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Abstract— Partial Response Signaling (PRS) codes with max-
imal minimum Euclidean distance have previously been found
by linear programming. These perform very well in the
narrowband–high energy region, but they were not optimized
for minimal Bit Error Rate (BER), so they are only optimal in
the limit of infinite signal to noise ratio. Here we search for codes
that perform better for more practical signal to noise ratios. The
BER objective function is no longer linear, but it is still convex.

I. INTRODUCTION

The CPM, TCM and partial response signaling (PRS)
classes of coded modulation are well known. In the last
class are intersymbol interference removal and codes based
on filtering and real-number discrete-time convolution. These
classes operate in different parts of the energy–bandwidth
plane and PRS coding in particular is characterized by narrow
bandwidth and high energy per bit. Here we synthesize PRS-
type codes by severe time–discrete filtering of a data train.

Consider a binary partial response coded modulation gener-
ated by the linear filter hc[n]. The time continuous baseband
signal su(t) transmitted over the channel is generated as

su(t) =
∞∑

n=−∞
u[n]hc(t− nT ) (1)

where u[n] is a binary data sequence and hc(t) is a time
continuous pulse which can in turn be represented as

hc(t) =
δ−1∑
n=0

b[n]ψ(t− nT ) (2)

where b is a time discrete filter of length δ and ψ(t) is
an orthogonal pulse, here a root raised cosine pulse. This is
illustrated in figure 1. By selecting b suitably, considerable
bandwidth reduction compared to the full response case can be
obtained with a small, controlled loss in minimum Euclidean
distance. Normalized bandwidth, denoted by nbw, is used to
measure bandwidth; this is the physical positive-frequency
bandwidth of the pulse hc(t) multiplied by T . The AWGN
channel is assumed. The bandwidth and energy performance
of the system are governed by b.

Much research over the years has gone into finding a
generator b that optimizes the performance of the system [1]–
[4]. More recently Said [5] derived a linear formulation of
Euclidean distance optimal generators at a given bandwidth.
This class of optimal PRS (OPRS) codes has very good
performance; generally it improves on TCM. Furthermore, the

u[n] z−1z−1

b[0] b[1] b[δ − 2] b[δ − 1]

ψ(t) su(t)

Fig. 1. A PRS coded modulation system.

OPRS class can be improved significantly by concatenating an
outer code [6].

The OPRS class is optimal in a Euclidean distance sense,
but it may not be BER-optimal. In this paper we search for
codes with better BER properties than the OPRS codes. To
do this we need to modify the OPRS optimization enough so
that it takes some account of BER while still being tractable.
An exact and tractable optimization of BER is probably not
possible, and the test of a good procedure has to be that it
leads to codes with good measured receiver BER. Naturally
our new codes have minimum distance less than OPRS. OPRS
codes are asymptotically optimal in the limit of infinite signal
to noise ratio, and our new codes can only outperform OPRS
in a finite, but hopefully useful range.

The paper is organized in the following way. In section 2
we give some basic notation and give the linear formulation of
OPRS, which is a basic building block. In Section 3 we give
the optimization methods used for good BER codes. Numerical
results and simulations are presented in section 4.

II. PROPERTIES OF PRS

It can be shown that if the transmitted signal is generated
according to (1) and (2), then samples each T seconds of
a filter matched to ψ(t) form a set of statistically indepen-
dent sufficient statistics. Therefore we always work with the
Euclidean distance equivalent time-discrete model su[n] =∑∞

k=0 u[k]b[n − k] instead of the continuous version. The
energy per bit, Eb, equals

∑δ−1
n=0 |b[n]|2.

A. OPRS

Here we follow the derivations of [5]. An error event is
denoted by ξ[n] and is the difference between two data se-
quences, i.e. ξ[n] = u1[n]−u2[n]. We begin by recapitulating
Said’s linear formulation of OPRS since this is a building
block for us.



