LUND UNIVERSITY

Application of Constraint Programming to Digital System Design

Szymanek, Radoslaw; Gruian, Flavius; Kuchcinski, Krzysztof

Published in:
Proceedings of the Workshop on Constraint Programming for Decision and Control

1999

Link to publication

Citation for published version (APA):
Szymanek, R., Gruian, F., & Kuchcinski, K. (1999). Application of Constraint Programming to Digital System
Design. In Proceedings of the Workshop on Constraint Programming for Decision and Control (pp. 57-64)

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/91c629d3-dca3-4968-803e-7b55622fc45a

APPLICATION OF CONSTRAINT PROGRAMMING TO
DIGITAL SYSTEMS DESIGN

RADOSLAW SZYMANEK, FLAVIUS GRUIAN,
KRZYSZTOF KUCHCINSKI

Linképing University, Dept. of Computer and Information Science, Linkdping, SWEDEN,
radsz@ida.liu.se

Abstract. This paper presents an application of finite domain constraint programming methods to
digital system synthesis problems. The modeling methods address basic synthesis problems of
high-level synthesis and system-level synthesis. Based on the presented models, the synthesis
algorithms are then defined. These algorithms aim to optimize digital systems with respect to cost,
power consumption, and execution time.

Keywords. digital systems design, constraint programming

1. INTRODUCTION like to consider memory or power consumption con-
straints. These constraints are usually difficult to
Current developments in the VLSI technology make it include in automatic design methods and they have to
possible to build complex systems consisting of mil- be handled separately, which reduces the chance to
lions of components. Recently, the system-on-chip reach good final results.
concept has been proposed which is integration of many
different system parts on a single chip. This develop- System synthesis can be defined as an optimization
ment has the potential of reducing cost while improving Problem. The system is modeled as a set of constraints
many design parameters, such as performance and relion fabrication cost, number of components, timing, and
ability. The design process of a system-on-chip requires the goal is to find a solution which reduces a given cost
new design methods which can he|p the designer tofUﬂCtiOﬂ. For example, we would like to implement a

explore the design space early in the design process. given functionality on a number of processors while
minimizing the execution time. This optimization will

The typical design problems which have to be solved provide the fastest possible implementation with the

during system synthesis include system partitioning, available resources. Other optimization criteria, such as
allocation of components, assignment of basic systemcost, power consumption or a combination of them, can
parts into allocated components and scheduling [1]. be also considered.

These design steps are performed sequentially with

possible iterations when the results are unsatisfactory. This paper is organized as follows. Section 2 defines
Many heterogeneous constraints have to be taken intothe computational model for our framework and pre-

account during the design process. In addition to per- sents the basic finite domain modeling techniques.

formance and area constraints, very often we would Both high-level and system-level synthesis approaches
using finite domain constraints are then presented in

_ _ _section 3. A discussion on modeling advanced design
This work was supported in part by the Wallenberg Foundation AT - "
project “Information Technology for Autonomous Aircraft’ and the ~ f€atures, such as pipelining, chaining and conditional

Foundation for Strategic Research, Integrated Electronic Systemspaths, is presented in section 4. Section 5 discusses
program.

basic methods used for solving and optimizing the For example, for the graph depicted in Fig. 1, the fol-
finite domain models. Finally, conclusions are pre- lowing definition of the nod&, can be made:

sented in section 6.
T1:(T1, 61, pl)’ Tl::O..50, 61::[2,5], p1:I3..4.

2. BASIC MODELING TECHNIQUES NodeT), is activated some time between 0 and 50, its
execution time is either 2 or 5 time units and it uses

In this paper, we consider that digital systems are mod- either resource 3 or 4. For a particular implementation

eled using graphs where the nodes representunique values from domains of related finite domain

computations and the arcs data dependencies betweewuariables are assigned to the parametgdsandp. For

them. The computation nodes can be either simple example T;=(0, 2, 4).

operations, such as additions and multiplications, or

complex tasks representing, for example, signal or A single node specification does not include graph

image processing algorithms. Fig. 1 depicts an exam-information on the execution order between nodes.

ple of such graph. Each node in this graph, (T, Ta, This is defined as inequality constraints. If there is an

T, Ts, Tg), corresponds to a computation. An arc con- arc fromanoddj to a nodeT; in the graph then the fol-

nects two nodes if and only if there is a data lowing inequality constraint is defined:

dependency between the corresponding nodes. There is

an arc in the graph connecting a node with another T+ <,

node if the first node (sender) activates communication

to another node (receiver). For example, the arc

between node$; and T3 models the communication

between these nodes.

