
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Aspects on ADM1 Implementation within the BSM2 Framework

Rosén, Christian; Jeppsson, Ulf

2005

Link to publication

Citation for published version (APA):
Rosén, C., & Jeppsson, U. (2005). Aspects on ADM1 Implementation within the BSM2 Framework. (TEIE; Vol.
7224). Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology.
http://www.iea.lth.se/publications/Reports/LTH-IEA-7224.pdf

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ae051f12-f038-47d4-9873-1eacad310c27
http://www.iea.lth.se/publications/Reports/LTH-IEA-7224.pdf

CODEN:LUTEDX/(TEIE-7224)/1-35/(2006)

Aspects on ADM1 Implementation
within the BSM2 Framework

Christian Rosén and Ulf Jeppsson

Dept. of Industrial Electrical Engineering and Automation
Lund University

Aspects on ADM1 implementation within the BSM2 framework

Christian Rosen and Ulf Jeppsson
Department of Industrial Electrical Engineering and Automation

Lund University, Box 118, SE-221 00 Lund, Sweden
christian.rosen@iea.lth.se, ulf.jeppsson@iea.lth.se

28th November 2006

1 Introduction
The current work of developing a control simulation benchmark goes back to the work carried out within the COST
Action 682 (“Integrated Wastewater Management”) and the IAWQ Task Group on Respirometry-Based control of the
Activated Sludge Process in the late 90s. The work was continued in COST Action 624 until 2003 (Copp 2002). In
2005, the IWA Task Group on Benchmarking of Control Strategies for Wastewater Treatment Plants (BSM TG) was
initiated and is now responsible for the continued development of the benchmark work.

This report describes the development of the Lund implementation of the Anaerobic Digester Model No 1 (ADM1).
The aim of the report is to give an insight and rationale for the various changes and extensions made to the original
model as reported in Batstone et al. (2002). Since the ADM1 was developed for general modelling of anaerobic
digestion, opposed to for instance the ASM models, which were specifically developed for wastewater treatment,
Batstone et al. (2002) leave some choices to the model implementor and this report will discuss how these choices
were made in order to make this specific implementation as suitable for wastewater treatment sludge digestion as
possible. The implementation was initiated by the inclusion of the sludge treatment in the IWA benchmark simulation
model (BSM) to form a plant-wide or "within-the-fence" model.

2 The IWA benchmark simulation models

2.1 BSM1
The COST benchmark was originally defined as “a protocol to obtain a measure of performance of control strategies
for activated sludge plants based on numerical, realistic simulations of the controlled plant”. It was decided that the
official plant layout would be aimed at carbon and nitrogen removal in a series of activated sludge reactors followed
by a secondary settling tank, as this is perhaps the most common layout for full-scale WWT plants today. The selected
model description for the biological processes was the recognised Activated Sludge Model no. 1, ASM1 (Henze et
al. 2000), and the chosen settler model was a one-dimensional 10-layer model together with the double-exponential
settling velocity model (Takacs et al. 1991).

To allow for uniform testing and evaluation three dynamic input data files have been developed, each representing
different weather conditions (dry, rain and storm events) with realistic variations of the influent flow rate and com-
position. These files can be downloaded from the BSM TG website and have been widely used by various research
groups also for other purposes than actual benchmarking. To represent a true challenge for on-line control strategies,
the simulated plant is a high-loaded plant with significant influent variations.

In order to apply different control strategies a number of control handles (i.e. actuators) and measurement signals
(i.e. sensors) must be available. A high degree of flexibility is required so that the implementation and evaluation
of an innovative strategy is not limited. The default benchmark control strategy only use two measurement signals
(dissolved oxygen and nitrate concentrations) and two control handles (air flow rate and internal recirculation flow
rate). However, the benchmark simulation model allows for approximately 30 different control handles (different
types of step-feed and step-recycling, external carbon source addition, etc.) and a wide variety of sensors. At this
stage of development, all actuators are assumed to behave ideally whereas the sensors are divided into different classes

1

depending on their characteristics (delay, noise, detection limit, etc.). Consequently, just about every conceivable
real-time control strategy for activated sludge systems can be implemented within the framework of the benchmark.

A general set of criteria has been defined within the benchmark description to assess the overall performance of
the applied control strategy. Two system performance levels exist: (1) process performance and (2) control loop
performance. The first level of assessment quantifies the effect of the control strategy on the plant in terms of an
effluent quality index, effluent violations (related to defined limits for the plant) and operational costs (energy for
pumping and aeration as well as sludge production). The second level of assessment quantifies the effect of the control
strategy on controller performance by means of different statistical criteria on the controlled and manipulated variables.
This more detailed analysis makes it possible to estimate the effect of a control strategy in terms of wear and tear of
actuators, controller robustness, disturbance attenuation, etc.

All details of the current benchmark are available at the IWA TG website and also as a publication (Copp 2002). A
substantial effort has gone into verifying the steady state and dynamic output data included in the description. Cross-
platform checking of the benchmark has successfully demonstrated its use on a number of commercially available
simulation software tools. The benchmark manual (Copp 2002) summarises the various tested implementations with
helpful hints for new “benchmarkers”. The complete manual can also be downloaded from the website. So far, results
have been verified using BioWin™, EFOR™, GPS-X™, MATLAB/SIMULINK™, SIMBA®, STOAT™, WEST®,
JASS and a user defined FORTRAN code.

2.2 BSM2
Although a valuable tool, the basic BSM1 does not allow for evaluation of control strategies on a plant-wide basis.
BSM1 includes only an activated sludge system and a secondary clarifier. Consequently, only local control strategies
can be evaluated. During the last decade the importance of integrated and plant-wide control has been stressed by
the research community and the wastewater industry is starting to realise the benefits of such an approach. A WWTP
should be considered as a unit, where primary and secondary clarification units, activated sludge reactors, anaerobic
digesters, thickeners, dewatering systems, etc. are linked together and need to be operated and controlled not only
on a local level as individual processes but by supervisory systems taking into account all the interactions between
the processes. Otherwise, sub-optimisation will be an unavoidable outcome leading to reduced effluent quality and/or
higher operational costs.

It is the intent of the proposed extended benchmark system, BSM2, to take the issues stated above into account.
Consequently, wastewater pre-treatment and the sludge train of the WWTP are included in the BSM2. To allow for
more thorough evaluation and additional control handles operating on longer time-scales, the benchmark evaluation
period is extended to one year (compared to one week in BSM1). The slow dynamics of anaerobic digestion processes
also necessitates a pro-longed evaluation period. With this extended evaluation period, it is reasonable to include sea-
sonal effects on the WWTP in terms of temperature variations. The data files describing the BSM1 influent wastewater
(dry, storm and rain weather data) have been used extensively by researchers. However, for the extended benchmark
system a phenomenological mathematical model has been developed for raw wastewater and storm water generation,
including urban drainage and sewer system effects (Gernaey et al. 2005, Gernaey et al. 2006). Additionally, inter-
mittent loads reaching the plant by other means of transportation (e.g. trucks) may be included. A more detailed
description of the BSM2 is given in Jeppsson et al. (2006).

2

3 ADM1 ODE implementation
In this section, the ordinary differential equation (ODE) model implementation reported in earlier versions of this
document is presented.

3.1 Introduction
The ADM1 implementation in Matlab/Simulink deviates somewhat from the model description in Batstone et al.
(2002). There are mainly three reasons for this. Firstly, the ADM1 is implemented so that it is consistent with the
BSM2. Secondly, the computational requirements must be regarded. Thirdly, no explicit values are given in Batstone
et al. (2002) with regard to carbon and nitrogen contents of some state variables. As the BSM TG had access to the
“official” ADM1 implementation in Aquasim, which was developed by the ADM TG during their development of the
model, the unknown parameter values were first chosen in accordance with the suggestions given there.

3.1.1 Mass balances

To maintain complete mass balances for all model components (COD, N, etc.) is a fundamental issue of any model.
ASM1 only assures mass balances on a COD basis (as not all nitrogen components are included) whereas ASM2d
maintains balances of COD, N, P and charge. ASM3 adds theoretical oxygen demand as a conservation variable.
Based on Batstone et al. (2002), a few comments are required to avoid problems for anybody implementing the model.

The ADM1 includes a process referred to as disintegration, where a composite material (XC) is transformed into
various compounds (SI , Xch, Xpr, Xli and XI). Assuming one COD mass unit of XC completely disintegrating will
produce:

fsI,xcSI + fxI,xcXI + fch,xcXch + fpr,xcXpr + fli,xcXli = 0.1SI + 0.25XI + 0.2Xch + 0.2Xpr + 0.25Xli

A COD balance exists as long as the sum of all fi,xc = 1. However, the proposed nitrogen content of XC (Nxc) is
0.002 kmole N/kg COD. If we instead calculate the nitrogen content of the disintegration products (kmole N) using
parameter values from Batstone et al. (2002), we get:

NI0.1SI + NI0.25XI + Nch0.2Xch + Naa0.2Xpr + Nli0.25Xli = 0.0002 + 0.0005 + 0.0014 = 0.0021

(note that carbohydrates and lipids contain no nitrogen). This means that for every kg of COD that disintegrates 0.1
mole of N is created (5% more than was originally there). Obviously, the nitrogen contents and yields from composites
are highly variable and may need adjustment for every specific case study but the “default” parameter values should
naturally close the mass balances. In this paper, we suggest new values for fxI,xc = 0.2 and fli,xc = 0.3. For
the specific benchmark implementation we have also modified NI to 0.06/14 ≈ 0.00429 kmole N/kg COD to be
consistent with the ASM1 model, where inert particulate organic material is assumed to have a nitrogen content of 6
g N/g COD. Because of the latter modification Nxc is set to 0.0376/14 ≈ 0.00269 kmole N/kg COD to maintain the
nitrogen balance.

The ADM1 contains the state variables inorganic carbon and inorganic nitrogen. These may act as source or sink
terms to close mass balances. However, the provided stoichiometric matrix is not defined to take this into account. Let
us take an example: decay of biomass (processes no 13-19) produces an equal amount of composites on a COD basis.
However, the carbon content may certainly vary from biomass to composites resulting from decay. And what happens
to the excess nitrogen within the biomass? It is suggested in Batstone et al. (2002) that the nitrogen content of bacteria
(Nbac) is 0.00625 kmole N/kg COD, which is three times higher than the suggested value for Nxc. In such a case, it
is logical to add a stoichiometric term (Nbac −Nxc) into the Petersen matrix, which will keep track of the fate of the
excess nitrogen. The same principle holds for carbon during biomass decay, i.e. (Cbac −Cxc). A similar modification
of the stoichiometric matrix should be done for the inorganic carbon for the processes “uptake of LCFA, valerate and
butyrate” as well as for the disintegration and hydrolysis processes (both carbon and nitrogen).

