 9% of G1, 12% of G2, and 43% of G3 tumors 

(Table 1), frequencies similar to what has previously been reported.60,158 Hence, 

a correlation between TP53 mutation and tumor stage and grade is apparent; 

mutations are much more common in high grade and invasive tumors. Most 

analyses of TP53 alterations have however been performed by investigating 

aberrant protein expression in tissue sections using immunohistochemistry 

(IHC).159 In these studies, a similar association with increasing tumor stage and 

grade has been observed, and a good correlation between TP53 sequence 

mutations and TP53 immunoreactivity has been reported.52,160 Even though 

TP53 alterations are highly associated with adverse tumor phenotypes, 

published reports are contradictive regarding TP53 as an independent marker 

for disease outcome. A newly published meta-analysis, evaluating the results 

from 117 studies comprising more than 10,000 patients, concluded that TP53 

changes are only weakly predictive of recurrence, progression, and mortality in 

bladder cancer.159

TP53 inactivation may also be accomplished by overexpression of the 

MDM2 protein, which acts by promoting proteosomal degradation of TP53.161

Amplification or overexpression of MDM2 is not uncommonly seen in high 

grade tumors.162,163 Interestingly, by using a combination of markers, such as 

TP53 and MDM2,164 or TP53, MDM2, and CDKN1A (p21),52 independent 

predictive information for poor survival in UC has been observed. 
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Molecular Pathways in UC Development 

Based on histologic mapping data, Koss165 suggested the existence of two 

different developmental pathways in UC; one primarily giving rise to papillary 

low grade tumors and one nonpapillary in which dysplasia and Tis subsequently 

develops into muscle-invasive and metastasizing tumors. Subsequent molecular 

analyses have further strengthened this theory. For example, several studies 

have found that chromosome 9 alterations present in hyperplasias also seen in 

concomitant or recurrent papillary tumors.79,166,167 In contrast, Tis and dysplasia 

regularly display changes intimately associated with high grade and invasive 

tumors.76-78,168-171 Thus, both histologic and molecular evidence suggest that at 

least two different developmental pathways exist in UC. During recent years, 

much attention has been given to the FGFR3 and TP53 genes, and it has been 

suggested that alterations of these genes may be key events in two such 

pathways. 18,19,56,60

 For FGFR3, the extremely high mutation frequency in Ta tumors, 

contrasted by a low mutation frequency in invasive tumors and Tis,54,56,61

undoubtedly suggests that oncogenic signaling by FGFR3 is of vital importance 

for the development of non-invasive papillary tumors. A recent study performed 

by Jebar et al. showed that activating mutations of RAS gene family members, 

which are possible downstream mediators for FGFR3 induced activation of the 

RAS-ERK signaling pathway, are found mutually exclusive to FGFR3

mutations.128 Further evidence for the RAS-ERK pathway to be of crucial 

importance in development of papillary tumors was presented by Zhang et al.172

The authors introduced urothelium-specific expression of mutant Ha-ras in 

transgenic mice and observed that, in vivo, activated Ha-ras induce urothelial 

tumor formation. Interestingly, the mice only developed hyperplasia and 

papillary low grade tumors. Thus, increased signaling via the Ras-ERK 

pathway, by either FGFR3 or HRAS mutations, may be a key event in the 

development of hyperplasia and papillary tumors in UC.  
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In contrast to papillary tumors, impairment of the TP53 pathway, by 

TP53 mutations or MDM2 overexpression, is frequently observed in Tis lesions 

and in the more advanced tumor stages.52,168,169,171,173 Further evidence that TP53 

inactivation may trigger development of Tis and subsequent progression into 

invasive tumors was reported by Zhang et al.174 The authors found that 

transgenic mice with urothelial-directed expression of SV40, which specifically 

inhibits TP53 and RB1, developed Tis and invasive tumors, but not hyperplasia 

and low grade papillary tumors.  

