
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Area and power efficient trellis computational blocks in 0.13μm CMOS

Kamuf, Matthias; Öwall, Viktor; Anderson, John B

Published in:
IEEE International Symposium on Circuits and Systems (ISCAS)

DOI:
10.1109/ISCAS.2005.1464595

2005

Link to publication

Citation for published version (APA):
Kamuf, M., Öwall, V., & Anderson, J. B. (2005). Area and power efficient trellis computational blocks in 0.13μm
CMOS. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 344-347). IEEE - Institute of
Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISCAS.2005.1464595

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ISCAS.2005.1464595
https://portal.research.lu.se/en/publications/cb6a40a4-691a-4fc3-9b9d-0ae700d23374
https://doi.org/10.1109/ISCAS.2005.1464595


Area and Power Efficient
Trellis Computational Blocks in 0.13µm CMOS

Matthias Kamuf and ViktorÖwall
Department of Electroscience

Lund University
SE-221 00 Lund, Sweden

Email: {mkf, vikt}@es.lth.se

John B. Anderson
Department of Information Technology

Lund University
SE-221 00 Lund, Sweden
Email: anderson@it.lth.se

Abstract— Improved add-compare-select and branch metric
units are presented to reduce the complexity in the implemen-
tation of trellis-based decoding architectures. These units use a
complementary property of the best rate1/2 convolutional codes
to reduce both area requirements and power consumption in a
silicon implementation with no loss in decoding performance. For
a 0.13µm CMOS process, synthesized computational blocks for
decoders that can process codes from memory 2 up to 7 show
up to 17% savings in both cell area and power consumption.

I. I NTRODUCTION

Trellis-based decoding is a popular method to recover
encoded information corrupted during transmission over a
noisy channel. For example, the Viterbi algorithm (VA) [1]
and the BCJR algorithm [2] are two schemes that work on an
underlying trellis description of the encoded sequence. Note
that the BCJR in the logarithmic domain (logMAP algorithm
[3]) is commonly used in turbo decoding schemes.

Basic computations in either algorithm involve branch met-
ric (BM) calculations and add-compare-select (ACS) oper-
ations. In case of the VA, an ACS operation successively
discards branches that are not part of the survivor path. In case
of the logMAP, this operation corresponds to an Add-MAX?

operation [4] to recursively calculate forward and backward
state metrics. However, this is basically an ACS operation with
an added offset (ACSO) to correct for the Jacobian logarithm.
Thus, the presented results for the ACS hold for the ACSO as
well.

Almost all good rate1/n convolutional codes,n an integer,
have the property that the code symbol labels on the two
branches into each trellis node are complementary. In an earlier
paper [5], we used this property and presented architectural
simplifications for these units. Here, we apply this idea to see
how these arithmetic savings translate into area and power
savings in a silicon implementation.

We start by briefly reviewing notation and necessary modifi-
cations in the following section. Then, architectural issues for
a hardware realization are addressed in Section III. We also
present a variation that trades area for speed. As a case study,
a computational kernel for Viterbi decoding is synthesized.
The synthesis results in Section IV confirm the benefits of
these approaches compared to a traditional setup. Also, power
savings are estimated at gate level.

λ(s′ → s)

k k + 1

s′

s′′ λ(s
′′ → s)

s

(a)

λ(s′′ → s)

Γ(s′, k)

Γ(s′′, k)

λ(s′ → s)

Γ(s, k + 1)

sign

(b)

Fig. 1. A trellis node (a) and its respective ACS computational unit (b) for
a rate1/n code. Two additions and one comparison (subtraction) are needed
to determine the new state metric.

II. N OTATION AND SIMPLIFICATION

A channel symbol is quantized withq bits and denotedyi ∈
[0, 2q − 1] for i = 0, . . . , n − 1. This symbol is the output
of a discrete memoryless channel with binary inputxj and
transition probabilitiesP (yi|xj). The expected code symbol
ci(s′ → s) along the branch from states′ to states is derived
by the mappingx0 7→ 0 andx1 7→ 2q − 1.

The metricλ(s′ → s) denotes the likelihood that a transition
from states′ to s occurred at timek, see Fig. 1(a). In the
additive white Gaussian noise channel the optimal distance
measure is the squared Euclidean distance between the ex-
pected code symbols and the received noisy channel symbols.
However, given the preceding symbol constraints this measure
simplifies to a superposition ofn channel symbols using

λi(s′ → s) =

{
yi, ci(s′ → s) = 0
(2q − 1)− yi, ci(s′ → s) = 2q − 1

(1)

and the complete branch metric becomes

λ(s′ → s) =
n−1∑
i=0

λi(s′ → s). (2)