The recommendation is to include stoichiometric relationships for all 19 processes regarding inorganic carbon and
inorganic nitrogen. Basically all the required information is already given by Batstone et al. (2002). In many cases
the expressions will be zero (depending on the selected values of the stoichiometric parameters) but there will be
a guarantee that the mass balances are closed and the conservation law fulfilled at all times for COD, carbon and
nitrogen. Moreover, such an approach makes model verification (finding coding errors in an implementation) much
easier.

3

Using the proposed values of carbon content in the original ADM1 implementation it is stated that the carbon
content of XC is equal to 0.03 kmole C/kg COD. However, if we examine the carbon contents of the products arising
from disintegration of composite material (based on the new fractionation parameters defined above) we get:

0.03 · 0.1 · SI + 0.03 · 0.2 ·XI + 0.0313 · 0.2 ·Xch + 0.03 · 0.2 ·Xpr + 0.022 · 0.3 ·Xli = 0.02786 kmoleC/kgCOD

If the original fractionation of composite material is used (i.e. fxI,xc = 0.25 and fli,xc = 0.25) we get a carbon content
of the disintegrated products equal to 0.02826 kmole C/kg COD. In both cases, it is obvious that a significant amount
of carbon “disappears” as a result of disintegration (6-7%). If the model is updated by adding the stoichiometric
relationships to guarantee mass balances of carbon and nitrogen (described above) this disappearing carbon will end
up as inorganic carbon and eventually it with lead to production of carbon dioxide in the gas phase. If the model is
not updated as discussed above then 6-7% of the carbon content of composite material will simply be removed and
the carbon mass balance will not hold. Moreover, as this extra carbon eventually ends up as carbon dioxide in the
gas phase the original ADM1 model shows a tendency to produce a somewhat high percentage of CO2 (32-35%) and
somewhat low percentage of CH4 (55-58%) in the produced gas using a reasonable sludge input. Note that the mass
of produced CH4 is still reasonable as this carbon unbalance leads to higher gas flow rate.

To avoid this problem it is suggested to use a value of 0.02786 kmole C/kg COD to describe the carbon content of
composite material in the benchmark implementation. For reasonable sludge inputs this modification will normally
lead to a production of 60-65% methane in the gas phase.

3.1.2 Acid-base equations

The acid-base equilibrium equations play an important role in ADM1 (e.g. for pH calculations). For persons primarily
familiar with AS models these equations may create a problem as they do not normally appear in those. Moreover,
(Batstone et al. 2002) focuses more on how the implementation should be done by implicit algebraic equations and is
not completely clear on the ODE implementation. The general model matrix describes the transformations of valerate
(Sva,total), butyrate, propionate, acetate, inorganic carbon and inorganic nitrogen. However, all these substances are
made up by acid-base pairs (e.g. Sva,total = Sva− + Shva). It is suggested in Batstone et al. (2002) (Table B.4) that
when using ODEs, the equations are defined for each acid and base, respectively. Based on our experiences it is more
advantageous to implement the ODEs based on the total and one of the acid-base components instead. The remaining
part can always be calculated as the total minus the calculated part. This approach actually makes the model more
understandable also in other respects and due to numerical issues (we are subtracting very small and similar sized
numbers) the error of calculated outputs are much closer to the solution a differential-algebraic equation (DAE) set-up
would provide (when using a numerical solver with the same tolerance to integrate the ODEs). Using valerate as an
example, the process rate (A4) in (Batstone et al. 2002) is:

KA,Bva(Sva−SH+ −Ka,vaShva)

and herein we replace Shva by Sva,total − Sva− and get

KA,Bva(Sva−(Ka,va + SH+)−Ka,vaSva)

and, consequently, change the stoichiometry since Sva is not affected when the equilibrium ofSva− is changing. If
using the suggested implicit solver to calculate the pH (or S+

H) at every integration step (see below) then the above
problem will no longer be an issue.

The choice of a ODE or DAE system for modelling the pH should not affect the overall results of the model. The
DAE can be said to be a approximation of the ODE since, naturally, the pH dynamics are not instantaneous. However,
it is very common to model the dynamics as a DAE system in biochemical/chemical engineering. Thus, we need to
find the rate coefficients kA,Bi in such a way that the ODE produces the same results as the DAE. In Batstone et al.
(2002), it is recommended that the coefficients should be chosen so that they are at least one order of magnitude faster
(larger) than the fastest time constant of the remaining system and the value 1e8 M-1 d-1 is recommended. However,
this is not sufficient. For the ODE to yield identical results, the rate coefficients need to be larger and a value of 1e10
M-1 d-1 is more appropriate. This will be illustrated in the results section of this report.

3.1.3 Temperature dependencies

In order to better allow for reasonable results for different temperatures within the digester, the benchmark ADM1
implementation now uses the complete information as stated in the ADM1 STR with regard to temperature dependency

4

of several physiochemical parameters (see the table for physiochemical parameters). This means that a model user can
work with different temperatures when investigation the system without having to recalculate these parameters. The
parameters that are now considered to be functions of temperature are:

Kw, Ka,co2, Ka,IN , KH,co2, KH,ch4, KH,h2 and pgas,h2o (i.e. water vapour saturation pressure)

The Ka values for the organic acids are not assumed to vary within the selected temperature range (0 - 60 °C) and
are assumed to be contants (see also Batstone et al. (2002), p. 39). For an even better temperature dependency of the
AD model many of the biochemical parameter values would also need to be described as functions of temperature.
Discussions between the ADM1 TG and the BSM TG on this topic are ongoing.

3.2 Model equations
3.2.1 Process rates

Biochemical process rates

ρ1 = kdis ·Xc

ρ2 = khyd,ch ·Xch

ρ3 = khyd,pr ·Xpr

ρ4 = khyd,li ·Xli

ρ5 = km,su · Ssu

KS,su + Ssu
·Xsu · I5

ρ6 = km,aa · Saa

KS,aa + Saa
·Xaa · I6

ρ7 = km,fa · Sfa

KS,fa + Sfa
·Xfa · I7

ρ8 = km,c4 · Sva

KS,c4 + Sva
·Xc4 · Sva

Sbu + Sva + 1e− 6
· I8

ρ9 = km,c4 · Sbu

KS,c4 + Sbu
·Xc4 · Sbu

Sva + Sbu + 1e− 6
· I9

ρ10 = km,pr · Spro

KS,pro + Spro
·Xpro · I10

ρ11 = km,ac · Sac

KS,ac + Sac
·Xac · I11

ρ12 = km,h2 · Sh2

KS,h2 + Sh2
·Xh2 · I12

ρ13 = kdec,Xsu ·Xsu

ρ14 = kdec,Xaa ·Xaa

ρ15 = kdec,Xfa ·Xfa

ρ16 = kdec,Xc4 ·Xc4

ρ17 = kdec,Xpro ·Xpro

ρ18 = kdec,Xac ·Xac

ρ19 = kdec,Xh2 ·Xh2

In the expressions for ρ8 and ρ9, a small constant (1e-6) has been added in order to avoid division by zero in the case
of poor choice of initial conditions for Sva and Sbu, respectively.

Acid-base rates:

ρA,4 = kA,Bva (Sva−(Ka,va + SH+)−Ka,vaSva)

5

ρA,5 = kA,Bbu (Sbu−(Ka,bu + SH+)−Ka,buSbu)
ρA,6 = kA,Bpro

(
Spro−(Ka,pro + SH+)−Ka,proSpro

)

ρA,7 = kA,Bac (Sac−(Ka,ac + SH+)−Ka,acSac)
ρA,10 = kA,Bco2 (Shco3−(Ka,co2 + SH+)−Ka,co2SIC)
ρA,11 = kA,BIN (Snh3(Ka,IN + SH+)−Ka,INSIN)

Gas transfer rates (note that Sco2 is used in the expression for ρT,10, not SIC):

ρT,8 = kLa (Sh2 − 16 ·KH,h2pgas,h2)
ρT,9 = kLa (Sch4 − 64 ·KH,ch4pgas,ch4)

ρT,10 = kLa (Sco2 −KH,co2pgas,co2)

3.2.2 Process inhibition

Inhibition:

I5,6 = IpH,aa · IIN,lim

I7 = IpH,aa · IIN,lim · Ih2,fa

I8,9 = IpH,aa · IIN,lim · Ih2,c4

I10 = IpH,aa · IIN,lim · Ih2,pro

I11 = IpH,ac · IIN,lim · Inh3

I12 = IpH,h2 · IIN,lim

IpH,aa =

exp

(
−3

(
pH−pHUL,aa

pHUL,aa−pHLL,aa

)2
)

: pH < pHUL,aa

1 : pH > pHUL,aa

IpH,ac =

exp

(
−3

(
pH−pHUL,ac

pHUL,ac−pHLL,ac

)2
)

: pH < pHUL,ac

1 : pH > pHUL,ac

IpH,h2 =

exp

(
−3

(
pH−pHUL,h2

pHUL,h2−pHLL,h2

)2
)

: pH < pHUL,h2

1 : pH > pHUL,h2

IIN,lim =
1

1 + KS,IN/SIN

Ih2,fa =
1

1 + Sh2/KI,h2,fa

Ih2,c4 =
1

1 + Sh2/KI,h2,c4

Ih2,pro =
1

1 + Sh2/KI,h2,pro

Inh3 =
1

1 + Snh3/KI,nh3

6

pH = −log10 (SH+)

Batstone et al. (2002) used switch functions to account for inhibition due to pH. These functions are, however,
discontinuous and in a stiff system, such a switch can favour numerical instabilities. To reduce this risk, a number of
alternative functions can be used to express the inhibition due to pH. Expressions based on hyperbolic tangents are
often used in chemical engineering:

IpH =
1
2

(1 + tan (aϕ)) (1)

with

ϕ =
pH − pHLL+pHUL

2
pHLL+pHUL

2

Values of a = 11 for IpH,aa and a = 22 for IpH,ac and IpH,h2, respectively, are appropriate to fit the function given
in Batstone et al. (2002). Another option is functions based on Hill functions:

IpH =
pHn

pHn + Kn
pH

(2)

with

KpH =
pHLL + pHUL

2

Siegrist et al. (2002) used a Hill inhibition function based on the hydrogen ion concentration instead. For the ADM1,
this would give the following expression:

IpH =
Kn

pH

Sn
H+ + Kn

pH

(3)

with

KpH = 10−
pHLL+pHUL

2

The appropriate values of n in the respective Hill functions are quite different. To fit the original function given in
Batstone et al. (2002), n = 24 for IpH,aa when the pH based Hill function is used and n = 2 for the hydrogen ion
based function. For IpH,ac and IpH,h2 the respective values of n are 45 and 3.

NOTE! For any practical purpose, the choice of function among the three
above is arbitrary but for BSM2 the hydrogen ion based function, i.e. Ex-
pression 3 above is chosen.