The normalized Euclidean distance built up from ξ is

d2(ξ) =
1

2Eb

∞∑
k=0

|sξ[k]|2

=
1

2Eb

∞∑
k=0

∣∣∣∣
∞∑

m=0

ξ[m]b[k −m]
∣∣∣∣
2

=
1

2Eb

∞∑
m=0

∞∑
n=0

ξ[m]g[n−m]ξ[n], (3)

where

g[n−m] =
∞∑

k=−∞
b[k + n−m]b[k] (4)

and Eb denotes energy per bit. By some algebraic manipula-
tion we bring (3) to the linear form

d2(ξ) =
∞∑

k=−∞
g[k]rξ[k], (5)

where

rξ[n] =
1

2Eb

∞∑
k=−∞

ξ[k + n]ξ[k] =
ξ[n]√

2
∗ ξ[−n]√

2
(6)

if the energy of b is normalized to 1, i.e.

Eb = g[0] = 1. (7)

The Fourier transform of the pulse hc(t) can be found to
be

|Hc(f)|2 = |Ψ(f)|2
δ−1∑

n=1−δ

g[n]e−j2πnfT . (8)

This gives that the concentration of the pulse in the frequency
interval [−W,W ] equals

∫ W

−W

|Hc(f)|2df =
δ−1∑

n=1−δ

g[n]χ[n], (9)

where

χ[n] =
∫ W

−W

|Ψ(f)|2ej2πnfT . (10)

At this point we have the linear equations (5), (7) and (9)
for Euclidean distance, energy normalization and bandwidth
respectively. This means that we can solve for the optimal tap
set b[n] by using linear programming over g[n]. However, we
must constrain g[n] to be a valid autocorrelation sequence,
meaning that there exists a tap set b[n] having g[n] as auto-
correlation. The following infinite set of linear constraints on
g[n] ensures that a tap set b[n] exists:

δ−1∑
n=1−δ

g[n]e−j2πnf =
δ−1∑

n=1−δ

g[n]κf [n] ≥ 0, ∀f ∈ [0, 1).

(11)
These are called the admissibility constraints.

We now state the optimization problem. We replace the
notation notation g[n] by g:

d2
min,opt = max

x,g
x (12)

s.t.

gtrrξ ≥ x ∀ξ
g[0] = 1
gtrχ = C
gtrκf ≥ 0 ∀f ∈ [0, 1)

The parameter C is called the spectral concentration and
is set to .999 throughout the paper. This implies that the
transmission has 99.9% of its power inside W Hz.

B. Error Probability

Forney [7] derived upper bounds to the first event error
probability as well as the bit error probability for MLSE; these
results were then revised by Foschini [8]. Here we are only
interested in bounds on the BER. The standard Forney upper
bound is

Pb ≤
∑
ξ∈E

dH(ξ)mξQ(
√
d2(ξ)γb), (13)

where dH(ξ) is the Hamming weight of the event ξ, mξ is the
multiplicity of ξ and γb is the received signal to noise ratio.
The set E is a huge set of error events. This set was reduced
in [9]. The multiplicity mξ is easy to derive. Assume that ξ
has length M and begins at time lT . Let û denote the data
sequence u[l], . . . , u[l+M − 1] and UM be the the set of all
possible data sequences of length M , i.e. UM = {+1,−1}M .
Then

mξ = Pr{û + ξ ∈ UM}

=
M−1∏
k=0

Pr{u[l+ k] + ξ[k] ∈ U1}. (14)

Since

Pr{u[l+ k] + ξ[k] ∈ U1} =
{

1/2 ξ[k] = ±2
1 ξ[k] = 0, (15)

we get

mξ = 2−dH(ξ) (16)

By noting that d2(ξ) = d2(−ξ), dH(ξ) = dH(−ξ) and mξ =
m−ξ, we can incorporate the event −ξ in the multiplicity for
ξ and only sum over those ξ ∈ E which have ξ[0] = 2. Then
we get the final expression for mξ as

mξ = 21−dH(ξ) (17)

Define further notation as follows. Let Pe(ξ) denote the
term in (13) related to the error event ξ, i.e.

P (ξ) = dH(ξ)mξQ(
√
d2(ξ)γb). (18)

Finding the k largest P (ξ) yields P k
max, the kth largest P (ξ).

Related to P k
max is also the set Ek = {ξ1, . . . , ξk} consisting

of the k events achieving P 1
max, . . . , P

k
max.