The ACS operation is expressed as

Γ(s, k + 1) = min{Γ(s′, k) + λ(s′ → s),
Γ(s′′, k) + λ(s′′ → s)} (3)

and illustrated in Fig. 1(b).Γ(s, k + 1) is the updated metric
of states at timek + 1, based on the preceding state metrics,



3

0

3

0

1

2

1

2

0

3

0

3

1

2

1

2

Γ(0, k + 1)

Γ(0, k)

Γ(1, k)

λ∗[00]

Γ(2, k + 1)

Γ(0, k)

Γ(3, k)

Γ(2, k)

Γ(1, k + 1)

Γ̃(1, k + 1)

∆λ

Γ(2, k)

Γ(3, k)

Γ(3, k + 1)

Γ̃(3, k + 1)

∆λ

00

00

11 11

λ∗[00] λ∗[10]

λ∗[10]

10

01

10

01

Γ(1, k)

Fig. 3. Improved ACS setup for a (7,5) code. The respective trellis nodes are shown on either side together with the expected symbol labels[x0 x1] along
the branches.λ[00] was subtracted from all updated state metrics.

λ∗(s′ → s)

Γ(s′′, k)

Γ(s′, k)

Γ(s, k + 1)

λ(s′ → s)

sign
Γ̃(s, k + 1)

Fig. 2. Transformed ACS unit for a rate1/2 code. This unit needs one
addition less to determine the outcome of the comparison,Γ̃(s, k + 1).

Γ(s′, k) andΓ(s′′, k) at timek, and the respective metricsλ()
along the branches(s′ → s) and (s′′ → s).

We consider rate1/2 convolutional codes,n = 2, whose
code symbol labels on the two branches into each trellis node
are complementary. Since the branch metrics linearly depend
on the code symbols they also share this property and one
branch metric can be expressed by means of the other, that is,

λ(s′′ → s) = 2 (2q − 1)− λ(s′ → s)
= λ(s′ → s) + 2 [(2q − 1)− λ(s′ → s)].

(4)

We define the modified branch metricλ∗(s′ → s), which is a
signed number, as

λ∗(s′ → s) ≡ 2 [(2q − 1)− λ(s′ → s)]. (5)

This expression is calculated by bit-invertingλ(s′ → s) with
the most significant bit (MSB) excluded followed by a left-
shift. Substituting (5) together with (4) into (3) and taking out
the common factorλ(s′ → s) from the comparison we get

Γ(s, k + 1) = λ(s′ → s) +
min{Γ(s′, k),Γ(s′′, k) + λ∗(s′ → s)}. (6)

Introducing Γ̃(s, k + 1) as the new outcome of themin
operation, see Fig. 2, (6) becomes

Γ(s, k + 1) = λ(s′ → s) + Γ̃(s, k + 1). (7)

Compared to (3) there is one addition less needed to determine
the outcome of the comparison. In order to retain the numerical
relation between interconnected state metrics in a trellis with
differentλ() we have to add this factor after having determined
Γ̃(s, k+1). However, one can subtract this factor from all state
metrics and it will be shown that in that case half the ACS units
do not need this correction, that is,Γ(s, k + 1) = Γ̃(s, k + 1).

III. I MPROVED ARCHITECTURES

The branch metricλ(s′ → s) can take four different
values for a rate1/2 code, namelyλ[x0 x1] for every possible
combination of symbolsxj ∈ {0, 1}. The complementary
metrics toλ[00] and λ[10] that are needed in a conventional
ACS unit areλ[11] and λ[01], respectively. In the improved
approach only two metrics are needed since the other two can
be calculated according to (4), that is,λ[11] is expressed by
λ[00] and λ[01] by λ[10]. The factorλ(s′ → s) of Fig. 2 to
be added in an ACS unit is therefore eitherλ[00] or λ[10].

From the preceding considerations the hardware savings
become apparent by looking at an example, an ACS unit setup
for decoding a (7,5) code in Fig. 3. In this picture, the state
metric corrections in the two ACS units on the left become
obsolete sinceλ[00] was subtracted from all updated state
metrics. The correction factor to be used in the two ACS units
on the right is then

∆λ = λ[10]− λ[00]
= (2q − 1)− 2 y0.

(8)

Consequently, for rate1/2 codes that have the complementary
property half the ACS units save one addition compared
to a conventional setup. Therefore, the number of required
additions is 5 · 2m−1, where m is the encoder memory.
Compared to a conventional ACS unit setup (3 ·2m additions),
the reduction in arithmetic complexity is 17%.

The necessary distance measuresλ[ ] are provided by BM
units. Fig. 4 shows both a conventional and the improved BM
unit. The former (a) needs four additions and two inverters to
calculate the four branch metrics. The latter (b) only needs two
additions and three inverters to calculate two branch metrics
considering that the calculation of∆λ can be simplified with
y0 = (2q − 1)− y0 and therefore (8) becomes

∆λ = 2 y0 − (2q − 1) (mod 2q)
= 2 y0 + 1.