Thus, oncogenic activation of FGFR3/HRAS and impairment of TP53 

may be key genetic events in two alternative pathways of UC. The former 

promotes formation of papillary low grade tumors, possibly preceded by 

hyperplasia, whereas the latter pathway often seems to involve TP53 and lead to 

Tis and subsequent invasive tumors. In the present study, we could show that 

the difference between FGFR3- and TP53-mutated tumors is also reflected by 

large differences in gene expression profiles.I,II In addition, we observed that 

tumors with TP53 mutation and MDM2 overexpression have highly similar 

global gene expression patterns,II further suggesting that alterations of MDM2 

may be a common and complementary mechanism for TP53 pathway 

inactivation. It must, however, be noted that, albeit with low frequency, FGFR3

mutated tumors sometimes do progress into high grade and invasive lesions, and 

when corrected for tumor stage/grade FGFR3 mutation does not seem to add 

any prognostic information.61,175 Nevertheless, the high grade and invasive 

FGFR3 mutated tumors often show TP53 impairment,56,60,61,II implying that 

FGFR3 mutated tumors may acquire subsequent TP53 mutations and the two 

pathways may thus ultimately converge upon muscle-invasion.  
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Tumor Clonality and Tumor Spread 

As previously noted, a characteristic feature of bladder cancer is the high 

occurrence of multiple (synchronous) and recurrent (metachronous) tumors. To 

explain the origin of these events, two major hypotheses have been put forth.176

The first hypothesis suggests tumor spread from a primary tumor by either 

intraepithelial migration or intraluminal seeding, thereby assuming a 

monoclonal spread of tumor cells. The second theory assumes field 

cancerization177 of large urothelial areas caused by exposure of carcinogens, and 

that this leads to the development of independent tumors. Thus, in the field 

cancerization model, tumors of different clonal origin will develop in the 

bladder.

To address these hypotheses, the genetic relationship between syn- and 

metachronous tumors has been investigated in a large number of molecular 

studies. For example, X-chromosome inactivation studies have been 

performed,178,179 as well as cytogenetic analyses,180 LOH,74,76-78,181,182 FISH,181

CGH,80 genome-wide single nucleotide polymorphism (SNP) arrays,183 and 

mutation analyses.74,76,82,182 Based on the accumulated data, it may be concluded 

that the vast majority of syn- and metachronous tumors shows a clonal 

relationship. It is however important to note that discrepancies in the definition 

of monoclonality and oligoclonality are found between the above-mentioned 

studies. Monoclonality may be used to describe clonal relation to a common 

progenitor cell. In this scenario, synchronous or metachronous tumors may 

harbor different additional changes acquired during a subsequent genetic 

divergence. Alternatively, tumors may be described as oligoclonal if such 

differences are found. Accordingly, if markers for genetic changes responsible 

for early tumor development are omitted from the analysis (e.g., only late 

occurring genetic changes are studied), no genetic relationship will be seen and 

the tumors may be classified as oligoclonal even though they still may be 

descendants of a single progenitor clone. Nevertheless, irrespective of what 
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terminology is used, the results point to that the leading mechanism behind 

tumor spread is clonal and that tumors originate from common progenitor cells. 

This process, however, often seems to be associated with the accumulation of 

sub-populations carrying additional and different genetic changes. 

 Intriguingly, during recent years histologic and genetic mapping studies 

have shown that large and continuous areas of malignant and pre-malignant pre-

neoplastic lesions as well as morphologically normal-looking mucosa share 

genetic alterations.76-78,81-83,184  For example, identical TP53 mutations, are not 

only found within synchronous tumors at different locations, but also in pre-

cancerous lesions and normal-looking urothelium separating the different tumor 

foci.76,81 Moreover, it has been shown that, even though clonally related, later 

appearing tumors often show less complex patterns of changes than earlier 

occurring tumors, i.e., the chronology of tumor recurrence does not adhere to 

the genetic evolution,74 a finding also corroborated within the present study.III

Thus, the reported data strongly suggests that metachronous tumors rather 

originate from a pool of progenitor cells, contained within the urothelium, and 

that clonally related tumors, but with different secondary changes,  may develop 

independently. 