III. GOOD BER CODES

We now turn to PRS codes with better BER than the OPRS
codes. The problem with OPRS is that the event ξmin that
leads to d2

min does not always lead to P 1
max. In fact, sometimes

P (ξmin) � P 1
max. In view of the linear program (12) this

means that the k dominating terms in (13) could possibly have
their distances d2(ξ1), . . . , d2(ξk) increased at the expense of
d2
min. So instead of having maxξ d2(ξ) as objective function

we take the upper bound to BER (13) as our new objective
function. This function is not linear so we have to give up
linear programming as the solution method. It is difficult to
work with (13) when many terms are present, therefore we
limit the number of terms to Nt. Now (13) only estimates the
bound.

We arrive at the optimization problem stated next, where ξ b
k

denotes the kth worst error event for the code generator b:

bopt = argmin
b

Nt∑
k=1

dH(ξb
k)mξb

k
Q(

√
d2(ξb

k)γb)

s.t.

∫ ∞
−∞ |hc(t)|2dt = 1∫ W

−W
|Hc(f)|2df = C

(19)

We now go in two directions: (i) assume Nt = 2 and (ii)
assume not. The first case is a rather easy problem to solve,
and we do this next.

Assume that the upper bound is dominated by only two
terms. Furthermore, assume these two error events ξ b

1 and
ξb
2 are the same for all b under examination. (If not, two

new events can be determined as needed and the algorithm
continued). For the initial ξb

1 and ξb
2 we choose the two worst

events for the OPRS code with same δ and W and we denote
them by ξ1 and ξ2 in the sequal.

The set of autocorrelation functions satisfying the band-
width, energy and admissibility constraints in (12) is a closed
polyhedral set, denoted G.

Definition 1: Let r1 and r2 be the autocorrelations of ξ1
and ξ2. The linear operator R : G → R

2 is defined as

R(g) = (rtr1 g, r
tr
2 g).

The image set of R is denoted by D and is called the set of
achievable distances.

Lemma 1: D is a compact and convex set.

Proof Since G is closed so must D be. Furthermore, from (3)
we see that D must be bounded. This shows that D is compact.
Since G is a polyhedral set it is convex; this and the linearity
of R implies that for x1, x2 ∈ D we have

λx1 + (1 − λ)x2 = λR(g1) + (1 − λ)R(g2)
= R(λg1 + (1 − λ)g2)
= R(g̃), g̃ ∈ G
⇒ λx1 + (1 − λ)x2 ∈ D (20)

G D

R

α β d2
1

d2
2

Γ(d2
1)

Fig. 2. The G and D domains and the linear operation R linking them.
Γ(d2

1) is shown as well as the interval [α, β].

We can now express (19) as an optimization over D with the
objective function

f(d2
1, d

2
2) = C1Q(

√
γbd2

1) + C2Q(
√
γbd2

2), (21)

where Ci = dH(ξi)mξi . Since f is continuous over D and
D is compact we know that there exists a minimum of f on
D. This mimimum must occur somewhere on the northeast
boundary of D, see figure 2. At this boundary we can express
d2
2 as a function of d2

1, i.e.

d2
2 = Γ(d2

1) (22)

The (interesting) values that d2
1 can take can be found via linear

search. The maximal value that d2
1 can take is denoted by β and

is computed by setting the objective function in (12) to r tr
1 g

and omitting the distance constraints. In a similar fashion the
minimal interesting value, α, is computed by α = r tr

1 g̃, where
g̃ is the autocorrelation maximizing (12) when the objective
function is replaced by rtr

2 g and the distance constraints are
omitted. Both α and β are indicated in figure 2.

If we define the function

y(x) = f(x,Γ(x)) = C1Q(
√
γbx) + C2Q(

√
γbΓ(x)), (23)

we can state the optimization problem in a compact way as

min
x∈[α,β]

y(x). (24)

Lemma 2: y(x) is a convex ∪ function on [α, β].