It should be noted that the appropriate values of n are dependent of the values of pHLL and pHUL. Therefore, if
these limits are to be changed, it may be wise to implement:

naa =
3.0

pHUL,aa − pHLL,aa

nac =
3.0

pHUL,ac − pHLL,ac

nh2 =
3.0

pHUL,h2 − pHLL,h2

for the hydrogen ion based function.

7

3.2.3 Water phase equations

Differential equations 1-4, soluble matter: State No.

dSsu

dt
=

qin

Vliq
(Ssu,in − Ssu) + ρ2 + (1− ffa,li) ρ4 − ρ5 (1)

dSaa

dt
=

qin

Vliq
(Saa,in − Saa) + ρ3 − ρ6 (2)

dSfa

dt
=

qin

Vliq
(Sfa,in − Sfa) + ffa,liρ4 − ρ7 (3)

dSva

dt
=

qin

Vliq
(Sva,in − Sva) + (1− Yaa) fva,aaρ6 − ρ8 (4)

Differential equations 5-8, soluble matter: State No.

dSbu

dt
=

qin

Vliq
(Sbu,in − Sbu) + (1− Ysu) fbu,suρ5 + (1− Yaa) fbu,aaρ6 − ρ9 (5)

dSpro

dt
=

qin

Vliq
(Spro,in − Spro) + (1− Ysu) fpro,suρ5 + (1− Yaa) fpro,aaρ6 + (1− Yc4) 0.54ρ8 − ρ10 (6)

dSac

dt
=

qin

Vliq
(Sac,in − Sac) + (1− Ysu) fac,suρ5 + (1− Yaa) fac,aaρ6 + (1− Yfa) 0.7ρ7 +

(1− Yc4) 0.31ρ8 + (1− Yc4) 0.8ρ9 + (1− Ypro) 0.57ρ10 − ρ11 (7)
dSh2

dt
=

qin

Vliq
(Sh2,in − Sh2) + (1− Ysu) fh2,suρ5 + (1− Yaa) fh2,aaρ6 + (1− Yfa) 0.3ρ7 +

(1− Yc4) 0.15ρ8 + (1− Yc4) 0.2ρ9 + (1− Ypro) 0.43ρ10 − ρ12 − ρT,8 (8)

Differential equations 9-12, soluble matter: State No.

dSch4

dt
=

qin

Vliq
(Sch4,in − Sch4) + (1− Yac) ρ11 + (1− Yh2) ρ12 − ρT,9 (9)

dSIC
∗

dt
=

qin

Vliq
(SIC,in − SIC)−

19∑

j=1

 ∑

i=1−9,11−24

Civi,jρj

− ρT,10 (10)

dSIN

dt
=

qin

Vliq
(SIN,in − SIN)− YsuNbacρ5 + (Naa − YaaNbac) ρ6 − YfaNbacρ7 − Yc4Nbacρ8 −

Yc4Nbacρ9 − YproNbacρ10 − YacNbacρ11 − Yh2Nbacρ12 + (Nbac −Nxc)
19∑

i=13

ρi +

(Nxc − fxI,xcNI − fsI,xcNI − fpr,xcNaa) ρ1 (11)
dSI

dt
=

qin

Vliq
(SI,in − SI) + fsI,xcρ1 (12)

∗ See next page for further explanation.

8

More specifically, the sum in Equation 10 is calculated as:

19∑

j=1

 ∑

i=1−9,11−24

Civi,jρj

 =

12∑

k=1

skρk + s13(ρ13 + ρ14 + ρ15 + ρ16 + ρ17 + ρ18 + ρ19)

where

s1 = −Cxc + fsI,xcCsI + fch,xcCch + fpr,xcCpr + fli,xcCli + fxI,xcCxI

s2 = −Cch + Csu

s3 = −Cpr + Caa

s4 = −Cli + (1− ffa,li)Csu + ffa,liCfa

s5 = −Csu + (1− Ysu)(fbu,suCbu + fpro,suCpro + fac,suCac) + YsuCbac

s6 = −Caa + (1− Yaa)(fva,aaCva + fbu,aaCbu + fpro,aaCpro + fac,aaCac) + YaaCbac

s7 = −Cfa + (1− Yfa) 0.7Cac + YfaCbac

s8 = −Cva + (1− Yc4) 0.54Cpro + (1− Yc4) 0.31Cac + Yc4Cbac

s9 = −Cbu + (1− Yc4) 0.8Cac + Yc4Cbac

s10 = −Cpro + (1− Ypro) 0.57Cac + YproCbac

s11 = −Cac + (1− Yac)Cch4 + YacCbac

s12 = (1− Yh2)Cch4 + Yh2Cbac

s13 = −Cbac + Cxc

Differential equations 13-16, particulate matter: State No.

dXc

dt
=

qin

Vliq
(Xc,in −Xc)− ρ1 +

19∑

i=13

ρi (13)

dXch

dt
=

qin

Vliq
(Xch,in −Xch) + fch,xcρ1 − ρ2 (14)

dXpr

dt
=

qin

Vliq
(Xpr,in −Xpr) + fpr,xcρ1 − ρ3 (15)

dXli

dt
=

qin

Vliq
(Xli,in −Xli) + fli,xcρ1 − ρ4 (16)

Differential equations 17-20, particulate matter: State No.

dXsu

dt
=

qin

Vliq
(Xsu,in −Xsu) + Ysuρ5 − ρ13 (17)

dXaa

dt
=

qin

Vliq
(Xaa,in −Xaa) + Yaaρ6 − ρ14 (18)

dXfa

dt
=

qin

Vliq
(Xfa,in −Xfa) + Yfaρ7 − ρ15 (19)

dXc4

dt
=

qin

Vliq
(Xc4,in −Xc4) + Yc4ρ8 + Yc4ρ9 − ρ16 (20)

Differential equations 21-24, particulate matter: State No.

dXpro

dt
=

qin

Vliq
(Xpro,in −Xpro) + Yproρ10 − ρ17 (21)

dXac

dt
=

qin

Vliq
(Xac,in −Xac) + Yacρ11 − ρ18 (22)

dXh2

dt
=

qin

Vliq
(Xh2,in −Xh2) + Yh2ρ12 − ρ19 (23)

9

dXI

dt
=

qin

Vliq
(XI,in −XI) + fxI,xcρ1 (24)

Differential equations 25-26, cations and anions: State No.

dScat+

dt
=

qin

Vliq

(
Scat+,in − Scat+

)
(25)

dSan−

dt
=

qin

Vliq

(
San−,in − San−

)
(26)

Differential equations 27-32, ion states: State No.

dSva−

dt
= −ρA,4 (27)

dSbu−

dt
= −ρA,5 (28)

dSpro−

dt
= −ρA,6 (29)

dSac−

dt
= −ρA,7 (30)

dShco3−

dt
= −ρA,10 (31)

dSnh3

dt
= −ρA,11 (32)

Algebraic equation:

SH+ = −Θ
2

+
1
2

√
Θ2 + 4KW

Θ = Scat+ + Snh4+ − Shco3− −
Sac−

64
− Spro−

112
− Sbu−

160
− Sva−

208
− San−

Snh4+ = SIN − Snh3

Sco2 = SIC − Shco3−

10

3.2.4 Gas phase equations

Differential equations: State No.

dSgas,h2

dt
= −Sgas,h2qgas

Vgas
+ ρT,8 · Vliq

Vgas
(33)

dSgas,ch4

dt
= −Sgas,ch4qgas

Vgas
+ ρT,9 · Vliq

Vgas
(34)

dSgas,co2

dt
= −Sgas,co2qgas

Vgas
+ ρT,10 · Vliq

Vgas
(35)

Algebraic equations:

pgas,h2 = Sgas,h2 · RTop

16

pgas,ch4 = Sgas,ch4 · RTop

64
pgas,co2 = Sgas,co2 ·RTop

qgas =
RTop

Patm − pgas,H2O
· Vliq

(ρT,8

16
+

ρT,9

64
+ ρT,10

)

A problem with this way of calculating the gas flow rate is that is may give rise to numerical problems in the solution
of the equations. Multiple steady states as well as numerical instability have been reported among users. An alternative
way of calculating the gas flow rate is also given in Batstone et al. (2002):

qgas = kp(Pgas − Patm)

with

Pgas = pgas,h2 + pgas,ch4 + pgas,co2 + pgas,h20

The alternative expression assumes an overpressure in the head space. Consequently, the flow rate is calculated at a
higher pressure compared to the first expression. To compensate for this, the expression needs to rewritten into

qgas = kp(Pgas − Patm) · Pgas

Patm

to obtain the flow rate at atmospheric pressure. Although this compensation factor is included, the two expressions will
not yield identical results. Depending on the operational overpressure, which is a function of the value of parameter
kp (related to the friction in the gas outlet), the alternative expression results in a slightly smaller flow rate. The reason
for this is that the liquid-gas transfer rates (ρT,8, ρT,9, ρT,10) will be different. A comparison of the two expressions
when the same overpressure is applied shows very similar results (the relative error in the range of 1e-5).

NOTE! For BSM2 the alternative way (assuming an overpressure in the
head space) of calculating the gas flow rate is used.

11

4 ADM1 DAE implementation
It has been realised that the ODE implementation may be problematic for use in the BSM2 framework. Therefore,
2 DAE versions have been developed (Rosen et al. 2006). In this section, the differential algebraic equation model
implementation of ADM1 is presented. Two different DAE models are discussed: a model with algebraic pH (SH+)
calculations (DAEpH) and a model with algebraic pH and Sh2 calculations (DAEpH,Sh2). The second model imple-
mentation is motivated by the stiffness problem of the ODE and DAEpH implementations.

4.1 Introduction
The fact that the Matlab/Simulink implementation discussed in this work aims at an integrated part of the BSM2 puts
some requirements on the way the ADM1 is implemented. The model must be able to handle dynamic inputs, time-
discrete and event-driven control actions as well as stochastic inputs or noise and still be sufficiently efficient and fast
to allow for extensive simulations.

4.1.1 Dynamic inputs

BSM2 aims at developing and evaluating control strategies for wastewater treatment. The challenge to control a
WWTP lies mainly in the changing influent wastewater characteristics. The generation of dynamic input is, thus, an
integrated part of the BSM2. This means that, except in order to obtain initial conditions, BSM2 is always simulated
using dynamic input and, consequently, no plant unit is ever at steady state. According to the BSM2 protocol, using
dynamic influent data, the plant is simulated for 63 days to reach a pseudo steady state. This is followed by 182 days
of simulation for initialisation of control and/or monitoring algorithms. The subsequent 364 days of simulation is the
actual evaluation period. In total, this encompasses 609 days of dynamic simulations with new data every 15 minutes
(Gernaey et al. 2005).