In light of this, an alternative theory, the field-first-tumor-later model,

was recently presented.75 This proposes that, rather than an intraurothelial 

migration from a primary tumor, an intraepithelial spread of nonmalignant but 

genetically modified cells occur. The subsequent accumulation of genetic 

changes in these clones ultimately may produce overt tumors at different 

locations within the bladder. In this scenario, several different but clonally 

related subclones may coexist within the bladder simultaneously.  
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GENE EXPRESSION PROFILING OF UROTHELIAL 

CARCINOMAS

In 2001, the first study of gene expression patterns in UC using microarray was 

published by Tykjaer et al.70 who subjected 19 tumor biopsies and pooled single 

cell suspensions to microarray analysis on a 6.5k Affymetrix array. Although a 

rather small set of samples, the authors observed that expression of a large 

amount of genes correlated with tumor histopathology. A number of subsequent 

studies, using different array platforms and independent cohorts of samples, 

corroborated that much of the transcriptional variation observed in UC 

associates with tumor stage and grade, as reflected by a recurrent cosegregation 

of similar tumor stages and grades in unsupervised analyses.63-71,I,II

Gene Expression Patterns and Tumor Histopathology  

Dyrskjøt et al.65 showed that it is possible to molecularly predict UC 

histopathology based on gene expression profiles using supervised learning 

algorithms. Utilizing a 7k Affymetrix array, a 32-gene classifier was built that 

provided correct classification in 84% of Ta, 50% of T1, and 74% of T2 tumors 

in a test set of 68 tumors.65 Similar classification results have later been 

obtained in independent studies using 10k cDNA arrays,63 and 22k Affymetrix 

arrays.68 Although the individual gene lists used for classification differ 

significantly between studies, Blaveri et al.63 showed that a high prediction 

accuracy could be maintained both when the classifier previously described by 

Dyrskjøt et al.65 was applied on their own data, and vice versa. Taking into 

consideration that a large number of genes have shown differential expression 

between superficial and invasive tumors, many genes may behave similarly for 

classification purposes and differences between individual classifiers may 

therefore be expected.63
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A common finding is that covarying genes with related biologic 

function are found to associate with specific histologic subtypes.  For example, 

superficial tumors, especially low grade Ta tumors, frequently show increased 

expression of ribosomal genes, possible reflecting a high level of protein 

synthesis.70,118,I Invasive tumors on the other hand, frequently show coordinated 

overexpression of genes with immunological function, and genes with structural 

and remodeling related to the ECM, e.g., collagens, metalloproteases, 

cathepsins, and fibronectin.63-67,70,185,II Immunological transcripts have also been 

shown to correlate with Tis.64,186 As expression of ECM-related transcripts is 

not characteristic for epithelial cells, several authors have raised concerns that 

the high expression of ECM-related transcripts may merely reflect 

contamination of the analyzed sample with non-neoplastic stromal cells. 

Nevertheless, this group of genes has been found to be associated with invasive 

tumors in most investigations, despite tumor specimens with very low amount 

of contaminating non-neoplastic cells.185,186 For example, upregulation of ECM-

related genes, e.g., MMP7 and COL3A2, has been observed and subsequent 

protein expression analyses using IHC on tissue sections confirmed MMP7 

expression in tumor cells whereas COL3A2 was only expressed in the 

surrounding stromal tissue.185 Moreover, expression of CTGF, overexpressed in 

samples from high stage tumors,63,II has been shown to promote angiogenesis 

and tumorigenesis in prostate cancer models when overexpressed in adjacent 

stromal cells.187 Hence, albeit some genes may be expressed by other cells than 

tumor cells, the identification of such transcripts in biopsies may still be 

important for understanding the biology of aggressive tumor growth, as well as 

for tumor classification purposes. 

It has also been observed that the expression of genes promoting cell-

cycle progression (e.g., TOP2A, CDC2, CCNA2, CDC6, and PCNA) show 

positive association with tumor morphology,63,65,71I,II possibly reflecting the high 
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proliferative phenotype of low differentiated tumors. Interestingly, this gene 

cluster corresponds to a specific gene signature common for high grade tumors 

identified in a meta-analysis of expression data from several different human 

malignancies,188 further substantiating the importance of these genes for 

neoplastic progression. 

