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Abstract. This paper presents an application of finite domain constraint programming metho
digital system synthesis problems. The modeling methods address basic synthesis probl
high-level synthesis and system-level synthesis. Based on the presented models, the sy
algorithms are then defined. These algorithms aim to optimize digital systems with respect to
power consumption, and execution time.

Keywords. digital systems design, constraint programming
-
to
to
to

ion
nts
d
st
a
e

e
as
an

es
-
s.
es
in
gn
al
ses
1. INTRODUCTION

Current developments in the VLSI technology make it
possible to build complex systems consisting of mil-
lions of components. Recently, the system-on-chip
concept has been proposed which is integration of many
different system parts on a single chip. This develop-
ment has the potential of reducing cost while improving
many design parameters, such as performance and reli-
ability. The design process of a system-on-chip requires
new design methods which can help the designer to
explore the design space early in the design process.

The typical design problems which have to be solved
during system synthesis include system partitioning,
allocation of components, assignment of basic system
parts into allocated components and scheduling [1].
These design steps are performed sequentially with
possible iterations when the results are unsatisfactory.
Many heterogeneous constraints have to be taken into
account during the design process. In addition to per-
formance and area constraints, very often we would

like to consider memory or power consumption con
straints. These constraints are usually difficult
include in automatic design methods and they have
be handled separately, which reduces the chance
reach good final results.

System synthesis can be defined as an optimizat
problem. The system is modeled as a set of constrai
on fabrication cost, number of components, timing, an
the goal is to find a solution which reduces a given co
function. For example, we would like to implement
given functionality on a number of processors whil
minimizing the execution time. This optimization will
provide the fastest possible implementation with th
available resources. Other optimization criteria, such
cost, power consumption or a combination of them, c
be also considered.

This paper is organized as follows. Section 2 defin
the computational model for our framework and pre
sents the basic finite domain modeling technique
Both high-level and system-level synthesis approach
using finite domain constraints are then presented
section 3. A discussion on modeling advanced desi
features, such as pipelining, chaining and condition
paths, is presented in section 4. Section 5 discus

This work was supported in part by the Wallenberg Foundation
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program.
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basic methods used for solving and optimizing the
finite domain models. Finally, conclusions are pre-
sented in section 6.

2. BASIC MODELING TECHNIQUES

In this paper, we consider that digital systems are mod-
eled using graphs where the nodes represent
computations and the arcs data dependencies between
them. The computation nodes can be either simple
operations, such as additions and multiplications, or
complex tasks representing, for example, signal or
image processing algorithms. Fig. 1 depicts an exam-
ple of such graph. Each node in this graph, (T1, T2, T3,
T4, T5, T6), corresponds to a computation. An arc con-
nects two nodes if and only if there is a data
dependency between the corresponding nodes. There is
an arc in the graph connecting a node with another
node if the first node (sender) activates communication
to another node (receiver). For example, the arc
between nodesT1 andT3 models the communication
between these nodes.

In general, functionality represented by a node is acti-
vated when the communication on all its input arcs
took place. The graph models a single computation as
a partial order of nodes’ executions. The graph is acy-
clic but an implicit iterative computation is assumed.
For example, in the graph depicted in Fig. 1, each com-
putation starts from the execution of nodesT1 andT2
and finishes with execution of nodeT6.

Each node has a deterministic execution time. A com-
munication time is also deterministic. Both execution
time and communication time can be decided before
the model is built. Communication between nodes is
allowed only at the beginning or at the end of the node
execution.

2. 1. Finite Domain Constraints Model
The graph introduced above is modeled as a set of
finite domain constraints imposed on nodes’ ordering
and implementation resources. We define first the vari-
ables which represent basic parameters of nodes and
resources and then introduce the basic constraints on
these variables.

A node is modeled as a 3-tupleT = (τ, δ, ρ) whereτ, δ
andρ are finite domain variables representing the acti-
vation time of the node (τ), the execution time of the
node (δ), and the resource used to execute the node (ρ).

For example, for the graph depicted in Fig. 1, the fo
lowing definition of the nodeT1 can be made:

T1=(τ1, δ1, ρ1), τ1::0..50, δ1::[2,5], ρ1::3..4.

