LUND UNIVERSITY

Providing flexibility in a convolutional encoder

Kamuf, Matthias; Anderson, John B; Owall, Viktor

Published in:
Proceedings of the 2003 IEEE International Symposium on Circuits and Systems (Cat. No.03CH37430)

DOI:
10.1109/ISCAS.2003.1205959

2003

Link to publication

Citation for published version (APA):

Kamuf, M., Anderson, J. B., & Owall, V. (2003). Providing flexibility in a convolutional encoder. In Proceedings of
the 2003 IEEE International Symposium on Circuits and Systems (Cat. No.03CH37430) (pp. 272-275). IEEE -
Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISCAS.2003.1205959

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1109/ISCAS.2003.1205959
https://portal.research.lu.se/en/publications/3c45075b-14fb-4a59-9047-ba637bcd9ee4
https://doi.org/10.1109/ISCAS.2003.1205959

PROVIDING FLEXIBILITY IN A CONVOLUTIONAL ENCODER

Matthias Kamuf!, John B. Anderson?, and Viktor Owall!

! Department of Electroscience and 2Department of Information Technology
Lund University, SE-221 00 Lund, Sweden
{mkf, vikt} @es.Ith.se, anderson@it.Ith.se

ABSTRACT

In future radio systems, flexible coding and decoding architectures
will be required. In case of the latter, implementing architectural
flexibility with regard to low power issues is a challenging task.
The flexible encoding platform in this paper is a first step toward
this envisioned decoder. It generates a wide class of codes, starting
with convolutional codes. As an extension to this, turbo codes will
be included by adding an interleaver. At this prototyping stage, the
system is implemented on an FPGA. The decision to choose the
observer canonical form is defended by a thorough investigation
of its critical path properties. Proper configuration allows code
ratesof b/c,b=1...15,¢=2...16,b < c. Power can be saved
by shutting down unused system modules.

1. INTRODUCTION

Wireless personal area networks (WPANSs) which provide short-
range ad hoc connectivity among different communication devices
will be both multi-standard and multi-rate. A gadget in this envi-
sioned environment must be flexible enough to be able to establish
communication for a wide variety of applications, reaching from
low bit-rate sensor networks to high bit-rate WLAN communica-
tion as depicted in Figure 1. Since these devices will be mostly
battery-operated, efficient power and energy management is essen-
tial for realization. However, there are several orders of magnitude
in power efficiency between a flexible software solution and a fully
hardware mapped one. Clearly, there will always be a trade-off be-
tween flexibility, processing performance and power consumption.

Channel coding and decoding algorithms are key components
in a communication system and will vary accordingly due to the
mentioned application variety. Although these algorithms have
different properties, there are still common blocks that can be iden-
tified. Hence, one has to find an efficient way to reuse hardware
for different types of tasks in these algorithms. This project aims
at a decoder that should be able to handle a predefined set of algo-
rithms by sole configuration of its hardware with suitable parame-
ters. These parameters include, for example, precision, speed, and
type of code. As a result, the grade of achieved flexibility could be
measured based on the limits in performance and power consump-
tion, indicating a range of feasible solutions.

This paper presents an FPGA-based flexible convolutional en-
coder which supports power saving by shutting down unused parts
through specific enable logic. Care has been taken that the design
can be easily upgraded for future purposes; for example, by adding
an interleaver block, this design turns into a turbo encoder.

In Section 2 several possible architectures are introduced with
a careful look at critical path properties. Section 3 presents the

bit rate WLAN
T Ghit/s \
| Flexible
| High-End
//r Device
bit/s
Sensors

Figure 1: Communication scenario in a WPAN

system specification and implementation aspects will be addressed
in Section 4. Synthesis and performance results are then outlined
in Section 5. The paper ends with a conclusion and a look at future
research tasks.

2. ARCHITECTURAL ISSUES

From coding theory [1] it is known that the output of a convolu-
tional encoder at time & is defined by

vk =Y fi-wii, @
i=0
where
m
wg =uk + Y i - Wi @)
i=1

The coefficients f;,¢; € {0; 1} determine the feedback and feed-
forward polynomials, respectively. By definition, qo is set to 1.