4.1.2 Control actions

The BSM2 is a control benchmark. It should, thus, be possible to test and evaluate various types of controllers
(Jeppsson et al. 2006). From a numerical point of view, continuous controllers yield the least computational effort.
However, discrete controllers are more common and many of the commercially available sensors are also discrete.
Moreover, some control actions can be event driven when applying rule-based control (e.g. if-then-else rules). In-
troducing discrete controllers and sensors as well as event-driven control in the model results in a so-called hybrid
system.

4.1.3 Noise sources

To obtain realistic and useful evaluation results from an investigation of a control strategy, the strategy must be sub-
jected to various types of errors and disturbances encountered in real operation. One of the most important sources of
errors is sensor noise and delays. Realistic sensor model behaviour requires the dynamic properties and disturbance
sources to be represented. This typically includes modelling of noise and time response and, if not a continuous sensor,
the sampling and measuring interval (Rieger et al. 2003). Noise generation must be done individually for each sensor
in the system so that it is uncorrelated.

4.1.4 Simulating stiff systems in Matlab/Simulink

A system is called stiff, when the range of the time constants is large. This means that some of the system states react
quickly whereas some react sluggishly. The ADM1 is a very stiff system with time constants ranging from fractions
of a second to months. This makes the simulation of such a system challenging and in order to avoid excessively long
simulation times, one needs to be somewhat creative when implementing the model.

Some of the solvers in Matlab/Simulink are so called stiff solvers and, consequently, capable of solving stiff systems.
However, a problem common to all stiff solvers is the difficulty to handle dynamic input - including noise. The more
stochastic or random an input variable behaves, the more problematic is the simulation using a stiff solver. The reason
for this is that in stiff solvers, predictions of future state values are carried out. However, predictions of future state
values affected by stochastic inputs will result in poor results, slowing down the solver by limiting its ability to use

12

long integration steps. Simulation of the BSM2 is, thus, subject to the following dilemma. BSM2, which includes
ASM1 and ADM1 models, is a very stiff system and, consequently, a stiff solver should be used. However, since
BSM2 is a control simulation benchmark, noise must be included, calling for an explicit (i.e. non-stiff) solver.

4.1.5 ODE and DAE systems

When the states of a system are described only by ordinary differential equations, the system is said to be an ODE
system. If the system is stiff, it is sometimes possible to rewrite some of the system equations in order to omit the
fastest states. The rationale for this is that from the slower state’s point of view, the fast states can be considered
instantaneous and possible to describe by algebraic equations. Such systems are normally referred to as differential
algebraic equation (DAE) systems. By rewriting an ODE system to a DAE system, the stiffness can be decreased,
allowing for explicit solvers to be used and for stochastic elements to be incorporated. The drawback is that the DAE
system is only an approximation of the original system and the effect of this approximation must be considered and
investigated for each specific simulation model.

4.1.6 Time constants in ADM1

As mentioned before, the ADM1 includes time constants in a wide range; from milliseconds for pH to weeks or
months for the states describing various fractions of active biomass. Since most control actions affecting the anaerobic
digester are fairly slow, it makes sense to investigate which fast states can be approximated by algebraic equations. In
Batstone et al. (2002), it is suggested that the pH (SH+) state is calculated by algebraic equations. However, this will
only partially solve the stiffness problem. There are other fast states and a closer investigation suggests that the state
describing hydrogen (Sh2) also needs to be approximated by an algebraic equation.

4.2 DAE equations
4.2.1 pH and Sh2 solvers

As mentioned above, stiffness of the ADM1 can be reduced by approximating the differential equations of the pH
and Sh2 states by algebraic equations. An implicit algebraic equation for the pH calculation is given in (Batstone
et al. 2002) (Table B.3). It has been suggested to calculate the SH+ and, consequently, the pH from the sum of all
charges, which is supposed to be zero. The obtained implicit algebraic equations are non-linear and therefore can be
solved only by an iterative numerical method. In this case, the Newton-Raphson method used in Volcke et al. (2005)
for calculation of the pH and equilibrium concentrations was implemented. By using this method the new value of the
unknown state is calculated at each iteration step k as:

SH+,k+1 = SH+,k −
E(SH+,k)

dE(SH+)/dSH+ |SH+,k

where SH+,k is the value of the state obtained from the previous iteration step and E(SH+,k) is the value of the
algebraic equation that has to be zero for the equilibrium, i.e.:

E(SH+,k) = Scat+,k + Snh4+,k + SH+,k − Shco3−,k −
Sac−,k

64
− Spr−,k

112
− Sbu−,k

160
− Sva−,k

208
− KW

SH+,k

− San−,k

The gradient of the algebraic equation dE(SH+,k)/dSH+ |SH+,k
is also needed for calculation of the new state

value. Since this expression is rather complicated it is not presented here. The reader is referred to Appendix A for
details on the expression. The iteration is repeated as long as E(SH+,k) remains larger than the predefined tolerance
value, which in our case is set to 10−12. Normally only two or three iterations are required to solve the equation at
each time step.

The differential equation for the Sh2 state, explicitly given in the ODE implementation of this report, can be approx-
imated by an algebraic equation in a similar way as was the case for the SH+ state, simply by setting its differential to
zero (assuming fast dynamics), see Equation 8. The iteration is carried out in the same way as for the SH+ calculation,

13

this time using

E(Sh2,k) =
qin

Vliq
(Sh2,in − Sh2,k) + (1− Ysu) fh2,suρ5 + (1− Yaa) fh2,aaρ6 + (1− Yfa) 0.3ρ7 +

(1− Yc4) 0.15ρ8 + (1− Yc4) 0.2ρ9 + (1− Ypro) 0.43ρ10 − ρ12 − ρT,8

and the gradient of E(Sh2,k+1). The expression of the gradient is quite complex and the reader is referred to Appendix
A for details. To obtain the gradients for the SH+ and Sh2 equations, it is recommended that a tool for handling
mathematics symbolically is used (e.g. Maple or Mathematica).

14

5 Comparison between ODE and DAE implementations

5.1 Introduction
In order to verify the DAE implementation suggested here, it is compared with the ODE implementation. In steady
state, the differences should be very small (close to machine precision). However, the dynamic errors must be studied
closer – both for the BSM2 anticipated operating region as well as for other possible operational regions.

5.2 Steady-state comparison
The three model implementations discussed in this report, i.e. ODE, DAE with only pH solver and DAE with pH
solver and Sh2 solver, were simulated for 200 days to reach steady state. Both relative and absolute errors were
investigated using the ODE simulation as a reference. Only minor errors were encountered – the largest relative errors
in the range of 10−6. The largest absolute errors, 10−5, were found in the states with large steady-state values (no
scaling of states in the implementations). The result is not surprising since the difference between the models is in the
dynamic description of the equations.

5.3 Dynamic comparison
To test the dynamic differences between the model implementations in the BSM2 operational region, a preliminary
version of the BSM2 is run to create sensible input data for the digester. The simulation period is 50 days and includes
recycling streams from the digester. Thus, the digester is included in the model when data is produced. The input data
are stored at 15 minute sampling intervals.

To evaluate the dynamic differences, the digester model is simulated alone with the stored input data as input for
the whole duration. The last 7 days are used for evaluation be means of calculating the mean absolute relative error
of each variable using the ODE implementation as reference. The main difference between DAE1 and DAE2 is in
state variable 8, i.e. the hydrogen state. The mean error is slightly larger than 0.01% which must be considered as
acceptable. Especially, since all the other state errors (perhaps except state 23 Xh2) are more or less equal.

The fact that the mean errors are in the range of 1e-4 when each sample time is investigated independently does not
mean that the relative error of the mean value of each state variable is in the same range. The most deviating variable
is the gas flow rate, which is not surprising for the reasons discussed earlier in conjunction with the choice of gas flow
rate expression. Also here, the DAE1 and DAE2 behaves similar in terms of dynamic errors.

NOTE! The choice between ODE, DAE1 and DAE2 is up to the user. If ac-
ceptable computation times can be achieved with ODE or DAE1 implemen-
tations there is no other advantage to use DAE2. But for Matlab/Simulink
it seems that with currently available solvers, DAE2 is the only feasible
choice.

15

6 ADM1 benchmark model parameters

Stoichiometric parameter values
Parameter Value Unit Process(es) Comment
fsI,xc 0.1 – 1
fxI,xc 0.2 – 1
fch,xc 0.2 – 1
fpr,xc 0.2 – 1
fli,xc 0.3 – 1 Note: 1− fch,xc − fpr,xc − fsI,xc − fxI,xc − fli,xc = 0
Nxc 0.0376/14 kmole N (kg COD)-1 1, 13-19 to maintain N mass balance for disintegration
NI 0.06/14 kmole N (kg COD)-1 1 6% on weight basis in benchmark ASM
Naa 0.007 kmole N (kg COD)-1 1,6
Cxc 0.02786 kmole C (kg COD)-1 1,13-19 C13 in Eq. 10
CsI 0.03 kmole C (kg COD)-1 1 C12 in Eq. 10
Cch 0.0313 kmole C (kg COD)-1 1,2 C14 in Eq. 10
Cpr 0.03 kmole C (kg COD)-1 1,3 C15 in Eq. 10
Cli 0.022 kmole C (kg COD)-1 1,4 C16 in Eq. 10
CxI 0.03 kmole C (kg COD)-1 1 C24 in Eq. 10
Csu 0.0313 kmole C (kg COD)-1 2,5 C1 in Eq. 10
Caa 0.03 kmole C (kg COD)-1 3,6 C2 in Eq. 10
ffa,li 0.95 – 4
Cfa 0.0217 kmole C (kg COD)-1 4,7 C3 in Eq. 10
fh2,su 0.19 – 5
fbu,su 0.13 – 5
fpro,su 0.27 – 5
fac,su 0.41 – 5
Nbac 0.08/14 kmole N (kg COD)-1 5-19 8% on weight basis in benchmark ASM
Cbu 0.025 kmole C (kg COD)-1 5,6,9 C5 in Eq. 10
Cpro 0.0268 kmole C (kg COD)-1 5,6,8,10 C6 in Eq. 10
Cac 0.0313 kmole C (kg COD)-1 5-11 C7 in Eq. 10
Cbac 0.0313 kmole C (kg COD)-1 5-19 C17−23 in Eq. 10
Ysu 0.1 – 5 kg CODX (kg CODS)-1

fh2,aa 0.06 – 6
fva,aa 0.23 – 6
fbu,aa 0.26 – 6
fpro,aa 0.05 – 6
fac,aa 0.40 – 6
Cva 0.024 kmole C (kg COD)-1 6,8 C4 in Eq. 10
Yaa 0.08 – 6 kg CODX (kg CODS)-1

Yfa 0.06 – 7 kg CODX (kg CODS)-1

Yc4 0.06 – 8,9 kg CODX (kg CODS)-1

Ypro 0.04 – 10 kg CODX (kg CODS)-1

Cch4 0.0156 kmole C (kg COD)-1 11,12 C9 in Eq. 10
Yac 0.05 – 11 kg CODX (kg CODS)-1

Yh2 0.06 – 12 kg CODS (kg CODX)-1

-Note that Ch2 and CIN , i.e. C8 and C11, are equal to zero in Equation 10.