NodeT1 is activated some time between 0 and 50, i
execution time is either 2 or 5 time units and it use
either resource 3 or 4. For a particular implementatio
unique values from domains of related finite doma
variables are assigned to the parametersτ, δ, andρ. For
example,T1=(0, 2, 4).

A single node specification does not include grap
information on the execution order between node
This is defined as inequality constraints. If there is a
arc from a nodeTi to a nodeTj in the graph then the fol-
lowing inequality constraint is defined:

τi +δi ≤ τj

Two arbitrary nodes can not, in general, be imple
mented on the same resource at the same time. Thi
usually expressed using disjunctive constrain
imposed on each pair of nodes [4]. These constrai
have to be defined for all nodes which can be execut
in parallel, and thus we can avoid overlapping task
execution. It leads to creation of constraints
in the worst case. The work presented in this pap
uses CHIP 5 constrained logic programming syste
[1], therefore we use the global constraintdiffn/1

for this purpose. It makes use of a rectangle interpre
tion of nodes. A node, represented by a 3-tuple, can
interpreted as a rectangle in the time/resource spa
having the following coordinates ((τi, ρi), (τi, ρi+1),
(τi+δi, ρi), (τi+δi, ρi+1)). Please note that we assum
that each node always uses a single resource.

Thediffn/1 constraint takes as an argument a list o
n-dimensional rectangles and ensures that for ea
pair of i, j (i≠j) of n-dimensional rectangles, there exis
at least one dimension wherei is afterj or j is afteri.
The n-dimensional rectangle is defined by a tuple [O1,
..., On, L1, ..., Ln], whereOi andLi are called, respec-
tively, the origin and the length of the n-dimensiona
rectangle in thei-th dimension.

Using thediffn/1 constraint we can replace the se
of disjunctive constraints by imposing that all rectan
gles representing nodes, such asRecti=[τi, ρi, δi, 1]
andRectj=[τj, ρj, δj, 1], can not overlap.

A node execution time is deterministic but it is not th
same for all resources. For example, different micr
processors provide different execution time for th
same task depending on the processor’s clock f
quency and architecture. The model makes it possi
to define the node execution time as a finite doma
variable capturing several execution time values. T
relation betweenδi andρi can be expressed using th
element/3 constraint. This constraint enforces
finite relation between the first and the third variablFig. 1. An example of a computation graph
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The finite relation is given by the vector of values
passed as the second argument. More formally, the
execution time,δi, for a nodeTi on a resourceρi, is
defined by the following constraint:

element( ρi , [ Ti1 , T i2 , ..., T iN ], δi ).

2. 2. Redundant Constraints
The formulation presented above fully describes the
graph model of the digital system and can be directly
used for synthesis. However, in most of the developed
applications we used redundant constraints to improve
the constraint propagation. The most important redun-
dant constraint we used iscumulative/8 .

The cumulative/8 constraint has been defined in
CHIP to specify requirements on the tasks which need
to be scheduled on a limited number of resources. It
expresses the fact that, at any time instant, the corre-
sponding total of the resources for the tasks does not
exceed a given limit. The following four parameters
are used: a list of the start times of tasksOi, a list of
durationsDi of tasks, a list of the amount of resources
Ri required by the task and the upper limit of the
amount of resourcesUL. All parameters can be either
domain variables or integers. Formally,cumulative/

8 enforces the following constraint:

wheren is the number of tasks, whileminandmaxare
the minimum and maximum values in the domain of
the variable respectively.

The cumulative constraint can be used to describe two
types of constraints. In the first formulationOi is
replaced byτi, Di by δi and finallyRi by 1. This models
the task allocation and scheduling on the limited num-
ber of resources represented byUL. The second
constraint represents the bin packing problem:Oi is
replaced byρi, Di is always 1 and finallyRi is replaced
byδi. The variableUL is constrained to the value lower
or equal the execution time of the graph. Please note
that the first formulation uses onlyτi andδi while the
second one onlyρi andδi. Thus they are able to offer
different types of propagation.

We use also another redundant constraintprece-

dence/5 . This constraint takes into account, in
addition to precedence constraints expressed by ine-
qualities, the resource limitations on which jobs can be
scheduled. Thus this redundant constraint gives better
propagation than inequalities alone. The main limita-
tion of this constraint is the need to express durations
and resource usage as integer values.