A common way to describe a convolutional code visually is
depicted in Figure 2 and is called controller canonical form. Look-
ing at this architecture from an implementation’s perspective it be-
comes obvious that the critical path, which depends on the number
of combinational circuits in series, is a function of the respective
coding polynomial used. This length can be described by

Lerit = max{m — h(f); fo-m + g(a)} ®)
where
g(x) = max{i | z; # 0} + 1 — 6im @)
and
h(x) = min{i | z; # 0} — 1 + dio. (5)

Figure 2: Controller canonical form of a convolutional encoder

Tpin (u.t.)

max{i| q; # 0}
0 10 010

5

min{i | f; # 0}
Figure 3: Clock period versus coding polynomial, architecture ac-
cording to Figure 2, m = 10

The Kronecker symbol ¢;; is defined as

5= db 1=
Y710, otherwise

and is used as a correction factor for the case when there are two
coefficients connected to the same cell which must not cause addi-
tional delay. If a unit time (u.t.) is the propagation delay of a basic
XOR-cell the minimum clock period is simply Tynin = Lerit w.t..

Figure 3 visualizes o, as a function of the respective coding
polynomial, that is, Tomin (f, q). According to (4) and (5), the x-
and y-axis show the indices of the feedback and feedforward poly-
nomials resulting from the maximum and minimum functions, re-
spectively. The minimum clock period Toy;» is then drawn on the
z-axis. By looking at these graphs it is obvious that this architec-
ture is very sensitive to setting coefficient fo to 1. In this case, the
complete feedforward path contributes to the critical path. Hence,
the longest path occurs when fy and either ¢,,,—1 or ¢, are set to
1, resulting in @ minimum clock period of 2m unit times.

Reordering the cells in Figure 2 according to the law of asso-
ciativity to form the architecture depicted in Figure 4 [2] modifies
the length of the critical path to

Leris = max{g(f); fo + g(a)}- (6)

Both feedforward and feedback path compete now with each
other instead of contributing concurrently to the critical path. In
fact, this dramatically decreases the impact of f, compared to the
original controller form. However, in this case coefficients with
higher indices will have a larger weight. The minimum clock pe-
riod in this case is reduced to (rm + 1) unit times when both f, and
either ¢, —1 Or ¢, are 1, as shown in Figure 5.

Figure 4: Reordered controller canonical form

fo #0

20,

15

Tppim (u.t.)
5

max{i | ¢; # 0} 5
0 10 0 10 max{i | f; # 0}
Figure 5: Clock period versus coding polynomial, architecture ac-
cording to Figure 4, m = 10

Cutset retiming [2], as depicted in Figure 6, can still improve
this architecture. An n-retimed version diminishes the minimum
clock period to PT’:TJFH, n = 1...m— 1along with increasing the
number of registers by n. However, retiming makes sense only up
to the point where T,,;, becomes 2 unit times which is the lower
bound of this circuit and is determined by the two cells that are
connected by fo.

Another way of describing the same system behavior can be
found by transforming the signal-flow graph in Figure 2 according
to transposition. The directions of all edges are reversed, and input
and output nodes are exchanged, while the respective edge delay
remains the same [2]. Thus, the output can be written as

vk = four + Z(fiuk—i — QiVk—i)- Q)

i=1

Since addition and subtraction are equivalent operations in 2, the
realization of (7) is represented in Figure 7 and is called observer
canonical form. In this case, the delay elements do not form a shift
register anymore since they are separated by modulo-2 adders.

Contrary to the preceding canonical forms, the worst case crit-
ical path of the observer canonical form does not depend on the
coding polynomial, since this path, given a recursive function, al-
ways consists of two XOR-cells in series. However, the drawback
is that a single XOR-cell in this architecture will have a larger
propagation delay since the operation has to be performed on two
logic levels. If the propagation delay of this 3-input cell is two
times the delay of the mentioned basic XOR-cell, the minimum
clock period will always be 4 unit times.

Concluding these considerations, it is clear that the observer
canonical form guarantees a critical path that is independent of

Uk

Im

y

Figure 7: Observer canonical form of a convolutional encoder

the respective coding function. Applying extensive retiming to the
circuit in Figure 4 could provide the same property; however, it
proportionally increases the number of registers based on the used
cutset stages. Consequently, the observer canonical architecture
uses a minimal number of registers, and for encoder memory of
m > 2 itis the only form that fully exploits flexibility in terms of
speed since the minimum clock period applies for the whole range
of possible polynomials. Hence, the basic encoder is realized ac-
cording to Figure 7.