Proof If y(x) ∈ C2([α, β]) then y(x) is convex on [α, β] if
and only if y(x)′′ ≥ 0 ∀x ∈ [α, β]. Since D is a polyhedral set
Γ(x) has jumps in its derivative on the extrema points of D.
This can be avoided in the following way: assume that Γ(x)
has a corner point at x0. Then connect the points Γ(x0 − ε)
and Γ(x0 + ε) with a smooth arc. This does not affect the
convexity of D. If ε → 0 we do not affect y(x) either. Now
let Q̃(x) = Q(

√
γbx); then we have by the chain rule

y′(x) = Q̃′(x) + Γ′(x)Q̃′(Γ(x)), (25)

and

y′′(x) = Q̃′′(x)+Γ′′(x)Q̃′(Γ(x))+(Γ′(x)2)Q̃′′(Γ(x)). (26)



Since

Q̃′′(x) > 0 (27)

Q̃′(x) < 0 (28)

Γ′′(x) ≤ 0 (D convex), (29)

we finally get

y′′(x) > 0, x ∈ [α, β]. (30)

Even if we now know that y(x) is convex we cannot use
convex programming since we do not have full control over
y(x) (this requires knowledge of Γ(x) which we do not have
a priori). Therefore we use the golden section search (see
[10]) over the interval [α, β]. This method suits the problem
well since y(x) is convex and will therefore only have one
minimum on [α, β]; it also requires a low number of function
evaluations which is attractive since an evaluation implies
solving a linear program to find Γ(d2

1). Numerical results are
in section IV.

We now turn to the case where we do not have the
simplification Nt = 2. We still assume the error events to
be invariant, up to reordering of the terms, over b. This is no
restriction if Nt is large enough. The case Nt > 2 is a more
general view and we expect the results to be better than for
the scalar search. However, the optimization is much tougher.

Analogous to the scalar case we express the general problem
(19) in the form (21) over the variables d2

1, . . . , d
2
Nt

. Then
lemma 1 and 2 still hold. Lemma 2 can be proved by studying
the Hessian of f ; it is easy to see that the Hessian is positive
semidefinite which implies that f is convex on the interiour of
D. But since we know that the optimum lies at the boundary of
D we must extend the convexity to also include the boundary.
Construct two sequences y1,n → y1, n → ∞ and y2,n →
y2, n → ∞, where y1 and y2 are arbitrary points on the
boundary. Then we have

f(λy1,n + (1 − λ)y2,n) ≤ λf(y1,n) + (1 − λ)f(y2,n). (31)

By letting n→ ∞ and using the continuity of f we obtain

f(λy1 + (1 − λ)y2) ≤ λf(y1) + (1 − λ)f(y2), (32)

and we have proved that f is convex on the whole D.
Many different approaches to solve the optimization prob-

lem are possible. Since the function is convex we could in
principle use Nt − 1 nested golden section searches. The
complexity of this optimization grows exponentially with N t.
Instead we use the cyclic coordinates method [10]. The only
departure from an ordinary cyclic coordinates method is that
the domain is bounded. Since the objective function is convex
the optimization converges fast.

IV. NUMERICAL RESULTS

We study good codes for PRS length δ = 6 and 8. These
codes depend on the SNR γb, see (23), but we only list codes
for a single typical γb and use these at all SNRs. We perform
enough iterations of the golden section search to get a region of
uncertainty smaller than .001. The main reason for the scalar

search is that compared to the multi dimensional search, it is
extremely efficient.

The results are listed in tables I–IV. We show tests of the

nbw .38 .35 .32 .30 .28
d2
min 1.380 1.122 1.004 .8549 .6375

d2
OPRS 1.397 1.170 1.053 .8170 .6542
γb 10 12 12 13 13

b[0] .4714 .3689 .2644 .2626 .2139
b[1] .7473 .7631 .6745 .6276 .5390
b[2] .0512 .5176 .6461 .6635 .6663
b[3] -.4368 -.0117 .1595 .2889 .4511
b[4] -.0489 -.1158 -.1558 -.0628 .1251
b[5] .1532 -.0093 -.0895 -.0975 -.0245

TABLE I

BEST BER CODE GENERATORS WITH δ = 6 FOUND BY THE GOLDEN

SECTION SEARCH, γb IN DB.