3. DIGITAL SYSTEM SYNTHESIS

The synthesis process of a digital system starts with

defining the system in an abstract way, usually b
describing its functionality. This abstract representatio
is then refined and it becomes a description of the ha
ware (e.g. ASIC) and possibly some software module
which together implement the system. We believe th
the use of Constraint Logic Programming (CLP) ca
improve both quality and efficiency of system desig
steps. Below we will present a number of example
where CLP has been used for high-level and syste
level synthesis addressing their different aspects.

3. 1. High-Level Synthesis
High-Level Synthesis (HLS) refers to the step in th
synthesis of a digital system where a function
(behavioral) specification of a system or sub-system
transformed into a Register-Transfer Level (RTL) rep
resentation. This RTL representation will be late
implemented in hardware.

During HLS one must decide the type and number
resources (adders, multipliers, ALUs, register
needed, the right time to perform each operation, a
resource which will perform it. These three problem
are referred to as resource allocation, operation sch
uling, and binding. Each of these problems has be
proven to be NP hard. HLS targets minimization o
execution time or resources cost, therefore it can
time or resource constrained.

The input to the HLS process, the functional specific
tion, can be represented as a control data-flow gra
(CDFG). A CDFG and the graph presented in Fig.
are very much alike. Therefore, the modeling tec
niques introduced in the previous section are direc
applicable. The nodes in CDFG represent simple op
ations, such as additions, multiplications
comparisons, while the arcs describe the condition
or non-conditional data flow between different opera
tions. For clarity we will consider here only data flow
graphs (DFG), although control information can b
handled as shown in [4].

The constraints described in the previous section fo
the basic model for the general HLS problem. Add
tional constraints for modeling application specifi
issues such as register assignment and power consu
tion minimization are described in the following part

Registers are assigned to input, output, and tempor
variables during high-level synthesis. To allow regist
sharing, the lifetimes of the variables, representing t
period that the variable occupies a register, are co
puted and a related analysis determines regis
assignment. The lifetimes of the variables are model
in our approach using rectangles which span on tim
axes over define-use time of the variable. This rese
bles a definition of variable lifetimes used in left-edg
algorithm (see, for example [1]). Defining the lifetime
of variables as rectangles provides a natural way to u
bothdiffn/1  andcumulative/8  constraints [5].

i Oj( )
1 j n≤ ≤
min Oj D j+( )

1 j n≤ ≤
max,∈∀ Rk UL≤

k Ok i Ok Dk+<≤:
∑:
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System power consumption is another important
design issue. For CMOS digital circuits the power con-
sumption depends mainly on the supply voltage, clock
frequency, and switched capacitance:

Considering that the voltage and frequency are usually
fixed as design requirements, and the capacitance is
determined by the technological process, the only way
to minimize power consumption is by minimizing
switching activityα. The switching activity of a node
is a measure of how much a certain node in a CMOS
circuit has to switch from 1 to 0 to compute something.
In other words, if the signals in a circuit are changing
as little as possible during computation then the circuit
will consume less power. With this observation, one
could carefully schedule the order of operations on
each resource such that the data is changing as little as
possible at the inputs and inside the resource. Briefly,
binding and scheduling influence the values and the
sequence of signals applied to each resource.

Consider simple DFG shown in Fig. 2. There are sev-
eral possible schedules and bindings for this graph
using two adders. Each solution yields different
switching activities, thus different power consump-
tions. Two of these possible bindings and schedules
are depicted in Fig. 3. First let us consider that each
operation of the DFG is executed on its own functional
unit yielding a switching activity that can be calculated
using signal probabilities or computed by a fast RT
level simulator. Let us call this switching activity the
unbounded switching (Sw0,i) for operationOpi. In
general, during high level synthesis, several operations
will be bound to the same resource determining the
switching activity of the design. For example, if on a

certain resource operationsOpi andOpj are executed
in that order, the switching activity cannot be com
puted as a simple sumSw0,i + Sw0,j since the switching
produced byOpj is dependent on the signal values pro
duced by the previous operationOpi. It is closer to
reality to consider switching asSw0,i + Swi,j where
Swi,j is the relative switching between operationsOpi
andOpj. The relative switching activity describes th
bit correlation of two signals and is defined as th
number of different bit values of the two signals [7].

