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Preface

This thesis deals with manifold learning and nonlinear dimensionality reduction in gene
expression data analysis. It contains experimental evaluation studies and methodological
development within the field of manifold learning.

The work has been conducted at the Centre for Mathematical Sciences, Faculty of Engi-
neering, Lund University, in a PhD project which is part of the Industrial PhD program in
Medical Bioinformatics and financed partly by AstraZeneca and the Swedish Knowledge
Foundation.

The thesis is based on the following two papers:

J. Nilsson, T. Fioretos, M. Héglund and M. Fontes, Approximate geodesic
distances reveal biologically relevant structures in microarray data. Bioin-

Jformatics 20(6): 874-880, 2004

J. Nilsson and E Andersson, Circuit models for manifold learning. submit-

ted, 2006
where the last paper is a development of

E Andersson and ]. Nilsson, Nonlinear dimensionality reduction using cir-
cuit models. Proc. 14th Scandinavian Conf. on Image Analysis, Springer-
Verlag, 2005.
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Chapter 1

Introduction

1.1 Motivation

What causes the difference between a nerve cell and a muscle cell? And what sets these
apart from, say, a red blood cell or a skin cell? After all, all cells in our body carry, in
principle, the same genetic code, the blueprints of all molecules the cell can manufacture.
The answer is that different genes are activated in different cell types. But then we may
still wonder, what causes this differentiation in gene expression, when at one point in time
we start as a single cell? And what lies behind a living cells impressive ability to answer
external and internal stimuli with appropriate reactions? It seems that these are emergent
properties of the cells genetic regulatory system, that is, the complex network of chemical
reactions, through which the activities of the genes are linked.

Previously, science has been limited to the study of these systems from outside, by
registering only emergent, high-level properties, or at best measuring the activity of a few
genes at the time. However, recent advances in molecular biology and biotechnology
have made it possible to monitor the activity levels of thousands of genes simultaneously.
Using microarray technology, it is possible to measure the amount of mRNA molecules
stemming from, in principle, each one of all the genes in the genome at a given moment.
In other words, we now have means to sample the overall state! of the cellular genetic
regulatory network under different conditions. Such data have great potential value. It
can, for example, be used to infer the functional role of a given gene, to diagnose cell
samples or to decipher complex disease mechanisms.

The size and complexity of the system from which data is collected requires the use
of computational methods in order to extract meaningful patterns. Approaches stemming
from the traditions of mathematics, statistics, physics and computer science have all proven
useful in the analysis of gene expression data.

We may represent microarray samples as points in a gene expression space, with coor-
dinates describing the state of the regulatory system. In this way, a given number of cell
samples defines a point cloud in gene expression space. Motivated by the assumption that
functional relations between genes in the regulatory networks are, to a substantial extent,

1At least on the level of mRNA molecules.
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nonlinear, we make the assumption that samples lie on a, possibly nonlinear, Rieman-
nian manifold in gene expression space. Furthermore, we assume that the metric on this
manifold carries biologically relevant information.

One approach to the problem of pattern extraction from gene expression data is to
apply some dimensionality reduction method. These have in common that they attempt
to map the data onto a point configuration in lower-dimensional space that optimally
represents some property of the data, typically geometrical or statistical.

Under the assumption that data are samples from a general Riemannian manifold,
standard, linear methods for dimensional reduction, such as principal component analysis
are not optimal choices, since they fail to recover the intrinsic data geometry. A significant
trend in machine learning during recent years has been the development of nonlinear di-
mensionality reduction methods, that is, methods that take into account that data in high-
dimensional input space may lie on manifolds with an intrinsic geometry different from
the surrounding space. More concretely, these methods allow data to be sampled from
“curved surfaces’ in input space. Nonlinear dimensionality reduction per se is nothing new,
but the methods referred to above have in common that they rely on the spectral decom-
position of different specially constructed matrices reflecting some geometrical property
of the data. In that way, computationally demanding optimization techniques who risk
yielding non-optimal solutions are avoided.

The focus of this work is on the use of nonlinear dimensionality reduction methods to
represent the point cloud of gene expression measurements in a lower-dimensional space,
for example, for the purpose of visualizing underlying patterns in the data. The aim is
to show that it is important and beneficial to take nonlinear structures in the data into
account. Moreover, work is done within the methodological development of nonlinear
dimensionality reduction and manifold learning. More specifically, a method for robust
estimation of geodesic distances is proposed.

1.2 Organization of the thesis

The next chapter gives an introduction to the biological, technological and computational
issues involved in gene expression data analysis and puts them in a mathematical frame-
work. In Section 2.1 the biology of gene regulation in the cell is described. Section 2.2
introduces the microarray techniques, with which gene expression levels can be measured.
The series of data processing steps that a microarray sample goes through, from the raw
image, as produced by the microarray scanner, to the final representation of the data,
which serves as the basis for biological conclusions, is reviewed in Section 2.3. Finally, in
Section 2.4, the view of microarray data as samples from a manifold in expression space is
discussed in more detail.

Chapter 3 provides a review of the field of dimensionality reduction, with a special
emphasis on spectral methods. Section 3.1 gives an introduction to the dimensionality
reduction problem, aimed to a non-mathematical audience. Following this, definitions
of the manifold learning and nonlinear dimensionality reduction problems together with
related concepts are given in Section 3.2. Sections 3.3 to 3.5 cover, in turn, the meth-
ods of Principal Component Analysis (PCA), Kernel PCA and Multidimensional Scaling
(MDS). After this, we turn to graph-based methods for spectral dimensionality reduction
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and present Isomap (Section 3.6), Laplacian Eigenmaps (Section 3.7) and Locally Linear
Embedding (Section 3.8). The chapter is concluded in Section 3.9 by a discussion on how
the covered spectral methods can be described within the kernel framework.

Chapter 4 consists of the article Approximate geodesic distances reveal biologically rele-
vant structures in microarray data [Nilsson et al., 2004], where Isomap is applied to com-
pute approximate geodesic distances for two microarray data sets. We show that the use of
approximate geodesic distances as a dissimilarity measure, compared to the standard Eu-
clidean metric, can yield lower-dimensional visualizations of the data in which diagnostic
sample groups appear significantly more clearly. This enables us to make a detailed biolog-
ical interpretation of the obtained lower-dimensional representations. We conclude that
the results show the benefit and importance of taking nonlinearities into account in gene
expression data analysis, and in particular in dimensionality reduction.

Chapter 5 consists of the paper Circuit models for manifold learning [Nilsson and
Andersson, 2006], where a method for robust estimation of geodesic distances is pre-
sented. The Isomap algorithm has the disadvantage that it is topologically unstable, that
is, small perturbations on the input data may result in large changes in the approximate
geodesic distances. This is because shortcuts may appear in the adjacency graph, connect-
ing geodesically distant domains of the manifold. By interpreting the adjacency graph as
an electric circuit we define a distance measure based on the propagation of charges in this
circuit. By analyzing three different data sets we show that dimensionality reduction based
on these distances is more topologically stable than the corresponding Isomap results. We
also compare with Laplacian Eigenmaps and PCA and discuss the influence of algorithm
parameter choices on the performance.

Chapter 6 concludes the thesis with a discussion on the causes and the meaning of
the results in Chapter 4 and 5. Some additional results are presented for the sake of
completeness. Finally, some important directions of future work are pointed out.
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Chapter 2

Gene expression data

2.1 Cellular biology and gene regulation

The cell is a complex machinery — a collection of organic molecules, intricately interact-
ing, constituting what we may define as the basic unit of life. This microscopic mixture of
molecules possesses an extraordinary ability to communicate with its environment and to
regulate its own state according to internal and external stimuli.

The structural and functional building blocks of the cell are primarily prozeins, but
also ribonucleic acids (RNA). Many of these molecules cater reactions such as signalling
and metabolism while others make up the skeleton and shell of the cell thus defining
it spatially in its environment. The cell manufactures these molecules itself, relying on
molecular blueprints that are inherited from cell to cell. The blueprints are stored in the
deoxyribonucleic acid (DNA), a molecule shaped as a double helix, where the two strands
are joined together through pairs of nucleotides. It is the sequence of nucleotides that
determines the information content in the DNA. The set of nucleotides in the DNA is
made up of adenine (A), thymine (T), guanine (G) and cytosine (C), so the information is
encoded in a four-letter alphabet. The two strands of the double helix are complementary
to each other since A always pairs with T and G always pairs with C. A gene is a portion
of the DNA which contains the instructions for a specific molecule, its gene product.

In principle, all cells in a given multicellular organism carry the same genetic code,
identical to the one of the original fertilized egg. Nevertheless, higher order species consist
of highly specialized cell types, appearing in different locations of the body, having differ-
ent tasks. So why do skin cells, nerve cells and blood cells, who all have the same genetic
code, behave so widely different? The answer is that different genes are active, or expressed
in the different cell types, making them produce their own specific set of molecules.

The protein synthesis, that is, the process of producing a protein from the information
in its corresponding gene can be divided into two phases — #ranscription and translation
(Figure 2.1).

During transcription, the genetic code of the gene is copied to a messenger RNA
(mRNA) molecule, a single-stranded nucleic acid carrying the same nucleotides as DNA
with the exception of thymine whose role is instead taken by wraci/ (U). Transcription

11
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Figure 2.1: A schematic illustration of the cells protein synthesis. The figure is printed
by courtesy of the National Human Genome Research Institute, the National Institutes of
Health.

starts when the protein RNA polymerase binds to the promoter region, the start of the
gene, and locally unzips the DNA helix so that the strands become free for reading. The
RNA polymerase propagates along the strand while constructing an mRNA molecule by
adding nucleotides complementary to those being passed by on the DNA molecule. Even-
tually, the RNA polymerase reaches a rerminator region and stops transcribing, whereby the
mRNA is released and the DNA resumes its double helix configuration. Following this,
the primary mRNA is processed into mature mRNA by other molecules, for example by
removing the parts corresponding to ntrons, non-coding regions of the DNA, in a process
called splicing.

Following transcription, translation takes place, where the four-letter alphabet of the
DNA and mRNA is translated into the alphabet of proteins. Like the nucleic acids, pro-
teins are polymers, albeit consisting of sequences of amino acids instead of nucleotides.
The number of amino acids is 20 so the protein alphabet is one of 20 letters. In order to
represent 20 amino acids with four nucleotides we need three nucleotides per amino acid.
Such a three-nucleotide word is denoted a codon.! The actual translation between the two

ISince 4% = 64 > 20 there is a degeneracy in this representation; some amino acid are coded for by more
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Figure 2.2: A schematic illustration of a small subset of a gene regulatory network. Gene
products influence the expression of other genes.

alphabets is accomplished by #ransfer RNA molecules (RNA) which attach themselves to
the mRNA. The tRNA has one end with a specific anticodon, that is, a complementary
codon, and another end to which the corresponding amino acid is attached. The last step
in the translation is performed by the ribosomes which join the sequence of amino acids
found on the tRNA along the mRNA together to form the protein.

The same protein can attain different spatial shapes in the three-dimensional space,
constituting a number of folds of the protein, each having their own properties. For this,
and other reasons, it is convenient to define the expression level of a gene as the amount
of mRNA in the cell transcribed from it at a given instant. We also define the expression
profile of a cell as the collected expression levels of all genes.

The production of RNA and proteins from a given gene does not take place inde-
pendently of the expression of other genes. Conversely, gene products influence the pro-
duction of other gene products using positive or negative feedback (Figure 2.2). This
regulation is essential for the cell to be able to respond to internal and external circum-
stances and takes place on all levels in the chain of reactions that produce a protein from a
gene sequence.

To enable transcription of a gene, the binding of certain proteins, transcription factors,
to the DNA, is necessary. Different genes are either activated or repressed by different
combinations of one or several transcription factors. Transcriptional control is not the
only means of regulation. After transcription, mRNA molecules may interact with other
gene products, resulting in altered structure or lifetime of the mRNA. After translation,
subsequent protein-protein reactions may be required to finalize the functional protein.

The description above only sketches a few of the ways that genes interact to regulate
each others expression. The main conclusion is that the cell can be viewed as a large dy-
namical system with different molecules interacting with each other. The explicit study
of such genetic regulatory networks is often referred to as systems biology (although other
wider definitions of the term are also used). Mathematical modelling of genetic regula-

than one codon. On the other hand, one codon codes for at most one amino acid.
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Figure 2.3: The spotted microarray technique. The figure is printed by courtesy of Anna
Andersson, dept. of Clinical Genetics, Lund University hospital.

tory networks had its principal breakthrough in the 1960’s and various models have been
proposed, ranging in complexity from discrete cellular automata models to detailed prob-
abilistic models; see [de Jong, 2002] for a review.

2.2 Techniques for measuring gene expression

Enabled by advances in measurement technology and the sequencing of genomes, such as
the human, in the Human Genome Project, the 1990’s saw the emergence of technologies
for global measurement of gene expression. Earlier techniques were limited to the study of
a few genes at the time, while the microarray techniques gave biologists the tools to sample
the expression of, in principle, the whole genome in one single measurement.

Microarrays measure the abundance of mRNA from the set of genes at a given mo-
ment. From a cell sample of interest, mRNA is extracted and put in contact with an array
on which probes; complementary sequences (or subsequences) of the genes, have been
attached. The different mRNA in the solution then bind to their corresponding comple-
ments on the chip, and the amount of mRNA for each gene can be optically measured by
a laser scanner.

There are two main microarray platforms currently in use; spotted microarrays [Schena
etal., 1995a,b] and high-density synthetic oligonucleotide microarrays [Lockhart et al., 1996].
These are basically two variations of the same general solution described above.

A spotted microarray? (Figure 2.3) has probes consisting of cDNA or long oligo strands

2The well known cDNA microarray technique falls under the category of spotted microarrays.
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attached spot-wise on a glass slide in a grid shaped pattern. The platform is, in its most
common form, a two-channel technigue, meaning that in each measurement, the expression
profiles of two cell samples are measured simultaneously.® After extracting RNA from
the two samples it is reverse-transcribed to cDNA, and fluorescently labelled with Cy3
(green) for one sample and Cy5 (red) for the other. The cDNA molecules of the samples
are denoted zargers. After labelling, the two samples are mixed and put in contact with
the probes on the slide. During hybridization, the targets bind to their corresponding
probes, thus geometrically sorting the targets on the slide. Finally, each spot is illuminated
by a laser at two different wavelengths; one yielding Cy3 fluorescence and one yielding
Cy5 fluorescence. Thus two images are obtained; one with green spots and one with red
spots, measuring the abundances of the respective sample targets. These images then goes
through a number of image processing steps. First, the the spots need to be located and
segmented out from the background. Second, the spot intensity and local background
intensity is estimated from the pixels, commonly by taking the mean or the median of the
pixel values. Thus for each spot, estimates of the red and green foreground and background
intensities are available. For each channel, the expression level is estimated as

Yi = FG| — BG;, (2.1)

where FG;j and BG;j are the foreground and background estimates at spot | for the partic-
ular channel. In principle, the two channels could be treated separately, but in multiarray
experiments it is common practise to use a reference sample, common to all arrays, in one of
the channels. The expression levels of the other sample, the query sample, are then reported
as relative values compared to the reference expressions, i.e.,

yquery
i

| —_ .
reference
Yi

Most commonly this ratio is subsequently transformed by taking the logarithm, as dis-
cussed in Section 2.3.2.

High-density synthetic oligonucleotide microarrays have a slightly different construc-
tion. Here we describe the widely spread Affymetrix ™platform. The probes are made
up of excerpts of gene sequences, with a typical length of 25 nucleotides, and probes for
one gene is spread over the chip in order to decrease the influence of systematic spatial
errors. Moreover, associated to each probe is a mismatch probe, where one nucleotide has
been replaced by its complement, thus providing a means of estimating the amount of
non-specific, or false positive binding. The mismatch probe and the perfect match probe
constitute a probe pair and typical arrays hold 16-20 probe pairs per gene. As opposed to
spotted microarrays, high-density oligonucleotide microarrays are single-channel, measur-
ing one sample on each array. To prepare the target, mRNA is extracted from the cell and
fluorescently labelled while converted to complementary RNA. The targets are hybridized
to the chip and an image is generated using a laser scanner (Figure 2.4). An image from
an oligonucleotide array is slightly more standardized than a spotted microarray image
in terms of location and size of the probes on the image, but basically the same image

3However, both one- and multi-channel spotted microarray platforms exist.
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Figure 2.4: A scanned image from a high-density synthetic oligonucleotide microarray.
The figure is printed by courtesy of Affymetrix.

processing steps as for spotted microarrays need to be performed — localization, segmen-
tation and intensity estimation. Let PMjx and MMy be the extracted perfect match and
mismatch intensities for probe pair K of gene i, wherei = 1,...,nand k=1,...,K, with
K the number of probe pairs. For each probe pair we may, in the spirit of (2.1), estimate
the expression level as

Yik = PMix — MM

Some approaches, however, disregard the mismatch intensities altogether and let Yix =
PMik. The estimation of the expression level of a particular gene requires the summary of
the probe pair expressions Yi, K= 1,...,K in one single value — an expression index as it
is termed for oligonucleotide arrays. A straightforward way to do this is to compute the
average, that is, Yi = S Yik/K. However, this is sensitive to outliers, so instead a trimmed
mean can be computed as in the average difference, which is defined as

1/#A, ifkeA

0, otherwise,

K
Yi= WikYik, W|k={
=]

where A is the set of probe pairs such that Yjk is within three standard deviations from the
mean. It has been shown that the average difference and similar measures are not opti-
mal [Irizarry et al., 2003], why other, more sophisticated, expression indexes have been
proposed. In multi-array experiments it becomes possible to take into account varying
physical properties of the individual probes by taking advantage of the repeated experi-
ments. One example is the model-based expression index (MBEI) [Li and Wong, 2001a].
Consider gene i on array j. Dropping the gene index, the MBEI is defined as the maxi-
mum likelihood estimate of ¥ in the model
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Yik = 9+ €jk,

where gy are probe specific affinities and €jk independent normally distributed errors. For
each gene, the set of samples defines a point cloud in the space spanned by the probe pairs.
The computation of the MBEI is equivalent to fitting a line with zero intercept through
this cloud and letting ¥ be the length of the orthogonal projection of [Yj1,...,Yjk] onto
this line. The MBEI can also be seen as a weighted average, where the weights are deter-
mined by the probe affinities, that is, the coefficients of the fitted line. Conceptually, for
each probe set we may write

Pk

The estimate of ¥ then becomes a weighted average with weights Wy = go;l. A similar,
currently widely adopted expression index is the robust multiarray average (RMA) [Irizarry
et al., 2003] which, for a given gene on array |, is defined as the estimates of ¢j in the
model,

logYijk = wj + @k + €jk,

where logYijx is the background-adjusted, normalized (see 2.3.2) and log-transformed PM
intensity of probe pair K of the gene on array j; @ is a probe affinity and gk an error term.
Note that the RMA index is a log-scaled expression index.

Comparing the two platforms, spotted microarrays have the advantage that they are
more flexible in the respect that they can be designed in the lab in terms of which probes
to attach to the chip. On the other hand oligonucleotide chips have less risk of cross-
hybridization and have a wider dynamical range, that is, the range at which the signal is
linearly related to the mRNA abundance [Sebastiani et al., 2003].