(9)

This expression is calculated by a left-shift ofy0 followed by
a bit-inversion (MSB excluded).

Note that the critical path in half the ACS units is increased
by the delay of an addition. However, this problem is solved



y1

λ[01]λ[00]

λ[10] λ[11]

y0

(a)

y0

y1

λ∗[00]
λ∗()

λ∗[10]
λ∗()

∆λ

(b)

Fig. 4. Conventional (a) and modified (b) BM unit for a rate1/2 code. Note
that the subtraction for calculating∆λ simplifies to a left-shift followed by
a bit-inversion ofy0 (MSB excluded), see (8) and (9).

Γ(0, k)

Γ̃(1, k)

Γ̃(1, k)

Γ(0, k)

∆λ

λ∗[00]

λ∗[00] + ∆λ

Γ
(0

,
k

+
1
)

Γ
(2

,
k

+
1
)

Γ(2, k)

λ∗[10] + ∆λ

Γ(2, k)

λ∗[10]

∆λ
Γ̃
(3

,
k

+
1
)

Γ̃
(1

,
k

+
1
)

Γ̃(3, k)

Γ̃(3, k)

Fig. 5. Retimed ACS setup for a (7,5) code. Note that∆λ in this case is
delayed by one clock cycle in the BM unit.

by delaying the correction into the next computation cycle
and the original critical path of the ACS unit is maintained.
In this case, the additions for the correction that are after the
multiplexers in Fig. 3 move into different ACS units into the
comparison path instead, see the retimed ACS unit in Fig. 5.
Besides storing∆λ in the BM unit, two new correction factors
λ∗[00]+∆λ andλ∗[10]+∆λ are needed for this architecture.
These additions are not carried out in the ACS units since
this again would increase the critical path. They are instead
precalculated in the BM unit; the complexity is moved from
the ACS units to the BM unit which is instantiated only once
instead of2m times. Fig. 6 shows this BM unit which is the
BM unit from Fig. 4(b) appended with two additions and a
register. If the extra delay introduced by these additions can
not be tolerated, the datapath can always be pipelined since it
is purely feedforward.

IV. I MPLEMENTATION AND SYNTHESIS RESULTS

In this case study, we implemented Viterbi computational
blocks for best feedforward rate1/2 convolutional codes [6]
up to memorym = 7. The output of an ACS unit is both the
surviving path into the respective state and the updated state
metric, see Fig. 7. We neglect survivor memory management
since this part of the decoder does not differ between the
conventional and improved architectures. The BM and ACS
units are described in a VHDL model at register-transfer level
based on generic parameters.

The well-known state metric normalization techniques are
still valid since differences among the state metrics remain the

y0

λ∗[00]

y1

∆λ

λ∗[00] + ∆λ

λ∗[10]

λ∗[10] + ∆λF
ig

ur
e

4(
b)

B
M

un
it

fr
om

Fig. 6. BM unit for the ACS setup in Fig. 5.

ACS

Trellis

...

ACS

Γ(S, k + 1)Γ(S, k)

Survivors
unit

y0 BM
y1

Fig. 7. Block diagram of the model in the case study,S = [0 . . . 2m − 1].

same. A modulo normalization scheme is used and the state
metrics become

dlog2{2 (2q − 1)(m + 1)}e (10)

bits wide. The comparison in the ACS unit is implemented
with the modified comparison rule [7]. Channel symbol
wordlength isq = 3 since this gives negligible degradation
in decoding performance compared to infinite precision.

We used a design kit from Virtual Silicon for the UMC1

0.13µm CMOS process. Power figures were obtained by
Synopsys Power Compiler using toggle information from a
gate level simulation run with state- and path-dependent cell
information, and random input stimuli. Both dynamic (switch-
ing and short-circuit power) and leakage power are included
in the results. However, it turns out that the contribution
from leakage power is negligible in this study. At this design
stage, it is assumed that the contribution from clock tree and
interconnection, which is relevant for absolute area and power
numbers, is the same in both architectures since we are only
interested in the relative savings between architectures.

The improved versions are compared to their respective
conventional setup with regard to their application area. For
applications with relaxed timing requirements, area and power
comparisons are done for the architecture in Fig. 3 together
with the respective BM units. Synthesis tests showed that the
area-delay product curve is flat down to a delay of about 3.5
ns, which is set as a constraint to the critical path. The power
simulation is carried out at a clock frequency offclk=250MHz.
For the retimed architecture of Fig. 5 this delay reaches further
down to 2 ns. Here, we only synthesized the ACS units in order
to investigate the impact of the saved adder in every unit. For
the power simulationfclk=400MHz is assumed.