What we finally need to minimize is exactly the
switching yielded by a certain sequence of operatio
on a certain resource. For that we have to know t
sequence of operations on each resource which can
obtained in CHIP using thecycle/n constraint.
Actually we have to deal with a slightly modified trav
elling salesman problem (TSP) [8] where there are
many cycles as there are resources. The nodes in
graph are the operations,Opi, and the weights
assigned to the arcs in the graph are the relat
switching values. For exampleSwi,j is the weight of
the arc going fromOpi to Opj. The unbounded switch-
ings can be seen as arcs from a dummy no
representing a resourcei to a normal operation node
(see Fig. 5).

For the DFG example depicted in Fig. 4, a possib
design which uses three resources, two adders and
multiplier, is described in Fig. 5. The operationsOp4,
Op5, Op1are executed on resource1 in this order,Op6,
Op2 on resource2 in this order andOp3 on resource3.
The switching activity is the sum of the weights of th
arcs involved:

Sw = (Sw0,4+ Sw4,5+ Sw5,1)+(Sw0,6+ Sw6,2) + Sw0,3

Please observe that the arcs closing the cycles, bac
the dummy nodes have weight zero. In particular w
usedcycle/9 to group theN operations in sets for
each resource:

Pswitching α C f Vdd
2⋅ ⋅ ⋅=

+ ++

+

a b c d

Op2

Op1

Op3Op4

e

f

Fig. 2. A simple DFG
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Fig. 3. Two possible schedules with different
bindings for the DFG in Fig. 2
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Fig. 4. Another simple DFG
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Fig. 5. Example of cycle generation for the DFG
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a,
cycle(R, [S 1, S 2, ..., S R, S R+1, ..., S R+N], [0, ..., 0],
MinimalCycleLength, MaximalCycleLength,
[1, 2, ..., R], unused, [1, 2, ..., R, ρ1, ρ2, ..., ρN],
[unused, ..., unused, τ1, τ2, ..., τN]).

where R is the number of resources used,Si,
, is the domain variable indicating an imme-

diate successor of operationi on the specific resource,
andτi, ρi are the starting time and the resource used for
operationi. Having the ordering of operations on each
resource it is easy to compute the overall switching
activity, which is the objective function to be mini-
mized. To extract exactly the switching values needed
for the computation of this function we used an addi-
tional cycle/11 constraint. For more information
please refer to [3].

3. 2. System-Level Synthesis
Given the specification of the system functionality, the
main goal of system-level synthesis is to make deci-
sions concerning the system architecture and the
system implementation on this architecture. The sys-
tem functional specification is compiled into a task
graph. The graph introduced in the section 2 is inter-
preted as a task graph where the nodes represent tasks
and the arcs represent communications between them.
Each task must be executed on a single processor, so
for each task we need to reserve a time slot, code and
data memory on the chosen processor. In our
approach, we assume that there is no need for commu-
nication when two tasks are executed on the same
processor since both tasks have access to the same
local memory.

An architecture consists of processors and communi-
cation devices, such as busses and links. Fig. 6 depicts
an example target architecture, which consists of four
processors, P1, P2, P3 and P4, two links, L1 and L2,
and a bus, B1.

The goal of the system-level synthesis is to find an
architecture with a minimal cost, which can execute all
tasks while fulfilling timing and memory constraints.
The architecture is created from a set of components
specified by the designer. The whole process is guided
by the constraint system, which enforces the correct-
ness of the solution by rejecting all the decisions
which violate constraints.

The constraints taken into account in the presented
synthesis system can be classified into two groups:

• timing constraints, and
• resource constraints.

The data dependency constraints belong to the fi
group and they are modeled using inequalities as p
sented in subsection 2.1. There are two kinds of da
dependency between tasks. Indirect data depende
exists when two cooperating tasks, for example T1 and
T3, are executed on different processors. In this ca
communication a1 depends on task T1 and task T3
depends on communication a1. Direct data depen-
dency occurs when two cooperating tasks are execu
on the same processor. These two possibilities of d
dependency are encoded using conditional constrain
Assuming that all data dependencies are direct, we c
use a redundant constraint,precedence/5 to get a
better estimation of the lower bound for executio
time of the task graph.