3. SYSTEM SPECIFICATION

In order to cover a wide range of convolutional codes there should
be a certain number of polynomials generated simultaneously. The
memory of a single encoder will be 10, and we have chosen up to
16 data streams that can be emitted in parallel or, by proper con-
figuration, can be joined to form code rates of 1/c,c = 2...16.
Besides, using more than one input stream broadens the range to
b/e,b =1...15,b < c¢. Another question is whether to include
recursive convolutional codes or not. In [3] it is shown that these
codes give better performance at rate 1/2 and low E; /Ny com-
pared to non-recursive ones, so it makes sense to realize these
functions as well. The use of recursive codes can also be motivated
by the fact that they are a basic part of turbo codes [4], that will
be realized on this platform in the future by adding an interleaver.
Since they use less memory, usually m = 2...4, it becomes ob-
vious that the whole model has to be fully parameterizable.

4. IMPLEMENTATION

The choice of a proper implementation platform for this initial
project state is motivated by different reasons. If pursuing low
power issues it is advisable to develop dedicated hardware. This
is the approach with highest efficiency per computation because

input .
P — Enc. | — Enc. —1 Enc. | ghlft out

shiftin | 1 16
output _i 1 1 16

Figure 8: Flexible encoder architecture

fi feedforward
. | path
|
I
-
: - —
| >
| qi
"o 0 feedback
- — — — - — l path

Figure 9: Basic building block

power saving techniques can be applied on all levels of the design
[5]. On the other hand, the design cycle for an FPGA is usually
much shorter than for an ASIC, where chip fabrication time has to
be taken into account. Thus, an FPGA is better suited for prototyp-
ing because functional behavior can be verified much faster. Since
this aspect is more important in this initial stage, the system is re-
alized on a XILINX Spartan-11 FPGA [6]. However, modules are
still developed with regard to reusability in a future ASIC, suitable
for low power solutions. Figure 8 depicts the flexible encoder ar-
chitecture that basically consists of 16 parallel encoders described
by Figure 7.

The dashed line connecting the encoders acts as a single bit
line used for configuration purposes. Flexibility is incorporated by
having total control over the coding polynomials, which requires
switches representing these coefficients. A switch uses a regis-
ter and an AND-gate. Since there are 16 encoders, each having
2m + 1 = 21 coefficients, there will be 336 switches in total.
Thinking about how to configure these switches, it becomes clear
that a serial approach has to be pursued since it is virtually impos-
sible to efficiently route such a number of registers in this FPGA
to the required gates. By using a shift register chain to set up these
coefficients the routing effort is put on a local level. On this level
one can gain a lot by using a so called Configurable Logic Block
(CLB) [6]. A CLB in a Spartan-I1 device consists of two identical
slices, with each slice having two configurable registers, two look-
up tables realizing combinational functions, and dedicated carry
and control logic.

The gray box in Figure 7 enclosing a register, two switches
and an XOR-gate is the basic building block of the design and is
shown in detail in Figure 9. The coefficients of a polynomial are
represented by the output of the registers on the left side. A multi-
plication in IF, is simply performed by an AND-gate incorporating
the respective switch. Again, the dashed line in this block repre-
sents the smallest part of the shift register chain. In configuration
mode all the coefficient bits ripple through this chain. Since 10 se-
rially connected blocks form a basic encoder, 21 shifts are needed

confi overflow
g ’ counter
CE CE CE

” 1’7_ I I
block enable I 1 2 _l 16

Figure 10: Block enable logic

to completely set up one coding polynomial. Then, the bits are
shifted to the next block and so on until the desired number of
polynomials is established. Notice that on every hierarchy level
there is always just one shift input and one shift output, simplify-
ing the whole routing process and increasing modularity.

Clearly, the configuration process can be utilized at the same
time to support power saving since only the programmed blocks
should be running. By keeping track of the number of shifts, ev-
ery block can be enabled separately as shown in Figure 10. An
overflow event should occur when a single block is programmed,
that is, after 21 clock cycles. The overflow counter then emits a
clock enable pulse and the shift register is set to its next state, en-
abling one block after another. Contrary to an ASIC, it is highly
recommended to avoid clock gating in an FPGA [7] since it can
introduce glitches, and increase clock delay and clock skew due to
unprofitable routing. However, since a CLB already has a separate
clock enable input it can be used to explicitly prevent its flip-flops
from changing states and thus consuming switching power.