Two arbitrary nodes can not, in general, be imple-
mented on the same resource at the same time. This is
usually expressed using disjunctive constraints
imposed on each pair of nodes [4]. These constraints
have to be defined for all nodes which can be executed
in parallel, and thus we can avoid overlapping tasks’
execution. It leads to creation 822—= constraints,

In general, functionality represented by a node is acti-
vated when the communication on all its input arcs
took place. The graph models a single computation as’ ; >
a partial order of nodes’ executions. The graph is acy- N the worst case. The work presented in this paper
clic but an implicit iterative computation is assumed. US€S CHIP 5 constrained logic programming system
For example, in the graph depicted in Fig. 1, each com- [1]; therefore we use the global constradifn/

putation starts from the execution of nodgsandT, for this purpose. It makes use of a rectangle interpreta-
and finishes with execution of notig tion of nodes. A node, represented by a 3-tuple, can be

interpreted as a rectangle in the time/resource space

Each node has a deterministic execution time. A com- having the following coordinatesT(p;), (T;, pj+1),
munication time is also deterministic. Both execution (Ti+d;, i), (T;*+9;, pi*+1)). Please note that we assume
time and communication time can be decided before that each node always uses a single resource.

the model is built. Communication between nodes is
allowed only at the beginning or at the end of the node
execution.

Thediffn/l constraint takes as an argument a list of
n-dimensional rectangles and ensures that for each
pair ofi, j (i#]) of n-dimensional rectangles, there exist
2. 1. Finite Domain Constraints Model at least one dimension wherés afterj or j is afteri.

The graph introduced above is modeled as a set of The n-dimensional rectangle is defined by a tufilg [
finite domain constraints imposed on nodes’ ordering -+ O L1, -+ Lnl, whereG; andL; are called, respec-
and implementation resources. We define first the vari- tively, the origin and the length of the n-dimensional
ables which represent basic parameters of nodes andectangle in theth dimension.

resources and then introduce the basic constraints o

these variables. r\Jsmg thediffn/L constraint we can replace the set

of disjunctive constraints by imposing that all rectan-

A node is modeled as a 3-tugle= (1, 5, p) wheret, 8 9les representing nodes, suchRect=[t;, p;, 9;, 1]
andp are finite domain variables representing the acti- @hdRecf=[t;, p;, 9, 1], can not overlap.
vation time of the nodet{, the execution time of the

node 6), and the resource used to execute the npyle (A node execution time is deterministic but it is not the

same for all resources. For example, different micro-
processors provide different execution time for the
same task depending on the processor’s clock fre-
@ @ ER guency and architecture. The model makes it possible
%\ \® to define the node execution time as a finite domain
Y] as variable capturing several execution time values. The
@ a3 ED/ relation betwee®; andp; can be expressed using the
element/3 constraint. This constraint enforces a
Fig. 1. An example of a computation graph finite relation between the first and the third variable.

The finite relation is given by the vector of values defining the system in an abstract way, usually by
passed as the second argument. More formally, thedescribing its functionality. This abstract representation

execution timeg;, for a nodeT; on a resource;, is is then refined and it becomes a description of the hard-

defined by the following constraint: ware (e.g. ASIC) and possibly some software modules,
which together implement the system. We believe that

element(pi, [Tg . T T vl 3) the use of Constraint Logic Programming (CLP) can

improve both quality and efficiency of system design

2.2. Redundant Constraints) steps. Below we will present a number of examples
The formulation presented above fully describes the where CLP has been used for high-level and system-

graph model of the digital system and can be directly |o\e| synthesis addressing their different aspects.
used for synthesis. However, in most of the developed

applications we used redundant constraints to improve 3, 1. High-Level Synthesis

the constraint propagation. The mostimportant redun- High- evel Synthesis (HLS) refers to the step in the

dant constraint we useddsmulative/8 . synthesis of a digital system where a functional

(behavioral) specification of a system or sub-system is
transformed into a Register-Transfer Level (RTL) rep-

resentation. This RTL representation will be later

implemented in hardware.