2.3 Gene expression data analysis

The data processing, from scanned array images to the final biological interpretation in-
volves a long series of computational manipulations and analyses of the data, each one, in
their own respect, more or less challenging. We have already, in the previous section, seen
the initial steps — the estimation of expression levels from the raw image data through
spot identification, segmentation, intensity estimation and the computation of expression
indexes. After this follows a number of preprocessing steps, where various transformations
of the data is applied in order to filter out non-biological variation and to ’clean up’ data
to facilitate for subsequent analyses. At this stage, data is presumably ready to be ana-
lyzed in search for a biological interpretation. A range of high-level analysis methods exist
that have as a common aim to extract biologically relevant patterns and information from
the data. Clustering, classification, dimensionality reduction and other types of methods
are all frequently applied in gene expression data analysis. Finally, the extracted structure
needs validation, and here too, computational methods are helpful, for example while as-
sociating the results to prior knowledge which is often stored in large databases. Figure 2.5
gives an overview of the process of gene expression data analysis.
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Figure 2.5: Flow chart of gene expression data analysis.
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2.3.1 Preprocessing
Data transformations

As described in Section 2.2, expression values on a spotted microarray are computed as
the logarithm of the ratio between the two channel expressions. The reason for taking
the logarithm is to symmetrize between up- and down-regulation. In the original scale,
down-regulation, that is when the query target is less abundant than the reference target, is
squeezed in the interval [0, 1], while up-regulation is spread over the interval [1, ). Taking
the logarithm makes up- and down-regulation symmetric in the interval (—co, 4-00).

Normalization

Any given set of microarray measurements contains variation originating from different
sources. The expression levels may vary across samples due to differences in the quantity
of mRNA, different sample processing, scanner calibration, etc. Naturally, it is of inter-
est to remove technical and experimental variation so that what remains is the biological
variation, relevant to the study. This is the objective of normalization.

The sources of variation are many and all are not very well understood, why it is diffi-
cult to model them explicitly. Instead, typically some general assumption about invariance
of certain quantities over samples is made. For example, in total-intensity normalization it
is assumed that the true average gene expression is constant across samples, in which case
each array is scaled by its total estimated expression. An extension of this idea is used in
quantile normalization [Bolstad et al., 2003], where the distribution of expression values is
assumed to be constant across samples. In this case, estimated expression values are trans-
formed so that in a multidimensional quantile-quantile plot of the sample distributions,
the quantiles lie along the main diagonal.

An alternative approach is to assume that a large majority of genes are non-differentially
expressed across samples. Consider two microarray samples, for example the query and
reference samples on a single spotted microarray or two samples hybridized on separate
oligonucleotide arrays. In a scatter plot of gene expression in sample one against sample
two, the points should lie along the main diagonal under the assumption that most genes
are non-differentially expressed. If, in the observed data, they do not, the actual relation
between the samples can be estimated by fitting a line through the point cloud. The data
can then be transformed so that this line lies along the main diagonal. In in its most simple
form this methodology rotates the point cloud 45° and applies linear regression, but more
commonly the nonlinear lowess regression is used [Yang et al., 2002]. Generalizations for
sets of more than two samples can be found in [Astrand, 2003, Bolstad et al., 2003].

Under some circumstances none of the assumptions underlying the normalization
methods described above are valid. This is, for example, the case if the microarray con-
tains relatively few probes, the majority of which are known to be involved in the biological
process under study. In this case, normalization is often based on the assumption that ex-
pression properties, like those described above, of a subset of the genes is invariant. This
subset can be genes that are biologically known to have a constant expression, so called
housekeeping genes, or it can be so called spike-in genes from some other organism whose
mRNA is added in known amounts early in the experimental process. If no prior knowl-
edge about invariant genes is at hand, a suitable subset can be selected using for example
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the invariant set algorithm by Li and Wong [2001b]

Missing value imputation

Spotted microarray data sets, in particular, often come perforated with missing values.
Various spots may have been flagged as unreliable, for example due to scratches or debris
on the slide, and therefore lacks expression values. In a study with many samples it is
quite likely that a rather large fraction of the genes contain at least one missing value
across samples. High-level analysis methods usually do not allow missing values so in
order not to throw away too much potentially valuable information, the missing values
need somehow to be filled in.

Different strategies to achieve this missing value imputation exists. A crude approach is
to use the average expression value of the gene across samples. Another solution is adopted
in K nearest neighbor imputation [Troyanskaya et al., 2001], where, if gene i contains a
missing value in a particular sample, the K genes with most similar gene expressions in the
rest of the samples (where the corresponding sample has a value) are found and the missing
value is replaced by a weighted average of the values in the other genes.

Filtering

Filtering is often applied to a microarray data set prior to high-level analysis. By discarding
genes that have noisy expression levels and/or do not vary significantly over samples it is
believed that the performance of subsequent high-level analysis increases.

Different rules are applied in order to filter genes. For example, the Affymetrix "™
oligonucleotide microarray platform provides detection p-values estimating the confidence
of the signal presence of each gene and filtering can thus be based on these p-values by
requiring that a gene should be significantly present in at least a certain number of sam-
ples. For spotted microarray data, one can use similar criteria based on the ratio between
foreground and background intensities or the fraction of missing values.

Furthermore, variation filters can be applied, excluding genes who, for example, have
a ratio between standard deviation and mean value below some threshold value.

2.3.2 High-level analysis

Once data has been properly preprocessed, the next step is to extract some biological
meaning from it. A multitude of tools from the fields of statistics, pattern recognition
and machine learning are helpful for this purpose. This section reviews different types of
methods that are adopted to extract different types of information.

At this point, it is useful to introduce a unifying conceptual framework and some
notation within it. Generally speaking, the high-level analysis is a problem of mapping
the expression data into some particular representation system, the choice of which will
depend on the kind, and level, of structure we wish to infer.

First we need to settle how to mathematically represent the expression data set. Sup-
pose that M measurements of the expression levels of N genes are given. Let Xij be the
estimated expression level of gene i in sample | and arrange the darta in a matrix X where,
thus, each row gj, i = 1,...,N represents the expression levels of a particular gene, and
each column Xj, j = 1,...,Mrepresents the expression levels of a particular sample. We
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may think of this set of data in two ways. The first is to look at the m samples as points
in an N-dimensional gene expression space where the coordinates of a sample is given by the
expression levels of its genes. Alternatively, we can consider the N genes as points in an
M-dimensional space, the sample expression space, where the coordinates of a gene is given
by its expression levels in the different samples. In this text, we will occasionally refer
simply to the expression space and let the objects; genes or samples, indicate which space
is intended.

While the mathematical representation of input data, as vectors in expression space is
fairly obvious, the choice of representation of underlying patterns is more interesting. In
clustering and classification, we commonly represent structure simply by class labels. An
object (gene or sample) is thus described by a single integer, determining which partition
of the objects it belongs to. Another structure representation is adopted in dimensionality
reduction and regression, where data is mapped into Euclidean space, and thus each object
is described by a set of coordinates in this space. The most complex structure represen-
tation we will discuss here is one commonly adopted in gene network inference, where
objects (in this case, genes) correspond to nodes in some graph structure, and where the
structure we wish to infer is the graph edges with their respective weights. To summarize,
we may write:

7 p clustering, classification
} OSX—Z€E Rd dim. reduction, regression
(V,E) gene network inference

gene expression space  R"
sample expression space  R™

where (V, E) are vertices and edges of a weighted graph.

In parallel to the framework described above, a common way to classify different prob-
lems in data analysis in general is to discriminate between supervised and unsupervised
problems. Supervised problems assume the existence and use of prior knowledge, such as
diagnosis, while unsupervised problems do not.

Microarray data sets have some significative features that have implications for what
kind of information that can be extracted from it. First, they typically contain many
more variables (genes) than observations (samples). Classical statistics typically assumes
the study of a few variables, carefully chosen based on prior knowledge, to describe a
particular phenomenon. For data from microarrays, as well as from several other emerging
high-throughput measurement techniques, this is not the case. An abundance of variables
is sampled, whereof, perhaps only a few, might be relevant. Second, due to the existence
of genetic regulatory networks, there are complex dependence structures between genes,
why the common assumption of independence between variables can not be made. These
features lead to difficulties with using microarray data for stringent tests of hypotheses on
a genome-wide level. However, testing hypotheses is not the only use one can have of
data. Generating hypotheses is often equally valuable and it is in the light of this that gene
expression data analysis should be viewed.

The rest of this section describes differential expression analysis, classification, clus-
tering, dimensionality reduction and genetic network inference in gene expression data
analysis.
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Differential expression analysis

One of the most immediate questions in a study of a microarray data set is which genes are
differentially expressed (DE) in two or more specified groups of samples. This problem is
studied in differential expression analysis. Answers typically come in the form of gene lists
which can be further studied in the search for biological insights to, for example, disease
mechanisms.

For simplicity, suppose that we want to find DE genes in a two-group comparison. The
most common approach is to study gene by gene and select those who show differential
expression in the two groups. An early methodology for this is fold analysis, primarily
designed for the case where only one sample per group is involved, as, for example, in a
single spotted microarray hybridization with two competing query samples. The amount
of differential expression is measured by the expression ratio between the two samples and
differential expression is considered significant above and below constant threshold values,
typically 2 and 0.5, respectively [Schena et al., 1995b].

Current data sets usually contain several samples per group. In this case, the use of
statistical tests like some r-zest becomes possible. For each gene, we may, for example,
compute the two-sample t-statistic

X1 —Xo
Vsi/m+s/m

where X1,Xp are group means; S;,S, estimated standard deviations and My, Mp, number
of samples in group 1 and 2, respectively. The distribution of the statistic under the null
hypothesis, which is that that the gene is not differentially expressed in the two groups,
can either be assumed to follow a t-distribution or be estimated by permutation of the class

labels. In this way, a p-value, quantifying the significance of the differential expression call,
can be obtained.

Microarray data sets involve many more variables (genes) than observations (samples)
and this needs to be taken into consideration while looking for DE genes. For example,
consider a data set where the number of genes is N = 10% and the fraction of truly non-
DE genes is 7p = 0.9. Suppose p = 0.05 is chosen as a threshold for calling a gene
differentially expressed. The expected number of non-DE genes that is incorrectly called
differentially expressed is then pnmg = 450 — almost half the number of truly DE genes.
Moreover, not all DE genes will be called DE since, in some cases, by chance, the p-value
will exceed 0.05. The result is that the gene list will contain a large fraction of genes
that have nothing to do with the condition that defines the groups. This exemplifies the
multiple testing problem, where a p-value threshold that seems standard and reasonable in
a single test leads to a high false discovery rate (FDR), defined as the expected proportion
of false positives among the declared significant results [Benjamini and Hochberg, 1995].
A better way of selecting the DE genes is therefore by controlling the FDR instead of the
p-value [Storey and Tibshirani, 2003, Pawitan et al., 2005]. Related to this problem is also
the estimation of the true proportion of DE genes [Broberg, 2005].

The t-test is not always the optimal choice of test for differential expression. If expres-
sion distributions are non-normal, for example in the presence of outliers, other tests, like
the Wilcoxon test, is more suitable. Another problem is that a small number of samples
makes it difficult to get significant results in the tests. A third problem is that gene ex-
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pressions are typically not independent, so the assumption of independence and identical
distribution is violated. However, if genes are, on average, uncorrelated and the dependen-
cies are weak, it can be argued that this problem is less severe[Storey and Tibshirani, 2003,
Pawitan et al., 2005].

Treating genes one-by-one does not make use of the full potential in a microarray data
set. Since groups of genes are correlated it makes sense to perform differential expression
analysis of whole groups of genes instead of single genes. Such groups may, for example, be
defined as genes known to be involved in particular pathways of interest or as genes located
in the same chromosomal regions. Gene set enrichment analysis [Subramanian et al., 2005]
implements a method for this, and it has been shown that, using this method, differential
expression of groups of genes can be identified where single gene tests would fail to discover
differential expression.

Classification

The task of classification is that of learning how to best guess which, out of a number of
given classes, an object with unknown class label belongs to. A classifier is constructed
by training, where it is introduced to representative training objects of known classes —
the training set. For microarray data, the applications of classification include diagnosing
cancer type, given the expression pattern from a tumor sample, or predicting the biological
function of genes based on their expression patterns.

In a sense, classification is similar to differential expression analysis, since most clas-
sification algorithms, explicitly or implicitly, works by finding variables, or functions of
variables, that are good predictors of class. A difference, however, is that while a biolog-
ical interpretation of these predictors is a nice side-effect, it is not the primary goal as in
differential expression analysis. The similarity is particularly clear in a class of methods
represented by Golub et al. [1999], where, given a two-group classification problem, a list
of differentially expressed genes is extracted using the training set, and a voting function,
defined on these genes, decides which class a presented sample belongs to. A problem
with this approach is that many of the discriminative genes are likely to be correlated,
perhaps being involved in the same particular process. Genes with less strong differen-
tial expression, but uncorrelated with the group of most strongly DE genes, would most
likely increase the generalization performance but are not included using the basic method
described.

In gene list based classifiers, as above, the decision function is fixed and predefined
while the set of variables on which it operates is learned from the data. Other methods,
such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), use all
variables but lets the method learn the decision function from the data. Here too, a list of
predictive variables can be extracted by ranking them according to their influence on the
final decision function. Artificial neural networks can readily be applied to classification
problems with more than two classes [Khan et al., 2001], while support vector machines
are binary classifiers, discriminating between, for example, healthy and cancerous tissue
[Furey et al., 2000], or classifying genes as belonging to a known functional group [Brown
et al., 2000] or not. Binary classifiers can be extended to handle K classes by learning
to classify between each pair of classes or by learning K classifiers of one class against all
others. Both ANNs and SVMs are able to learn nonlinear decision functions. In SVMs
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this is achieved by a kernel transformation of the data, something that will be discussed in
more detail in Section 3.4.

Just like in differential expression analysis, the fact that the genes by far outnumber the
samples, introduces some difficulties. For example, gene list based classifiers, as described
above and in [Golub et al., 1999], classify judging from lists of top discriminatory genes.
As pointed out in the discussion on differential expression analysis, such lists are likely to
be hampered by false positives, which by their presence disturbs the classification of new
samples. In fact, this problem is common to all classification methods when the number
of samples is much smaller than the number of variables — A classifier risks to learn to
trust variables or sets of variables as having predictive power when in fact it only seems so
by chance.

A wealth of different classification methods have been applied to microarray data but,
so far, none has stood out as significantly more suitable than the others. Presumably, the
importance of the method choice will grow with the number of samples in the data sets
[Dudoit and Fridlyand, 2003].

Clustering

Clustering is the process of grouping together similar objects into resulting groups, or clus-
ters. In gene expression data analysis, clustering serves to discover groups of co-regulated
genes or groups of samples with similar expression profiles, for example revealing classes
or subclasses of disease states. The problem is similar to that of classification, with the
difference that while clustering methods discovers groups in data without using any prior
knowledge, classification methods does so when arranging objects into groups. Indeed,
classification methods are sometimes referred to as supervised clustering.

The problem of grouping together ’similar’ objects calls for a definition of similarity.
In Section 2.4, this subject is discussed more thoroughly, while for now we note that two
common ways of defining (dis)similarity is by means of Euclidean distance and correlation
distance, defined as 1 — pyy, where pyy is the correlation between vectors X and Y.

Hierarchical clustering. Hierarchical clustering is currently the most frequently used
clustering method in gene expression data analysis (Eisen et al. [1998] gave an early ex-
ample). The (agglomerative) hierarchical clustering algorithm takes as input a matrix of
pairwise similarities between objects. Initially all objects are considered as clusters. Then,
iteratively, the most similar cluster pair is found and merged together into a new cluster.
This is repeated until all objects are contained in a single cluster. Similarities between two
clusters can be defined in a number of ways, for example, the largest similarity between
any pair of objects in separate clusters (single linkage), the smallest similarity between any
pair of objects in separate clusters (complete linkage) or the average similarity between all
pairs of objects in separate clusters (average linkage). The clustering is visualized in a cluster
tree, a dendrogram, visualizing the nestled structure of clusters. Hence, in fact, hierarchical
clustering yields a more detailed structure representation (a tree-graph) than many other
clustering methods that simply divide data into partitions (cf. Section 2.3.2).
Hierarchical clustering is frequently used in comparative genomics and phylogeny to
study, for example, the evolutionary development of gene sequences, and perhaps hierar-
chical clustering is more suited for data where distances can be defined as a discrete number
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of alterations, than for quantitative data like gene expression data. One problem is that it
might be difficult to decide which clustering level in the dendrogram to choose, if the aim
actually is to partition the data. On the other hand, the user does not have too provide an
a priori number of clusters. Another issue is one of over-fitting. Different ways of defining
the similarities between points and clusters yield very different cluster trees. Hence, there
is a risk of adjusting parameters until getting a tree that adhere to prior beliefs.

K-means clustering. K-means clustering [Forgy, 1965] is a standard and well understood
clustering algorithm. The algorithm takes as input the expression data and the number of
clusters, K. Initally, K cluster centers are randomly placed in the span of the data. All
objects are assigned to their nearest cluster center and the mean expression of each cluster
is calculated. These means replace the prior cluster centers and the two steps are repeated
until convergence.

The advantages with K-means is that the method does not have many parameters to
assign, while in many cases it is a drawback that the number of clusters has to be provided
to the algorithm. An example of the use of K-means clustering in gene expression data
analysis can be found in [Tavazoie et al., 1999].

Self-organizing maps. The self-organizing maps (SOM) algorithm [Kohonen, 1982] is
algorithmically reminiscent of K-means clustering. A significant difference lies in the way
results are presented. The resulting clusters are ordered in a, usually two-dimensional, grid,
a feature map so that neighboring clusters in the feature map are more similar than clusters
far from each other. Further, statistical properties of the data are reflected in the feature
map. Regions in data space with a high density of points are mapped onto larger domains
in the feature map. Because of this ability to display continuous features of the data space,
SOMs can be seen as a hybrid between clustering methods and dimensionality reduction
methods, discussed in the next section. A drawback of the method is that several param-
eters need to be specified. Tamayo et al. [1999] demonstrated the use of self-organizing
maps in gene expression data analysis.

Important to keep in mind is that most clustering algorithms will divide data into clus-
ters even if no real cluster structure is present. Therefore, it is important to control the
significance of the produced results. For example, when clustering genes, measured over a
small number of samples, the clusters will contain many false positives, while many true
positives will be missed. This is due to the fact that the statistical confidence of similarity
measures will be low.

Dimensionality reduction

Clustering methods divide objects into discrete groups. Sometimes such a description of
the data is less relevant, in particular if the properties of the objects vary continuously
with respect to some underlying parameter. Dimensionality reduction methods provide
means of representing objects in low dimensions with an aim of revealing such parameters.
Generally, dimensionality reduction methods learns some function from objects described
by many variables to representative objects described by few variables, in such a way that
important properties of the data are optimally conserved. With the possibility to display



26 CHAPTER 2. GENE EXPRESSION DATA

results in a transparent way, as two- or three-dimensional scatter plots, dimensionality
reduction methods are well suited for explorative data analysis.

Dimensionality reduction is typically used for visualization of patterns in data. In gene
expression data analysis, two- or three-dimensional visualizations may be inspected in or-
der to discover outliers or to give rise to hypotheses about groups, or subgroups, of samples
or genes. The links between clinical variables and observed patterns can be investigated.
Moreover, if patterns can be inferred to be related to non-biological parameters such as
laser settings or hybridization date, data has likely not been sufficiently well normalized.
Hence, dimensionality reduction can also be used as a means of data quality control. An-
other use of dimensionality reduction is as a compressive preprocessing prior to clustering
or classification, with the intentions to filter out noise or to relief the computational bur-
den of subsequent methods by reducing the number of input variables.