16

Biochemical parameter values
Parameter Value Unit Process(es) Comment
kdis 0.5 d-1 1
khyd,ch 10 d-1 2
khyd,pr 10 d-1 3
khyd,li 10 d-1 4
KS,IN 1e-4 M 5-12
km,su 30 d-1 5
KS,su 0.5 kg COD m-3 5
pHUL,aa 5.5 – 5-10 in I5−10

pHLL,aa 4 – 5-10 in I5−10

km,aa 50 d-1 6
KS,aa 0.3 kg COD m-3 6
km,fa 6 d-1 7
KS,fa 0.4 kg COD m-3 7
KIh2,fa 5e-6 kg COD m-3 7 in I7

km,c4 20 d-1 8,9
KS,c4 0.2 kg COD m-3 8,9
KIh2,c4 1e-5 kg COD m-3 8,9 in I8 and I9

km,pro 13 d-1 10
KS,pro 0.1 kg COD m-3 10
KIh2,pro 3.5e-6 kg COD m-3 10 in I10

km,ac 8 d-1 11
KS,ac 0.15 kg COD m-3 11
KI,nh3 0.0018 M 11 in I11

pHUL,ac 7 – 11 in I11

pHLL,ac 6 – 11 in I11

km,h2 35 d-1 12
KS,h2 7e-6 kg COD m-3 12
pHUL,h2 6 – 12 in I12

pHLL,h2 5 – 12 in I12

kdec,Xsu 0.02 d-1 13
kdec,Xaa 0.02 d-1 14
kdec,Xfa 0.02 d-1 15
kdec,Xc4 0.02 d-1 16
kdec,Xpro 0.02 d-1 17
kdec,Xac 0.02 d-1 18
kdec,Xh2 0.02 d-1 19
The unit M is defined as kmole m-3 according to Batstone et al. (2002).

17

Physiochemical parameter values
Parameter Value Unit Comment
R 0.083145 bar M-1 K-1

Tbase 298.15 K
Top 308.15 K user defined

Kw exp
(

55900
R∗100 ∗

(
1

Tbase
− 1

Top

))
M 10−14 ≈ 2.08e-14

Ka,va 10−4.86 M ≈ 1.38e-5
Ka,bu 10−4.82 M ≈ 1.5e-5
Ka,pro 10−4.88 M ≈ 1.32e-5
Ka,ac 10−4.76 M ≈ 1.74e-5

Ka,co2 10−6.35 exp
(

7646
R∗100

(
1

Tbase
− 1

Top

))
M ≈ 4.94e-7

Ka,IN 10−9.25 exp
(

51965
R∗100

(
1

Tbase
− 1

Top

))
M ≈ 1.11e-9

kA,Bva 1e10 M-1 d-1 set to be at least three
kA,Bbu 1e10 M-1 d-1 orders of magnitude higher
kA,Bpro 1e10 M-1 d-1 than the fastest time
kA,Bac 1e10 M-1 d-1 constant of the system
kA,Bco2 1e10 M-1 d-1

kA,BIN 1e10 M-1 d-1

Patm 1.013 bar

pgas,h2o 0.0313 exp
(
5290

(
1

Tbase
− 1

Top

))
bar ≈ 0.0557

kp 5e4 m3 d-1 bar-1

kLa 200 d-1

KH,co2 0.035 exp
(
−19410
R∗100

(
1

Tbase
− 1

Top

))
Mliq bar-1 ≈ 0.0271

KH,ch4 0.0014 exp
(
−14240
R∗100

(
1

Tbase
− 1

Top

))
Mliq bar-1 ≈ 0.00116

KH,h2 7.8e-4 exp
(
−4180
R∗100

(
1

Tbase
− 1

Top

))
Mliq bar-1 ≈ 7.38e-4

Physical parameter values
Parameter Value Unit Comment
Vliq 3400 m3

Vgas 300 m3

18

7 ADM1 benchmark model steady-state results
In this section, the results of a steady state simulation are given. It should serve as a starting point for verification of
any model implementation according to the description given in this report. The inputs may not be completely realistic
for all variables but have been chosen so that every input is active (i.e. non-zero) thereby allowing all internal modes
of the ADM model to be excited. Note that the resulting pH in the AD is about 7.5, i.e. the pH-inhibition functions
are not really active in this test case. The retention time is 20 days and the operating temperature 35 řC. As a part of
the BSM TG work model interfaces for connecting ASM1 and ADM1 (and vice versa) have been developed (although
not presented here). The AS to AD interface fractionates the incoming COD into inerts, carbohydrates, proteins and
lipids rather than putting the incoming COD into the AD as composite material. Consequently, the composite material
value is low and the values of the other input variables are comparably high. The influent TSS concentration is about
4.5%. The produced gas contains about 61% methane and 34% carbon dioxide (the rest is mainly water vapour). For
a more thorough dynamic verification, further information is required.

19

Steady-state input variable values
State No. Variable Value Unit
1 Ssu,in 0.01 kg COD m-3

2 Saa,in 0.001 kg COD m-3

3 Sfa,in 0.001 kg COD m-3

4 Sva,in 0.001 kg COD m-3

5 Sbu,in 0.001 kg COD m-3

6 Spro,in 0.001 kg COD m-3

7 Sac,in 0.001 kg COD m-3

8 Sh2,in 1.0E-8 kg COD m-3

9 Sch4,in 1.0E-5 kg COD m-3

10 SIC,in 0.04 kmole C m-3

11 SIN,in 0.01 kmole N m-3

12 SI,in 0.02 kg COD m-3

13 Xxc,in 2.0 kg COD m-3

14 Xch,in 5.0 kg COD m-3

15 Xpr,in 20.0 kg COD m-3

16 Xli,in 5.0 kg COD m-3

17 Xsu,in 0.0 kg COD m-3

18 Xaa,in 0.01 kg COD m-3

19 Xfa,in 0.01 kg COD m-3

20 Xc4,in 0.01 kg COD m-3

21 Xpro,in 0.01 kg COD m-3

22 Xac,in 0.01 kg COD m-3

23 Xh2,in 0.01 kg COD m-3

24 XI,in 25.0 kg COD m-3

25 Scat,in 0.04 kmole m-3

26 San,in 0.02 kmole m-3

– qin 170.0 m3d-1

– Top 35.0 °C

Steady-state output variable values
State No. Variable Value Unit
1 Ssu 0.0119548297170 kg COD m-3

2 Saa 0.0053147401716 kg COD m-3

3 Sfa 0.0986214009308 kg COD m-3

4 Sva 0.0116250064639 kg COD m-3

5 Sbu 0.0132507296663 kg COD m-3

6 Spro 0.0157836662845 kg COD m-3

7 Sac 0.1976297169375 kg COD m-3

8 Sh2 0.0000002359451 kg COD m-3

9 Sch4 0.0550887764460 kg COD m-3

10 SIC 0.1526778706263 kmole C m-3

11 SIN 0.1302298158037 kmole N m-3

12 SI 0.3286976637215 kg COD m-3

13 Xxc 0.3086976637215 kg COD m-3

14 Xch 0.0279472404350 kg COD m-3

15 Xpr 0.1025741061067 kg COD m-3

16 Xli 0.0294830497073 kg COD m-3

17 Xsu 0.4201659824546 kg COD m-3

18 Xaa 1.1791717989237 kg COD m-3

19 Xfa 0.2430353447194 kg COD m-3

20 Xc4 0.4319211056360 kg COD m-3

21 Xpro 0.1373059089340 kg COD m-3

22 Xac 0.7605626583132 kg COD m-3

23 Xh2 0.3170229533613 kg COD m-3

24 XI 25.6173953274430 kg COD m-3

25 Scat 0.0400000000000 kmole m-3

26 San 0.0200000000000 kmole m-3

– Q 170.000000000000 m-3d-1

– Top 35.0000000000000 °C
– pH 7.4655377698929
– SH+ 0.0000000342344 kmole H+ m-3

27 Sva− 0.0115962470726 kg COD m-3

28 Sbu− 0.0132208262485 kg COD m-3

29 Spro− 0.0157427831916 kg COD m-3

30 Sac− 0.1972411554365 kg COD m-3

31 Shco3− 0.1427774793921 kmole C m-3

– Sco2 0.0099003912343 kmole C m-3

32 Snh3 0.0040909284584 kmole N m-3

– Snh4+ 0.1261388873452 kmole N m-3

33 Sgas,h2 0.0000102410356 kg COD m-3

34 Sgas,ch4 1.6256072099814 kg COD m-3

35 Sgas,co2 0.0141505346784 kmole C m-3

– pgas,h2 0.0000163991826 bar
– pgas,ch4 0.6507796328232 bar
– pgas,co2 0.3625527133281 bar
– pgas 1.0690164904089 bar
– qgas 2955.70345419378 Nm3d-1

Note that the gas flow, qgas, is the flow rate at atmospheric pres-
sure and not at the pressure of the head space.

20

References
Batstone D.J., Keller J., Angelidaki I., Kalyuzhnyi S.V., Pavlostathis S.G., Rozzi A., Sanders W.T.M., Siegrist H. and

Vavilin V.A. (2002). Anaerobic Digestion Model No. 1. IWA STR No. 13, IWA Publishing, London, UK.

Copp J.B. (ed.) (2002). The COST Simulation Benchmark - Description and Simulator Manual. ISBN 92-894-1658-0,
Office for Official Publications of the European Communities, Luxembourg.

Gernaey, K.V., Rosen, C., Benedetti, L. and Jeppsson, U. (2005). Phenomenological modelling of wastewater treat-
ment plant influent disturbances scenarios. 10th International Conference on Urban Drainage (10ICUD) 21-26
August, Copenhagen, Denmark.

Gernaey, K.V., Rosen, C and Jeppsson, U. (2006). WWTP dynamic disturbance modelling - an eesential module for
long-term benchmarking development. Wat. Sci. Tech. 53(4-5), 225-234.

Henze, M., Gujer, W., Mino, T. and van Loosdrecht, M. (2000). Activated sludge models AMS1, ASM2, ASM2d and
ASM3. IWA STR No. 9, IWA Publishing, London, UK.

Jeppsson, U., Rosen, C., Alex, J., Copp, J., Gernaey, K.V., Pons, M.-N. and Vanrolleghem, P.A. (2006). Towards a
benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs. Wat. Sci. Tech.
51(1), 287-295.