Table I lists the synthesis results of the cell area for a
conventional ACS setup together with the BM unit from

1United Microelectronics Company



m 2 3 4 5 6 7

Area (µm2) 3697 6876 15120 29723 58930 115974

TABLE I

CELL AREA FOR A CONVENTIONAL BM/ACS SETUP.

2 3 4 5 6 7
0

5

10

15

20

Encoder memorym

S
av

in
gs

(%
)

Area
Power

Fig. 8. Area and power comparison (@Vdd=1.2V, fclk=250MHz) between
a conventional (Table I) and the improved BM/ACS setup from Fig. 3 and
4(b).

Fig. 4(a). In comparison with it, Fig. 8 shows the possible sav-
ings in cell area and power consumption when the improved
architecture from Fig. 3 is employed. As mentioned earlier,
the arithmetic complexity is reduced by 17%, which is true
for m = 2. However, with increasingm the percental savings
decrease since both area and power overhead introduced by
the registers gets bigger. Atm = 4, the state metric register
wordlength is increased by one bit, refer to (10). Thereafter the
combinational power savings catch up with this initial penalty
and again reach 12% atm = 6.

Fig. 9 shows the comparison results when the setup from
Fig. 5 is used. Note that compared to Fig. 8 the power
figures were obtained at a higher clock frequency due to
the shorter critical path. Also, the adders incorporating the
correction factors in the ACS units on the top are one bit
bigger than the ones in the conventional architecture. Again,
the improved setup saves both area and power with 7% and
10%, respectively.

If speed requirements allow use of the computational kernel
in a time-multiplexed fashion, the savings increase compared
to a parallel implementation; for example, form = 6, there
are achievable savings of 10% in cell area, however, a time-
multiplexed architecture using am = 2 kernel could gain an
extra 7%.

It should be pointed out that in the above comparison
optimization steps from the synthesis tool are suppressed, thus
preserving the proposed architectural structures. The designs
use the same register cells and combinational logic blocks,
that is, adders and comparators, are implemented in ripple-
carry style. However, it turns out that enabling optimization
does not alter the achieved results.

Finally, the results can also be applied to variations of the
synthesized kernel such as in a logMAP decoder. The hardware
effort of the look-up table that corrects for the Jacobian
logarithm in an ACSO is the same in both implementations
and hence introduces a constant overhead. Since this decoder

m 2 3 4 5 6 7

Area (µm2) 2923 5846 13328 26657 53315 106601

TABLE II

CELL AREA FOR A CONVENTIONAL ACS SETUP.

2 3 4 5 6 7
0

5

10

15

Encoder memorym

S
av

in
gs

(%
)

Area
Power

Fig. 9. Area and power comparison (@Vdd=1.2V, fclk=400MHz) between
a conventional (Table II) and the retimed ACS setup from Fig. 5.

is commonly used in turbo decoding schemes, the encoder
memory does not exceed 4 and hence cell area savings can be
as high as 12% per computational unit.

V. CONCLUSIONS

We showed that both area requirements and power con-
sumption of trellis computational kernels can be reduced by
making use of the complementary code symbol property of
all good rate1/2 convolutional codes. In our case study,
area savings vary between 17% and 9% and power savings
from 17% to 7% are reported in a 0.13µm CMOS process.
Furthermore, iterative decoding schemes can easily employ
this simplification since their logMAP decoders are principally
based on the same computational kernel.

ACKNOWLEDGMENTS

This project is supported by the Swedish Socware program,
the EU Pacwoman project, and the Competence Center for
Circuit Design at Lund University.

REFERENCES

[1] G. D. Forney, Jr., “The Viterbi algorithm,”Proceedings of the IEEE,
vol. 61, no. 3, pp. 268–278, Mar. 1973.

[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,”IEEE Transactions on
Information Theory, vol. 20, no. 2, pp. 284–287, Mar. 1974.

[3] P. Robertson, E. Villebrun, and P. Höher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in
Proc. IEEE International Conference on Communications (ICC), Seattle,
WA, June 1995, pp. 1009–1013.

[4] E. Boutillon, W. J. Gross, and P. G. Gulak, “VLSI architectures for the
MAP algorithm,” IEEE Transactions on Communications, vol. 51, no. 2,
pp. 175–185, Feb. 2003.

[5] M. Kamuf, J. B. Anderson, and V.̈Owall, “A simplified computational
kernel for trellis-based decoding,”IEEE Communications Letters, vol. 8,
no. 3, pp. 156–158, Mar. 2004.

[6] R. Johannesson and K. S. Zigangirov,Fundamentals of Convolutional
Coding. Piscataway, NJ: IEEE Press, 1999.

[7] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI
architectures for metric normalization in the Viterbi algorithm,” inProc.
IEEE International Conference on Communications (ICC), vol. 4, Atlanta,
GA, Apr. 1990, pp. 1723–1728.