Standard methods of dimensionality reduction include principal component analysis
and multidimensional scaling, and these are also the ones primarily adopted within gene
expression analysis [Alter etal., 2000, Khan et al., 1998, Hedenfalk et al., 2001, Andersson
etal., 2005b]. These methods work best when the underlying data patterns are linear, and
are not designed for data where the dependencies between variables are nonlinear. This
work aims to study various aspects of the application of nonlinear dimensionality reduction
methods, as reviewed in Chapter 3, to gene expression data.

Gene network inference

As discussed in Section 2.1, genes interact with each other in regulatory networks. It is
therefore natural to argue that the most biologically authentic representation of the genes
is, not as a number of clusters, neither as a point cloud in Euclidean space, but instead as
a network describing the functional relations between genes.

There are many possible ways to model the interactions between genes in the reg-
ulatory networks [de Jong, 2002], ranging in complexity from simple Boolean Networks
[Kauffman, 1969, 1993], modelling regulatory networks as random directed graphs, to
detailed Stochastic Master Equation models [Arkin et al., 1998], modelling the dynamics of
the probability distributions of all the individual molecule species abundances. For genetic
network inference, the model has to be chosen with respect to the relation between the size
of the system and the available number of measurements. If we are interested in studying
the whole genome, inference of detailed models is unfeasible, and one has to resort to
simpler representations.

Here we will concentrate on linear ODE models, for which inference of model param-
eters for whole-genome systems is computationally feasible. To this end, the expression

level gi(t) of gene i is typically modelled by

&= T +B() +40) @2

where £i(t) are noise terms; bj(t), external stimuli and Wik, weights that determine the
influence of gene K on gene i.4 Naturally, it is not likely that such a model can capture

“4Note that degradation of the gene product i can be taken into account in the term Wij.
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all aspects of the network dynamics, but under the assumption that the system is close to
steady-state, (2.2) can be taken as the linearization of some more general nonlinear model.

The aim of gene network inference under the model (2.2) is thus to estimate Wik given
M measurements of the N gene expressions levels. Since generally N >> m, this becomes
an under-determined problem, meaning that multiple solutions will exist. In other words,
finding a solution is generally not difficult — the challenge is finding a biologically relevant
one. Different approaches have been taken to this problem. For example, van Someren
et al. [2000] cluster the genes into M clusters and infer a model for the dynamical in-
teraction between the clusters, a problem that is more likely to have a unique solution.
A related solution is proposed in [Holter et al., 2001], where dimensionality reduction
through principal component analysis is applied and weights for a system consisting of the
M most variant modes instead of the N genes are inferred. Other approaches do not attempt
to reduce the number of interacting entities, but instead make use of some, biologically
motivated, additional constraint to infer a realistic model. For example, in [Yeung et al.,
2002] the set of all valid solutions is computed through singular value decomposition and
then an optimally sparse solution matrix is found using L1 regression. The sparseness cri-
terion is biologically motivated by the well accepted assumption that genetic regulatory
networks are sparse, that is, that each gene only interacts with a few others. Also adopting
the sparseness criterion, Gustafsson et al. [2005] use Lasso regression [Tibshirani, 1996]
to infer the genetic network.

2.3.3 Further up the chain of analysis

Once high-level analysis methods have suggested some underlying structure in the data,
these results need to be interpreted and validated in terms of biological significance. This
can be done in a number of different ways. Suppose, for example, that we have clustered
the data, so that what we have to validate is a particular partition of the data.

A natural way to validate sample clusters is to consult clinical variables of the sam-
ples (e.g., gender, blood pressure, cancer diagnosis) and investigate if patterns, similar to
the ones discovered in the gene expression data, appear there. With an extensive clinical
database this might be a task on almost the same complexity level as the gene expres-
sion analysis itself. One particular way of evaluating proposed sample clusters in diseases
like cancer is the use of Kaplan-Meier survival analysis, which involves a statistical test of
whether two groups of patients have significantly different median survival times. If this
is found, it is often argued that the clusters are of biological relevance, for example, as
subgroups of the same disease [Alizadeh et al., 2000].

For genes, the available knowledge does not come in the shape of sets of clinical vari-
ables like for samples. Instead, gene clusters can be validated with respect to, e.g., cel-
lular functions, chromosomal locations, sequence information, etc. Knowledge about the
genome is stored in Gene Ontology (GO) [Ashburner et al., 2000] databases where genes are
arranged in tree structures according to function, location and other properties. Given a
set of genes, one can make a query to a GO database testing if some, say functional, group
on some tree level is over-represented among the genes [Zhong et al., 2003]. Alternatively,
databases containing known pathway relations, such as the Kyoro Encyclopedia of Genes and
Genomes (KEGG) [Kanehisa et al., 2006], may be consulted to see whether genes from
some particular pathway are over-represented in the cluster. The evaluation of the mean-
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ing and relevance of gene clusters using queries to databases requires that enough useful
information has been stored in the database by human curators. To sidestep this, one may
make use of rext mining techniques which search through vast collections of literature and
attempt to extract relevant information. For a given gene cluster, text mining methods can
retrieve abstracts where subsets of the given genes co-occur. From these abstracts, over-
represented keywords can be extracted in order to gain understanding of the functional or
clinical context of the genes [Blaschke et al., 2001]. On a more detailed level, the liter-
ature can be mined for causal relations between the genes, thereby suggesting a network
of functional relations between genes [Jenssen et al., 2001]. A third way to evaluate gene
clusters is to consult sequence data. The upstream regions of the genes are then searched
for shared motifs, presumably corresponding to known or unknown transcription factors
[Roth et al., 1998]. The existence of such shared motifs may then confirm the biological
relevance and aid the understanding of the role of the gene cluster.

Even if the discussion above assumes that the inferred structure is in the form of clus-
ters, the same sources can, in principle, be used to evaluate continuous or graph represen-
tations of structure, given the appropriate modifications.

2.4 Gene expression space

In this section we discuss some properties of gene expression data within the expression
space framework presented in Section 2.3.2. We also state the central assumption that this
work is based on.

Recall that we represent a set of M microarray samples measuring the expression level
of N genes, either as Msamples X, j = 1,...,Min N-dimensional gene expression space, or
as Ngenes gj, | = 1,...,N in M-dimensional sample expression space.

Assuming that microarray measurements give quantitatively relevant information about
the underlying biology is the same as assuming that the location of a gene in sample ex-
pression space or a sample in gene expression space is related to its biological properties.
In gene expression space, we therefore interpret different domains as representing different
cellular states, linked to biological phenotype, such as tumor state, cell cycle phase, etc.
Similarly, the time development of a cellular system is a trajectory through gene expression
space.

The interpretation of the sample expression space is a bit less obvious. Here different
regions correspond to genes that have similar behavior over the samples in the data set, so
that, for instance, in time-series experiments, they co-vary in time, and in cross-sectional
studies they behave similarly in all conditions. The specific interpretation of a given sam-
ple expression space therefore depends on the selection of cell samples that were included
in the study. While discussing sample expression space, it is worth mentioning that the
standard normalization assumption that a majority of genes remain unchanged over sam-
ples is equivalent to the assumption that the majority of genes lie along the main diagonal
in expression space, or, if data was preprocessed by mean-centering the genes, close to the
origin.

In the discussion above, the meaning of similarity in expression space has not been
closely specified. Most commonly, (dis)similarity is measured in terms of Euclidean dis-
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tance, which, for two vectors X,V is

dEuc(X, Y) =

or in terms of correlation distance

Sk =Xy —Y)
Ve (= X)23 1, (v —9)?

where X denotes the mean of x.> Euclidean distance measures the straight line distance

deorr (XaY) =1

between points, while correlation distance measures (1 minus the cosine of) the angle be-
tween points. For applications in gene expression analysis, the distance metric should be
chosen so that it is optimally biologically relevant with respect to the study at hand. In
other words, small distance should correspond to high biological similarity and large dis-
tance to low biological similarity. Different distance measures capture different aspects of
similarity, and each have their particular strengths and limitations. As an example, consider
a pair of genes with small magnitudes, but with qualitatively different expression patterns
over samples. These will lie close to the origin but at different angle, so in Euclidean dis-
tance they would be close while in correlation distance they would be far apart. On the
other hand, consider two genes with expression patterns of [10000000] and [00000001]
where the ones might be outlier values. In this case, perhaps the Euclidean distance is
more reasonable with its judgement that the genes are close than the correlation distance
which says that the genes are far.

The dependencies between genes through genetic regulatory networks, as discussed
in Section 2.1, imposes functional relations between them which restricts® the possible
cellular states to some manifold, or hyper-surface, in gene expression space.

If expression data lies on a Riemannian manifold, a natural and biologically relevant
choice of distance metric would be the geodesic distance on the underlying manifold, that
is, the distance travelled by an insect, taking the shortest path between two points on the
manifold. The geodesic distance is similar to the Euclidean on a small scale but may differ
widely for larger distances since the manifold may be curved. Another way of stating the
problem with Euclidean distance in this setting is the following observation: two points
of the set are either close, and then their Fuclidean distance reflects useful information,
or they are far from each other and the meaning of their Euclidean distance is different
in different directions for the reason that some domains in expression space cannot be
crossed by the real system. This is summarized in the following central assumption which
motivates our work:

Data are sampled from, or reasonably close to, a Riemannian manifold in
expression space whose geodesic distance metric is biologically relevant.

Having stated this, we need to recognize some complications with this view concerning
what is actually observed. On a practical level, there are difficulties due to noisy data,
high dimensionality, and the non-trivial relation between real expression levels and their

>If the vectors are mean centered and scaled to unit variance, the two distances are related by d2 . = 2dcorr -
Sdisregarding noise
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microarray estimates. There are also some more fundamental problems. Despite their
ability to measure abundances of huge sets of mRNA molecules, microarrays do not let us
study all relevant state variables of the genetic regulatory system. Other types of molecules
need to be observed, the most important being the proteins, in order to get a complete
observation of the whole system.

Nevertheless, microarray studies have shown that a lot of biology is reflected in the
subset of state variables that the mRNA molecules constitute, why there are good reasons
to believe that our central assumption above is relevant and useful. Thus, if the metric
on the manifold can somehow be estimated from the data, valuable pieces of information
are attained. Estimated geodesic distances can be used for clustering and classification
purposes, as well as for dimensionality reduction which is the focus of this thesis. In a
sense, dimensionality reduction ideally allows us to get a glimpse of the manifold in gene
expression space, and to visualize some of its underlying parameters.

The next chapter gives a general review of dimensionality reduction. Chapter 4 presents
results demonstrating that nonlinear dimensionality reduction based on approximate geodesic
distances yields more biologically relevant representations than linear methods. Similar re-
sults are also shown in Chapter 5 where an alternative way of computing approximate
geodesic distances is applied. Chapter 6 discusses what these results imply concerning the
validity of the assumption above that gene expression data are samples from a Riemannian
manifold in expression space.



Chapter 3

Dimensionality reduction

3.1 Introduction

As our technological means to measure and store information of our environment improve,
we face the need to manage more and more objects described by more and more variables.
The previous chapter describes just one out of many such cases.

A range of techniques exist that provide measurements, on varying spatial scales, of
the neurological activity in the brain. The neural system activity is sampled in time and
space, allowing us to peak into one of the most intriguing systems in nature. Examples of
such techniques include Electroencephalography (EEG), Functional Magnetic Resonance
Imaging (fMRI) and intracellular electrophysiological recording techniques.

Grayscale images of the size M x N pixels may be seen as vectors in an M - N-dimensional
pixel space and RGB color images, having three intensity values at each pixel, similarly as
3-M-N-dimensional vectors. Taking this to the extreme, multi- and hyperspectral imaging
collects spectral information across, not only three, but thousands of spectral bands, thus
increasing the image data dimensionality further. Alternatively, instead of studying images
as objects, we can study the individual pixels which are now described by P-dimensional
vectors, where P is the number of spectral bands. Multi- and hyperspectral imaging can,
for example, be used to register information about chemical composition of such different
things as melons [Nakauchi, 2005] and planetary nebulae [Mekarnia et al., 2004]. Films
may also be seen as multidimensional data. Given T frames of an M X N pixel grayscale
film we can represent it as a point in T - M - N-dimensional space.

Text documents, such as web sites or scientific articles, may be described by individual
frequency counts of each word in a thesaurus of tens of thousands of words. In this way,
we may view the world wide web as a gigantic point cloud of documents in word space.

Financial time-series of stock and currency rates as well as transaction data have rep-
resentations as high-dimensional vectors. Another example is consumer data bases, where
personal information is gathered together with purchase records.

The focus of this thesis is on the analysis of microarray data, but biotechnology offers
many other massive data sources. For example, various proteomics technologies such as
mass spectroscopy, electrophoresis gels and antibody chips produce data on the individual

31
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Figure 3.1: Anatomical measurements of 50 subjects. The one-dimensional orthogonal
projection plane that captures most variance is drawn as a line.

abundances across a wide range of proteins in given cell samples.

The fact that we can collect information about the world with increasing resolution
is of course positive, but alone it does not aid much to our understanding. Underlying
patterns of importance often involve a complex interplay between several variables and,
furthermore, many of the variables do not carry any relevant information. In other words,
more potentially useful information is gathered but it is intricately hidden in a mass of
less useful information. To this end, we need computational methods to extract under-
lying relevant patterns and to obtain an overview of the data, possible to grasp for low-
dimensional creatures like us. Dimensionality reduction does this. Point configurations in
low-dimensional space are constructed so that their coordinates reflect some given aspect
of the high-dimensional data.

The dimensionality reduction problem may be posed as one of learning functions de-
fined on the original data, taking it into lower dimension and filtering out relevant features.
One example in this respect is projection pursuit methods who apply orthogonal projections
to data and search for the projection that maximizes some projection index quantifying how
interesting a projection is. Examples of projection indexes include Fisher information, neg-
ative Shannon entropy and the univariate Friedman-Tukey index (see [Carreira-Perpinan,
1997] and references therein). The, without comparison, most popular projection pursuit
method is principal components analysis (PCA), where the projection index is the variance
of the resulting projection. The usefulness of variance as a projection index is illustrated
by the following example:

Example 1. Imagine that you have just witnessed a bank robbery. The police have arrived at
the scene and you, as a witness, are asked to describe the perpetrator. Now, you have the choice
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between many possible variables that might describe the bank robber. How do you choose? The
police officer will not likely be very satisfied with the answer "He had one head." or "He had
two legs.". Obviously this holds true for the vast majority of possible bank robbers. Instead the
officer would be more happy if you provide him with the values of variables in which the group

of possible perpetrators show a larger variance such as height, hair color, eye color, etc.

Apart from showing why variance is important, the example above illustrates a problem
of variable selection, where no regard is taken to possible dependencies between variables.
The fact that PCA searches for orthogonal projections of variables with maximum variance
means that it detects specific linear combinations of variables along which the data varies
maximally.

Example 2. Suppose that we, in the search for variables that lets us discriminate between
people, such as bank robbers, measure the three variables [number of heads], [leg length] and
[upper body length] for a number of test subjects. A scatter plot of the data is shown in Figure
3.1 together with the one-dimensional orthogonal projection plane (line) that captures the most
variance. This line catches a large fraction of the total variance why we may conclude that
there is only one underlying variable of importance. Furthermore, the equation of the line tells
us that this underlying variable is approximately a sum of [leg length] and [upper body length]
with [number of heads] being constantly 1. Of course, the underlying variable is the total body
length.

Principal components analysis has favorable computational properties compared with
many other projection pursuit methods since, as will be shown in Section 3.3, it has an
analytical solution and does not require difficult optimization schemes that risk finding
local minima. Because of its simplicity and utility it has become widely spread and known
across numerous disciplines.

As demonstrated above, variance often reflects interesting patterns in the data. One
should be aware, however, that it does not provide a universal measure with which we can
find all interesting patterns.

Example 3. Consider the data in Figure 3.2. Here the largest variance is along the Y-axis but
perbaps the X-axis says more about the data since here it is separated into two groups.

Even if variance is indeed an appropriate projection index for the data and the problem
at hand, there are many cases where PCA is insufficient for the reason that it restricts
the class of dimensionality reducing functions to orthogonal projections. The underlying
functional relation between variables is not always linear. Under such circumstances, it
is not sufficient to find the optimal orthogonal projection of data, as illustrated by the
following example.

Example 4. Assume that we are measuring properties of a mechanical system where a body of
mass M experiences a gravitational force T at a distance v from a body with fixed unit mass.
Then our data set consists of samples X; = [y, 1i, Ti]. We know from classical mechanics that

where M is the mass of the fixed body, in this case 1. Our samples X; thus lie on a curved two-
dimensional surface in RS (see Figure 3.3). Since the variance is along a curved surface, no
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Figure 3.2: A data set for which variance is not an optimal projection index.

orthogonal projection from R3 20 R? can Sfully explain all the variance. Ideally, the projections
should instead be onto the surface f = m/r?,

Several approaches have been taken to extend PCA and other linear dimensionality
reduction methods to handle nonlinear data. An intuitively natural generalization of PCA
is Principal Curves [Hastie and Stuetzle, 1989], where curves, instead of straight lines,
through the data is found. A principal curve should be such that the sum of squared
distances from the points to the curve is minimized under some given smoothness con-
straint. If maximum smoothness is required, the curve becomes a straight line given by
the PCA solution. A selection of other methods for nonlinear dimensionality reduction
includes Principal Manifolds [Smola et al., 19991, Generative Topographic Mapping [Bishop
et al., 1998], Manifold Charting [Brand, 2003], Stochastic Neighbor Embedding [Hinton
and Roweis, 2003] and Nonlinear Auto-encoders [Diamantaras and Kung, 1996].

In this chapter we will review a number of approaches that may be classified as spectral
dimensionality reduction methods. These methods have in common that they rely on the
spectral decomposition of some matrix estimating some geometrical property of the data!,
thereby providing relatively efficient ways to obtain globally optimal solutions compared
to methods based on iterative optimization.

The following section defines the theoretical framework within which we put the di-
mensionality reduction methods. Then PCA is described followed by a derivation of its
formulation as a kernel method yielding kernel PCA [Scholkopf et al., 1998]. Chronolog-
ically preceding kernel PCA, but with many similarities is the extensive field of multidi-

For completeness of the survey, we will sometimes go astray from spectral methods, for example in the case
of non-classical MDS in Section 3.5.