The cumulative/8 constraint has been defined in
CHIP to specify requirements on the tasks which need
to be scheduled on a limited number of resources. It
expresses the fact that, at any time instant, the corre-
sponding total of the resources for the tasks does notpyring HLS one must decide the type and number of
exceed a given limit. The following four parameters yesources (adders, multipliers, ALUs, registers)
are used: a list of the start times of tasBs a list of needed, the right time to perform each operation, and
durationsD; of tasks, a list of the amount of resources resource which will perform it. These three problems
R required by the task and the upper limit of the are referred to as resource allocation, operation sched-
amount of resourceldL. All parameters can be either yjing and binding. Each of these problems has been

domain variables orirjtegers, For_maﬂymulative/ proven to be NP hard. HLS targets minimization of

8 enforces the following constraint execution time or resources cost, therefore it can be
i i time or resource constrained.

Qi D[lsmjlgn(oj), 1rgjag<n(oj+Dj)}: R <UL

k: 0, <1<O, +D . . g
KEESPT P The input to the HLS process, the functional specifica-

tion, can be represented as a control data-flow graph
(CDFG). A CDFG and the graph presented in Fig. 1
are very much alike. Therefore, the modeling tech-
niques introduced in the previous section are directly
applicable. The nodes in CDFG represent simple oper-
ations, such as additions, multiplications,
comparisons, while the arcs describe the conditional
or non-conditional data flow between different opera-
tions. For clarity we will consider here only data flow
graphs (DFG), although control information can be
handled as shown in [4].

wheren is the number of tasks, whilainandmaxare
the minimum and maximum values in the domain of
the variable respectively.

The cumulative constraint can be used to describe two
types of constraints. In the first formulatiod; is
replaced byt;, D; by &; and finallyR; by 1. This models
the task allocation and scheduling on the limited num-
ber of resources represented bjL.. The second
constraint represents the bin packing problénis
replaced byp;, D; is always 1 and finally; is replaced

by &;. The variabldJL is constrained to the value lower
or equal the execution time of the graph. Please note
that the first formulation uses onty andg; while the
second one onlp; andd;. Thus they are able to offer
different types of propagation.

The constraints described in the previous section form
the basic model for the general HLS problem. Addi-
tional constraints for modeling application specific
issues such as register assignment and power consump-
tion minimization are described in the following part.

We use also another redundant constraimtece-
dence/5 . This constraint takes into account, in
addition to precedence constraints expressed by ine
qualities, the resource limitations on which jobs can be
scheduled. Thus this redundant constraint gives better
propagation than inequalities alone. The main limita-
tion of this constraint is the need to express durations
and resource usage as integer values.

Registers are assigned to input, output, and temporary
variables during high-level synthesis. To allow register

“sharing, the lifetimes of the variables, representing the
period that the variable occupies a register, are com-
puted and a related analysis determines register
assignment. The lifetimes of the variables are modeled
in our approach using rectangles which span on time
axes over define-use time of the variable. This resem-
bles a definition of variable lifetimes used in left-edge

3. DIGITAL SYSTEM SYNTHESIS algorithm (see, for example [1]). Defining the lifetimes
' of variables as rectangles provides a natural way to use

The synthesis process of a digital system starts with Pothdiffn/1 - andcumulative/8 constraints [5].

a b c d e

Ops

Fig. 2. A simple DFG y

. . . Fig. 4. Another simple DFG
System power consumption is another important

design issue. For CMOS digital circuits the power con- Certain resource operatiop andOp are executed
sumption depends mainly on the supply voltage, clock in that order, the switching activity cannot be com-

frequency, and switched capacitance: puted as a simple suBw ; + Swy j since the switching
produced byOp, is dependent on the signal values pro-
Pswitching = @ [C Of V34 duced by the previous operatidp,. It is closer to

reality to consider switching aSwy; + Sw; where
Sw; is the relative switching between operatiddp
ndOp. The relative switching activity describes the
bit correlation of two signals and is defined as the
number of different bit values of the two signals [7].