Rieger, L., Alex, J., Winkler, S., Boehler, M., Thomann, M. and Siegrist, H. (2003). Towards a benchmark simulation
model for plant-wide control strategy performance evaluation of WWTPs. Wat. Sci. Tech. 47(2), 103-112.

Rosen, C., Vrecko, D., Gernaey, K.V., Pons, M.N. and Jeppsson, U. (2006). Implementing ADM1 for plant-wide
benchmark simulations in Matiab/Simulink. Wat. Sci. Tech. 54(4), 11-19.

Siegrist, H., Vogt, D., Garcia-Heras, J.L. and Gujer, W. (2002). Mathematical model for meso- and thermophilic
anaerobic digestion. Environ. Sci. Technol. 36, 1113-1123.

Takacs, I.,Patry, G.G. and Nolasco, D. (1991). A dynamic model of the clarification-thinckening process. Wat. Res.,
25(10), 1263-1271.

Volcke, E.I.P., Van Hulle, S., Deksissa, T., Zaher, U. and Vanrolleghem, P.A. (2005). Calculation of pH and concen-
tration of equilibrium components during dynamic simulation by means of a charge balance. BIOMATH Tech.
Report, Ghent University, Ghent, Belgium.

21

A Code for DAE implementation in Matlab/Simulink
In this appendix, the solvers for pH and Sh2 used in the Lund implementation of ADM1 are presented. The solver
files are written in C for Matlab/Simulink S-function utility. If used on this platform, they should work just as they are
presented below. If another platform is used, the reader should focus on the functions Equ and gradEqu for calcula-
tion of the equations E(SX) and dE(SX)/dSX |SX,k

, respectively, and the functions pHsolver and Sh2solver,
respectively, for the iteration (the Newton-Raphson algorithm) to find the solution SX .

A.1 C-file for pH solver
/*
* pHsolv.c is a C-file S-function level 2 that calculates

* the algebraic equations for pH and ion states of the ADM1 model.

* This solver is based on the implementation proposed by Dr Eveline

* Volcke, BIOMATH, Ghent University, Belgium.

* Computational speed could be further enhanced by sending all

* parameters directly from the adm1 module

* instead of recalculating them within this module.

*
* Copyright (2006):

* Dr Christian Rosen, Dr Darko Vrecko and Dr Ulf Jeppsson

* Dept. Industrial Electrical Engineering and Automation (IEA)

* Lund University, Sweden

* http://www.iea.lth.se/

*/
#define S_FUNCTION_NAME pHsolv
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"
#include <math.h>
#define XINIT(S) ssGetSFcnParam(S,0)
#define PAR(S) ssGetSFcnParam(S,1)

/*
* mdlInitializeSizes:

* The sizes information is used by Simulink to determine the S-function

* block’s characteristics (number of inputs, outputs, states, etc.).

*/
static void mdlInitializeSizes(SimStruct *S)
{

ssSetNumSFcnParams(S, 2); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
/* Return if number of expected != number of actual parameters */
return;

}
ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 7);
if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 51); /*(S, port index, port width)*/
ssSetInputPortDirectFeedThrough(S, 0, 0);
if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 7);
ssSetNumSampleTimes(S, 1);
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

22

/*
* mdlInitializeSampleTimes:

* This function is used to specify the sample time(s) for your

* S-function. You must register the same number of sample times as

* specified in ssSetNumSampleTimes.

*/
static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
/* executes whenever driving block executes */
ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_INITIALIZE_CONDITIONS /* Change to #undef to remove function */
#if defined(MDL_INITIALIZE_CONDITIONS)
/* mdlInitializeConditions:

* In this function, you should initialize the continuous and discrete

* states for your S-function block. The initial states are placed

* in the state vector, ssGetContStates(S) or ssGetRealDiscStates(S).

* You can also perform any other initialization activities that your

* S-function may require. Note, this routine will be called at the

* start of simulation and if it is present in an enabled subsystem

* configured to reset states, it will be call when the enabled subsystem

* restarts execution to reset the states.

*/
static void mdlInitializeConditions(SimStruct *S)
{

real_T *x0 = ssGetDiscStates(S); /* x0 is pointer */
int_T i;

for (i = 0;i < 7; i++) {
x0[i] = mxGetPr(XINIT(S))[i];

}
}
#endif /* MDL_INITIALIZE_CONDITIONS */

#undef MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)
/* mdlStart:

* This function is called once at start of model execution. If you

* have states that should be initialized once, this is the place

* to do it.

*/
static void mdlStart(SimStruct *S)
{
}
#endif /* MDL_START */

/*
* mdlOutputs

* In this function, you compute the outputs of your S-function

* block. Generally outputs are placed in the output vector, ssGetY(S).

*/

23

static void mdlOutputs(SimStruct *S, int_T tid)
{

real_T *y = ssGetOutputPortRealSignal(S,0);
real_T *x = ssGetDiscStates(S);
int_T i;

for (i = 0; i < 7; i++) {
y[i] = x[i]; /* state variables are passed on as output variables */

}
}

static real_T Equ(SimStruct *S)
{

real_T *x = ssGetDiscStates(S);
InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0);

static real_T K_w, pK_w_base, K_a_va, pK_a_va_base, K_a_bu, pK_a_bu_base,
K_a_pro, pK_a_pro_base, K_a_ac, pK_a_ac_base, K_a_co2, pK_a_co2_base,
K_a_IN,pK_a_IN_base, T_base, T_op, R, factor;

R = mxGetPr(PAR(S))[77];
T_base = mxGetPr(PAR(S))[78];
T_op = mxGetPr(PAR(S))[79];
pK_w_base = mxGetPr(PAR(S))[80];
pK_a_va_base = mxGetPr(PAR(S))[81];
pK_a_bu_base = mxGetPr(PAR(S))[82];
pK_a_pro_base = mxGetPr(PAR(S))[83];
pK_a_ac_base = mxGetPr(PAR(S))[84];
pK_a_co2_base = mxGetPr(PAR(S))[85];
pK_a_IN_base = mxGetPr(PAR(S))[86];

factor = (1.0/T_base - 1.0/T_op)/(100.0*R);
K_w = pow(10,-pK_w_base)*exp(55900.0*factor);

/* T adjustment for K_w */
K_a_va = pow(10,-pK_a_va_base);
K_a_bu = pow(10,-pK_a_bu_base);
K_a_pro = pow(10,-pK_a_pro_base);
K_a_ac = pow(10,-pK_a_ac_base);
K_a_co2 = pow(10,-pK_a_co2_base)*exp(7646.0*factor);

/* T adjustment for K_a_co2 */
K_a_IN = pow(10,-pK_a_IN_base)*exp(51965.0*factor);

/* T adjustment for K_a_IN */

x[1] = K_a_va**u[3]/(K_a_va+x[0]); /* Sva- */
x[2] = K_a_bu**u[4]/(K_a_bu+x[0]); /* Sbu- */
x[3] = K_a_pro**u[5]/(K_a_pro+x[0]); /* Spro- */
x[4] = K_a_ac**u[6]/(K_a_ac+x[0]); /* Sac- */
x[5] = K_a_co2**u[9]/(K_a_co2+x[0]); /* SHCO3- */
x[6] = K_a_IN**u[10]/(K_a_IN+x[0]); /* SNH3 */

return *u[24]+(*u[10]-x[6])+x[0]-x[5]-x[4]/64-x[3]/112-
x[2]/160-x[1]/208-K_w/x[0]-*u[25]; /* SH+ equation */
}

24

static real_T gradEqu(SimStruct *S)
{

real_T *x = ssGetDiscStates(S);
InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0);

static real_T K_w, pK_w_base, K_a_va, pK_a_va_base, K_a_bu,
pK_a_bu_base, K_a_pro, pK_a_pro_base, K_a_ac, pK_a_ac_base, K_a_co2,
pK_a_co2_base, K_a_IN, pK_a_IN_base, T_base, T_op, R, factor;

R = mxGetPr(PAR(S))[77];
T_base = mxGetPr(PAR(S))[78];
T_op = mxGetPr(PAR(S))[79];
pK_w_base = mxGetPr(PAR(S))[80];
pK_a_va_base = mxGetPr(PAR(S))[81];
pK_a_bu_base = mxGetPr(PAR(S))[82];
pK_a_pro_base = mxGetPr(PAR(S))[83];
pK_a_ac_base = mxGetPr(PAR(S))[84];
pK_a_co2_base = mxGetPr(PAR(S))[85];
pK_a_IN_base = mxGetPr(PAR(S))[86];

factor = (1.0/T_base - 1.0/T_op)/(100.0*R);
K_w = pow(10,-pK_w_base)*exp(55900.0*factor); /* T adjustment for K_w */
K_a_va = pow(10,-pK_a_va_base);
K_a_bu = pow(10,-pK_a_bu_base);
K_a_pro = pow(10,-pK_a_pro_base);
K_a_ac = pow(10,-pK_a_ac_base);
K_a_co2 = pow(10,-pK_a_co2_base)*exp(7646.0*factor);

/* T adjustment for K_a_co2 */
K_a_IN = pow(10,-pK_a_IN_base)*exp(51965.0*factor);

/* T adjustment for K_a_IN */

return 1+K_a_IN**u[10]/((K_a_IN+x[0])*(K_a_IN+x[0]))
/* Gradient of SH+ equation */

+K_a_co2**u[9]/((K_a_co2+x[0])*(K_a_co2+x[0]))
+1/64.0*K_a_ac**u[6]/((K_a_ac+x[0])*(K_a_ac+x[0]))
+1/112.0*K_a_pro**u[5]/((K_a_pro+x[0])*(K_a_pro+x[0]))
+1/160.0*K_a_bu**u[4]/((K_a_bu+x[0])*(K_a_bu+x[0]))
+1/208.0*K_a_va**u[3]/((K_a_va+x[0])*(K_a_va+x[0]))
+K_w/(x[0]*x[0]);

}

static void pHsolver(SimStruct *S)
{

real_T *x = ssGetDiscStates(S);
static real_T delta;
static real_T S_H_ion0;
static int_T i;
static const real_T TOL = 1e-12;
static const real_T MaxSteps= 1000;

S_H_ion0 = x[0]; /* SH+ */
i = 1;
delta = 1.0;

25

/* Newton-Raphson algorithm */
while ((delta > TOL || delta < -TOL) && (i <= MaxSteps)) {

delta = Equ(S);
x[0] = S_H_ion0 - delta/gradEqu(S); /* Calculate the new SH+ */

if (x[0] <= 0) {
x[0] = 1e-12; /* to avoid numerical problems */

}
S_H_ion0 = x[0];
++i;

}
}

#define MDL_UPDATE /* Change to #undef to remove function */
#if defined(MDL_UPDATE)
/*
* mdlUpdate:

* This function is called once for every major integration time step.

* Discrete states are typically updated here, but this function is useful

* for performing any tasks that should only take place once per

* integration step.