3.1. INTRODUCTION 35

Figure 3.3: Different measurements on a two-body mechanical system. The nonlinear
variable dependence leads a curved data distribution, shown by the wire-frame. The two-
dimensional PCA projection plane, shown by the transparent plane, is unable to fully
represent the underlying two-dimensional pattern.

mensional scaling (MDS), which is described in Section 3.5. Rather than working with
coordinate data as standard PCA does, multidimensional scaling works takes dissimilarity
data as input. Following MDS we will cover some more recent approaches which all have
in common that they set out to approximate the underlying manifold by an adjacency
graph, connecting neighboring data points. In other words, the manifold — a continuous
object, is approximated by a discrete object — the adjacency graph. Generally, the aim
is then to make use of geometrical properties of the manifold for which graph counter-
parts can be readily computed and summarized in a matrix whose spectral decomposition
yields a lower-dimensional embedding. For example, the omap algorithm [Tenenbaum
et al., 2000], presented in Section 3.6, approximates geodesics on the manifold by graph
geodesics while Laplacian Eigenmaps [Belkin and Niyogi, 2003], in Section 3.7, approx-
imates the Laplace-Beltrami operator on the manifold by the graph Laplacian. Locally
Linear Embedding [Roweis and Saul, 2000], described in Section 3.8, estimates linear rep-
resentations of local neighborhoods while Hessian Eigenmaps [Donoho and Grimes, 2003]
computes approximations of the Hessian operator. We will refer to these methods as graph-
based methods for spectral dimensionality reduction. Many of them can be formulated as
kernel PCA with kernels learnt from data and we will conclude the chapter in Section 3.9
with a discussion on this.
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3.2 Framework

Suppose that we are given a set of vectors Xin = {X1,X2,-..,%m} C R". Furthermore,
assume that these vectors are samples from a manifold X C R". We will refer to Xy as
the input coordinates, to X as the observation manifold and to R" O X as the input space.
A relevant question is what can be said about the observation manifold given only the
input coordinates. To specify this problem further we need to decide which properties of
X that are relevant. For example, we could be interested in the topology of the manifold.
However, for our purpose, the topology does probably not contain as much information
as we would like to extract. If, for example X was a two-dimensional manifold, the prob-
lem would boil down to determining the genus of X, and no difference would be made
between homeomorphic manifolds having widely different input coordinates. Instead it
is more useful to seek the metric of the manifold, since this provides us with a way to
quantify the similarity between points on X, similarities that presumably carry relevant
information about the physical object that is studied. To summarize, so far, our main
assumption is that

the input coordinates X lie on a Riemannian manifold X whose metric
tensor g carries relevant information.

The problem of manifold learning is to

given input coordinates Xm C X, determine (X,Q), where g is the metric
tensor.

As stated, this is, in fact, impossible given a finite number of input coordinates. To see
this, note that we may always fit a curve to Xm passing through all points, so additional
assumptions about X, such as its intrinsic dimension, need to be made, in order to make
the problem well-posed.
Related, but not identical to manifold learning is our definition of the dimensionality

reduction problem:

Find a mapping ¥ : X — Z C RP, where Z is an affine space of dimension

p < n, such that Zy, = {z1,..-,Zm} = ¥ (Xin), in some sense, represents the

metric structure in )A(}n well.

The point configuration Zm is denoted the reconstructed embedding coordinates, or in short
a reconstruction of Xm. Similarly, we call the space Z the reconstructed embedding space,
or alternatively, the feature space. The mapping ¥ is, in some methods, learnt explicitly,
but in most cases it is found implicitly, and point-wise, by computing Zm directly. Di-
mensionality reduction is not the only problem that can be formulated as one of learning
functions defined on the input coordinates. The problems of classification and regression
can also be formulated in a corresponding way.

A common assumption is that X is the image of an affine Euclidean space 9" under a
smooth bijective mapping @, possessing some given properties. In these cases, we refer to
9 as the parameter space, and = &~1(Xpy) as the embedding coordinates.

The term nonlinear dimensionality reduction is used to stress the fact that ¥ is not re-
stricted to be a linear mapping (cf. Example 4). Finally, dimensionality reduction methods
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may be divided into local methods, attempting to create reconstructions that are locally co-
herent with the structure on X and global methods, aiming at creating reconstructions that
are correct on all scales.

3.3 Principal component analysis

Principal Component Analysis (PCA) is, by far, the most widely used method of dimension-
ality reduction. The method relies on an eigendecomposition of the covariance matrix.
Historically, PCA goes back to Pearson [1901] and was further popularized by Hotelling
[1933]. Thorough accounts of the theory and methodology can be found in [Jolliffe,
1986]. Since many of the other dimensionality reduction methods that will be presented
later in the chapter can be seen as different variants and generalizations of PCA we will, in
this section, go into some detail while describing the method.

3.3.1 Finding optimally variance preserving projections

Let X = [X1...Xm] be the data matrix having the observed input coordinates, scattered in
R", as column elements and define the covariance matrix of the variables as

m 1 m 1 m .
Ci(X) —i;(xji—ai;)(ji)(xki—ai;in), j,k=12,...,n

Without loss of generality, we may assume that data is centered, i.e., 3" 1 X; = 0, and thus
write C = XXT. The nx n matrix C is positive and symmetric so by the spectral theorem
there exist nonnegative eigenvalues 1 > 2 > ... un > O and a corresponding orthonormal
base of eigenvectors $1,52,...,5n in R" such that

CSk=(.LkSk, k=1,2,...,n.

In the rest of this section we will assume that m< N, and thus gmy1=... = un=0. In
this case, Sm41,.--,Sn may be found by, for example, Gram-Schmidt orthogonalization.
Let S denote the N X N matrix having $1,5;,...,5n as columns, and let A, k=1,2,...,n
be the singular values of X, i.e., Ak 1= /i

The principal components of the data set are then the set of unit length vectors in R™

defined as

1 1
Pk = WXTSk = A—XTSk forallk=1,2,...,nsuch that Ak # O.
k k

Lemma 1. The principal components constitute an orthonormal set.

Proof: Since $1,52,...,5m is an orthonormal set it follows that
1 .
T, — TyyTe — B (Te _ s
pi' Pj= Ai/\js, XX's; = Ai/\js, sj = dij,

for i, j fixed. O
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Define an orthogonal mx m matrix P having the principal components pi as column
elements and an N x N diagonal matrix A having, as diagonal elements, the singular values
of X. Moreover, denote by Am the upper left mx msubmatrix of A. From the definition
of the principal components and Lemma 1 it follows

X:[S'],...,Sm]AmPT’ (3'1)

which can be recognized as a compact representation of the singular value decomposition

(SVD)?,
X=5 [ Aé" ] PT. (3.2)

We will now prove that the projection on the r first principal components is the opti-
mal rank I orthogonal projection in the sense of maximizing the variance of the projected
data. To start with, we will need to derive some properties of orthogonal projection matri-
ces.

Definition 1. The set of rank v orthogonal projections is the set of matrices

B ={II € R™"", 12 =II,II" = II,rank(IT) =r}

Let IT € P;. Since IT is real and symmetric it can be diagonalized by an orthogo-
nal matrix U = [uq...up] with the eigenvectors of IT as column elements. For II, the
following lemma holds:

Lemma 2. JfII =[r1,...,7n] is an orthogonal projection of rankt < Nin R, then |m| <1
forallk=1,....,nand S5_; |m|?=r.

Proof Letdy, k=1,...,nand uy, k=1,...,n be the eigenvalues and eigenvectors of IT,
respectively. Since IT? = IT, we have that

MPug =Iug = d2ug=diug = dy=1ordg=0  forallk=1,...,n.

Since the number of non-zero eigenvalues is rank(II) = r it follows that
4 = 1 k=1,...,r
K= 0 otherwise
Now,

n n
Z |7'Ck|2 = tr(HTH) =u(l) = Z dc=r.
k=1 k=1

To show that |m | < 1, we first note that

i
IT = U"diag(dy, ... ,dn)U = {ziuijuik}jk.
i=

2This identification provides a numerically stable way of computing principal components and, in fact, the
method of PCA is the same thing as SVD.
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From the orthonormality of U it follows that || = I = ST, % < 1.

Having concluded this, we also need to define variance.
Definition 2. The variance, Var(X) of X is the trace of its covariance matrix C.

The trace of a matrix equals the sum of its eigenvalues so Var(X) = SR_; AZ.
Now, apply a rank r orthogonal projection II to X, ie., X —= IIX. The optimal
variance of ITX over all IT € P is then

sup or(IIXXTIIT) = sup er(IISA?STITT) = sup tr(STIISASTITTS),
ITe? IIe? IIe?

where we have used ,in the first step, Eq. (3.2), and in the second step, the fact that the
trace is invariant under similarity transformations, A — STAS. Noting that IT € 7 iff
SITIS" € P, we conclude that

n
sup er(STIISA®STITTS) = sup «(IIAITT) = sup 5 AF|mc|?.
IIe? IIe? e k=1

Lemma 2 gives an upper bound on Var(IIX):

n r
S RlmlP< S A%
k=1 k=1

Furthermore, it is clear that equality is obtained by choosing |m|?> = 1 for k=1,...,r,
and |m|? = 0 otherwise. This optimum was obtained by making two transformations of
the argument II. Using the relation |77:k|2 = Il and inverting these transformations, the
optimal projection is

_ T ||r 0 _ Ir O

where Iy is the r X r unit matrix. The optimal r-dimensional configuration is then

Z :=PIopcPT X = PIopy [ ‘g ] ST = P[ ’éf ] ST,

where Ay is the diagonal matrix with diagonal elements Aj if i <t and 0 otherwise. In
other words, Z is obtained from the singular value decomposition by replacing singular
values I + 1 to mwith zeros. Thus, we have proved the following theorem:

Theorem 1. Let X € R™™ be the data matrix of a set of M points in R". The mapping

!PPCA:Xl—)P[ "g ]ST

is the orthogonal projection that maximizes the variance of the projection image configuration.
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What is the relevance of looking for optimally variance preserving projections? We will
further characterize the properties of the PCA projection with two corollaries.

Corollary 1. The rank v principal component projection W pcy provides the optimal rank ¢
approximation to X in squared Frobenius norm, i.e., it minimizes

X —IIX[|%,
over all IT € P;.

Proof- First note that

[IX = IX|[§ = X[+ |1 IX|[E =
= o (XXT = XXTITT — IXXT + IXXTITT) — er(XXT) + ee(IIXXTITT) =
= a(IIXXT (1= 1)) — (I = IXXTITT) =0,

since tr(A) = tr(AT). This results gives

[IX I [IXI1E = (11X
[IX]1§ = [IXTITT |1
|IX||& — ee(XT T T ITX)
|IX[|f — er(ZIXXTITT)

[IX||: = Var(ITX),

Il

so the optimum is obtained once again by maximizing the projected variance, and follow-
ing Theorem 1 this is obtained by the principal component projection. O

Corollary 2. The rank v principal component projection W pcy provides the optimal rank ¢
approximation to X in the sense of minimizing the difference of sums of squared distances, i.e.,
it minimizes
2 2
> 1Ixi = x| = = [[Ix; — IIx]|%,
I’l
over all IT € P;.

Proof: We may rewrite the expression as

Z ||Xi —Xj||2— ||HXi —.HXJ'”2 = z ||Xi —Xj||2—XiTHTHXi —XjTHTHXj + 2XiTHTHXj
1] 1]
=5 [[xi = x|* = 2mee(XT T IIX) = ||x; = xj{|> = 2mee(ZTXXT 1TT),
1,] ]

where we have used that
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i HTIxi=Sx"II'OS x =0,
S s

since Y j Xj = 0. The minimal distance discrepancy is therefore given by an optimally vari-
ance preserving projection, which, by Theorem 1, is obtained by the principal component
projection. O

Recall Example 4 in Section 3.1, which illustrated a case where data was scattered
along a curved surface in R®. We noted that, using PCA for dimensionality reduction,
this surface will not be optimally recovered. To make this a bit more precise, Corol-
lary 2 implies that if X is a p-dimensional affine subspace of R" then the p-dimensional
PCA projection is an accurate reconstruction of X in the sense that |z — zj| = dx (X, X;),
for all i, j = 1,...,m, where dx is the geodesic distance on X. Furthermore, if d < p
the d-dimensional PCA projection is an optimal d-dimensional reconstruction of X in
the sense of minimizing ¥; j [dx(Xi,Xj)|? — |zi — Zj|?. If X is not affine then generally
dx(Xi,Xj) # |X; — Xj| and hence we cannot guarantee the same kind of optimality of PCA
as dimensionality reduction method.

3.3.2 Remarks

Scaling of variables. The fact that variance is the projection index of PCA makes it
dependent on the scale of the variables. For example, if one group of variables measure
length and another group of variables measure volume, then their magnitudes and their
natural scale of variances will differ. The most common solution to this problem is to
rescale all variables to unit variance. A problem with this approach, however, is that low
magnitude noise is scaled up to the same magnitude as real signals. Pareto scaling is another
solution, implementing a compromise between unit variance scaling and no scaling by
dividing the variables by the square root of their standard deviation. If variables are known
to be divided into a number of distinct categories one can make use of block scaling where
variables are rescaled so that all groups have equal total variance.

Partial Least Squares. A method related to PCA is Partial Least Squares (PLS) [Wold,
1966], which is used when the same objects are described by two alternative data matrices,
for example, gene expression data and values of chosen clinical variables. Let us, for a
moment, abandon the notation of Section 3.2 and denote these two data sets by {Xi} and
{yi}, withi=1,...,mand call the corresponding data matrices X and Y respectively. The
aim of PLS is to find projections IIxX and II;Y such that the sample covariance between
the two projections is maximized. This is obtained by the solutions of the eigenvalue

problem
0 XYT 7T ux Ux
T = /\ .
YX 0 Uy Uy

Canonical Correlation Analysis  Yet another method for the case with double data ma-
trices X,Y is Canonical Correlation Analysis (CCA) [Hotelling, 1936]. In CCA it is the
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correlation between the projections IIxX and Il Y that is maximized, rather than the co-
variance as in PLS. The CCA projections are found by solving the generalized eigenvalue

problem
0 XYT Ux xxXT 0 Ux
T = /\ T .
YX 0 Uy 0 YY Uy
Since CCA works with dimensionless correlations it is more sensitive to over-fitting than

PLS and therefore it is sometimes advised to use regularized canonical correlation analysis
(RCCA). The equation to be solved is then

0 XY' uc |, XXT + vl 0 Ux
yx" o uy | 0 YYT 9 || uy |
This implements the heuristic of preferring high-variance before low-variance projections.
Note that y — o corresponds to PLS (after a re-scaling of the eigenvalues).

3.4 Kernel PCA

Consider Example 4 in Section 3.1 where measurements from a gravitational system are
scattered on the surface f = m/r? in R3. As noted, PCA does not handle this kind of
nonlinearities, since no orthogonal projection will capture all the variance. One way to get
around this problem is to map the data into another space where variable dependencies
are linear. Hence, transforming the data according to ¥ : [m,r, f] — [Inm,Inr,Inf] makes
the objects lie on a plane (Inf = Inm— 2lnr), and standard PCA may be applied to recover
the two underlying degrees of freedom.

The idea of applying some nonlinear mapping into a linearizing feature space has been
successfully exploited in classification, where the mapping of input data into feature space
can make sample classes linearly separable and thereby easier to learn by a classifier. In
particular, the use of kernel support vector machines (SVMs) [Boser et al., 1992] has had a
large impact. Support vector machines and other kernel methods never explicitly carry out
the mapping ¥ : X — Z of input data. Instead, data in input space are mapped onto
scalar products in feature space Z by a kernel function, K. This saves computations, both
since ¥(X;) does not have to be evaluated, and since the subsequent calculations in Z are
restricted to the linear span of the image of {X } under ¥. This approach is often called the
kernel trick and can be applied to any algorithm that can be expressed solely using scalar
products. As will be shown below, PCA is such an algorithm and this lead Schélkopf et al.
[1998] to propose kernel PCA. Before describing kernel PCA in more detail we will briefly
discuss some general properties of kernel methods.

3.4.1 Characterizing valid kernels

An obvious question that arises is which functions that are valid kernel functions. Before
investigating this more closely we need some definitions. First, let Z be a linear space with
an inner product -, ).
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Definition 3. A kernel is a function K: X x X — R, such that for all x,X' € X,
k(xX) = (Z(x), Z(x)),
where ¥ is a mapping from X to 2.

Definition 4. 7he Gram matrix G of a set of vectors {21,...,Zm} is the MX M matrix with
elements Gij = (%, Z;).

Definition 5. A kernel matrix K is the Gram matrix in a feature space Z corresponding ro a

kernel function K, i.e., Kij = k(Xi,Xj).

It is clear that K(X;, X)) needs to be symmetric, K(X;,X;)
has to fulfill the Cauchy-Schwarz inequality, K(Xi,X;j)? < K(x
it is required that

= k(Xj,X) and, necessarily, it
i, X )K(Xj,Xj). Additionally,

/ K, X) £ (X) F () dxdX' > O, (3.3)
X xX

forall f € Lo(X) [Cristianini and Shawe-Taylor, 2000]. If this is the case, Mercers theorem
states that K(X,X') can be expressed as

00

k(xX) = 3 2 Zj() j(x), (3.4)

=1

where (A, ¥;) are the eigenvalues and eigenfunctions of the operator

(Tef)() = /X K(-X) f (x)dx. (3.5)

The eigenvalues are all non-negative and the eigenfunctions are assumed to be normalized
so that || ¥j||L, = 1. Note that we may write !Apj = A ¥; and thus K(x,X') is the inner
product in ¥(X). In the finite-dimensional case, the Mercer condition becomes a condi-
tion of positive semi-definiteness of K. This can be seen by letting f tend to a weighted
sums of delta functions at each X; which turns (3.3) into

viKv >0, (3.6)

where V is the vector containing the values of f at Xg,...,Xm. This allows us to formulate
the following proposition (see e.g. [Cristianini and Shawe-Taylor, 2000]):

Proposition 1. Let X be a finite input space with K(X,X') a symmetric function on X X X.
Then K is a kernel function if and only if the kernel matrix K is positive semi-definite.

3.4.2 Standard kernels

Thus far, we have established criteria to determine what is a valid kernel. We have not
discussed what is a suitable kernel. Naturally, this question is more difficult to answer.
Normally, we do not have any prior knowledge about which mapping ¥ will linearize the
data, like we had for the gravity data in Example 4. Instead, it is common to use some
standard kernel and hope that it will map data into a space where it is easier to work with.
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In particular two kernel functions have been widely adopted in different kernel meth-
ods. These are the Gaussian kernel, k(x,X') = e IX1P/o* and the (d order) polynomial
kernel, K(X,X') = ({(X,X') + 0)9, where, in both cases, & is a continuous parameter. Here
we will briefly note on some illustrative properties of the Gaussian kernel.

The (squared) distance in Gaussian kernel feature space can be written as

| Z(x) — T(K)[|2 = k(x,X) — 2k(%,X) + k(X,X) = 1 — 2e7I=XIF/e* 4 g =
_ ||><—><'||ZJr [Ix=x]*—lx=x]?

) lx=x?
m e .

=2-2(1 53 )

(1

Thus, when ||[x—X|| is small compared to o the feature space distance is proportional to
the Euclidean distance in input space. If, on the other hand, ||x— X/|| is large, k(x,x') — O
so || W(X) = T(X)|| = V2, for all x,X'. Put in another way, varying o between 0 and
oo makes the feature space configuration travel between an M-point simplex and a scaled
version of the input configuration.

3.4.3 Kernelized PCA

In order to derive a kernel version of PCA we need to reformulate the problem in terms of
inner products. First, lec H=1— nl11 17 be the mx m centering matrix. Next, recall from
Section 3.3.1 that the central problem in PCA was to solve the eigenvalue problem

CSk = UkSk k= 17 27 L (3.7)

where C = HXXTHT is the covariance matrix. What is required is thus to show how this
can be reformulated as an eigenvalue problem for the dual matrix of C, i.e., G = HTXTXH,
the centered Gram matrix. We will now assume that X is centered so that C = XX and
G=X"X.
First, note that
XT Sk
Sk =RA——,
Mk

why we can replace s with Xpy, where py = XTsy /i are the dual variables. Inserting
this into (3.7) we get:

XXTXpy = mXpg (3.8)
XTXX"™Xpr = wX Xpy (3.9)
G’k = uGpx. (3.10)

When G is of full rank this directly leads to

Gpk = UkPk- (3.11)

When G is rank deficient, then o+ o, where & is a solution of (3.11) and o is in the null
space of G, is a solution of (3.10), but generally not of (3.11). The corresponding primal
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variable in this case is S= X(a+ ap), but since Gog = O we have that Xag = 0 and thus
s= Xa. Hence, all relevant solutions of (3.10) are those of (3.11) also in the case when G
is rank deficient.