nbw .30 .25 .20
γb 12 13 14

b[0] .2620 .1722 .1065
b[1] .6446 .4699 .2917
b[2] .6512 .6484 .4783
b[3] .2006 .5067 .5622
b[4] -.1485 .1456 .4928
b[5] -.0624 -.1355 .3145
b[6] .1264 -.1695 .1288
b[7] .098 -.0643 .0199

TABLE II

BEST BER CODE GENERATORS WITH δ = 8 FOUND BY THE GOLDEN

SECTION SEARCH, γb IN DB.

nbw .42 .40 .35 .30
d2
min 1.70 1.50 1.112 .7949

d2
OPRS 1.881 1.607 1.17 .8170
γb 10 10 12 13

b[0] .5884 .5022 .3704 .2570
b[1] .6270 .6831 .7631 .6255
b[2] -.2821 -.1863 .5140 .6663
b[3] -.1713 -.4401 -.0220 .2867
b[4] .3633 .1428 -.1258 -.0752
b[5] .1408 .1801 .0075 -.1040

TABLE III

BEST BER CODE GENERATORS WITH δ = 6 FOUND BY

MULTIDIMENSIONAL SEARCH, γb IN DB.

new codes in figures 3–4. In the figures are also simulations
of OPRS codes with same parameters. It can be seen that the
BER optimal codes perform .2–.4 dB better than the OPRS
codes. All tests were done using the M -algorithm [12]. The
decision depth was set to 50. Note that the tested codes are
only optimized for a single value of γb.

A different decoding approach is turbo equalization [11].
Turbo equalization is an iterative equalization and decoding
technique that achieves impressive performance gains over ISI
channels. Here we synthesize a coded modulation by including
the ISI channel into the encoder. The PRS codes are concate-
nated with an interleaver and the (7,5) convolutional code,
resulting in a scheme with twice the bandwidth consumption.
The interleaver is MATLAB’s randintrlv with blocksize
1024 information bits. Test results appear in figure 5. The



nbw .40 .35 .33 .28 .20
d2
min 1.76 1.20 1.103 .797 .302

d2
OPRS 1.793 1.255 1.162 .81 .322
γb 10 12 12 12 13

b[0] .5224 .3897 .3227 .2163 .0941
b[1] .6373 .7796 .7275 .5662 .2744
b[2] -.2778 .4352 .5674 .6658 .4666
b[3] -.4598 -.1365 .0214 .3331 .5624
b[4] .1305 -.0934 -.1275 -.1039 .5052
b[5] .0955 .1200 .0955 -.2388 .3285
b[6] -.0156 -.0117 .1367 -.1027 .1358
b[7] .0769 -.0955 .0163 .0051 .0176

TABLE IV

CODE GENERATORS WITH δ = 8 FOUND BY MULTIDIMENSIONAL SEARCH.

coding gain over uncoded transmission is about 4 dB while at
the same time the bandwidth falls from .7 to .56 Hz/bit/s for
40 % excess bandwidth ψ pulses.

V. CONCLUSIONS

The problem of finding optimal PRS codes for the AWGN
channel has been attacked. Previously, Euclidean distance
optimal codes were studied. This framework was extended
and we showed that the BER objective function was convex.
It turned out that a good code can be found by optimizing
a real valued function of one variable. By optimizing over a
multidimensional objective function better codes can be found.
The optimal code depends on the signal to noise ratio. Tests
show a .2–.4 dB gain in BER by using our modified generators.
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Fig. 3. Measured BER of 6 tap PRS-codes. Lower set of curves has nbw=.35
Hz/bit/s; upper has nbw=.30 Hz/bit/s. Solid curves refer to OPRS codes,
dashed to codes optimized by scalar search, dotted to codes optimized by
multidimensional search.
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Fig. 4. BER of 8 tap PRS-codes. Lower set of curves has nbw=.35 Hz/bit/s;
upper has nbw=.28 Hz/bit/s. Solid curves refer to OPRS codes, dotted to codes
optimized by multidimensional search.
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Fig. 5. Turbo equalization with 12 iterations for the (7,5) convolutional code
concatenated with 6 tap BER optimal PRS code (solid) and 6 tap OPRS code
(dashed), both designed for .28 Hz/bit/s. Uppermost curve is uncoded BPSK.
Basic pulse is 40 % root RC pulse. nbw = .56.