*/
static void mdlUpdate(SimStruct *S, int_T tid)
{

pHsolver(S);
}
#endif /* MDL_UPDATE */

#undef MDL_DERIVATIVES /* Change to #undef to remove function */
#if defined(MDL_DERIVATIVES)
/*
* mdlDerivatives:

* In this function, you compute the S-function block’s derivatives.

* The derivatives are placed in the derivative vector, ssGetdX(S).

*/
static void mdlDerivatives(SimStruct *S)
{
}
#endif /* MDL_DERIVATIVES */

/*
* mdlTerminate:

* In this function, you should perform any actions that are necessary

* at the termination of a simulation. For example, if memory was

* allocated in mdlStart, this is the place to free it.

*/
static void mdlTerminate(SimStruct *S)
{
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

26

A.2 C-file for Sh2 solver
/*
* Sh2solv.c is a C-file S-function level 2 that solves the algebraic

* equation for Sh2 of the ADM1 model,thereby reducing the stiffness of the

* system considerably (if used together with a pHsolver).

*
* Copyright (2006):

* Dr Christian Rosen, Dr Darko Vrecko and Dr Ulf Jeppsson

* Dept. Industrial Electrical Engineering and Automation (IEA)

* Lund University, Sweden

* http://www.iea.lth.se/

*/

#define S_FUNCTION_NAME Sh2solv
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"
#include <math.h>
#define XINIT(S) ssGetSFcnParam(S,0)
#define PAR(S) ssGetSFcnParam(S,1)
#define V(S) ssGetSFcnParam(S,2)

/*
* mdlInitializeSizes:

* The sizes information is used by Simulink to determine the S-function

* block’s characteristics (number of inputs, outputs, states, etc.).

*/
static void mdlInitializeSizes(SimStruct *S)
{

ssSetNumSFcnParams(S, 3); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
/* Return if number of expected != number of actual parameters */
return;

}
ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 1);
if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 52); /*(S, port index, port width)*/
ssSetInputPortDirectFeedThrough(S, 0, 0);
if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 1);
ssSetNumSampleTimes(S, 1);
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

/*
* mdlInitializeSampleTimes:

* This function is used to specify the sample time(s) for your

* S-function. You must register the same number of sample times as

* specified in ssSetNumSampleTimes.

*/
static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

27

/* executes whenever driving block executes */
ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_INITIALIZE_CONDITIONS /* Change to #undef to remove function */
#if defined(MDL_INITIALIZE_CONDITIONS)
/* mdlInitializeConditions:

* In this function, you should initialize the continuous and discrete

* states for your S-function block. The initial states are placed

* in the state vector, ssGetContStates(S) or ssGetRealDiscStates(S).

* You can also perform any other initialization activities that your

* S-function may require. Note, this routine will be called at the

* start of simulation and if it is present in an enabled subsystem

* configured to reset states, it will be call when the enabled subsystem

* restarts execution to reset the states.

*/
static void mdlInitializeConditions(SimStruct *S)
{

real_T *x0 = ssGetDiscStates(S); /*x0 is pointer*/

x0[0] = mxGetPr(XINIT(S))[0];
}
#endif /* MDL_INITIALIZE_CONDITIONS */

#undef MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)
/* mdlStart:

* This function is called once at start of model execution. If you

* have states that should be initialized once, this is the place

* to do it.

*/
static void mdlStart(SimStruct *S)
{
}
#endif /* MDL_START */

/*
* mdlOutputs

* In this function, you compute the outputs of your S-function

* block. Generally outputs are placed in the output vector, ssGetY(S).

*/
static void mdlOutputs(SimStruct *S, int_T tid)
{

real_T *y = ssGetOutputPortRealSignal(S,0);
real_T *x = ssGetDiscStates(S);

y[0] = x[0]; /* state variable is passed on as output variable */
}

static real_T Equ(SimStruct *S)
{

28

real_T *x = ssGetDiscStates(S);
InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0);

static real_T eps, f_h2_su, Y_su, f_h2_aa, Y_aa, Y_fa, Y_c4, Y_pro,
K_S_IN, k_m_su, K_S_su, pH_UL_aa, pH_LL_aa, k_m_aa;

static real_T K_S_aa, k_m_fa, K_S_fa, K_Ih2_fa, k_m_c4, K_S_c4,
K_Ih2_c4, k_m_pro, K_S_pro, K_Ih2_pro;

static real_T pH_UL_ac, pH_LL_ac, k_m_h2, K_S_h2, pH_UL_h2,
pH_LL_h2, R, T_base, T_op, kLa, K_H_h2, K_H_h2_base, V_liq, pH_op,I_pH_aa;

static real_T I_pH_h2, I_IN_lim, I_h2_fa, I_h2_c4, I_h2_pro, inhib[6];
static real_T proc5, proc6, proc7, proc8, proc9, proc10, proc12,

p_gas_h2, procT8, reac8;
static real_T pHLim_aa, pHLim_h2, a_aa, a_h2, S_H_ion, n_aa, n_h2;

eps = 0.000001;

f_h2_su = mxGetPr(PAR(S))[18];
Y_su = mxGetPr(PAR(S))[27];
f_h2_aa = mxGetPr(PAR(S))[28];
Y_aa = mxGetPr(PAR(S))[34];
Y_fa = mxGetPr(PAR(S))[35];
Y_c4 = mxGetPr(PAR(S))[36];
Y_pro = mxGetPr(PAR(S))[37];
K_S_IN = mxGetPr(PAR(S))[45];
k_m_su = mxGetPr(PAR(S))[46];
K_S_su = mxGetPr(PAR(S))[47];
pH_UL_aa = mxGetPr(PAR(S))[48];
pH_LL_aa = mxGetPr(PAR(S))[49];
k_m_aa = mxGetPr(PAR(S))[50];
K_S_aa = mxGetPr(PAR(S))[51];
k_m_fa = mxGetPr(PAR(S))[52];
K_S_fa = mxGetPr(PAR(S))[53];
K_Ih2_fa = mxGetPr(PAR(S))[54];
k_m_c4 = mxGetPr(PAR(S))[55];
K_S_c4 = mxGetPr(PAR(S))[56];
K_Ih2_c4 = mxGetPr(PAR(S))[57];
k_m_pro = mxGetPr(PAR(S))[58];
K_S_pro = mxGetPr(PAR(S))[59];
K_Ih2_pro = mxGetPr(PAR(S))[60];
pH_UL_ac = mxGetPr(PAR(S))[64];
pH_LL_ac = mxGetPr(PAR(S))[65];
k_m_h2 = mxGetPr(PAR(S))[66];
K_S_h2 = mxGetPr(PAR(S))[67];
pH_UL_h2 = mxGetPr(PAR(S))[68];
pH_LL_h2 = mxGetPr(PAR(S))[69];
R = mxGetPr(PAR(S))[77];
T_base = mxGetPr(PAR(S))[78];
T_op = mxGetPr(PAR(S))[79];
kLa = mxGetPr(PAR(S))[94];
K_H_h2_base = mxGetPr(PAR(S))[98];
V_liq = mxGetPr(V(S))[0];

K_H_h2 = K_H_h2_base*exp(-4180.0*(1.0/T_base - 1.0/T_op)/(100.0*R));
/* T adjustment for K_H_h2 */

29

pH_op = *u[33]; /* pH */
S_H_ion = *u[34]; /* SH+ */

/* STRs function
if (pH_op < pH_UL_aa)
I_pH_aa = exp(-3.0*(pH_op-pH_UL_aa)*(pH_op-pH_UL_aa)/((pH_UL_aa-pH_LL_aa)*

(pH_UL_aa-pH_LL_aa)));
else
I_pH_aa = 1.0;
if (pH_op < pH_UL_h2)
I_pH_h2 = exp(-3.0*(pH_op-pH_UL_h2)*(pH_op-pH_UL_h2)/((pH_UL_h2-pH_LL_h2)*

(pH_UL_h2-pH_LL_h2)));
else
I_pH_h2 = 1.0;

*/

/* Hill function on pH inhibition
pHLim_aa = (pH_UL_aa + pH_LL_aa)/2.0;
pHLim_ac = (pH_UL_ac + pH_LL_ac)/2.0;
pHLim_h2 = (pH_UL_h2 + pH_LL_h2)/2.0;
I_pH_aa = pow(pH_op,24)/(pow(pH_op,24)+pow(pHLim_aa ,24));
I_pH_ac = pow(pH_op,45)/(pow(pH_op,45)+pow(pHLim_ac ,45));
I_pH_h2 = pow(pH_op,45)/(pow(pH_op,45)+pow(pHLim_h2 ,45));

*/

/* MNPs function on pH inhibition, ADM1 Workshop, Copenhagen 2005.
a_aa = 25.0/(pH_UL_aa-pH_LL_aa+eps);
a_ac = 25.0/(pH_UL_ac-pH_LL_ac+eps);
a_h2 = 25.0/(pH_UL_h2-pH_LL_h2+eps);

I_pH_aa = 0.5*(1+tanh(a_aa*(pH_op/pHLim_aa - 1.0)));
I_pH_ac = 0.5*(1+tanh(a_ac*(pH_op/pHLim_ac - 1.0)));
I_pH_h2 = 0.5*(1+tanh(a_h2*(pH_op/pHLim_h2 - 1.0)));

*/

/* Hill function on SH+ used within BSM2, ADM1 Workshop, Copenhagen 2005. */
pHLim_aa = pow(10,(-(pH_UL_aa + pH_LL_aa)/2.0));
pHLim_h2 = pow(10,(-(pH_UL_h2 + pH_LL_h2)/2.0));
n_aa=3.0/(pH_UL_aa-pH_LL_aa);
n_h2=3.0/(pH_UL_h2-pH_LL_h2);
I_pH_aa = pow(pHLim_aa,n_aa)/(pow(S_H_ion,n_aa)+pow(pHLim_aa ,n_aa));
I_pH_h2 = pow(pHLim_h2,n_h2)/(pow(S_H_ion,n_h2)+pow(pHLim_h2 ,n_h2));

I_IN_lim = 1.0/(1.0+K_S_IN/(*u[10]));
I_h2_fa = 1.0/(1.0+x[0]/K_Ih2_fa);
I_h2_c4 = 1.0/(1.0+x[0]/K_Ih2_c4);
I_h2_pro = 1.0/(1.0+x[0]/K_Ih2_pro);

inhib[0] = I_pH_aa*I_IN_lim;
inhib[1] = inhib[0]*I_h2_fa;
inhib[2] = inhib[0]*I_h2_c4;
inhib[3] = inhib[0]*I_h2_pro;
inhib[5] = I_pH_h2*I_IN_lim;