The problems of binding tasks to processors and co
munication to communication devices and schedulin
them are modeled, as indicated in section 2.1,
diffn/1 constraint. This constraint requires the tas
duration to be greater than zero. Since some commu
cations can be performed in zero time, using loc
memory, we have to distinguish them from tasks an
other communications. The way of handling “disap
pearing” communication is to introduce a third
dimension in thediffn/1 constraint in addition to
time and resource dimensions. These communicatio
will have different values in the third dimension. Thi
policy ensures that non-existing communications d
not restrict the solution space.

Code memory is used to store programs implementi
tasks. The amount of code memory needed to imp
ment a task depends on the processor type, but i
fixed during the execution of the whole task graph. F
each processor thesequence/5 constraint trans-
forms the [ρ1,ρ2,...,ρm] vector, whereρm denotes the
resource executing the m-th task, into a binary vect
A value 1 on the n-th position means that the give
processor executes the n-th task and 0 otherwise. T
obtained vector multiplied by the vector of code mem
ory requirements for the given processor gives th
overall usage of the code memory. This usage must
exceed the available memory.

Data memory constraint is the most complex sinc
data memory usage changes during tasks’ executi
Data are associated with communications. First w
have to allocate data memory on the processor wh
executes a task producing data. After transmission
the data to the processor which executes the consum
task, we need to reserve data memory on this proces
until the end of the execution of the task. During tran
mission both processors have reserved data memo

Example: Consider two cooperating tasks and com
munication between them as depicted in Fig. 7
where T1 is executed on processor P1 and T2 is exe-
cuted on processor P2. Communication C1 is
scheduled on bus B1. The data transfer can freely

1 Si N≤ ≤

P1 P2 P3 P1

B1

L1 L2

Fig. 6.  Target architecture
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occur between finishing time of T1 and starting time of
T2, which is expressed by the following inequalities:

Each communication results in two data requirements
as depicted in Fig. 7c. Processor P1 must reserve data
memory, denoted by D1, for task T1 from τt1 until
τc1+δc1, whereτc1, δc1 denote the start time and dura-
tion of the communication respectively. Processor P2
reserves data memory for task T2, denoted by D2, from
τc1 until τt2+δt2. D1 and D2 have the same height
denoting the memory size.

For each processor, one cumulative constraint is created
as depicted in Fig. 8. The data requirement D1 appears
in the cumulative for both processors, P1 and P2,
because both processors can execute T1. Task T2 can
also be executed on both processors, so D2 exists in
both cumulative constraints. Since processor P1 exe-
cutes T1, rectangle D1 in the cumulative constraint for
processor P1, denoted by D1’, is placed in the dotted
area and rectangle D1 in the cumulative constraint for
P2 is placed outside dotted area. The same principle
applies to task T2 and its data requirement, D2. Rectan-
gles D1’ and D2’ are actual data requirements, while the
others are not, so they are not taken into account. This
is done by placing them outside the dotted area.

In addition tocumulative/8 we have to use condi-
tional andelement/3 constraints in order to assure
that there is only one D1’ and D2’ and following equal-
ities hold:

when T1 and T2 are executed on different processors o

when T1 and T2 are executed on the same process
Using this formulation, we can ensure that cumulativ
usage of data memory depicted as rectangles in
dotted area does not exceed the available data mem

4. ADVANCED FEATURES

A number of useful extensions to the basic formulatio
introduced in section 2 can be defined to consider sp
cial features such as pipelined components, chainin
algorithmic pipelining and conditional execution
They are discussed in this section.

Modeling pipelined componentscan be accomplished
by defining 3-dimensional rectangles, in which the thir
dimension represents subsequent stages of the com
nent. For example, Fig. 9 depicts a design which use
two stage pipelined component. The first stage,S1, is
represented by the cube of height 1 located betweenτ0
andτ1 and originated at coordinate 0 in the third dimen
sion. The second stage,S2, is represented by the cube o
height 1 located betweenτ1 and τ2 and originated at
coordinate 1 in the third dimension. All non-pipeline
operations, such as the operationOpj depicted in Fig. 9,
have heights of 2 and therefore can not be plac
together with neither the first, nor the second stage
the pipelined subtask. “Packing” of operations repr
sented by 3-dimensional rectangles enables placem
of the stage one and two of different operations at t
same resource/time location since they do not over
in the third dimension. Other non-pipelined operation
can not collide with the pipelined ones since they ha
the height 2. The finite domain constraint definition fo
the example in Fig. 9 is the following:

diffn([[ τi,S1 , ρi , 0, δi, S1, 1, 1], [ τi,S2 , ρi ,1, δi,S2 ,1,1],

[ τj , ρj , 0, δj , 1, 2]]) τS1 + δS1 = τS2.