Considering that the voltage and frequency are usually
fixed as design requirements, and the capacitance i
determined by the technological process, the only way
to minimize power consumption is by minimizing
switching activitya. The switching activity of a node

is a measure of how much a certain node in a CMOS
circuit has to switch from 1 to 0 to compute something.
In other words, if the signals in a circuit are changing
as little as possible during computation then the circuit

” | With this ob i obtained in CHIP using thecycle/n constraint.
WIT consume 1€ss power. VVIth ThiS obSErvation, ON€ a .y 41y we have to deal with a slightly modified trav-
could carefully schedule the order of operations on

_ elling salesman problem (TSP) [8] where there are as
?nany cycles as there are resources. The nodes in the
graph are the operation€Qp, and the weights
assigned to the arcs in the graph are the relative
switching values. For examplw; is the weight of

the arc going fronOp, to Op. The unbounded switch-
ings can be seen as arcs from a dummy node
representing a resourédo a normal operation node
(see Fig. 5).

What we finally need to minimize is exactly the
switching yielded by a certain sequence of operations
on a certain resource. For that we have to know the
sequence of operations on each resource which can be

possible at the inputs and inside the resource. Briefly,
binding and scheduling influence the values and the
sequence of signals applied to each resource.

Consider simple DFG shown in Fig. 2. There are sev-
eral possible schedules and bindings for this graph
using two adders. Each solution vyields different
switching activities, thus different power consump-
tions. Two of these possible bindings and schedules
are depicted in Fig. 3. First let us consider that each
operation of the DFG is executed on its own functional
unit yielding a switching activity that can be calculated
using signal probabilities or computed by a fast RT
level simulator. Let us call this switching activity the
unbounded switchingSi ;) for operationOp. In
general, during high level synthesis, several operations

will be bound to the same resource determining the g, = (SWh 4+ SWy 5+ SWs)+(SWh g+ SWe 2) + SWp 3
switching activity of the design. For example, if on a ' ’ ' ’ ’ '

For the DFG example depicted in Fig. 4, a possible
design which uses three resources, two adders and one
multiplier, is described in Fig. 5. The operatioDgy,

Ops, Op, are executed on resourtén this orderOpg,

Op, on resource in this order andp; on resourcé.

The switching activity is the sum of the weights of the
arcs involved:

b c d e b c a Please observe that the arcs closing the cycles, back to
| /N / the dummy nodes have weight zero. In particular we

on, step 1 o Op, usedcycle/9 to group theN operations in sets for

. Op; P e d each resource:
SN - — — — == -

Op4\t-+;-> OP1 step 2 Opy Ops

adder 1 adder 2 adder 1 adder 2
solution A solution B

Fig. 3. Two possible schedules with different

bindings for the DFG in Fig. 2 Fig. 5. Example of cycle generation for the DFG

cycleR, [S 1S9 «vS R Spit v S R [0, .y 0], The data dependency constraints belong to the first

MinimalCycleLength, MaximalCycleLength, group and they are modeled using inequalities as pre-
(L, 2, .., R], unused, [1, 2, .., R, PL P2 P sented in subsection 2.1. There are two kinds of data
[unused, ..., unused, T W) dependency between tasks. Indirect data dependency

exists when two cooperating tasks, for exampjaid

Ty, are executed on different processors. In this case,
communication a depends on taskTand task §
depends on communication;.aDirect data depen-
dency occurs when two cooperating tasks are executed
on the same processor. These two possibilities of data
dependency are encoded using conditional constraints.
Assuming that all data dependencies are direct, we can
use a redundant constraiptecedence/s to get a
better estimation of the lower bound for execution
time of the task graph.

where R is the number of resources use&,

1< S <N, is the domain variable indicating an imme-
diate successor of operationn the specific resource,
andr;, p; are the starting time and the resource used for
operationi. Having the ordering of operations on each
resource it is easy to compute the overall switching
activity, which is the objective function to be mini-
mized. To extract exactly the switching values needed
for the computation of this function we used an addi-
tional cycle/11 constraint. For more information
please refer to [3].

