Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Development of Nanoimprint Lithography for Applications in Electronics, Photonics and Life-sciences

Carlberg, Patrick LU (2007)
Abstract
This thesis describes different aspects of nanotechnology manufacturing with nanoimprint lithography (NIL), a relatively new nanofabrication tool capable of high resolution and high throughput. Surface structure creation with NIL is based on mechanical deformation of the patterning material. This is radically different from the two main established methods, ultra violet lithography (UVL) and electron beam lithography (EBL), which rely on chemical modification of the patterning media. The thesis is divided into two main parts, the first of which discusses process related issues and the second describes applications.



Thus the initial discussion concerns production of stamps, perhaps the most important part of a working... (More)
This thesis describes different aspects of nanotechnology manufacturing with nanoimprint lithography (NIL), a relatively new nanofabrication tool capable of high resolution and high throughput. Surface structure creation with NIL is based on mechanical deformation of the patterning material. This is radically different from the two main established methods, ultra violet lithography (UVL) and electron beam lithography (EBL), which rely on chemical modification of the patterning media. The thesis is divided into two main parts, the first of which discusses process related issues and the second describes applications.



Thus the initial discussion concerns production of stamps, perhaps the most important part of a working imprint technology. Aspects such as choice of materials, patterning methods, implications of structure layout and anti-sticking that have been used or developed in my work are described. The chapter on process outlines details concerning imprint related issues for different substrate materials and polymers and how these impact imprint parameters.



The chapters on applications give a short introduction to each of them, and cover life-science, sensors, electronic devices and material research. However, the emphasis is on imprint related issues of the work, since this was my part of the projects. In the biological applications it is shown that nanoimprint patterned polymers are biocompatible and can be used to guide axon growth or create directional movement of motor proteins. In the following chapter imprint and a lift-off process is used to make interdigitated array electrodes for electrochemistry and cantilever sensors. It is shown that NIL can pattern both large area structures (contact pads) and nanometer structures in one single-step process. The electronic devices are made in III-V material and imprint is used to create an etch mask for a wet etch process. We show that the imprinted structures have properties similar to those made by EBL and thus that the electronic properties are not affected by the high pressure and temperature of the imprint process. In the last chapter we show using nanoimprint and a lift-off process that imprint can be used to position metal particles on a surface, which in turn may function as catalytic particles for growing nanowires. (Less)
Abstract (Swedish)
Popular Abstract in Swedish

I denna avhandling diskuteras olika aspekter av tillverkning av nanostrukturer med nanoimprint litografi (NIL). Detta är en relativt ny metod som möjliggör snabb tillverkning av högupplösta strukturer på stora ytor. För att skapa dessa strukturer med NIL använder man sig av mekanisk deformation av mönstringsmaterialet. Detta skiljer sig från de mer etablerade mönstringsmetoderna, ultravioletlitografi och elektronstrålelitografi (EBL), som utför en kemisk modifikation i de intressanta områdena. Avhandlingen består av två delar, varav den första behandlar rena tillverkningsaspekter och den andra, tillämpningar av nanoimprint.



Vid tillverkning med nanoimprintlitografi är den... (More)
Popular Abstract in Swedish

I denna avhandling diskuteras olika aspekter av tillverkning av nanostrukturer med nanoimprint litografi (NIL). Detta är en relativt ny metod som möjliggör snabb tillverkning av högupplösta strukturer på stora ytor. För att skapa dessa strukturer med NIL använder man sig av mekanisk deformation av mönstringsmaterialet. Detta skiljer sig från de mer etablerade mönstringsmetoderna, ultravioletlitografi och elektronstrålelitografi (EBL), som utför en kemisk modifikation i de intressanta områdena. Avhandlingen består av två delar, varav den första behandlar rena tillverkningsaspekter och den andra, tillämpningar av nanoimprint.



Vid tillverkning med nanoimprintlitografi är den (kanske) viktigaste komponenten en fungerande stamp. I avhandlingen diskuteras de material, de mönstringsmetoder samt den layout av mönster och anti-sticking som jag har använt, vid tillverkning av stampar, i mitt avhandlingsarbete. Vidare tas imprintrelaterade aspekter av substratmaterial, polymerer och imprint parametrar upp i efterföljande kapitel.