30

proc5 = k_m_su**u[0]/(K_S_su+*u[0])**u[16]*inhib[0];
proc6 = k_m_aa**u[1]/(K_S_aa+*u[1])**u[17]*inhib[0];
proc7 = k_m_fa**u[2]/(K_S_fa+*u[2])**u[18]*inhib[1];
proc8 = k_m_c4**u[3]/(K_S_c4+*u[3])**u[19]**u[3]/(*u[3]+

*u[4]+eps)*inhib[2];
proc9 = k_m_c4**u[4]/(K_S_c4+*u[4])**u[19]**u[4]/(*u[3]+

*u[4]+eps)*inhib[2];
proc10 = k_m_pro**u[5]/(K_S_pro+*u[5])**u[20]*inhib[3];

proc12 = k_m_h2*x[0]/(K_S_h2+x[0])**u[22]*inhib[5];

p_gas_h2 = *u[43]*R*T_op/16.0;
procT8 = kLa*(x[0]-16.0*K_H_h2*p_gas_h2);

reac8 = (1.0-Y_su)*f_h2_su*proc5+(1.0-Y_aa)*f_h2_aa*proc6+
(1.0-Y_fa)*0.3*proc7+(1.0-Y_c4)*0.15*proc8+(1.0-Y_c4)*0.2*proc9+
(1.0-Y_pro)*0.43*proc10-proc12-procT8;

return 1/V_liq**u[26]*(*u[51]-x[0])+reac8; /* Sh2 equation */
}

static real_T gradEqu(SimStruct *S)
{

real_T *x = ssGetDiscStates(S);
InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0);

static real_T eps, f_h2_su, Y_su, f_h2_aa, Y_aa, Y_fa, Y_c4,
Y_pro, K_S_IN, k_m_su, K_S_su, pH_UL_aa, pH_LL_aa, k_m_aa;

static real_T K_S_aa, k_m_fa, K_S_fa, K_Ih2_fa, k_m_c4,
K_S_c4, K_Ih2_c4, k_m_pro, K_S_pro, K_Ih2_pro;

static real_T pH_UL_ac, pH_LL_ac, k_m_h2, K_S_h2, pH_UL_h2, pH_LL_h2,
R, T_base, T_op, kLa, K_H_h2, K_H_h2_base, V_liq, pH_op, I_pH_aa, I_pH_h2;

static real_T pHLim_aa, pHLim_h2, a_aa, a_h2, S_H_ion, n_aa, n_h2;

eps = 0.000001;

f_h2_su = mxGetPr(PAR(S))[18];
Y_su = mxGetPr(PAR(S))[27];
f_h2_aa = mxGetPr(PAR(S))[28];
Y_aa = mxGetPr(PAR(S))[34];
Y_fa = mxGetPr(PAR(S))[35];
Y_c4 = mxGetPr(PAR(S))[36];
Y_pro = mxGetPr(PAR(S))[37];
K_S_IN = mxGetPr(PAR(S))[45];
k_m_su = mxGetPr(PAR(S))[46];
K_S_su = mxGetPr(PAR(S))[47];
pH_UL_aa = mxGetPr(PAR(S))[48];
pH_LL_aa = mxGetPr(PAR(S))[49];
k_m_aa = mxGetPr(PAR(S))[50];
K_S_aa = mxGetPr(PAR(S))[51];
k_m_fa = mxGetPr(PAR(S))[52];
K_S_fa = mxGetPr(PAR(S))[53];

31

K_Ih2_fa = mxGetPr(PAR(S))[54];
k_m_c4 = mxGetPr(PAR(S))[55];
K_S_c4 = mxGetPr(PAR(S))[56];
K_Ih2_c4 = mxGetPr(PAR(S))[57];
k_m_pro = mxGetPr(PAR(S))[58];
K_S_pro = mxGetPr(PAR(S))[59];
K_Ih2_pro = mxGetPr(PAR(S))[60];
pH_UL_ac = mxGetPr(PAR(S))[64];
pH_LL_ac = mxGetPr(PAR(S))[65];
k_m_h2 = mxGetPr(PAR(S))[66];
K_S_h2 = mxGetPr(PAR(S))[67];
pH_UL_h2 = mxGetPr(PAR(S))[68];
pH_LL_h2 = mxGetPr(PAR(S))[69];
R = mxGetPr(PAR(S))[77];
T_base = mxGetPr(PAR(S))[78];
T_op = mxGetPr(PAR(S))[79];
kLa = mxGetPr(PAR(S))[94];
K_H_h2_base = mxGetPr(PAR(S))[98];
V_liq = mxGetPr(V(S))[0];

K_H_h2 = K_H_h2_base*exp(-4180.0*(1.0/T_base - 1.0/T_op)/(100.0*R));
/* T adjustment for K_H_h2 */

pH_op = *u[33]; /* pH */
S_H_ion = *u[34]; /* SH+ */

/* STRs function
if (pH_op < pH_UL_aa)
I_pH_aa = exp(-3.0*(pH_op-pH_UL_aa)*(pH_op-pH_UL_aa)/((pH_UL_aa-pH_LL_aa)*

(pH_UL_aa-pH_LL_aa)));
else
I_pH_aa = 1.0;
if (pH_op < pH_UL_h2)
I_pH_h2 = exp(-3.0*(pH_op-pH_UL_h2)*(pH_op-pH_UL_h2)/((pH_UL_h2-pH_LL_h2)*

(pH_UL_h2-pH_LL_h2)));
else
I_pH_h2 = 1.0;

*/

/* Hill function on pH inhibition
pHLim_aa = (pH_UL_aa + pH_LL_aa)/2.0;
pHLim_ac = (pH_UL_ac + pH_LL_ac)/2.0;
pHLim_h2 = (pH_UL_h2 + pH_LL_h2)/2.0;
I_pH_aa = pow(pH_op,24)/(pow(pH_op,24)+pow(pHLim_aa ,24));
I_pH_ac = pow(pH_op,45)/(pow(pH_op,45)+pow(pHLim_ac ,45));
I_pH_h2 = pow(pH_op,45)/(pow(pH_op,45)+pow(pHLim_h2 ,45));

*/
/* MNPs function on pH inhibition, ADM1 Workshop, Copenhagen 2005.
a_aa = 25.0/(pH_UL_aa-pH_LL_aa+eps);
a_ac = 25.0/(pH_UL_ac-pH_LL_ac+eps);
a_h2 = 25.0/(pH_UL_h2-pH_LL_h2+eps);

I_pH_aa = 0.5*(1+tanh(a_aa*(pH_op/pHLim_aa - 1.0)));
I_pH_ac = 0.5*(1+tanh(a_ac*(pH_op/pHLim_ac - 1.0)));

32

I_pH_h2 = 0.5*(1+tanh(a_h2*(pH_op/pHLim_h2 - 1.0)));

*/
/* Hill function on SH+ used within BSM2, ADM1 Workshop, Copenhagen 2005. */
pHLim_aa = pow(10,(-(pH_UL_aa + pH_LL_aa)/2.0));
pHLim_h2 = pow(10,(-(pH_UL_h2 + pH_LL_h2)/2.0));
n_aa=3.0/(pH_UL_aa-pH_LL_aa);
n_h2=3.0/(pH_UL_h2-pH_LL_h2);
I_pH_aa = pow(pHLim_aa,n_aa)/(pow(S_H_ion,n_aa)+pow(pHLim_aa ,n_aa));
I_pH_h2 = pow(pHLim_h2,n_h2)/(pow(S_H_ion,n_h2)+pow(pHLim_h2 ,n_h2));

/* Gradient of Sh2 equation */
return -1/V_liq**u[26]

-3.0/10.0*(1-Y_fa)*k_m_fa**u[2]/(K_S_fa+*u[2])*
*u[18]*I_pH_aa/(1+K_S_IN/(*u[10]))/((1+x[0]/K_Ih2_fa)*
(1+x[0]/K_Ih2_fa))/K_Ih2_fa -3.0/20.0*(1-Y_c4)*k_m_c4*
*u[3]**u[3]/(K_S_c4+*u[3])**u[19]/(*u[4]+*u[3]+eps)*
I_pH_aa/(1+K_S_IN/(*u[10]))/((1+x[0]/K_Ih2_c4)*
(1+x[0]/K_Ih2_c4))/K_Ih2_c4-1.0/5.0*(1-Y_c4)*k_m_c4**u[4]*
*u[4]/(K_S_c4+*u[4])**u[19]/(*u[4]+*u[3]+eps)*
I_pH_aa/(1+K_S_IN/(*u[10]))/((1+x[0]/K_Ih2_c4)*
(1+x[0]/K_Ih2_c4))/K_Ih2_c4-43.0/100.0*(1-Y_pro)*k_m_pro**u[5]/
(K_S_pro+*u[5])**u[20]*I_pH_aa/(1+K_S_IN/(*u[10]))/
((1+x[0]/K_Ih2_pro)*(1+x[0]/K_Ih2_pro))/K_Ih2_pro
-k_m_h2/(K_S_h2+x[0])**u[22]*I_pH_h2/(1+K_S_IN/
(*u[10]))+k_m_h2*x[0]/((K_S_h2+x[0])*(K_S_h2+x[0]))*
*u[22]*I_pH_h2/(1+K_S_IN/(*u[10]))-kLa;

}

static void Sh2solver(SimStruct *S)
{

real_T *x = ssGetDiscStates(S);

static real_T delta;
static real_T Sh20;
static int_T i;

static const real_T TOL = 1e-12;
static const real_T MaxSteps= 1000;

Sh20 = x[0]; /* Sh2 */

i = 1;
delta = 1.0;

/* Newton-Raphson algorithm */

while ((delta > TOL || delta < -TOL) && (i <= MaxSteps)) {
delta = Equ(S);
x[0] = Sh20-delta/gradEqu(S); /* Calculate the new Sh2 */

if (x[0] <= 0) {
x[0] = 1e-12; /* to avoid numerical problems */

}

33

Sh20 = x[0];
++i;

}
}

#define MDL_UPDATE /* Change to #undef to remove function */
#if defined(MDL_UPDATE)
/*
* mdlUpdate:

* This function is called once for every major integration time step.

* Discrete states are typically updated here, but this function is useful

* for performing any tasks that should only take place once per

* integration step.

*/
static void mdlUpdate(SimStruct *S, int_T tid)
{

Sh2solver(S);
}
#endif /* MDL_UPDATE */

#undef MDL_DERIVATIVES /* Change to #undef to remove function */
#if defined(MDL_DERIVATIVES)
/*
* mdlDerivatives:

* In this function, you compute the S-function block’s derivatives.

* The derivatives are placed in the derivative vector, ssGetdX(S).

*/
static void mdlDerivatives(SimStruct *S)
{
}
#endif /* MDL_DERIVATIVES */

/*
* mdlTerminate:

* In this function, you should perform any actions that are necessary

* at the termination of a simulation. For example, if memory was

* allocated in mdlStart, this is the place to free it.

*/
static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

34