The problems of binding tasks to processors and com-

3.. 2. System-!__evel Synthesis o munication to communication devices and scheduling
Given the specification of the system functionality, the o are modeled. as indicated in section 2.1 by

main goal of system-level synthesis is to make deci- yin/; constraint. This constraint requires the task
sions concerning the system architecture and the gy ation to be greater than zero. Since some communi-
system implementation on this architecture. The sys- .ations can be performed in zero time, using local
tem functional specification is compiled into a task memory, we have to distinguish them from tasks and
graph. The graph introduced in the section 2 is inter- other communications. The way of handling “disap-
preted as a task graph where the nodes represent tas'ﬁ§earing” communication is to introduce a third
and the arcs represent communications between themgimension in thedifn/t constraint in addition to
Each task must be executed on a single processor, Sqime ang resource dimensions. These communications
for each task we need to reserve a time slot, code and iy have different values in the third dimension. This

data memory on the chosen processor. In our hqjicy ensures that non-existing communications do
approach, we assume that there is no need for commu-

PRTE not restrict the solution space.
nication when two tasks are executed on the same
processor since both tasks have access to the sameode memory is used to store programs implementing
local memory. tasks. The amount of code memory needed to imple-
ment a task depends on the processor type, but it is

An architecture consists of processors and communi-fiyaq during the execution of the whole task graph. For
cation devices, such as busses and links. Fig. 6 depicts, 5. processor theequence/s constraint trans-

an example target architecture, which consists of four 5.« the B1.P2.-.. Pyl Vector, wherep, denotes the
processors, P1, P2, P3 and P4, two links, L1 and L2, req6yrce executing the m-th task, into a binary vector.
and a bus, B1. A value 1 on the n-th position means that the given
processor executes the n-th task and 0 otherwise. The
obtained vector multiplied by the vector of code mem-
ory requirements for the given processor gives the
overall usage of the code memory. This usage must not
exceed the available memory.

The goal of the system-level synthesis is to find an
architecture with a minimal cost, which can execute all
tasks while fulfilling timing and memory constraints.
The architecture is created from a set of components
specified by the designer. The whole process is guided

by the constraint system, which enforces the correct- p ;¢4 memory constraint is the most complex since

ness of the solution by rejecting all the decisions 415 memory usage changes during tasks’ execution.
which violate constraints. Data are associated with communications. First we
have to allocate data memory on the processor which
executes a task producing data. After transmission of
the data to the processor which executes the consumer
task, we need to reserve data memory on this processor
until the end of the execution of the task. During trans-
mission both processors have reserved data memory.

Ly Lo
| P1 I:| P2 | | Ps I:| P1 | Example: Consider two cooperating tasks and com-
munication between them as depicted in Fig. 7a,
where T, is executed on processoj Bnd T, is exe-
B, cuted on processor ,P Communication ¢ is
Fig. 6. Target architecture scheduled on bus B The data transfer can freely

The constraints taken into account in the presented
synthesis system can be classified into two groups:

« timing constraints, and

* resource constraints.

when T; and T, are executed on different processors or

C
a) two cooperating tasks oy = Tpp +6D1’ =1,
B1 v 2/ A OT1,+ 07, = Tpy +0py OTpyr = Tpyg
P2 | T2 |

when T, and T, are executed on the same processor.
Using this formulation, we can ensure that cumulative
usage of data memory depicted as rectangles in the

P1 T |

b) schedule for two cooperating tasks

B’%" | D, dotted area does not exceed the available data memory.
DM
Pl Dy | 4. ADVANCED FEATURES
c) data memory usage for processors executing these tasks
Fig. 7. Data memory requirements A number of useful extensions to the basic formulation

introduced in section 2 can be defined to consider spe-
occur between finishing time of, Bind starting time of ~ cial features such as pipelined components, chaining,
T,, which is expressed by the following inequalities: algorithmic pipelining and conditional execution.