With this formulation of PCA, we may apply the kernel trick and replace G with K
and solve

Kpk = uxpk, (3.12)

to find principal components in feature space. The kernel matrix needs to fulfill the con-
ditions in Proposition 1 and furthermore we have assumed that data is centered so that
K1 = 0. If this is not the case, we may center the data in feature space by transforming
K := HKH. Recall from 3.3.1 that we chose the set of primary eigenvectors S; to be an
orthonormal set. The same should hold in Z so with the primal eigenvectors in Z denoted
by v; we should have v;Tv; = p;T X" Xp; = pipipi = 1, why the dual variables p; should
be normalized to have length 1/, /@i.

In order to attain a lower-dimensional kernel PCA reconstruction we need to project
data points in feature space onto the Vy. The coordinate of a point ¥ (X;) in the projection
onto a primal eigenvector Vi can be calculated as

(Vi Z(x))) = (Z(X) Pk, Z(x))) =
= (3 (PK)i ¥(xi), ¥(x)) =

=3 (P, X)) = P

where (P )i denotes the ith element of the vector py, and where the last step makes use of
(3.12). Similarly the projection in feature space of a general point X can be found as

Vi, Z(x)) = (Pi)ik(%:,X). (3.13)

Hence, new data samples, not used in the kernel PCA, can be projected into the lower-
dimensional representation without recomputing the kernel eigenvectors. It has been
noted (e.g. [Burges, 2005]) that this is equivalent to using the Nystrém method to ap-
proximate the full eigenfunctions at the novel data point.

Kernel PCA projects data onto lower-dimensional subspaces in feature space. In many
applications, it is of interest to map these projected data back into input space in order
to interpret their meaning in the input space context. An arbitrary point Z in the linear
span of { ¥ (%) }.i =1,...,mis not guaranteed to have a pre-image in X [Schélkopf et al.,
19991, so the pre-image problem is somewhat difficult to solve. One approach is to mini-
mize ||z— ¥(X)||? with respect to X € X using some gradient method [Mika et al., 1999].
Since = ¥ 3 ¥(X;) this loss function can be expressed in terms of the kernel function.

Another suggestion is to use regression techniques to learn the mapping from Z to X using
the pairs (Xi, ¥(x)), 1 =1,...,m [Bakir et al., 2004].
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3.4.4 Remarks

Inefficiency of the Gaussian kernel for dimensionality reduction. The Gaussian ker-
nel is a popular choice in support vector classification and, probably by merit of this,
its use has spread over to kernel PCA applications. However, as pointed out in [Wein-
berger et al., 2004], it has a property that is not well suited for dimensionality reduc-
tion. If X and X' are far apart in input space, their inner product in feature space will
be k(x,X') = e Ik=x1%/9% 5 0, meaning that ¥(X) and ¥(X') will be nearly orthogonal.
Consequently, the dimensionality will increase rather than decrease and furthermore in a
way that does not necessarily linearize the data.

3.4.5 Applications

In gene expression data analysis, kernel PCA appears relatively sparsely. One example,
however, is [Pochet et al., 2004], where kernel PCA followed by Fisher discriminant anal-
ysis is applied to classify various cancer data. In fact, the authors find that using the
Gaussian kernel in the dimensionality reduction yields poor performance. This might be
explained by discussion above on the inefficiency of the Gaussian kernel for dimensionality
reduction.

An interesting kernel application is found in [Vert and Kanehisa, 2003], where a ker-
nelized version of canonical correlation analysis (cf. Section 3.3) is used based on two
kernels; one computed from the expression data and one derived from a pathway database.

3.5 Multidimensional scaling

Multidimensional scaling (MDS) is a family of methods with the common aim to, given
a matrix of dissimilarities between objects, construct a configuration of points {z;} in
Euclidean space such that their interpoint distances, in some sense, well represent the
dissimilarities. In this section we will denote the given dissimilarities between objects j,K
by &jk and the corresponding reconstruction distances by djk according to what is standard
in the MDS literature.

3.5.1 Metric MDS

An important special case of metric MDS is classical MDS or principal coordinate analysis
[Torgerson, 1952], where the aim is to minimize ZT:'kzl(SJZk - djzk). From Corollary 2
we know that #f* §jk = |Xj — Xk| then an optimal configuration {z } is found by projecting
onto the principal components. In order to do this we need the covariance matrix, or alter-
natively the Gram matrix, as described in Section 3.4. We will now see how to transform
a Euclidean distance matrix into a Gram matrix. Since we generally do not know if the
given distance matrix really is Euclidean we also need to describe which matrices are valid
Gram matrices, i.e., such that they may have been generated by a point configuration in a
Euclidean space.

Let G = HTXTXH be the centered Gram matrix as in Section 3.4. We also define the
squared Euclidean distance matrix as
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Tjk=|Xj—Xk|2, i,k=1,...,m

Both G and T are invariant under Euclidean transformations so without loss of generality
we may assume that the data is already mean centered, XH = X. The matrices T and G
are related:

Theorem 2. For all {X1,...,Xm} € R™™ we have that

Tik = Gjj + Gkk — 2Gj, (3.14)
and
1
G= —EHTH. (3.15)

Proof. The equality (3.14) is simply the polarity condition. To prove the second equality
we first note that

m m
Z Gjx =0 and Z Gjk=0
=1 k=1

Therefore, summing over | in (3.14) yields

m m
> Tic=mx>+ 5 1%, (3.16)
=1 =1

which, summing over K, gives

m m
; Tk=2m}y Ix;|%. (3.17)
j,k=1 =1

Combining these two equalities we get

, 12 12 5, 12
Xk = EWJ-ZlTjk - Ejzl|xj| =m Z 2mz Z Tik,
which we may plug into (3.14) to get

T 1 m(T +Ty) ! Tir — 2G
jk__zi ij |k i — £93jk-
m m2llz

Rearranging and putting this in matrix notation finally yields (3.15).
O

The above mapping from the distance matrix to the Gram matrix can be applied to
all mx m matrices, but all Mx M matrices are not the Euclidean distance matrix of some
possible configuration of M points. To determine which distance matrices that are valid we
may reapply Proposition 1, which says that G is the Gram matrix of some point configu-
ration if and only if G is symmetric and positive semi-definite. If this condition is fulfilled
Theorem 2 lets us conclude that T is the squared distance matrix of the same configuration.
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If G fails these criteria the classical MDS solution might still be informative. For
example, if G has a few negative eigenvalues with small magnitude the solution can be
assumed to give a good approximation. In other cases, it would be advisable to turn to
other MDS methods who do not assume that 8jk are Euclidean.

In general mesric MDS the aim is to construct a point configuration such that djk ~
f(8jk) for some specified function f. This is done by minimizing some goodness-of-fit
measure over the point configuration {z} and, sometimes, the function f ( given that f
belongs to some specific parameterized family of functions). Many different goodness-of-
fit measures have been proposed, for example the (normalized) stress

e YikWik(d(Z,z) — F(8jK))?
S{z},f) = > 30, 207 : (3.18)

where Wi are weights that can be used to control which distances should be given the most

importance in the fitting procedure. One well-known example is the method of Sammon
mapping [Sammon Jr, 1969] which lets f be the identity and uses Wjk = 1/8jk in order to
give more importance to the accurate representation of small distances.

Most cost functions give rise to optimization problems that has to be solved numeri-
cally. Furthermore, it has been noted that the problems are often non-convex, why algo-
rithms risk getting stuck in local minima. Typically, the classical MDS solution is used as
an initial value.?

The idea of transforming the dissimilarities 8jk — f(8jk) reminds of the approach that
is taken in kernel methods. In fact, in [Williams, 2002] it is shown that kernel PCA with
isotropic kernels can be interpreted as a type of metric MDS.

3.5.2 Non-metric MDS

For many types of data the meaning of the magnitudes of the dissimilarities &k is unclear.
For this purpose, non-metric MDS or ordinal scaling [Kruskal, 1964] has been devised.
There are different non-metric MDS algorithms but they have in common that they at-
tempt to create reconstructions so that the rank ordering of dj is similar to that of §jk,
i.e., that

8ij <& < dij < d,

is optimally true. A standard non-metric MDS algorithm adopts the stress (Eq. (3.18)) as
cost function and lets f be computed in every step by means of monotone regression.

Non-metric MDS, as just described, puts less constraints on the reconstruction {z}
than metric MDS. However, in some cases it is relevant to put even less constraints on the
relation between djk and 8jk. For example, we may only have the reason to require that
the two dissimilarity matrices are local order equivalent, i.e., that

0ij < dik <= djj < di,
as described in [Sibson, 1972].

3However, Malone et al. [2002] suggests another way of choosing the initial configuration by solving a convex
optimization problem whose solution can be argued to be close to the global stress minima.
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Figure 3.4: A Swiss roll manifold. The geodesic distance between A and B is shorter than
that between A and C.

3.6 Isomap

In Section 3.5 the method of multidimensional scaling was introduced. Classical MDS
takes as input Euclidean distances between points X on X, and produces a lower-dimensional
point configuration {7} for which the pairwise Euclidean distances optimally match the
Euclidean distances in input space. Now, if the input data lie on, or close to, a curved
manifold X, the distances between points 7 in the reconstruction will not correspond well
with the distances between points Yj in the parameter space. This is the same problem as
in Example 4. The following gives yet another illustration:

Example 5. Suppose that data points are distributed uniformly on a rolled sheet, similar to a
Swiss roll, as in Figure 3.4. It is natural to argue that the preferable distance measure between
points is not the Euclidean distance, but the distance along the spiral. Consequently, in Figure
3.4, the distance between A and B should be considered shorter than that between A and A,

which is not the case if we use the straight-line Euclidean distance.

In other words, we would like to compute the geodesic distance between the points
{xi} € X. Once this is done we may use these distances as input to an MDS algorithm in
order to create a lower dimensional representation of the data.

This section describes how approximations of geodesic distances are computed using
the lsomap algorithm [Tenenbaum et al., 2000].

3.6.1 Approximating geodesic distances

The Isomap algorithm works as follows:
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1. Construct an adjacency graph where the nodes {nj}, i = 1,..., Mrepresent
the data points {X;} and two nodes nj,n;j are connected if N; € Ajj or Nj €
A{, where A{ is the set of points neighboring nj. The neighborhood Af can
be defined either according to the e-rule:

A={n; [x—x|<e},
for some € € Ry, or according to the K-rule:
Af = {nk; X« is among the K closest neighbors of X; },
for some K € N. The graph edges are given weights Wjj = |X; — Xj|.

2. For each pair of nodes nj,nj, find the shortest path in the graph between
them. This can be done, for example using Dijkstra’s algorithm. The length
of this path is then the approximate geodesic distance dis(X;,X;) between X;
and Xj.

3. Compute reconstructed embedding coordinates by applying classical MDS
to the approximate geodesic distances.

Steps 1 and 2 are the manifold learning steps of the method — it is here that the
estimation of geodesic distances is performed. The dimensionality reduction is performed
in step 3. The formulation above assumes that the adjacency graph is connected. However,
if it is not, we would instead proceed by handling each connected subgraph separately.

So far we have loosely motivated the Isomap algorithm by an example. It remains to
address questions concerning under which conditions it actually works.

For the manifold learning steps, the question is whether the approximate geodesic dis-
tances converge to the true geodesic distances as M — . As perhaps intuitively expected,
they do, and the consistence proofs can be found in [Bernstein et al., 2000]. The conver-
gence rate basically depends the curvature of X.

Having stated that geodesic distances can be well approximated, the next question to
answer is when the classical MDS step can create adequate lower-dimensional representa-
tions. In fact, it does so at least under the following sufficient Isomap condition:

X is the image of an open convex subset 9" of Euclidean space under an
isometric mapping ®.

In this case, the geodesic distances are identical to Euclidean distances in 9" and classical
MDS yields an adequate lower-dimensional approximation of the configuration in .
The isometry criterion implies that geodesics have the same length in X and 9 while the
convexity criterion assures that classical MDS works propetly in 9. If the criteria are not
fulfilled, however, the MDS reconstructions may still yield informative results.

Example 6.
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Figure 3.5: Classical MDS applied to geodesic distances on St. The left panel shows the
three-dimensional reconstruction. The right panel shows a bar plot of the eigenvalues of
the covariance matrix. Eigenvalues appear in consecutive pairs.

Let X = S, ie, a circle. Then there exists no combination of an open convex Euclidean
subspace Y and an isometry ®, such that X = S(Y). Geodesic distances on X are the same as
angular differences between vectors on the unit circle. Sampling a number of equidistant points
on X and feeding the geodesic distance matrix into classical MDS yields a spectral decomposition
of the covariance matrix where eigenvalues appear in pairs, thus describing a circle in every
consecutive pair of dimensions (Figure 3.5).

Furthermore, note that even if the violations are such that dimensionality reduction us-
ing classical MDS can not be performed with meaningful results, the approximate geodesic
distances are still valid and can be analyzed in other ways, for example, using metric or
non-metric multidimensional scaling, or as inputs to clustering algorithms.

In reality, the density of data points will always be finite, and in many cases sparse, why
it is important to study what kind of approximation errors appear when applying Isomap
to finite data sets. One potential problem is that of topological instability, as pointed out
in [Balasubramanian et al., 2002]. If the neighborhood parameter (¢ or K) is chosen too
large with respect to the density of data points and the curvature of the manifold, or if data
is noisy or contains outliers, then shortcuts may appear in the adjacency graph, connecting
geodesically distant domains of the manifold (see Figure 3.6 a). Such a shortcut inflicts big
damage in the approximation of geodesic distances and accordingly disrupts the resulting
embedding reconstruction. The problem of topological instability is the focus of Chapter
5, where a more robust method for approximation of geodesic distances is proposed.

Besides the topological instability which gives rise to global approximation errors, there
is a local error effect appearing at finite data set sizes. Under such circumstances, holes ap-
pear in the adjacency graph due to random fluctuations in local density, as illustrated in
Figure 3.6 b. For pairs of points on opposite sides of such holes the approximation error
will become larger and consequently the holes grow in the resulting Isomap projection.
In other words, the finite data density introduces small violations of the convexity condi-
tion. As a consequence, the projection might exhibit structures which are amplifications
of random fluctuations in data density. This has been termed a *Swiss cheese’ effect [Lee
et al., 2002], likely due to the popularity of the Swiss roll data in the manifold learning
community. We will also refer to this as an over-clustering effect, and we note that it may
make it appear as if there is structure in the data when in fact there is none. While the
risk of introducing graph shortcuts grows with the neighborhood parameter value, the im-
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Figure 3.6: To the left is shown 1500 uniformly distributed points (5(1500) on a swiss roll
manifold; the adjacency graph (K=10) contains two shortcuts. To the right, the corre-
sponding 1500 points in 971500, uniformly distributed in the plane (lower) and the cor-
responding Isomap projection (upper), Zys00. The adjacency graph (K=5) is drawn in
the configurations. Random fluctuations in data density become amplified in the Isomap
reconstruction.

pact of the over-clustering decreases with the parameter value, so, in practise, choosing the
parameter values becomes a question of compromising between these two types of errors.

3.6.2 Remarks

Conformal Isomap. It is not difficult to construct an example where the isometry part
in the Isomap condition fails to hold. For example, a patch, cut out from a sphere can not
be described as the image of a Euclidean subspace under an isometric mapping. However,
a rather simple modification of the algorithm extends the class of permitted mappings @ in
the sufficient condition to the strictly larger class of conformal mappings. The C-Isomap
algorithm [de Silva and Tenenbaum, 2003] achieves this by re-weighting the edges in
the adjacency graph by [Xj — X|/4/M(X)M(X;j), where M(X;) is the mean distance from
X; to its neighbors. If @ is a conformal mapping, then a disk in " of radius I, centered
around Y is mapped onto a disk of radius r¢(y;) where ¢(¥;) is the local magnifying factor.

Hence, scaling distances between neighboring points Xi, Xj in X by 1/¢(Vi) ¢(Y; )_1 yields
distances proportional to 0oy (Yi,Yj). Assuming that data is uniformly distributed in 9,

the radius 1 of a K-neighborhood around Yi € 9" does not depend on Vi, so ¢(Yi) may
be estimated as being proportional to M(X;), thus explaining the exact form of the graph
weights.

Landmark Isomap. The Isomap algorithm has two computational bottlenecks — the
computation of shortest graph distances which is O(m?logm) [de Silva and Tenenbaum,
2003] using Dijkstra’s algorithm and the solution of the MDS eigenvalue problem which
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is O(mP) since the distance matrix is non-sparse. These problems can be relieved by imple-
menting a landmark version of Isomap as described in [de Silva and Tenenbaum, 2003].
The L-Isomap algorithm chooses, by random, a number M’ << m of landmark points
among Xmn. By computing approximate geodesic distances between the landmarks only,
embedding them in low dimension using MDS and triangulating the positions of the re-
maining points in the reconstructed embedding based on their original distances to the
landmarks, the computational cost scales down considerably.

Vector Quantization. Lee et al. [2002] suggest that input data should be pre-processed
using vector quantization in order to even out random density fluctuations and thereby
reduce the impact of the over-clustering effect. This can be seen as an alternative way of
choosing landmark points in L-Isomap.

Inefficiency of Isomap on periodic data. The convexity condition has some interesting
consequences. For example it implies that Isomap is not well suited for periodical data,
since the parameter space of such data is a non-convex subset of Euclidean space. A simple
example in this respect is when 9" = St. Real life examples include cell cycle expression
data and periodic image series such as images of rotating objects.

3.6.3 Applications

The application area in the original work by Tenenbaum et al. [2000] was in cognitive
vision. By representing images as points in pixel space and applying Isomap to sets of
images with clear underlying geometrical parametrization, such as wrist angle and de-
gree of openness of a photographed hand (Figure 3.7), the authors demonstrated that the
Isomap projections recovered the underlying parametrization. Motivated by these positive
examples, Donoho and Grimes [2002] derived results showing that several types of image
manifolds are indeed isometric to their parameterizations. The image manifolds were cre-
ated by continuously articulating simple objects in the image plane, such as translations of
a disk, rotations of a closed figure, articulations of a horizon, independent non-occluding
motions of ‘fingers’ of a cartoon ‘hand’, and gestures of a cartoon ‘face’, with articulated
features. Conversely, they showed that when two objects are articulated on the same image
plane, while not being allowed to occlude each other, the convexity condition of Isomap
is not fulfilled and Isomap fails to recover the underlying parametrization.

The application of Isomap to gene expression data is described in the paper [Nilsson
et al., 2004] which is reproduced in Chapter 4. Subsequently, Isomap has also appeared in
[Andersson et al., 2005a] and [Dawson et al., 2005].

Other applications of the Isomap algorithm includes neurophysiology [Laskaris and
lIoannides, 2002], econometrics [Liou and Kuo, 2002] and shape analysis [Lim et al.,
2003, Larsen, 2005].

3.7 Laplacian Eigenmaps

While Isomap attempts to infer the geodesic distances on the underlying manifold, Lapla-
cian Eigenmaps [Belkin and Niyogi, 2003] focuses on other properties of X. Using the
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Figure 3.7: Isomap reconstruction of a set of images of a hand at different wrist angle and
degree of openness. The figure originally appears in [Tenenbaum et al., 2000].

same construction of an adjacency graph, it seeks to approximate the Laplace-Beltrami
operator on the manifold by the graph Laplacian matrix. The idea behind this is that an
eigenfunction of the Laplace—Beltrami operator will have minimal average gradient on X
and is therefore an appropriate mapping of samples into Z, in the sense that it maps points
that are close on X so that they are also close in Z.