Gene Expression in FGFR3 and TP53 Mutated Tumors 

Our own studies, as well as previous reports, have revealed that FGFR3 is 

highly expressed in Ta tumors and that FGFR3 gene expression is highly 

associated with the presence of FGFR3 mutation.61,62,I,II Overexpression of 

FGFR3 has also been observed to associate with a papillary growth pattern.186

As previously discussed, much evidence exist that FGFR3 and TP53 may be 

key players in two separate pathways of UC development. HCA data have 

indicated that FGFR3 mutated tumors cosegregate in unsupervised cluster 

analyses.61 In line with this, we found that the global gene expression patterns 

are highly associated with FGFR3 and TP53 mutation status in early-stage 

tumors.I A similar pattern was seen in the subsequent study of T1-T4 tumors.II

In this study we also noted that cases with overexpression of MDM2, an 

alternative way for TP53 impairment, clustered with TP53 mutated cases. 

Moreover, we observed that high expression of cell-cycle transcripts was a 

characteristic feature of TP53mut as compared with FGFR3mut cases. Notably, 

tumors with concomitant FGFR3 and TP53 mutations showed high expression 

of FGFR3 but an intermediate expression of cell-cycle genes, suggesting that 

FGFR3mut tumors may genetically progress and accumulate TP53 mutations 

with an associated increase in expression of proliferative transcripts. 
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Prediction of Disease Recurrence and Progression 

Superficial Tumor Recurrence  

Genes associated with superficial tumor recurrence in patients with Ta tumors 

has been addressed in two studies. Dyrskjøt et al.65 built a 39-gene classifier that 

by CV showed a predictive accuracy of 75%. Also, in the present study, we 

identified genes associated with short-recurrence free follow up.I Even though 

the gene signatures presented in the two studies do not overlap on a gene-by-

gene basis, both gene lists are enriched for transcripts with cell-adhesion related 

functions, suggesting that this particular group of genes may be of importance 

for development of superficial recurrences. 

Progression of Superficial Tumors 

Efforts have also been made to identify transcripts which may be used for 

prediction of tumor recurrence and progression.186,189 In a detailed investigation 

specifically designed to predict superficial tumor progression, a number of 

tumor suppressor genes and genes involved in apoptotic cell death pathways 

(e.g., SERPINB5, FAT, BIRC4, and BIRC6) were found with higher expression 

in non-progressing samples.189  Interestingly, the FGFR3 gene was also highly 

expressed in non-progressing samples. Examples of genes found upregulated in 

progressing cases were the cell cycle related genes CDC25B, CDC20, and 

MCM7, and the apoptosis inhibitor BIRC5 (survivin). However, when testing 

the predictor on an independent test set, a relatively low specificity was 

observed. The authors pointed out that this may be caused by successful 

treatment and limited follow-up data. This was supported by a more detailed 

investigation of the material which revealed that most patients with 

misclassified samples showed adverse clinopathologic signs during follow-up, 

thus substantiating the possible biologic and clinical relevance of the identified 
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gene signature.189  Stage progression of Ta tumors has also been addressed by 

Wild et. al.,186 who obtained 79% correct classification using a CV approach. 

For example, these investigators found FABP4 and CTSE to be upregulated in 

Ta tumors from patients that showed subsequent progression. A following IHC 

analysis for CTSE protein expression on tissue arrays supported the association 

between increased CTSE expression and progression of Ta tumors but did not 

provide independent prognostic information for overall survival. 