This formulation can be extended into n-dimension
if there are more different pipelined components.

Chaining refers to the high-level synthesis techniqu
of scheduling two or more data-dependent operatio
into the same clock cycle. It is achieved by connectin

τt1 δt1 τc1≤+ τ∧ c1 δc1 τt2≤+

T1

C1

T2

DM

DM
D2

P1

B1
P2

D1
P1

P2

T1 T2
C1

a) two cooperating tasks

b) schedule for two cooperating tasks

c) data memory usage for processors executing these tasks

Fig. 7. Data memory requirements

P1

P2

D1

D1’ D2

D2’

Fig. 8. Data memory constraint

τD1′ τT1= τD1′∧ δD1′+ τC1 δC1+= τD2′∧ τC1 ∧=
τT2 δT2+ τD2′ δD2′+=

τD2′ τD1′ δD1′+ τT2= =
τ∧ T2 δT2+ τD2′ δD2′ ∧+= τD1′ τT1=

pipeline
stages

resources

timeτ1 τ2

1

2

Fig. 9. Resource sharing constraints for pipeline
components.

S1

S2

τ0

Opj

Opi

0

∧
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the output of one functional unit directly to the input
of the following functional unit without storing a tem-
porary value in a register. In one clock cycle the
functional unit can not be reused by another operation
because it still propagates results which are stored at
the end of this clock cycle. This introduces additional
constraints on chaining.

Fig. 10 illustrates the basic idea of modeling chaining
using finite domain constraints. Three dimensional
rectangles are used for this purpose. The three dimen-
sions are used to represent resources, clock cycle and
a relative position of an operation within a clock cycle,
called here a step. Every clock cycle can be filled with
several operations as long as they fit within the limits
of the clock cycle (the rectangle boundaries). Two
diffn/1 constraints are used to impose basic require-
ments on the implementation. The firstdiffn/1

constraint specifies the structure depicted in Fig. 10
and is defined by the following constraint:

diffn([[ τs
i , ρi , τc

i , δi ,1,1],...,[ τs
j , ρj , τc

j , δj ,1,1]]) .

The second constraint is used to forbid situations when
the same resource is shared within the same clock
cycle. It is defined using a projection of rectangles on
the resource/clock cycle surface as adiffn/1 con-
straint on two dimensional rectangles as given below.

diffn([[ τc
i , ρi ,1,1], ..., [ τc

j , ρj ,1,1]]).

The relation between previously introduced start time
of an operation,τi, and two new parametersτc

i andτs
i

is defined for every operation by the following
equation:

τi  = τc
i *N + τs

i ,

whereN is the number of steps in the clock cycle.

Pipelining a data-flow graph is an efficient way of
accelerating a design [4]. It introduces, in fact, new
constraints on location of rectangles. This method is
well known in computer architecture area, where two
dimensional reservation tables are used for pipeline
analysis. This approach is compatible with our meth-
odology. Introducing ann stage pipeline of the
initiation rate ofk time units is equivalent to a place-
ment of n copies of existing rectangles, starting at

positionsk, 2⋅k, 3⋅k, etc. This prevents placing opera
tions in forbidden locations, which are to be used b
subsequent pipeline instances. Since the operat
parameters are defined by domain variables, the cop
of the current rectangles do not define final operatio
positions but these positions will be adjusted during a
assignment of values to domain variables.

The following constraints define two-stage pipelin
for two operationsOpi andOpj, depicted in Fig. 11,
with initiation ratek:

τi,k  = τi  + k, τj,k  = τj  + k,
diffn([[ τi , ρi , δi ,1], [ τj , ρj , δj ,1],
[ τi,k , ρi , δi , 1], [ τj,k , ρj , δj , 1]]).