3.7.1 Finding gradient minimizing mappings

Consider the problem of finding a smooth, one-dimensional mapping f : X — R from
the data manifold to the real line, such that points that are nearby on X are as near as
possible* on R. It can be shown that for any points X, X' € X it holds that

[£(X) = 191 < [|Df (9]1dx (x,X) + o(dx(x,X))- (3.19)

Thus, ||Of(X)|| approximately measures how far apart f maps nearby points and if we are
interested in minimizing this, a reasonable objective measure would be the functional

F(t)= [ 11011, (5.20)
X

with the constraint || f|| = 1. Next, we note that for the Laplace-Beltrami operator £, i.e.,
the manifold generalization of the Laplace operator on R", defined as Lf = —divOf, it

holds that [,(V,0f) = — [, L(V) T, for any vector field V, why

4under appropriate constraints
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2 _
JoriE= [ 2o, 6.21)

where we assume that X is without boundary. The minimizing function of F(f) is an
eigenfunction of L.

As thus motivated, the geometrical entity of interest in this context is the Laplace-
Beltrami operator. Recall that the Isomap algorithm constructed an adjacency graph and
calculated graph geodesics as approximations to the underlying manifold geodesics. Lapla-
cian Eigenmaps approximates the Laplace-Beltrami operator by the graph Laplacian of the
adjacency graph.

To this end, let the matrix W be defined as Wj; 1= e 1k=xil2/20% nd let B be the
degree matrix with entries Bj; = 3 j Wij. The graph Laplacian is then defined as L =B —W.
This matrix is positive semidefinite and symmetric. Furthermore it can be verified that
1=11,...,1]" is an eigenvector with eigenvalue 0. Also, define the normalized graph
Laplacian as L' = B~1/2B~Y/2,

Next, we will motivate why the normalized graph Laplacian, as defined above, can
be seen as a discrete approximation of the Laplace-Beltrami operator [Belkin and Niyogi,
2003]. To this end, consider the heat equation,

0

—+L)u=0 22
where U(X,t) is the heat distribution at time t and u(X,0) = f(X) is the initial heat distri-
bution. The solution of the heat equation is given by

uet) = [ He) 1), (.23

where Ht (X, Y) is the heat kernel. In geodesic coordinates, Hy is approximately the Gaussian:
[x- 2

Hi(x,y) = (4nt) P24 (g(x,y) +O(t)), (3.24)

where @(X,Y) is a smooth function with ¢(X,X) = 1. By inserting (3.23) into the heat
equation we may write

LF(X) = —LU(x,0) = —<% /X Ht(x,y)f(y)> . (3.25)

t=0

In order to arrive at L' we will make three different approximations of (3.25). First, if t is
small and X and Y are close (relative to the curvature of X),

vI[2
He(x,y) ~ (4nt)~P/2e (3.26)

Second, since limy_0 [ Hi(X,Y) f(y) = f(X), we may, using the definition of the deriva-
tive, approximate the derivative att = O as:

L£(X) w%[f(x)— /X (4nh)—P/2e—”%?4‘—‘2f(y) , (3.27)
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where h is some small time step. Finally, at high data densities (M — ) we may find a
discrete approximation of (3.27) as:

llxj x| 2
0)-=@h) ™2 5 eomof)|, (629
m Xj €Ne(X)

Sl

LX) ~

where Ag(X;) is the set {X;} such that ||% — Xj|| < &. The manifold dimensionality p is
generally unknown why we need to estimate the factor o := (47h)~P/2/m from the data.
By inserting f = 1 into (3.28) and rewriting we get

lxj—xl12\ —1
oqz( Z e ) , (3.29)
Xj ENe (%)

which we might recognize as Bii_l. Hence, with W and B defined as above, but with o=
h, the eigenfunction problem Lf = Af approximately transforms into (B — W) f = ABf
on the graph.

The derivation above contains a number of approximations, and strict matters of the
consistency of the eigenvalues of L' as estimators of the eigenfunctions of the Laplace-
Beltrami operator in the limits M — 0, o — 0 are still not fully investigated. The above
arguments holds under the assumption that the density function with respect to the mea-
sure on X is uniform [Belkin, 2003]. For non-uniform densities, however, the asymptotic
of L' is not the standard Laplace-Beltrami, but a weighted version of it [Lafon, 2004,
Nadler et al., 2004, Hein et al., 2005]. Moreover, proving the convergence of the matrix
to the right operator does not completely prove the consistency. What is needed is a proof
of the convergence of its eigenvectors to the eigenfunctions of the operator. One step to-
wards this is taken in [von Luxburg et al., 2004] where the convergence of the eigenvectors
is shown in the limit M — oo but with o fixed.

Guided by the result that the standard normalized graph Laplacian does not generally
have the desired asymptotic behavior a normalization of the weight matrix W was proposed
in [Lafon, 2004] yielding the desired asymptotic guarantees for non-uniform densities as
well;?

W =B"1wBL (3.30)

In summary, the Laplacian Eigenmaps method works as described by the following
algorithm:

SNadler et al. [2004] extend this idea and present a parametric family of graph Laplacian normalizations
including as asymptotic the backward Focker-Planck operator.
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1. Construct an adjacency graph.
2. Calculate graph weights: Wj; = g Ik=xj12/20,

3. Replace W by its normalized counterpart W = B=™WB™L. (This step is not
part of the original algorithm but enables handling non-uniform underlying
densities [Lafon, 2004].)

4. Compute eigenvalues and eigenvectors of the normalized graph Laplacian,
i.e., solve

Ls= ABs. (3.31)

Leave out the eigenvector So corresponding to the zero eigenvalue Ao,
and form the matrix S = (Sq,...,Sn—1) from the (column) eigenvec-
tors Si,...,Sm—1 corresponding to the descendent ordered eigenvalues
A1,.-.,Am—1. The p-dimensional Laplacian Eigenmaps embedding ¥ (X;)
of sample i is then given by the first p elements in the i:th row of S, i.e.,

T (%) = [¢1(%),- -, Pp(%)]T where ¢ (%) = S;.6

Apart from its role as an estimation of the eigenfunctions of the Laplace—Beltrami
operator the mapping ¥ is optimal in the sense that it provides a configuration {z; }, with
a data matrix Z = [21,...,2Zm], that minimizes

w(ZLZ") = %llzj- — 2 [PWg,
J,

under the constraint that ZBZ" = I.

3.7.2 Remarks

Relation to PCA.  Let 0 — o and the set the neighborhood parameter K =m—1, i.e., let
all points be neighbors of each other. With these parameter values, Laplacian Eigenmaps
is equivalent to PCA. The weight matrix becomes W = [11... 1] and the degree matrix
B = ml. The dual problem to minimizing tr(ZLZ") under the constraint ZBZ" = I is
to maximize tr(ZBZ") under the constraint ZLZ" = ¢, where C is a constant. Now, since
B = ml the desired solution is one that maximizes tr(ZZ") and this, as was shown in 3.3.1,
is the principal component projection.

Relation to Fourier analysis. Consider the following example:
Example 7. Let X = St. The eigenfunctions of L = — (;1_)(22 are then given by

Uk(X) = Asin(2nkx + a), k=1,..., (3.32)

where A and o are real constants.
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This reminds us of the link between the eigenfunctions of £ and the basis functions
of the Fourier expansion. In other words, the Laplacian Eigenmaps algorithm can be seen
as a method of computing a Fourier basis for a given manifold. Interesting work is cur-
rently being done on diffusion wavelets — analogous algorithms for computing multiscale
*wavelet bases’ on manifolds [Coifman et al., 2005].

Connection to spectral clustering. Spectral clustering methods solve the problem of
partitioning a graph so that the flow, that is, the total weight of the edges, between parti-
tions become as small as possible. Different variants of spectral clustering exists but they
have in common that they solve eigenvalue problems similar to (3.31), and in the case of
[Ng et al., 2002] exactly the same equation is solved. Hence, spectral clustering can be
seen as clustering in the reconstructed embedding space given by Laplacian Eigenmaps.

Hessian Eigenmaps. Hessian Eigenmaps [Donoho and Grimes, 2003] is conceptually
related to Laplacian Figenmaps. While Laplacian Eigenmaps looks for functions on the
manifold that have minimal average gradient, Hessian Eigenmaps looks for functions that
have minimal average Hessian over X. Briefly, the algorithm constructs an adjacency
graph, estimates the Hessian matrix at each point, gathers the local Hessians in a single ma-
trix, performs a spectral decomposition of this matrix, and extracts the eigenvectors corre-
sponding to the smallest positive eigenvalues as coordinate functions for the reconstructed
embedding. Hessian Eigenmaps has relatively broad theoretical asymptotical guarantees.
If X is the image of an open connected subset 9 of Euclidean space under a locally isomet-
ric mapping @, then the method will asymptotically reconstruct 9 up to rigid motions.
Hence, its global guarantees hold for a broader class of manifolds compared with Isomap.
Laplacian Eigenmaps lacks such global guarantees altogether since it is a local method.

3.7.3 Applications

The Laplacian Eigenmaps method has been applied to, among other fields, neurophysiol-
ogy[Brun et al., 2003] and face recognition [He et al., 2005].

In gene expression data analysis Laplacian Eigenmaps appears in [Venna and Kaski,
2005], where Laplacian Eigenmaps and other methods are applied to visualize large data
banks consisting of multiple data sets.

3.8 Locally Linear Embedding

Isomap creates reconstructions based on the assumption that data was generated by an
isometric mapping of points from a convex set, and that thus global distances are preserved
by the mapping @. In contrast, the method of Locally Linear Embedding (LLE) Roweis and
Saul [2000] makes the assumption that local structure is preserved while mapping from &
to X. Asa consequence, LLE can handle a larger class of mappings but the reconstructions
can only be trusted to be locally correct. In other words, LLE, like Laplacian Eigenmaps, is
an example of a local method, as defined in Section 3.2, while Isomap is a global method.
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3.8.1 Finding locality preserving projections

The key idea in LLE is that if the neighborhood A§ of X € X lies on a locally linear patch,
X; can be expressed as a linear combination of its neighbors. Now, the weights of this linear
combination are invariant to translations, rotations and scalings of the neighborhood, so
if @ looks like such a transformation locally around Y; then the same weights can be used
to construct Y; from its neighbors ~1(Af).

The LLE algorithm goes as follows:

1. Detect neighborhoods A{.
2. Calculate neigborhood weights, i.e., find Wjj such that
> =3 wixl?
I jend
is minimized.
3. Calculate reconstructed embedding coordinates, i.e., find {z} such that
Yla=y wyzl?
! jend

is minimized.

3.8.2 Applications

Shi and Lihui [2005] used Locally linear embedding for dimensionality reduction of mi-
croarray data and compared classification performance of an SVM trained on the lower-
dimensional projection. Another application work appears in [Jain and Saul, 2004] where
LLE is used for speech recognition.

3.9 Kernel formulations

In Section 3.4, we noted the difficulty of choosing appropriate explicit kernels and in
particular we saw that the Gaussian kernel is not well suited for dimensionality reduction.
Isomap, Laplacian Eigenmaps and LLE does not share this problem since here the mapping
from X to Z is implicitly learned from data. As noted by Ham et al. [2004], these methods
may be interpreted as kernel PCA with a kernel learned from data, thereby sidestepping
the problem of choosing an explicit kernel function.

For Laplacian Eigenmaps, for example, the corresponding kernel matrix becomes the
pseudo-inverse of the graph Laplacian. Regarding Isomap, the kernel matrix is K[g, =
HDy4,H, where Dy, is the matrix of squared approximate geodesic distances. However,
as pointed out in Section 3.6, this matrix is not guaranteed to be positive semidefinite, in
which case the kernel PCA analogy does not hold. In [Choi and Choi, 2004], a solution
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to this problem is suggested, which involves adding constants to K[¢, to make it positive
semidefinite.

Within the kernel framework it is becomes possible to incorporate test samples, not
used in the construction of the reconstructed embedding space, and compute its projection
onto the reconstruction [Bengio et al., 2003]; cf. Section 3.4. Naturally, this is useful since
we normally do not wish to recompute our reconstructed embedding space as soon as a
new sample comes into our hands.

In Maximum Variance Unfolding [Weinberger et al., 2004], full use is made of the
connection between kernel PCA and the graph-based methods. Using semidefinite pro-
gramming, a positive semidefinite kernel matrix is learnt from the data such that it has
maximum trace (i.e., feature space variance) under the constraint that | () — ¥(x;)|? =
|Xi — Xj|? for neighboring points i, j.



Chapter 4

Approximate geodesic distances
reveal biologically relevant
structures in microarray data

Jens Nilsson, Thoas Fioretos, Mattias Héglund and Magnus Fontes

Abstract

Motivation: Genome-wide gene expression measurements, as currently determined
by the microarray technology, can be mathematically represented as points in a high-
dimensional gene expression space. Genes interact with each other in regulatory net-
works, restricting the cellular gene expression profiles to a certain manifold, or surface,
in gene expression space. To obtain knowledge about this manifold, various dimen-
sionality reduction methods and distance metrics are used. For data points distributed
on curved manifolds, a sensible distance measure would be the geodesic distance along
the manifold. In this work, we examine whether an approximate geodesic distance
measure captures biological similarities better than the traditionally used Euclidean
distance.

Results: We computed approximate geodesic distances, determined by the Isomap
algorithm, for one set of lymphoma and one set of lung cancer microarray samples.
Compared to the ordinary Euclidean distance metric, this distance measure produced
more instructive, biologically relevant, visualizations when applying multidimensional
scaling. This suggests the Isomap algorithm as a promising tool for the interpretation
of microarray data. Furthermore, the results demonstrate the benefit and importance
of taking nonlinearities in gene expression data into account.

4.1 Introduction

The study of gene expression data has been greatly facilitated by the development of the
microarray technology. High density oligonucleotide arrays [Lockhart et al., 1996] and

61
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cDNA microarrays [Schena et al., 1995a,b] measure the expression of thousands of genes
simultaneously. Comparing the transcription profiles of different types of tissue speci-
mens permits the identification of genes that best distinguish the samples. When samples
correspond to different pathological states of the same tissue, or subtypes of the same ma-
lignancy, transcription profiling holds promise as a method for classifying cancers from a
molecular rather than from a morphological perspective [Ramaswamy et al., 2001, Pollack
et al., 2002, Khan et al., 2002]. Furthermore, complex biological processes, such as the
onset of the cell cycle [Iyer et al., 1999] or cellular responses elicited by various growth fac-
tors [Fambrough et al., 1999], are now open for a detailed analysis by the study of dense
time series.

A main problem in microarray data analysis is how to extract the central features of the
vast amount of information generated. Mathematically, the expression profile of a sample
can be represented as a point in a gene expression space with coordinates given by its ex-
pression levels. Put in another way, the location of a cell sample in gene expression space
is determined by its transcriptional state. Genes interact with each other in regulatory
networks and as a consequence, the functional relations between genes restrict the distri-
bution of possible gene expression states of the cell to some manifold, or surface, in gene
expression space. Typically, the number of genes measured is very large and consequently,
so is the dimension of the studied gene expression space. A variety of mathematical meth-
ods have been described that reduce the dimensionality of the data sets so as to find the
principal features of the data [Quackenbush, 2001]. Two established and commonly used
unsupervised methods are Multidimensional Scaling (MDS) and Principal Component
Analysis (PCA) (see e.g. [Alter et al., 2000] and [Bittner et al., 2000] for applications to
expression data). These methods work best when data are linearly distributed in data space.
For the more general case of nonlinearly distributed data, there are several dimensionality
reduction methods like e.g. Principal Curves [Hastie and Stuetzle, 1989] or Kernel PCA
[Scholkopf et al., 1998], but so far methods like these have been sparsely applied to gene

expression data.

A natural way to handle nonlinearities is to adopt a different distance metric in data
space. In most of the applied methods, Euclidean metrics or correlation is applied when
estimating similarities/differences between biological samples. In the present investigation
we have applied geodesic distances as an alternative measure for similarity. As opposed
to the straight-line Euclidean distance, geodesic distances are measured along the surface
of the manifold on which data is assumed to lie. Approximations of the geodesic dis-
tances are calculated using the Isomap algorithm, originally described by Tenenbaum et al.
[2000] and developed as a tool for analysis of complex data, such as e.g. digital images.
Isomap tries to approximate the data manifold by a graph, constructed by locally connect-
ing nearest neighbors. Approximate geodesic distances are then calculated as the distance
of the shortest paths between samples in the graph. In the present study we have applied
the approximate geodesic distance measure on two previously analyzed data sets - one set
of lymphomas [Alizadeh et al., 2000] and one set of lung cancer tumors [Garber et al.,
2001], and shown that this approach reveals biologically relevant structures in the data not
easily detected with a standard multidimensional scaling analysis of the same data using
Euclidean metrics.
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4.2 Systems and Methods

Data Sets. Two previously described microarray data sets were analyzed — one set of 96
lymphoma samples [Alizadeh et al., 2000] and one set of 73 lung cancer samples [Garber
etal., 2001]. The selection of genes was, in both cases, unsupervised. The lymphoma data
was filtered so that the fluorescent intensity in each channel was greater than 1.4 times
the local background for a gene to be included in the analysis, resulting in a total of 854
genes. The samples were divided into the nine diagnostic classes defined by Alizadeh et al.
[2000]. The lung cancer data was centered by sample mean and filtered so that the raw
intensity in both channels was greater than or equal to 1.5 times the background, resulting
in 831 genes. Samples were divided into five diagnostic classes as described by Garber et al.
[2001].

Multidimensional Scaling. Multidimensional Scaling (MDS) is a mathematical pro-
cedure that creates a lower-dimensional configuration of points {X/} so as to optimally
approximate given distances between points {Xi} in a higher-dimensional space. MDS
was performed using an implementation of non-metric MDS [Schiffman et al., 1981]
available in the STATISTICA 6.0 software (Statsoft, Tulsa, OH). In short, the algorithm

minimizes the raw stress defined as

p= z Xllvxl ( Ia)_(i)))z

for different functions f belonging to a set M of monotone functions. The effect of the
transformations f is such that the order relation between distances is preserved rather
than the absolute values. The optimization procedure alternates between minimizing ¢
over M and the set of lower-dimensional configurations. The initial configuration in the
optimization is found through Principal Component Analysis, i.e. by setting f to the
identity.

Isomap. Generally, MDS-techniques work with distance data as it is given, possibly
letting them undergo some monotone transformation as described above. The Isomap
algorithm [Tenenbaum et al., 2000] differs in this respect since distances are transformed
so that nonlinear dependencies in data are taken into consideration. Assume, for example,
that data are sampled from a spiral-shaped configuration (Figure 4.1). Then the preferable
distance measure between points is perhaps not the Euclidean distance, but the geodesic
distance along the spiral. Consequently, in Figure 4.1, the distance between aand b should
be considered shorter than that between a and C.

To handle this, Isomap constructs a graph G locally by connecting each data point to
its nearest neighbors. The set of nearest neighbors of a point Xg is defined either as all
points % within a distance d(Xg,%;) < €, for some chosen € > 0, or as the K closest points,
for some chosen integer K > 0. After the graph construction, approximations dg (X, Xj) to
the geodesic distances between points Xj,Kj are calculated by finding the shortest path in
the graph between X and Xj. MDS is then applied to these approximate geodesic distances
instead of the original distances.