Progression of Muscle-Invasive Disease and Overall Survival 

For patients with muscle invasive tumors, three studies have specifically 

searched for gene signatures associated with tumor metastasis or cancer-

associated death.63,68,II Identification of a poor-survival molecular signature 

could be of great importance to select patients that may benefit from more 

aggressive therapeutical interventions. Blaveri et al.63 stratified their muscle-

invasive samples in two extreme groups; one with poor prognosis (death 

occurring in <18 months, n=27) and one with superior prognosis (survival >18 

months, n=13). They applied a PAM classifier that correctly classified 78% of 

the samples using a predictor composed of 24 genes. Later, Sanchez-Carbayo et 

al.68 used two different approaches to identify markers for poor prognosis. A 

leave-one-out SVM algorithm was used with overall survival as end-point and 

predicted 74%. Of these, HCLS1, ANK3, BIRC3, CD54, and TP53AP1 were 

studied in detail with log-rank and Kaplan-Meier tests, and all were 

significantly associated with poor patient outcome. Using an alternative 

approach, they further identified a list of 174 probes which expression 

associated with poor survival and lymph node metastasis. One of the top 

ranking genes from the latter analysis, SNCA, was validated using IHC on tissue 

microarrays and was confirmed to be significantly associated with tumor stage 

and overall survival. In ARTICLE II, we investigated a homogeneous cohort of 

cases treated with radical cystectomy and identified a gene signature which 
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could predict the presence of lymph node metastasis with high specificity and 

sensitivity. Furthermore, the gene signature was superior to clinical stage in pre-

operative multivariate models for prediction of nodal status and survival, and 

showed an impressive predictive power for overall survival when combined 

with histopathological tumor stage. This was the first report that showed a 

significant effect of the identified gene signature after adjustment for known 

prognostic parameters in multivariate analyses. The identified gene signature 

contained transcription factors such as STAT1 and IRF1, and contained 

transcripts for several structural components in the MCH class I antigen 

presentation machinery. We therefore hypothesize that lymph node negative 

tumors may be more susceptible to tumor suppression mediated by the immune 

system.  

None of the above mentioned studies applied an independent set of 

samples to test the performance of the gene expression predictors, instead cross-

validation was used. Hence future follow-up studies are therefore needed to 

confirm the suggested clinical value. Furthermore, no overlap on a gene-to-gene 

basis is observed between the gene signatures described. Explanation for this 

could be differences in sample selection. For example, Sanchez-Carbayo et al.68

do not report treatment for the included patients, and since patients with muscle-

invasive disease not treated with cystectomy show far higher mortality than 

untreated patients, this could be a confounding factor. Also, multivariate 

analyses correcting for known prognostic markers should be applied, this was 

only performed in one study.II Nevertheless, three independent investigations 

have identified expression patterns associated with survival and nodal status, 

raising hope for the possibility to, through molecular approaches, select patients 

who may benefit from more aggressive therapeutical interventions. 
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Normal and Morphologically Altered Bladder Mucosa  

Detailed investigations comparing tumor and normal urothelial tissue from 

healthy individuals have been performed in two studies.67,71 A general increase 

in transcripts related to protein folding, mRNA splicing, energy pathways, 

glucose catabolism, and lipid metabolism was observed in tumor samples 

compared to normal tissue, suggesting that the transformation event is 

accompanied by an increased need of energy and mRNA splicing capability.71

Moreover, both studies found KRT7, KRT8, and SDC1 to be among the most 

discriminatory genes, raising the possibility to use these genes as potential 

markers for noninvasive tumors.67,71 A subsequent screening of KRT7 

expression in urine sediments by Western blot did however not provide 

sufficient sensitivity,71 encouraging further studies using more sensitive 

methods.

Studies have also included normal-looking urothelium derived from 

bladder cancer patients.64,68 Interestingly, these studies have reported 

transcriptional alterations, characteristic for high grade tumors, to be present in 

the normal-looking urothelial samples. Specifically, it was observed that the 

gene signature predicting poor-outcome also was present in normal-looking 

urothelium samples taken from the same bladder.68 Similarly, morphologically 

normal urothelial samples from cystectomy patients has been shown to carry an 

expression signature specific for Tis samples.64 Thus, expression analyses 

corroborate other molecular studies showing that genetic alterations are present 

already in normal-looking urothelium from patients with bladder cancer.78,80-85

Multifocal and Recurrent Tumors 

It has been observed that syn- and metachronous tumors, respectively, often 

cluster together, despite differences in stage and grade, suggesting a higher 

similarity in global gene expression than to be expected.66,189 These findings 
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support the common clonal relationship between tumor recurrences as seen in 