The graphical, rectangle representation of these co
straints is depicted in Fig. 11

The rectangle based resource constraints can be ea
extended to handleconditionalnodes. The conditional
node is executed only if the conditions assigned to
input arcs are true. The value of this condition can n
be statically determined and therefore we need
schedule both true and false execution cases. The p
sented formulation of the resource constraints whi
uses 2-dimensional rectangles in the time/resou
space needs to be extended to cover conditional exe
tion. The main idea of representing conditional nodes
to extend rectangles into higher dimensions. In princ
ple, one more dimension for every new condition
used. The conditional nodes start in the third dimensi
either at 0 or 1, depending on the condition, and ha
height 1. They can share the same time/resource pl
since they can be placed “one on top of the other”. Oth
computational nodes can not be placed together w
conditional ones since in this formulation they hav
height 2.

5. OPTIMIZATION METHODS

Standard CLP optimization method is based on bran
and bound (B&B) algorithm. It can be successfull
applied to middle size problems, but large problem
with heterogeneous constraints require more sophis
cated optimization methods. The big advantage
CLP is the possibility to create new heuristics usin
available meta-heuristics. In our systems, we u
credit search heuristic [6]. Using credit search we a

clock (τc)
resources (ρ)

step (τs)20

1

2

1

Fig. 10. Rectangle representation of chaining.

3
Fig. 11. A graphical representation of the resourc

constraint for algorithmic pipelining.
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able to partially explore the whole tree and to avoid sit-
uations when the search is stuck at one part of the tree.

In this paper, we will present the heuristic invented for
system-level synthesis, presented in [9], produces
good results for large industrial size examples consist-
ing of 100 tasks and 120 communications. Similar
heuristics are used for other problems. The decision
flow of this heuristic is following:

• Assignment of tasks to the resources
• Assignment of execution intervals to each task
• Assignment of time slots for executing tasks

First step of the heuristic is to assign tasks to proces-
sors and communication devices. The assignment tries
to select the cheapest processors for a given task while
minimizing the code memory usage. When the task
cannot be assigned to none of the processors which are
already present in the architecture than a new one is
added.

In the second step we assign an execution interval for
each task and communication. The number of intervals
depends on the duration of the task, larger task dura-
tion gives smaller number of intervals. Tasks and
communications are then divided into three groups
depending on the position in the graph. For tasks
which are close to the start time of the task graph the
intervals with the smallest starting time are tried first.
For tasks positioned in the middle of the execution
period the middle intervals are selected first, and
finally for tasks from the end of the execution period
we assign intervals with the largest starting time. This
approach allows to scatter tasks and communication
evenly in time domain. The search for the correct
assignment is done using credit search.

In previous step, the execution interval for each task
was decided. The third step assigns the actual time
slots within previously decided intervals. Since the
search space is very restricted the branch and bound
search is performed.

The heuristic backtracks whenever it can not find cor-
rect assignment at any step. For example, if during
credit search of the intervals no correct assignment can
be found then our heuristic finds a new allocation of
tasks and communications to the resources and credit
search is performed again. After finding a solution a
new constraint is added which restrict the cost of the
next solution to be smaller than just obtained and the
heuristic is restarted.

6. CONCLUSIONS

In this paper, we have presented methods for digital
system modeling and synthesis using finite domain
constraints and CLP paradigm. We have addressed
both high-level and system-level synthesis targeting

different optimization goals. First, the basic formula
tion of the computation graphs has been introduced a
formalized using finite domain constraints. Then w
have shown how to use this formulation together wi
different extensions for high-level synthesis. The pr
sented methods make it possible to optimize desig
execution time, resources and power consumptio
System-level synthesis has been defined in a simi
way but it was extended with important code and da
memory constraints. The introduced modeling tec
niques have been later used for synthesis by apply
optimization methods based on B&B algorithms an
domain specific heuristics.

Extensive experiments have been carried out. T
experimental results presented in [3, 4, 5, 9] prove t
usability of the proposed methods for large sca
designs which contain up to ~200 computational an
communication tasks. They show that the CLP wi
finite domain constraints and particularly the CHI
system provide a good base for solving many pro
lems from the area of digital system design whic
require combinatorial optimization methods. Thes
methods are specially well suited for the cases wh
many heterogeneous constraints are required for
problem specification.
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