The ability of the Isomap algorithm to produce good approximations of the geodesic
distances on the underlying manifold depends on the density of data points and the choice
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Figure 4.1: Data distributed along a spiral. The geodesic distance along the spiral is
presumably more reasonable than the Euclidean distance. Thus the distance between a
and b should be considered shorter than that between @ and c.

of K (or €) [Bernstein et al., 2000]. If the parameter is too small, a single connected graph
is not achieved and distances can not be calculated between all sample pairs. If, on the
other hand, the parameter is too large, shortcuts, not following the surface of the manifold,
may appear in the graph. For the K-rule, the latter situation is likely to appear for large
parameter values and low data density. It is reasonable to assume that the dimension of
the underlying nonlinear data manifold is fairly large, thus the densities of the presently
analyzed data sets are expected to be low. With this in mind and after trying different
parameter values, we chose to construct the graph using the K-rule with K = 2.

Projection Quality. The accuracy of an MDS approximation is quantified by the raw
stress of the final point configuration. Lower stress values correspond to a better approx-
imation of the original distances. To evaluate how well an individual sample X; is repre-
sented in a projection one can calculate the raw stress over the distances between Xj and all
other samples, i.e. ¢ = ¥ ;(d(X,%]) — f(d(,%;)))?. Samples with higher stress values
are then less well approximated by the projection than samples with lower stress values.
Since the calculation of Isomap graph distances depends on the distribution of data it
is desirable to investigate how stable an acquired Isomap visualization is to changes in the
data. This can be done by excluding one sample at a time, constructing Isomap graphs
for each of the remaining data subsets and noting for which samples the Isomap graph
structure changes drastically. Let Gg be the graph that is constructed when the whole data
set is used and let Gj be the resulting graph when the ith sample is left out. For each
left-out sample we calculate &, the Euclidean norm of changes in graph distance between
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points present in both Gg and G;j divided by the Euclidean norm of graph distances in Gg
between points present in both Gg and G;j as

o \/Zk,leJxJ(dGo(XkaXI) —dg; (R, %1))?
\/Xk,leJxJ da, (R, X )?

where J = {K; X € Gi}. Then &; is a measure of how deformed the Isomap graph is.

4.3 Results and Discussion

Analysis of the lymphoma data set. To analyze the lymphoma samples, at first a dis-
tance matrix based on Euclidean metrics was produced from the data obtained by Alizadeh
et al. [2000]. A lower-dimensional representation of the data was obtained by perform-
ing non-metric MDS. Without previous knowledge of subclasses within the sample set no
distinct clusters were seen. However, when the classification used by Alizadeh et al. [2000]
was applied, it was seen that cases belonging to the same classes were mainly located in
the same regions of the projection (Figure 4.2a). In marked contrast, a similar MDS
analysis of the calculated Isomap distances already produced distinct structures when pro-
jected into two dimensions. When samples were marked according to their classification
a clear connection between classification and structure appeared (Figure 4.2b). The two-
dimensional Isomap visualization revealed three well-separated groups, all consisting of
samples previously known to be of divergent origin. These groups were located at the pe-
riphery of the projection; one constituting the chronic lymphocytic leukemia (CLL) sam-
ples (yellow), one the activated blood-B samples (light blue), and a third group including
resting/activated T cells (red) and transformed cell lines (pink). The other samples were
positioned in the center of this structure. One interesting observation, already apparent
in the two-dimensional representation, was the misclassification of one of the transformed
cell lines (pink in Figure 4.2b). This case, SUDHL-5, was grouped together with the other
transformed cell lines by hierarchical cluster analysis [Alizadeh et al., 2000]. In contrast,
the Isomap algorithm placed this case at a distance from the transformed cell line class and
between the activated blood-B and the diffuse large B-cell lymphoma (DLBCL) samples.
Hence, this cell line seems to be more similar to the DLBCL and the activated blood-
B class, than the other transformed cell lines. This is perhaps not surprising, given the
fact that SUDHL-5 is a cell line established from a DLBCL tumor [Epstein and Kaplan,
1979], whereas at least three of the remaining cell lines are of T-cell origin [Tweeddale
et al., 1987, Mehra et al., 2002]. The third dimension revealed even further informative
structures that could be linked to previous biological knowledge (Figure 4.2¢ and d). For
example, the central group of the samples in Figure 4.2b showed an extended distribu-
tion in the third dimension, revealing two arms extending upwards; one consisting of the
follicular lymphoma group (FL, green) and the other of the DLBCL group (blue) inter-
connected by two cases of germinal center B-cells (GC B-cells; orange). When examining
the FL cases (green in Figure 4.2¢, d and 4.3b) these could be separated into two groups;
one located more closely to the GC B-cells and one more closely to the resting blood-B
samples. The proximity of the latter group with the resting blood B-cells (violet) and CLL
samples (yellow), could reflect the low proliferation rates of these samples, as also suggested
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Figure 4.2: Visualization of lymphoma microarray data. a) A two-dimensional MDS
representation of the Euclidean distances. b) A two-dimensional MDS representation of
the approximate geodesic distances. ¢) A three-dimensional MDS representation of the
approximate geodesic distances. d) As in Figure 4.2¢ but from a different angle. Color
codes in Figure 4.2a-d are as given in the figure.
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by Alizadeh et al. [2000]. The largest and most heterogeneous group of tumors was the
DLBCL, which formed an extended central cluster (2c and d). When labelling this group
into those belonging to the germinal center B cell-like’ (GCBL) or ’activated B cell-like’
(ABL) DLBCL types as described by Alizadeh et al. [2000], the GCBL cases occupied
the upper-half of the structure (red in Figure 4.3a), whereas the ABL group preferentially
occupied the lower half (green in Figure 4.3a). As expected, the GCBL group extended
towards the two GC B-cell samples (orange in Figures 4.2¢, d and 4.3b), whereas the ABL
group was positioned in-between samples of normal lymph node/tonsil (gray in Figure 4.2
b-d) and the activated blood B samples (light blue in Figure 4.2 b-d). The proximity of the
GCBL and ABL tumors to these normal cell samples was also seen by Alizadeh ez a/. using
hierarchical cluster analysis [Alizadeh et al., 2000]. Interestingly, a close inspection of the
DLBCL cases (blue in Figure 4.3b) extending upwards towards the GC B-cell samples
(orange in Figure 4.3b), revealed that these in fact were t(14;18)-positive as recently re-
ported by Huang et al. [2002]. Thus, Isomap placed tumors with similar primary genetic
changes, i.e. DLBCL with a t(14;18) and FLs, which are known to be characterized by the
same translocation, in close proximity and in a continuum, extending out from the normal
GC B-cells. Hence, the data suggest that the latter two tumor types both initially develop
from GC B-cells as previously suggested [Alizadeh et al., 2000, Kiippers et al., 1999]. In
addition, as the tumor samples are organized in a linear order, originating from the GC B-
cells, the observed order could possibly reflect gene expression alterations related to tumor
progression. Finally, when identifying the individual samples within the activated blood-B
samples, it was found that the upper arm (red in Figure 4.3¢) corresponded to cells stim-
ulated for more than 24 hours, whereas the lower arm (green in Figure 4.3¢) included the
samples stimulated for 6 hours. Hence, this observation further underscores the ability of
the Isomap algorithm to differentiate between biologically similar samples.

Analysis of the lung cancer data set The same analysis was applied to the lung can-
cer data set [Garber et al., 2001]. First, a two-dimensional MDS analysis was performed
based on Euclidean distances, displaying an unstructured cluster of tumor cases (Figure
4.4a). When the classification used by Garber ez al. was applied, it became evident that
one half of the structure was dominated by adenocarcinoma cases (AC; red) and the other
half by squamous cell carcinoma cases (SCC; black). In contrast, the approximate geodesic
distances revealed further substructures when performing the corresponding MDS anal-
ysis (Figure 4.4b). More specifically, the SCCs were separated further from the ACs. In
addition, all but one of the small cell lung cancer cases (SCLC; green) were located within
or adjacent to the SCC cluster. The remaining case (207-97-SCLC) was placed together
with the ACs, suggesting a larger similarity of this tumor to that group. Further, five out
of the six normal cases (blue) formed a well separated group at the periphery. These cases
were derived from adult tissue, whereas the outlier, located among the AC tumors, was a
sample obtained from fetal lung.

A three-dimensional MDS-projection (Figure 4.4c and d) based on approximate geodesic
distances displayed an even better separation between the three major groups - ACs, SCCs
and normal cases. Furthermore, the SCCs and the SCLCs, which clustered together in
the two-dimensional visualization were now separated. Like in the two-dimensional pro-
jection, the ACs formed one heterogeneous group. Thus we could not confirm the results
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Figure 4.3: Visualization of lymphoma microarray data. a) DLBCL-GCBL, red; DLBCL-
ABL, green. b) Follicular lymphomas, green; germinal center B-cells, orange; DLBCLs
with t(14;18), blue. ¢) Blood-B cells activated for 6 hours, green; blood-B cells activated
for 24 hours, red. For details, see text.
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of Garber ez al. who, using hierarchical clustering, divided the ACs into three major sub-
groups and a fourth group of six samples, not included in any of these main clusters. It
remains unclear whether this discrepancy stems from a shortcoming in the Isomap algo-
rithm’s capability to identify these suggested subgroups, or from the fact that hierarchical
clustering always detects clusters in data regardless of whether any real underlying groups
are present. Similarly, the large cell lung cancer cases (LCLGC; violet) could not be separated
from the ACs. These tumors are poorly differentiated and their expression similarities with
ACs may suggest a common tumor origin.

Projection Quality. Additional Isomap projections of the lymphoma data with dimen-
sions from four up to nine were made. For each projection dimensionality, the overall raw
stress was calculated and plotted in a scree plot (Figure 4.5a). The scree plot indicated
that the data would be well described by a three- or four-dimensional projection. Raw
stress values were also calculated for individual samples, in order to evaluate the credibil-
ity of sample locations. Two samples, OCI Ly10 and DLCL-0011, had a substantially
higher stress than the rest and these were marked in the visualization (Figure 4.5b). How-
ever, none of these samples were crucial for the detailed biological interpretations made.
In order to evaluate the robustness of the structure, 96 Isomap graphs were constructed,
excluding one sample at a time. For each sample subset, the distance deviations in the
Isomap graph were calculated (Figure 4.5¢). For the studied data set and the used Isomap
parameter settings, the samples with high graph distance deviations are apparently impor-
tant in the calculation of graph distances and noise disturbances on these samples have a
relatively large impact on the graph structure. Since there is no knowledge of the underly-
ing data manifold, we can not tell to what degree their positions in gene expression space
are ’biologically correct’ or if they have been dislocated by noise.

Raw stress analysis was performed also for the lung cancer data. A scree plot showed
that a three- or four-dimensional projection was appropriate. To evaluate the goodness
of fit for individual samples, individual raw stress values were calculated. The distribu-
tion of these values was more homogeneous than the corresponding distribution for the
lymphoma data in that it did not contain any obvious outlier values.

4.4 Conclusions

In this work, two alternative ways of measuring dissimilarities or distances between gene
expression profiles were compared. Visualizations were created with both Euclidean and
approximate geodesic distances as inputs in MDS. The results showed that the approxi-
mate geodesic distance measure gave rise to more informative visualizations on the inves-
tigated lymphoma and lung cancer data. Even without supervised filtering of the genes
with respect to class differentiation, e.g. by creating a weighted gene list [Luo et al., 2001],
diagnostic classes appeared as discernible units. That the approximate geodesic distance
measure seems more informative could be taken as an indication that tumor samples are
distributed on a nonlinear manifold in gene expression space, which in turn would imply
that functional relations between genes are nonlinear. Furthermore, the fact that the ap-
proximate geodesic distances correspond to the sum of incremental steps between slightly
different tumor samples may open the possibility to capture aspects of tumor progression
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Figure 4.4: Visualization of lung cancer microarray data. a) A two-dimensional MDS
representation of the Euclidean distances. b) A two-dimensional MDS representation of
the approximate geodesic distances. ¢) A three-dimensional MDS representation of the
approximate geodesic distances. d) As in Figure 4.4c but from a different angle.
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Figure 4.5: Projection quality of lymphoma data. a). Raw stress for MDS-projection
of approximate geodesic distances relative to projection dimension. b) Locations of the
two samples (OCI Ly10 and DLCL-0011) showing high individual stress values in the
three-dimensional MDS representation of the approximate geodesic distances. The repre-
sentation is shown from the same angle as in Figure 4.2c. ¢) Structure stability analysis.
Deviation in graph distance for each left-out sample.

in the form of microarray data. More generally, the results demonstrate the benefit and
importance of taking nonlinearities in gene expression data into account. To conclude, we
anticipate that the conceptual framework of geodesic distances will prove useful in both
practice and theory for the analysis of gene expression data.
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Chapter 5

Circuit models for manifold
learning

Jens Nilsson and Fredrik Andersson

Abstract

Manifold learning and nonlinear dimensionality reduction addresses the problem of
detecting, possibly nonlinear, structure in high-dimensional data and constructing
lower-dimensional configurations representative of this structure. A popular exam-
ple is the Isomap algorithm which uses local information to approximate geodesic
distances and adopts multidimensional scaling to yield lower-dimensional represen-
tations. Isomap is accurate on a global scale in contrast to most competing methods
which approximate locally. However, a drawback of the Isomap algorithm is that it
is topologically unstable, that is, incorrectly chosen algorithm parameters or pertur-
bations of data may drastically change the resulting configurations. We propose new
methods for more robust approximation of the geodesic distances using a viewpoint
of electric circuits. In this way, we achieve both the stability of local methods and the
global approximation property of global methods, which is demonstrated by a study
of the performance of the proposed and competing methods on several data sets.

5.1 Introduction

The field of manifold learning addresses problems in the analysis of data sampled from
manifolds embedded in higher dimensional spaces. Such situations arise frequently across
diverse disciplines of science such as image analysis, signal processing, psychology and biol-
ogy. The recent years have brought a growing interest in the development of methods that
handle cases where data are sampled from curved manifolds and well-established, linear
methods like Principal Component Analysis (PCA) [Jolliffe, 1986] and Multidimensional
Scaling (MDS) [Cox and Cox, 1994] do not perform satisfactory. Locally Linear Embed-
ding [Roweis and Saul, 2000], Laplacian Eigenmaps [Belkin and Niyogi, 2003] and Hessian
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Eigenmaps [Donoho and Grimes, 2003] are results of recent efforts to address such situa-
tions. Another example in this regard, is the Isomap algorithm [Tenenbaum et al., 2000],
which, given Euclidean distances, computes approximations of the geodesic distances on
the manifold. Isomap uses a graph-based approach to compute approximate geodesic dis-
tances on the data manifold, which are used as input in an MDS algorithm that produces
lower dimensional representations of data. One problem that may arise in this process
is that of topological instability — small perturbations on data points or minor changes
in parameter values may result in large differences in the constructed approximate dis-
tances; cf. [Balasubramanian et al., 2002]. In this paper we present algorithms for distance
approximation that are more robust against topological instabilities. We study the perfor-
mance of the methods on several data sets and discuss the influence of different choices of
parameter values on the results. We find that our proposed methods are substantially more
robust than the Isomap algorithm while retaining good performance on the global scale.

5.2 Manifold learning

Let X C R" be a smooth manifold with intrinsic dimension p < N, and suppose that
there exists a coordinate space 9" C RP and a smooth, bijective mapping @ : 9" — X.
Assume that we are given data points X = {X1,%2,---,Xm} C X, which we refer to as
input coordinates, to which there correspond embedding coordinates §’m =4{Y1,.--,Ym}h
satisfying

Xj=@(yj), j=1,....,m.

The task of manifold learning is to, given )A(}n, estimate properties of X. Related to this is
the dimensionality reduction problem which concerns finding an estimation of the lower-
dimensional embedding configuration §/m. The main objective is thus to map )Aﬂn onto
reconstructed embedding coordinates Zm ={z,...,Zm}, so that Zm ‘represents’ §”m well.

If @ is a linear isometric embedding, the standard methods of PCA and classical MDS
are useful tools for manifold learning. For more general mappings, other techniques are
required. In Tenenbaum et al. [2000] the Jsomap algorithm is introduced, which, under
the condition that 9 is convex, can be used to treat isometries . Subsequently, the C-
Isomap [de Silva and Tenenbaum, 2003] algorithm was suggested as a generalization of
Isomap for the broader class of conformal mappings.

Given a metric dgn on R", Isomap calculates approximations of the geodesic distances
dx on X. An adjacency graph G is constructed by connecting the data points to neigh-
boring points. Two points X; and X; are said to be neighbors if either, given an € > 0,
drn(Xj, %) < &, or if, given an integer K, either one of Xj and X, has the other one as one
of its K closest points. Once the graph is constructed, approximations diso(X;,X«) to the
geodesic distances dx (Xj,Xk) on X are calculated by finding the shortest path in the graph
between Xj and X¢. If data points are densely enough sampled from the manifold, diso
will approximate dy well. Hence, since @ is an isometry, disp will also approximate the
Euclidean distances do(Yj,Yk) in 9. This allows application of standard linear methods
to the distances diso(Xj, %), and Isomap adopts classical MDS to find lower dimensional
representations of data, such that diso(Xj,Xk) are optimally preserved.

The performance of the Isomap algorithm depends on the density of data points, the
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Figure 5.1: To the left is shown 1500 uniformly distributed points (5(1500) on a swiss roll
manifold; the adjacency graph (K=10) contains two shortcuts. To the right, the corre-
sponding 1500 points in 971500, uniformly distributed in the plane (lower) and the cor-
responding Isomap projection (upper), Zys00. The adjacency graph (K=5) is drawn in
the configurations. Random fluctuations in data density become amplified in the Isomap
reconstruction.

curvature of the manifold X, the amount of noise, and the value of the neighborhood
parameter (K or ¢€); cf. [Bernstein et al., 2000]. For improper parameter choices or in
the presence of noise, shortcuts, not following the surface of the manifold, may appear
in the graph, disturbing the ability of the algorithm to approximate geodesic distances;
cf. Figure 5.1. This has been referred to as the problem of topological instability; cf.
[Balasubramanian et al., 2002]. Another property of the Isomap algorithm is that it tends
to cluster points in the resulting configurations. When the data point density on the
manifold is finite, holes appear in the adjacency graph due to random fluctuations in local
density, as illustrated in Figure 5.1 . For pairs of points on opposite sides of such holes
the error term |disp — dx| will become larger and consequently the holes grow in the
resulting Isomap projection. Hence, the projection might exhibit structures which are in
fact amplifications of random fluctuations in data density. Note that the clustering effect
is of local character, in contrast to the error caused by topological instability.

Isomap and C-Isomap are examples of global manifold learning methods, attempt-
ing to reconstruct the configuration in " correctly on all scales. Local methods, on the
other hand, attempt to create lower-dimensional representations that preserve similarities
between nearby points but not between faraway points, and are thus more topologically
stable. Examples of local methods include Locally Linear Embedding [Roweis and Saul,
2000] and Laplacian Eigenmaps [Belkin and Niyogi, 2003]. The Laplacian Eigenmaps
method, being more topologically stable than Isomap, will serve as a starting point in our
development of a more robust distance estimation.
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5.3 Circuit models for distance measures

In this section, we present models based on electrical circuits, for the purpose of robust ap-
proximation of geodesic distance. Once good such approximations are found, the standard
methods of MDS can be used to construct global methods for manifold learning. A circuit
interpretation of Laplacian Eigenmaps will serve as starting point, and this model will be
modified to enable modelling of charges propagating through the circuit in a moving front
fashion.