They are discussed in this section.
T+ 01 SToy UTe+0e 5T

Modeling pipelined componentsan be accomplished
Each communication results in two data requirements by defining 3-dimensional rectangles, in which the third
as depicted in Fig. 7c. ProcessarfRust reserve data dimension represents subsequent stages of the compo-
memory, denoted by P for task T; from 1y until nent. For example, Fig. 9 depicts a design which uses a
Tc1+8¢1, Wherety, 8¢y denote the start time and dura- two stage pipelined component. The first stafg,is
tion of the communication respectively. Processer P represented by the cube of height 1 located betwgen
reserves data memory for task Genoted by B, from andr; and originated at coordinate 0 in the third dimen-
Tey until Tp+8p. Dy and D, have the same height sjon. The second stag®, is represented by the cube of
denoting the memory size. height 1 located betweeny and T, and originated at

) o coordinate 1 in the third dimension. All non-pipelined
For each processor, one cumulative constraint is Createdoperations such as the operat(r)q depicted in Fig. 9

as depicted in Fig. 8. The data requiremeR@ppears paye heights of 2 and therefore can not be placed
in the cumulative for both processorsy Bnd B, (ggether with neither the first, nor the second stage of
because both processors can execyt€Tdsk T can he pipelined subtask. “Packing” of operations repre-
also be executed on both processors, $elIsts in - gented by 3-dimensional rectangles enables placement
both cumulative constraints. Since processpreRe- ot the stage one and two of different operations at the
cutes T, rectangle R in the cumulative constraint for game resource/time location since they do not overlap
processor | denoted by B, is placed in the dotted i the third dimension. Other non-pipelined operations
area and rectangle 0On the cumulative constraint for .on 1ot collide with the pipelined ones since they have

P, is placed outside dotted area. The same principle ihe height 2. The finite domain constraint definition for
applies to task Jand its data requirement, D2. Rectan- the example in Fig. 9 is the following:

gles D’ and Dy’ are actual data requirements, while the
others are not, so they are not taken into account. Thisgiffn(| 1, 0.0, & . LI[T oL &sp L1
is done by placing them outside the dotted area. [, pj', 0 5,1 A) Org+ 5= g

In addition tocumulative/8 ~ we have to use condi- Thijs formulation can be extended into n-dimensions,
tional andelement/3 constraints in order to assure if there are more different pipelined components.
that there is only one Pand D,’ and following equal-

ities hold: Chainingrefers to the high-level synthesis technique
of scheduling two or more data-dependent operations
Tpy = Tyg UTpyp+0pyr = Tey +0¢; UTpy = 1y U into the same clock cycle. Itis achieved by connecting
Trp+ 87, = Tpy +0py
> pipeline o resources
1
stage52 Y A
Dll D2 SZ
1 OH
P. 0 !
2 0 1 2 time
D2’ Dy Fig. 9. Resource sharing constraints for pipelined

Fig. 8. Data memory constraint components.

the output of one functional unit directly to the input positionsk, 2l 3[4 etc. This prevents placing opera-
of the following functional unit without storing a tem- tions in forbidden locations, which are to be used by
porary value in a register. In one clock cycle the subsequent pipeline instances. Since the operation
functional unit can not be reused by another operation parameters are defined by domain variables, the copies
because it still propagates results which are stored atof the current rectangles do not define final operation
the end of this clock cycle. This introduces additional positions but these positions will be adjusted during an
constraints on chaining. assignment of values to domain variables.