5. RESULTS

After thoroughly looking at architectural issues, there is still the
question of how these approaches are mapped into the FPGA. This
is important since it basically determines the performance of the
system. The whole design is based upon the block in Figure 9
and improvement on this level has therefore a positive effect on
the system level. Consequently, a bottom-up design style was
applied. According to the reports from the synthesis and rout-
ing tools, this logic is mapped into one CLB. As mentioned, the
three-input XOR-operation will be executed in two steps. First,
the result from the two coefficient paths is evaluated in a look-
up table with four inputs, namely the two actual inputs from the
feedback and the feedforward path and the two respective switch
settings that are stored in registers. The 1-bit output of this table
is then merged with the input from the previous stage in a basic
XOR-cell which is inherent in a CLB. Finally, this result is saved
in a register. The hardware utilization of this building block is
therefore three registers, one look-up table and a basic XOR-cell.
Clearly, this approach efficiently uses the given resources. The
maximum estimated clock frequency for this building block is 157
MHz. However, introducing input and output pads that add delay
to the design decreases the speed to 110 MHz.

Routing reports of the complete system show that 422 slices
out of 1200 are used which is equivalent to a CLB usage of 35%.
Furthermore, 517 flip-flops and 235 4-input look-up tables are uti-
lized in those CLBs which corresponds to 21% and 9% usage, re-
spectively. These numbers match well with the preceding consid-
erations where it was shown that a basic building block uses three
out of four registers in a CLB and one out of four look-up tables.

The speed requirements are supported by applying suitable synthe-
sis constraints, for example, using an attribute called LOC which
advises the routing tool to place logic in defined areas. This can in-
crease the design density which at the same time positively affects
the wiring delay. The correctness of the system was verified on
all stages of the design process, from functional simulation of the
component descriptions to simulation after routing and final test-
ing on the actual FPGA-board. The flexible encoder can be safely
clocked with up to 50 MHz. However, post-synthesis reports and
simulations even verified functional correctness at clock frequen-
cies up to 95 MHz, which could not be tested on the board due to
limitations of the clock source.

6. CONCLUSIONS

This paper presented a flexible convolutional encoder that fully
exploits the range of coding polynomials for given memory. A
thorough investigation of critical path properties for different ar-
chitectures is the basis for this observation. Power saving issues
are already supported with regard to implementation in a future
flexible decoder architecture. Since the system performance relies
mainly on the basic building block shown in Figure 9, optimiza-
tion effort on this level has a positive effect for the whole design. It
is shown that the presented approach efficiently uses the resources
provided by the FPGA. When developing future dedicated hard-
ware, all modules can be reused and an implementation of this ba-
sic block in a custom cell will be considered. In order to broaden
the application range of the platform, future work will address a
flexible interleaver that has to be added to the design to generate
turbo codes.

7. ACKNOWLEDGMENTS

This project is supported by the Swedish Socware program, the EU
Pacwoman project, and the Competence Center for Circuit Design
(CCCD) at Lund University.

8. REFERENCES

[1] R. Johannesson and K. S. Zigangirov, Fundamentals of Con-
volutional Coding. New York: IEEE Press, 1999.

[2] K. K. Parhi, VLSI Digital Signal Processing Systems. New
York: Wiley, 1999.

[3] J.B. Anderson, “Best short rate 1/2 tailbiting codes for the bit-
error rate criterion,” IEEE Transactions on Communications,
vol. 48, pp. 597-610, April 2000.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shan-
non limit error-correcting coding and decoding: Turbo codes,”
in Proc. IEEE International Conference on Communications,
vol. 2, pp. 1064-1070, May 1993.

[5] A.P.Chandrakasan and R. W. Brodersen, “Minimizing power
consumption in digital CMOS circuits,” Proceedings of the
IEEE, vol. 83, pp. 498-523, April 1995.

[6] XILINX, http://www.xilinx.com, Spartan-1l FPGA Family:
Functional Description, 2001.

[7]1 XILINX, http:/mww.xilinx.com, Synthesis and Simulation
Design Guide, 2000.

