Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry

Daher, Firas Bou ; Chen, Yuanjie ; Bozorg, Behruz LU ; Clough, Jack ; Jönsson, Henrik LU and Braybrook, Siobhan A. (2018) In eLife 7.
Abstract

Fast directional growth is a necessity for the young seedling; after germination, it needs to quickly penetrate the soil to begin its autotrophic life. In most dicot plants, this rapid escape is due to the anisotropic elongation of the hypocotyl, the columnar organ between the root and the shoot meristems. Anisotropic growth is common in plant organs and is canonically attributed to cell wall anisotropy produced by oriented cellulose fibers. Recently, a mechanism based on asymmetric pectin-based cell wall elasticity has been proposed. Here we present a harmonizing model for anisotropic growth control in the dark-grown Arabidopsis thaliana hypocotyl: basic anisotropic information is provided by cellulose orientation) and additive... (More)

Fast directional growth is a necessity for the young seedling; after germination, it needs to quickly penetrate the soil to begin its autotrophic life. In most dicot plants, this rapid escape is due to the anisotropic elongation of the hypocotyl, the columnar organ between the root and the shoot meristems. Anisotropic growth is common in plant organs and is canonically attributed to cell wall anisotropy produced by oriented cellulose fibers. Recently, a mechanism based on asymmetric pectin-based cell wall elasticity has been proposed. Here we present a harmonizing model for anisotropic growth control in the dark-grown Arabidopsis thaliana hypocotyl: basic anisotropic information is provided by cellulose orientation) and additive anisotropic information is provided by pectin-based elastic asymmetry in the epidermis. We quantitatively show that hypocotyl elongation is anisotropic starting at germination. We present experimental evidence for pectin biochemical differences and wall mechanics providing important growth regulation in the hypocotyl. Lastly, our in silico modelling experiments indicate an additive collaboration between pectin biochemistry and cellulose orientation in promoting anisotropic growth.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
eLife
volume
7
article number
e38161
publisher
eLife Sciences Publications
external identifiers
  • scopus:85058433303
ISSN
2050-084X
DOI
10.7554/eLife.38161
language
English
LU publication?
yes
id
57299dcf-57f1-4331-ae51-f0a37012e6e9
date added to LUP
2019-01-04 14:21:45
date last changed
2022-12-15 06:24:35
@article{57299dcf-57f1-4331-ae51-f0a37012e6e9,
  abstract     = {{<p>Fast directional growth is a necessity for the young seedling; after germination, it needs to quickly penetrate the soil to begin its autotrophic life. In most dicot plants, this rapid escape is due to the anisotropic elongation of the hypocotyl, the columnar organ between the root and the shoot meristems. Anisotropic growth is common in plant organs and is canonically attributed to cell wall anisotropy produced by oriented cellulose fibers. Recently, a mechanism based on asymmetric pectin-based cell wall elasticity has been proposed. Here we present a harmonizing model for anisotropic growth control in the dark-grown Arabidopsis thaliana hypocotyl: basic anisotropic information is provided by cellulose orientation) and additive anisotropic information is provided by pectin-based elastic asymmetry in the epidermis. We quantitatively show that hypocotyl elongation is anisotropic starting at germination. We present experimental evidence for pectin biochemical differences and wall mechanics providing important growth regulation in the hypocotyl. Lastly, our in silico modelling experiments indicate an additive collaboration between pectin biochemistry and cellulose orientation in promoting anisotropic growth.</p>}},
  author       = {{Daher, Firas Bou and Chen, Yuanjie and Bozorg, Behruz and Clough, Jack and Jönsson, Henrik and Braybrook, Siobhan A.}},
  issn         = {{2050-084X}},
  language     = {{eng}},
  publisher    = {{eLife Sciences Publications}},
  series       = {{eLife}},
  title        = {{Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry}},
  url          = {{http://dx.doi.org/10.7554/eLife.38161}},
  doi          = {{10.7554/eLife.38161}},
  volume       = {{7}},
  year         = {{2018}},
}