Fig. 10 illustrates the basic idea of modeling chaining The following constraints define two-stage pipeline
using finite domain constraints. Three dimensional for two operationsOp, and Op, depicted in Fig. 11,
rectangles are used for this purpose. The three dimen-with initiation ratek:

sions are used to represent resources, clock cycle and

arelative position of an operation within a clock cycle, Tix = Ti+k Tk = [+k

called here a step. Every clock cycle can be filled with dfif(l %, o, .40 7.0, 93]

several operations as long as they fit within the limits [Tk » @ %0 T 6§20

of the clock cycle (the rectangle boundaries). Two
diffn/L constraints are used to impose basic require-
ments on the implementation. The firdiffn/1

constraint specifies the structure depicted in Fig. 10 the rectangle based resource constraints can be easily
and is defined by the following constraint: extended to handleonditionalnodes. The conditional
node is executed only if the conditions assigned to its
input arcs are true. The value of this condition can not
The second constraint is used to forbid situations when P€ statically determined and therefore we need to
the same resource is shared within the same clockSchedule both true and false execution cases. The pre-
cycle. It is defined using a projection of rectangles on Sented formulation of the resource constraints which
the resource/clock cycle surface agliin/l con- uses 2-dimensional rectangles in the time/resource
straint on two dimensional rectangles as given below. SPace needs to be extended to cover conditional execu-
tion. The main idea of representing conditional nodes is
diffn(@ 1, pi,L2], . . 0,110, to extend rectangles into higher dimensions. In princi-
ple, one more dimension for every new condition is
The relation between previously introduced start time used. The conditional nodes start in the third dimension

The graphical, rectangle representation of these con-
straints is depicted in Fig. 11

dlffn([[Tsi s pi s .[Ci s 5i ,1,1],...,[TS]_ s p]) TCJ' s 5] ,1,1]])

of an operationt;, and two new parametet§ andt®, either at 0 or 1, depending on the condition, and have
is defined for every operation by the following height 1. They can share the same time/resource place
equation: since they can be placed “one on top of the other”. Other
computational nodes can not be placed together with
= TN T, conditional ones since in this formulation they have

height 2.
whereN is the number of steps in the clock cycle. 9

Pipelining a data-flow graph is an efficient way of 5. OPTIMIZATION METHODS
accelerating a design [4]. It introduces, in fact, new

constraints on location of rectangles. This method is gtandard CLP optimization method is based on branch
well known in computer architecture area, where tWo gnd pound (B&B) algorithm. It can be successfully
dimensional reservation tables are used for pipeline applied to middle size problems, but large problems
analysis. This approach is compatible with our meth- \yith heterogeneous constraints require more sophisti-
odology. Introducing ann stage pipeline of the cated optimization methods. The big advantage of
initiation rate ofk time units is equivalent to a place- ¢ p is the possibility to create new heuristics using
ment of n copies of existing rectangles, starting at ayajlable meta-heuristics. In our systems, we use
credit search heuristic [6]. Using credit search we are

clack () resources (p) resource
2 i)
o | On | [Op |
1 o lon Jom | ,
; B 1 time
g T Uk G Tk
I

1
S
0123 step () Fig. 11. A graphical representation of the resource

Fig. 10. Rectangle representation of chaining. constraint for algorithmic pipelining.

able to partially explore the whole tree and to avoid sit- different optimization goals. First, the basic formula-
uations when the search is stuck at one part of the tree tion of the computation graphs has been introduced and
formalized using finite domain constraints. Then we
In this paper, we will present the heuristic invented for hayve shown how to use this formulation together with
system-level synthesis, presented in [9], produces different extensions for high-level synthesis. The pre-
good results for large industrial size examples consist- sented methods make it possible to optimize design’s
ing of 100 tasks and 120 communications. Similar execution time, resources and power consumption.
heuristics are used for other problems. The decision System-level synthesis has been defined in a similar

flow of this heuristic is following: way but it was extended with important code and data
* Assignment of tasks to the resources memory constraints. The introduced modeling tech-
* Assignment of execution intervals to each task niques have been later used for synthesis by applying
* Assignment of time slots for executing tasks gptimization methods based on B&B algorithms and

. L . domain specific heuristics.
First step of the heuristic is to assign tasks to proces-

sors and communication devices. The assignment triesgytensive experiments have been carried out. The
to select the cheapest processors for a given task Wh”eexperimental results presented in [3, 4, 5, 9] prove the
minimizing the code memory usage. When the task ysapility of the proposed methods for large scale
cannot be assigned to none of the processors which argyesigns which contain up to ~200 computational and
already present in the architecture than a new one iscommunication tasks. They show that the CLP with
added. finite domain constraints and particularly the CHIP
system provide a good base for solving many prob-
lems from the area of digital system design which
require combinatorial optimization methods. These
methods are specially well suited for the cases when
many heterogeneous constraints are required for the
problem specification.