many previous studies using other molecular techniques.176 The close genetic 

relationship between syn- and metachronous tumors was also confirmed within 

the present study.III In fact, we could show that the correlation in expression 

profiles between such samples were remarkably high and close to what is seen 

when comparing normal samples from different individuals. Furthermore, the 

high similarity was observed even among cases with large karyotypic 

differences as detected by LOH and CGH analyses. This indicates that the 

establishment of a stable expression profile may be considered as an early event 

in UC.

Conluding Remarks 

In conclusion, expression profiling using microarray has proved to be valuable 

technique for exploration of the molecular genetic events that characterize UC. 

Specific gene signatures, whose expression are related to histologic, 

morphologic, molecular, and clinical outcome groups, have been reported, thus 

offering new biologic insights into the pathogenesis of the disease. Furthermore, 

the findings may not only be important for classification and prediction 

purposes, but may also be essential for identification of molecular pathways to 

which novel treatment strategies may be directed. 
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CONCLUSIONS

In the present study, we used gene expression profiling, mutation analyses of 

FGFR3 and TP53, LOH analysis, as well as conventional- and array CGH 

analyses to characterize a large cohort of UCs. The main findings may be 

summarized as follows: 

- gene signatures with specific biological functions correlate with, e.g., high 

expression of ECM and immunologic genes in invasive tumors, overexpression 

of cell-cycle genes in TP53 mutated tumors, overexpression of ribosomal 

transcripts in low grade tumors, 

- mutations in FGFR3 and TP53 are correlated with large transcriptional 

differences and may thus be indicative for two different molecular pathways of 

UC,

- high expression of MHC-class I related genes in patients with muscle-invasive 

tumors provide prognostic information for lymph-node status and overall 

survival,

- the expression profile is remarkably stable in meta- and synchronous Ta or T1 

tumors from the same patient. The formation of a fixed expression profile may 

be considered as a primary event in the development of UC, 

- E2F3, CDKAL1, and SOX4 in 6p22, and YWHA (14-3-3) gene family 

members in 8q22 and 2p25, respectively, are major target oncogenes important 

for high grade disease. 
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SUMMARY IN SWEDISH

Varje år nydiagnostiseras cirka 2 000 personer med blåscancer i Sverige. 

Blåscancer drabbar främst män och är för närvarande den femte vanligaste 

cancerformen bland män efter prostata-, hud,- lung- och koloncancer. Risken att 

insjukna i blåscancer ökar med ålder och merparten av nydiagnostiserade 

patienter är över 60 år. Blåscancer är en heterogen sjukdom med avseende på 

sjukdomsförlopp. Fler än hälften (ca 75 %) av alla patienter har ytliga tumörer, 

d v s tumörer som endast växer i urinblåsans ytskikt. Av dessa ytliga tumörer 

uppvisar de flesta (ca 60 %) låg grad av cellförändring och även om dessa 

patienter ofta får återfall så är tumörutvecklingen sällan aggressiv och 

överlevnaden är över 95 % efter 5 års uppföljning. Resterande del av ytliga 

tumörer uppvisar högre grad av cellförändring och i denna patientgrupp är 

risken hög att tumören skall växa in i, eller igenom, blåsmuskulaturen 

(muskelinvasiv sjukdom). Ungefär en fjärdedel av alla blåscancerpatienter har 

redan utvecklat muskelinvasiv tumör vid diagnostillfället. För denna grupp är 

prognosen dålig och ungefär hälften avlider av tumörmetastaser, ofta redan 

inom två år. 