Jag har i mitt avhandlingsarbete använt nanoimprint för sex olika tillämpningar som täcker biologiska applikationer, sensorer, elektroniska komponenter och materialvetenskap. Varje tillämpningar beskrivs kortfattat men tyngdpunkten ligger, även i denna del, på imprintrelaterade aspekter, eftersom det var detta som var min del i respektive projekt. De biologiska applikationerna inleds med en beskrivning av guidning av nervceller med ytstrukturer. Efter det diskuteras hur man med hjälp av nanoimprintade mönster kan få en riktad rörelse av motorproteinparet actin/myosin. Man kan konstatera att nanoimprintade ytor är biokompatibla. För tillverkning av sensorer har NIL och en lift-off process använts. Den första sensorn bygger på interdigitaliserade fingerelektroder och används i elektrokemiska mätningar. Den andra består av frihängande interdigitaliserade cantilevrar och skulle potentiellt kunna användas som en massensor. Den viktigaste imprintaspekten är lift-off resultatet med både stora och små strukturer. Elektroniska komponenter i III-V material har tillverkats med NIL mönstrade etsmasker. Mätresultaten visar att komponenter tillverkade med EBL och med NIL har samma elektriska egenskaper. Detta betyder att de höga tryck och temperaturer som substraten utsätts för, i nanoimprintprocessen, inte ändrar deras elektriska egenskaper. Avslutningsvis beskrivs användningen av NIL och en lift-off process för att positionera guldpartiklar på en yta som sedan kan användas som katalysatorer för att växa nanotrådar. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor Pang, Stella, University of Michigan, Ann Arbor, USA
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Mikroelektronik, Microelectronics, Teknik, ballistic, Technological sciences, Fysik, Physics, nanowire, TBJ, cantilever, IDA electrode, sensors, life-science, lift-off, patterning media, anti-sticking, mold, stamp, process development, thermal imprint, nanoimprint lithography, Biotechnology, Bioteknik, nanotechnology, polymer, nanostructure
pages
155 pages
publisher
Solid State Physics, Lund University
defense location
Sal B, Fysiska institutionen Sölvegatan 14 223 62 Lund
defense date
2007-01-26 13:15:00
ISBN
91-628-7049-1
language
English
LU publication?
yes
id
5279ffad-6bfa-4b77-9d5f-da6d793aabff (old id 547811)
date added to LUP
2016-04-04 12:10:42
date last changed
2018-11-21 21:09:26
@phdthesis{5279ffad-6bfa-4b77-9d5f-da6d793aabff,
  abstract     = {{This thesis describes different aspects of nanotechnology manufacturing with nanoimprint lithography (NIL), a relatively new nanofabrication tool capable of high resolution and high throughput. Surface structure creation with NIL is based on mechanical deformation of the patterning material. This is radically different from the two main established methods, ultra violet lithography (UVL) and electron beam lithography (EBL), which rely on chemical modification of the patterning media. The thesis is divided into two main parts, the first of which discusses process related issues and the second describes applications.<br/><br>
<br/><br>
Thus the initial discussion concerns production of stamps, perhaps the most important part of a working imprint technology. Aspects such as choice of materials, patterning methods, implications of structure layout and anti-sticking that have been used or developed in my work are described. The chapter on process outlines details concerning imprint related issues for different substrate materials and polymers and how these impact imprint parameters.<br/><br>
<br/><br>
The chapters on applications give a short introduction to each of them, and cover life-science, sensors, electronic devices and material research. However, the emphasis is on imprint related issues of the work, since this was my part of the projects. In the biological applications it is shown that nanoimprint patterned polymers are biocompatible and can be used to guide axon growth or create directional movement of motor proteins. In the following chapter imprint and a lift-off process is used to make interdigitated array electrodes for electrochemistry and cantilever sensors. It is shown that NIL can pattern both large area structures (contact pads) and nanometer structures in one single-step process. The electronic devices are made in III-V material and imprint is used to create an etch mask for a wet etch process. We show that the imprinted structures have properties similar to those made by EBL and thus that the electronic properties are not affected by the high pressure and temperature of the imprint process. In the last chapter we show using nanoimprint and a lift-off process that imprint can be used to position metal particles on a surface, which in turn may function as catalytic particles for growing nanowires.}},
  author       = {{Carlberg, Patrick}},
  isbn         = {{91-628-7049-1}},
  keywords     = {{Mikroelektronik; Microelectronics; Teknik; ballistic; Technological sciences; Fysik; Physics; nanowire; TBJ; cantilever; IDA electrode; sensors; life-science; lift-off; patterning media; anti-sticking; mold; stamp; process development; thermal imprint; nanoimprint lithography; Biotechnology; Bioteknik; nanotechnology; polymer; nanostructure}},
  language     = {{eng}},
  publisher    = {{Solid State Physics, Lund University}},
  school       = {{Lund University}},
  title        = {{Development of Nanoimprint Lithography for Applications in Electronics, Photonics and Life-sciences}},
  year         = {{2007}},
}