In the second step we assign an execution interval for
each task and communication. The number of intervals
depends on the duration of the task, larger task dura-
tion gives smaller number of intervals. Tasks and
communications are then divided into three groups
depending on the position in the graph. For tasks
which are close to the start time of the task graph the
intervals with the smallest starting time are tried first. 7. REFERENCES

For tasks positioned in the middle of the execution

period the middle intervals are selected first, and 1. Eles P., Kuchcinski K. and Peng Z.. System
finally for tasks from the end of the execution period Synthesis with VHDL, Kluwer Academic
we assign intervals with the largest starting time. This ~ Publisher, 1997

approach allows to scatter tasks and communication2. CHIP, System Documentation, COSYTEC, 1996

assignment is done using credit search and Scheduling for Low Power Using Constraint

' Logic Programming, Proc. 24th Euromicro

In previous step, the execution interval for each task ~ Conference, Workshop on Digital System Design,
P P Vasteras, Sweden, August 25-27, 1998

V\;ats de.(t:'hd.Ed' Th_e th;rddSte% a:jsslgins ﬂ|1e 2(_:tual tt|hme4. Kuchcinski K.: Embedded System Synthesis by
Slots within previously decided Intervals. since the Timing Constraints Solving, Proc. of the 10th Int.

search space is very restricted the branch and bound Symposium on System Synthesis, Sep. 17-19

search is performed. 1997, Antwerp, Belgium

o .) 5. Kuchcinski K.: An Approach to High-Level
The heuristic backtracks whenever it can not find cor- gynthesis Using Constraint Logic Programming,
rect assignment at any step. For example, if during Proc. 24th Euromicro Conference, Workshop on
credit search of the intervals no correct assignmentcan Digital System Design, Vasterds, Sweden, August
be found then our heuristic finds a new allocation of 25-27, 1998
tasks and communications to the resources and credit6. Beldiceanu N., Bourreau E., Simonis H. and Chan
search is performed again. After finding a solution a P.: Partial search strategy in CHIP, Presented at 2nd
new constraint is added which restrict the cost of the ~ Metaheuristic International Conference MIC97,

; ; ; Sophia Antipolis, France, 21-24 July 1997
next solution to be smaller than just obtained and the)) .
heuristic is restarted. 7. Raghunathan A., Jha N. K. : Behavioral Synthesis

for Low Power, Proceedings of ICCD 1994
8. Reeves C. R.: Modern Heuristic Techniques for
6. CONCLUSIONS Combinatorial Problems, Blackwell Scientific
Publications, 1993

. .. 9. Szymanek R., Kuchcinski K.: Design Space
In this paper, we have present'ed m_ethodg for d'g't.al Exploration in System Level Synthesis under
system modeling and synthesis using finite domain \emory Constraints, 25th Euromicro Conference,
constraints and CLP paradigm. We have addressed Workshop on Digital System Design, Milan, Italy,
both high-level and system-level synthesis targeting September 8-10, 1999

	APPLICATION OF CONSTRAINT PROGRAMMING TO DIGITAL SYSTEMS DESIGN
	1. INTRODUCTION
	2. BASIC MODELING TECHNIQUES
	2. 1. Finite Domain Constraints Model
	2. 2. Redundant Constraints

	3. DIGITAL SYSTEM SYNTHESIS
	3. 1. High-Level Synthesis
	3. 2. System-Level Synthesis

	4. ADVANCED FEATURES
	5. OPTIMIZATION METHODS
	6. CONCLUSIONS
	7. REFERENCES