Cancer uppstår och utvecklas som en följd av successiva förändringar 

(mutationer) i en cells arvsmassa (gener). I denna flerstegsprocess krävs att 

flera av cellens kontrollmekanismer sätts ur spel vilket slutligen leder till 

okontrollerad cellväxt – en tumör bildas. Trots att många studier har genomförts 

i syfte att kartlägga de genetiska förändringar som orsakar blåscancer så är 

kunskapen fortfarande relativt begränsad. Att vidare utforska varför tumörerna 

uppstår och varför vissa tumörer utvecklas snabbare och mer aggressivt än 

andra är därför av stor betydelse. 

Vi har i våra studier använt oss av så kallad microarray-teknologi. 

Microarray är en teknik som studerar uttrycksnivåerna av tusentals gener för 
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varje tumörprov. Man kan således med denna teknik få en övergripande bild av 

vilka gensystem som är påverkade i blåscancer. Vår övergripande målsättning 

var att med denna metod utforska de genetiska mekanismer som ligger bakom 

blåscancers uppkomst samt vilka förändringar som sker vid tumörutveckling 

från ytlig till muskelinvasiv cancer. Identifiering av sådana förändringar kan 

både ge förklaring till det spridda sjukdomsförloppet som observeras hos 

patienter och dessutom ge möjlighet till ny diagnostik, d v s en möjlighet att 

identifiera de patienter som har större risk för aggressiv sjukdom. 

Till grund för denna avhandling ligger fyra delarbeten. I de två första 

arbetena (Artikel I och II) studerades genuttrycket i tumörprov från totalt 163 

patienter. Vi kunde identifiera ett antal genetiska förändringar som skiljer de 

mer godartade från de mer aggressiva tumörformerna. Resultat från tidigare 

studier har antytt att två specifika gener, FGFR3 och TP53, kan vara av 

betydelse får uppkomst av blåscancer. Av dessa så verkar genen FGFR3 vara 

viktig för uppkomst av ytliga tumörer och genen TP53 för uppkomst av 

muskelinvasiva tumörer. I våra studier fann vi ytterligare bevis för betydelsen 

av dessa gener. I Artikel I identifierade vi även en grupp av gener med betydelse 

för tumöråterfall. Som tidigare nämnts så har patienter diagnostiserade med 

muskelinvasiv sjukdom mycket dålig prognos. Vi undersökte därför specifikt 

denna patientgrupp och fann ett antal gener som vars förändrade uttryck kunde 

förutsäga överlevnad hos patienter (Artikel II). Denna kunskap innebär att man 

tidigt kan identifiera aggressiv tumörväxt och på så sätt urskilja de patienter 

med sämst prognos och som skulle dra nytta av en mer intensiv behandling. 

Som tidigare nämnts så är tumöråterfall vanligt bland 

blåscancerpatienter. I Artikel III studerade vi därför förhållandet mellan 

återfallstumörer inom samma patient. Våra resultat gav ytterligare stöd till 

tidigare framförda teorier om hur en tumör sprids och ger upphov till återfall. 

Studien visade bland annat att alla tumörer hos en och samma patient uppvisar 

snarlika genuttrycksförändringar. Detta tyder på att tumörerna är besläktade 
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med varandra och att de har utvecklas från en och samma genetiska förändrade 

ursprungscell.

Ett vanligt sätt att aktivera gener som bidrar till tumörutveckling är 

kopietalsförökning. Denna relativa förökning av en gens kopietal kan leda till 

ökat genuttryck och således ökad genaktivitet. I Artikel IV studerade vi sådana 

förändringar i tumörer från 38 patienter med blåcancer. Vi kunde visa att 

kopietalsökning av gener som CDKAL1, E2F3, SOX4, YWHAQ och YWHAZ,

leder till förhöjt genuttryck och därför kan vara av betydelse för utveckling av 

aggressiv cancer.  

 Sammanfattningsvis så har våra studier av blåscancer bidragit med 

värdefull information om vilka genetiska system som är förändrade i blåscancer 

och hur blåscancer utvecklas. Vi har dessutom kunnat koppla ett antal 

förändringar till specifika undergrupper av tumörer, information som kan vara 

av betydelse för framtida molekylär diagnostik eller behandlingsformer. 
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