5.3.1 Charge diffusion in circuits and a circuit interpretation of Lapla-
cian Eigenmaps

Similarly to Isomap, Laplacian Eigenmaps initially constructs an adjacency graph, con-
necting neighboring points. From the adjacency graph, lower-dimensional representations
are found by making an eigenvalue decomposition of the corresponding graph Laplacian.
The graph Laplacian is a discrete counterpart of the Laplace—Beltrami operator on Rie-
mannian manifolds, and closely related to diffusion and heat flow.

Indeed, it has been noted [Ham et al., 2004] that the Laplacian Eigenmaps method
is equivalent to multidimensional scaling of commute times under a random walk process
on the adjacency graph. Moreover, the commute times can be given an interpretation
where the adjacency graph is viewed as an electric network, with each edge represented
by a resistor. In this context, the commute time is closely related to the ¢ffective resistance
between nodes; cf. [Doyle and Snell, 2000]. Guided by this observation, we will use the
electric circuits in our development of methods for more robust estimation of geodesic
distance.

In the approach given in Doyle and Snell [2000] the circuit interpretation of commute
times (and thus Laplacian Eigenmaps) consists of a circuit with resistors only, i.e., a coun-
terpart to a standard weighted graph. Here, we will instead use a circuit approach based
on diffusion. As a circuit model for graph diffusion, we use circuits where each node has
resistive connections to neighboring nodes, and in addition are connected to a common
point (ground) by capacitances. Associate each data point Xj with a node Nj in an electri-
cal circuit. To each node, attach a capacitor with capacitance Cj to ground. Based on the
metric gn, neighboring node pairs {nj,Np} are connected to each others by resistors I jp,
as illustrated in Figure 5.2.

Denote the voltage over capacitor Cj by Vj(t), let ijk(t) denote the current from node
Nj to Nk, and let ig; (t) denote the current from Nj to Cj. According to Kirchhoff’s current
law,

m

ic:j t)+ ; ijk(t) =0. (5.2)
The current between two nodes Nj and N is given by

ijKk(t) = Wa (5.3)
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T T T

Figure 5.2: The basic RC-circuit

and for the current iCj the relation

dv; .
de_t] =ig (1), (5.4)

holds true. By applying (5.3) and (5.4) we can rewrite (5.2) into

dv; m m 1
Ci— = — (5.5
dt k:l%;é i Tik k_Z Fik

Let V(t) be a column vector containing the elements Vj(t), j = 1,...,m. Then (5.5) can
be expressed, in matrix form, as

dv(t) _
CT = —LV(t), (5.6)
where L
. _ Ek;éjrj_k, if j =k
LGk = { —rj_kl, otherwise. ’ (5.7)

and C is a diagonal matrix containing the capacities Cj, j = 1,...m. The solution to (5.6)
is then given by
V(t) =€ty (5.8

where V is a column vector containing the initial voltages. The fact that C~IL is real and
symmetric (hence diagonalizable) allows the representation

m
_c1 _
et = > sie Ats], (5.9)
£
where A1,...,Am are eigenvalues with corresponding eigenvectors Sy, . . ., Sm. Furthermore,

it can be verified that C™1L is positive semi-definite, so Aj>0,j=1,....m

The p-dimensional reconstruction coordinates obtained by the Laplacian Eigenmaps
are in fact given by the p eigenvectors § corresponding to the smallest, nonzero, eigenval-
ues Aj.
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Figure 5.3: The RC circuit with constant voltage source

Let us also briefly remark on the interpretation of Laplacian Eigenmaps in terms of
commute times and effective resistance. By effective resistance between two points in a
purely resistive circuit, we mean the ratio between an applied voltage between two points,
and the induced current. Let us consider (5.6) again. Using the relation (5.4), it can be
expressed as

1(t) = —LV (1), (5.10)

where column vector | (t) contains the currents ij(t). Hence, the effective resistance is
obtained as the pseudo-inverse of —L. The pseudo-inverse also appears naturally in the
commute time interpretation. From this viewpoint, the elements of the exponential matrix
in the right hand side of (5.9) is interpreted as the probability of being in state j starting
from state K after time t as pointed out in Ham et al. [2004, p. 6]. Furthermore, it is also
noted that the commute time in principle can be obtained by integrating (5.9) (squared,
to be specific) over the positive real line. This results in an expression, similar to the right
hand side of (5.9) but with €74i! replaced with —1/A;, which can be verified to be the

pseudo-inverse of —C71L.

5.3.2 The RC and RCZ models

As a charge distribution is applied to the RC circuit depicted in Figure 5.2, currents will
move the charges until an equilibrium is reached, at which the voltages over the capaci-
tors are all equal. The dynamic process of charging the capacitors will form the basis in
our models for manifold learning, where we use charge times to construct new distance
measures.

Instead of the basic model with charges diffusing from an initial state, we adopt a
model where one of the nodes, Np, is attached to a constant voltage source, as illustrated
in Figure 5.3. The voltages at the other nodes will then monotonically increase and reach
the battery voltage at infinity. By setting the capacity Cp to infinity, we may use equation
(5.6) to model the behavior of the circuit. The solution of the system is, analogously to
the solution (5.8), then given by

V = ety (5.11)
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where
{ ¢l ifj=k#p

0, otherwise;

and

. Uo, j=p;

otherwise.

There are several ways to define the distance between points based on the voltages V. One
natural choice is to use the commute times discussed above. However, we will instead
use the time it takes for a node Nj to reach a certain voltage level 0 < Vipres < Up, with a
typical value Vinres = Uo/2. To assure symmetry we use the mean value of the time it takes
to charge node Nj given a constant voltage source at node Np and vice versa. It should be
stressed that these charge times need not fulfil the triangle inequality, why our dissimilarity
measure is not necessarily a metric. This, however, does not disqualify the usefulness of the
dissimilarity measure. For instance, the well known Mahalanobis measure is not metric;
cf. [Chatfield and Collins, 1980].

In what follows, we will refer to the model above as the RC model, and denote the
corresponding dissimilarity measure by drc.

To illustrate how the respective distance measures relate to the geodesic we will consider
a set of equidistant samples {X;j } from a spiral X as in Figure 5.4.a. An additional point is
positioned between the layers, introducing a shortcut in the adjacency graph for K > 2. As
a first reference we use Isomap, which, disturbed by the graph shortcut, fails to compute
distances that relate monotonically to dx (Figure 5.4.b). A second reference is Laplacian
Eigenmaps (Figure 5.4.c) whose embedding distances are clearly more robust with respect
to the shortcut but, however, not linearly related to dx. Such nonlinearity is also apparent
in drc which also shows traces of the shortcut influence (Figure 5.4.d). Points close to
the source node are charged at a higher rate than points further away and during the time
it takes for faraway points to reach threshold potential some (minor in comparison to the
closest neighbors, but not in comparison to the ones faraway) charge will have trickled
through the shortcut, thus explaining the observed shortcut influence.

This problem stems from the diffusive nature of the charge propagation, and to avoid
this issue, we introduce a model in which the nodes are charged through a moving front.
In this model we connect nodes directly to the voltage source once the corresponding
voltage reaches the threshold level Vinres. At this instance, we say that the node reaches
on-state, and we use the time is takes for the nodes to reach on-state as distance measure.

In this way, nodes neighboring the front are charged directly by their fully charged
neighbors, in contrast to being charged indirectly (through points in between) from the
original source point. Electronically, we implement the moving front model by replacing
the basic RC unit with a slightly more sophisticated one, as illustrated by Figure 5.5. Each
node is now equipped with a zener diode and a current controlled switch. As the voltage
over the capacitor increases the voltage Vinres, the zener diode moves into a conductive
phase, turning the switch on, and the node enters the on-state. Hence, we refer to this
model as the RCZ model, and denote the corresponding dissimilarity drcz.

The purpose of the RCZ model is to make distances more uniformly distributed, since
points far from the original source node sooner will reach the on-state. Indeed, applying
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diso dr drc drcz

Cp"o"§ dx dx dx dx

Figure 5.4: The first panel (a) shows perturbed spiral data. The remaining plots show the
estimated distances from the upper endpoint to the other points plotted against the true
geodesic distances. The distances obtained from Isomap (b) are severely distorted by the
presence of the shortcut, while the distances from Laplacian Eigenmaps (c), RC (d) and
RCZ (e) deviate less from the geodesic.

Uo —¢

Figure 5.5: RC unit with additional voltage source connected through a zener diode
switch.
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Figure 5.6: Voltage distribution at a certain instant for the RC (left) and the RCZ (right)
circuit models

the RCZ model on the spiral data results in distances scaling linearly with d x showing just
a minor influence from the shortcut (Figure 5.4.¢).

One physical analogy of the RCZ method is that of combustion propagation. In con-
trast to ordinary diffusion, the RCZ method relies on a propagating front. At the front,
nearby points are charged/heated until they reach a critical value (potential or tempera-
ture). In the case of combustion, the material ignites and starts in turn to heat up its
environment. In the RCZ model, the ignition role is played by the zener-diod, which
causes a sudden increase in the node potential once the threshold voltage is reached. The
difference between the RC and RCZ diffusions are illustrated in Figure 5.6. The RCZ
diffusion (right panel) clearly illustrates resemblance to a combustion process, while the
RC counterpart resemble standard diffusion.

5.3.3 Numerical implementation of RCZ

The natural way to implement the RC and RCZ models is by discretizing the counterparts
to (5.6) and stepping forward in time. Note that the RCZ model is identical to the
RC model during each time frame of on-state transition. Hence, we simulate RCZ by
regarding it as an RC model until a new node reaches critical voltage. The process is then
continued as an RC model with new initial values.

Typically, the eigenvalues to the system matrix (—CEJ'L) are of widely varying size.
The practical consequence is that nodes close to the initially charged one(s) are charged
rapidly, while nodes far away are charged very slowly. Again, this is illustrated in Figure
5.6 (left panel). Hence, much information is obtained at the beginning, which requires a
rather small time step h. After some time the dynamics caused by the nodes corresponding
to the larger eigenvalues dies out, whereafter the step size seems unmotivatedely small.
Systems of ODE’s with eigenvalues that that differ greatly in size are commonly referred to
as stiff, and usually require special (implicit) treatment. For instance if an explicit scheme
such as the explicit Euler,

V(t+h) =V(t)—h-CoLV(t), (5.12)

is used, the step size h has to be chosen with respect to the fastest changing node for the
scheme to be stable. Hence, even if the fastest changing nodes are not active for a certain
solution, the step size has to be chosen with respect to those.
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However, the RCZ model does not share the difficulty of stiffness discussed above.
Nodes are turned on once the front reaches them, and the charge development shows a
uniform appearance in time in contrast with the RC model. Hence, the simple Euler
scheme will suffice for modelling the dynamics of the RCZ model. Below, in Algorithm
1, we present an algorithm for the simulation of the RCZ model. By setting the elements
of Cp corresponding to the nodes which has reached on-state to zero, we remove their role
as variables, and they start to act as sources in the same way as the original source.

Algorithm 1 Computation of RCZ distances
for all nodes p
t=0
while not all nodes has reached on-state
t =t +dt
dv=h Cp AV
Let V:=V+dV for all nodes that are not in on-state
Check for nodes that has reached on-state,
regi ster elapsed tine (as distance measure),
and charge themfully.
end
end

Since only K nearest neighbors are connected in the graph, CalL is sparse. The com-
putational cost for each source node is then O(Kmiygt), where tior is the total number of
time steps. In the RCZ model, nodes are charged at approximately constant speed. It is
reasonable to introduce tay as the average time it takes for the front to propagate one node.
Then tiot & M. In total this gives a time complexity of O(KtaM®). Since the computa-
tion of eigenvectors in the MDS step is O(M?®), the complexity above seems asymptotically
acceptable.

5.4 Results and discussion

In this section we compare the performance of RCZ, Isomap, Laplacian Eigenmaps and
PCA on three different data sets — samples from the Swiss roll manifold, samples from a
generated image manifold and finally a set of leukemia gene expression data.

5.4.1 Swiss roll manifold

When both a coordinate space 9 and an input space X are known (or, specifically, the m-
point samples Y and Xy are given), we may evaluate the performance of dlmensmnahty

reduction methods by comparing the reconstructed m-point configurations Zm with 9.
A reasonable requirement on any algorithm is that it performs well on affine subspaces. To

verify this we apply the method using the embedding coordinates, 9, as input. Moreover,
if @9 — X is isometric, the results should be identical when applying the algorithm to
the Xy as when applying it to 9. Thus, the performance evaluation can be divided with
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respect to two properties — the quality of the reconstruction of Yty and the invariance of
the reconstruction under 9.

When comparing point configurations, only their actual shapes are interesting. Hence,
we remove issues of scale, rotation, reflection and translation by fitting the configura-
tions optimally (in a least square sense) to each other using such transformations. Sub-
sequently, the root mean square (RMS) error is taken as a measure of similarity, Erms =
VI Ay

Consider a set of 2000 data points, randomly sampled from a Swiss roll manifold, that
is, a rectangle 9 C R? isometrically transformed into a spiral roll X C R3 (cf. Figure 5.1).
We study the performance of Isomap, Laplacian Eigenmaps, and RCZ applied to this data
set. Concerning the parameters, we choose K = 14 neighbors, a value where all four meth-
ods work well on 9y, and we choose o-values that work well for the Laplacian Eigenmaps
and RCZ methods separately: o1 em = ©, orcz = 3d, where d is the average edge length
in the adjacency graph. Figure 5.7 shows embedding coordinates ( Y000) by green/lighter
points with the fitted reconstructions (22000) represented by blue/darker points, and with
dotted (red) lines connecting the corresponding points in the configurations. The first row
displays reconstructions based on 5@000 and the second row shows reconstructions based
on X2000. )

Three main observations can be made: First, Isomap and RCZ reconstructs 9m glob-
ally in a satisfactory way. Laplacian Eigenmaps on the other hand, produces a skewed
reconstruction. Second, considering the local error structures in the §’m reconstructions,
a slight clustering effect can be noticed for Isomap, while this effect is stronger using the
other two methods. Third, examining the )Aﬂn reconstructions, Laplacian Eigenmaps and
RCZ reconstructions are reasonably invariant under @ as required, while the Isomap re-
construction is not. Note that all three methods use the same adjacency graph, so the
shortcut is indeed present in all methods.

The lower row of Figure 5.7 shows scatter plots of estimated against true geodesic
distances for the respective methods. These results confirm that RCZ is the method that
most faithfully estimates geodesic distances in the presence of graph shortcuts.

Obviously, the results depend on the parameter values. For example, with K=10 near-
est neighbors, no shortcuts appear in the adjacency graph on the Swiss roll, and Isomap
correctly reconstructs the rectangular configuration. In order to thoroughly investigate
the method performances over a range of parameter values, we apply the algorithms using
various o € [d,4d] and K = 7,...,25. Figure 5.8.a displays the approximation error for
RCZ applied to the Swiss roll (transparent surface), and the coordinate space rectangle
(wire-frame mesh). Further, the difference between these two error matrices is shown by
the lower surface plot, giving an idea of the fraction of error stemming from the geomet-
rical change. The coordinate space error has a local minima around K = 14, o= 3d. The
difference between the two errors behaves more or less monotonic with increased K and
o. Figure 5.8.b shows the error of the Isomap reconstruction over different K for the Xm
(rectangle) and the §’m (Swiss roll), respectively. A sharp increase in error for the Swiss roll
appears at K=12, where shortcuts first appear in the graph.

The error for the rectangle configuration is highest at low K and low o, where the local
clustering effect is strongest — a low K gives a higher probability of holes in the adjacency
graph, while a low o gives a stronger punishment of long distances. At intermediate
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S % 4 W S A
X X X

Figure 5.7: Swiss roll reconstructions using Isomap, Laplacian Eigenmaps (LEM) and
RCZ; The first and second row shows reconstructions of the embedding and input coor-
dinates respectively. The third row shows scatter plots of estimated against true geodesic
distances for the methods applied to the input coordinates.
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(a) (b)

. 167| [ swiss roll nr
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RMSE

Figure 5.8: (a)RCZ: RMS errors for the planar and Swiss roll configurations, illustrated by
the colored surface and red wire-frame, respectively, with their difference, displayed by the
lower surface; (b) Isomap: RMS errors for the planar and Swiss roll configurations

parameter values, the error is low, while it increases at higher K and o. This slightly
surprising behavior might be partly explained as a boundary effect — at the boundaries
the density of graph edges will be higher, causing a tendency of constricting points along
the rectangle edge. This effect grows with K and o. The fact that the residual error between
the rectangle and the Swiss roll grows with K and o is explained by the increasing risk of
shortcuts at larger K and the decreasing capability of down-weighting them at larger o.

The results from the Swiss roll data set illustrate that the Isomap algorithm is the most
accurate, both on local and global scales — when it works, that is. Due to topological insta-
bility, it is less robust than the other methods. Being a local method, Laplacian Eigenmaps
is more stable than Isomap but fails to control the global correctness. Furthermore, it
suffers from a larger local clustering error — a problem shared with the RCZ method.
Because of its similarity with Laplacian Eigenmaps, we may view the RCZ method as be-
ing akin to Laplacian Eigenmaps with global control added. Compared to Isomap we may
regard the RCZ method as more robust relatives who pay for the increased robustness with
a larger local clustering error.

5.4.2 Image data

In this section, we study the application of PCA, Isomap, Laplacian Eigenmaps and RCZ
to a set of 110 x 80 pixel images picturing a three-dimensional scene with a snowman
rotated in different random angles around its axis, illuminated by a light source of random
intensity.! Having only these degrees of freedom, the underlying dimensionality of the
data set is two.

Figures 5.9 and 5.10 display the resulting projections. PCA captures the light intensity
in the first component, but rotation angle is not well represented. Conversely, the Lapla-
cian Eigenmaps projection manages to capture the rotational degree of freedom but not

"The 3D-scenes were generated using the POV-Ray software and the snowman model is courtesy of Kurt
Bangert.
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Figure 5.9: Two-dimensional representations of snowman image set using PCA (upper)
and Laplacian Eigenmaps (lower). Parameters are set to K = 10 and o = 4d.
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Figure 5.10: Two-dimensional representations of snowman image set using Isomap (up-

per) and RCZ (lower).



88 CHAPTER 5. CIRCUIT MODELS FOR MANIFOLD LEARNING

s VT PRI e e 8.5
o b v hg_,-d"*:‘ =

N .
RIS 5 AR IR M e 3

Figure 5.11: Two-dimensional representations of snowman image set with background
image constructed using (a) Isomap, and (b) RCZ.

the light intensity, which seems randomly ordered along the one-dimensional structure.
Isomap succeeds quite well in extracting the two degrees of freedom. However, the dark
right rotated images are somewhat squeezed together. This effect is still present in RCZ,
but less strong. Despite some over-clustering, the light intensity and rotation angle are
well represented by the projection. The two panels of Figure 5.11 shows the correspond-
ing results from Isomap and RCZ when an empty image with only background has been
added to the data set, thus creating a shortcut in the adjacency graph. Again, the results
demonstrate the relative topological stability of RCZ compared to Isomap.

For a fixed rotation angle, the variation of light intensity basically takes place along
a straight line? and therefore it is not surprising that this is the underlying variable that
PCA, being a linear method, finds. A three-dimensional PCA projection, capturing 57%
of the variation, displays the images as distributed on a segment of a triangular cylinder; cf.
Figure 5.12 a. This explains why the two-dimensional PCA projection mixes up rotation
angles at some places. Figure 5.12 b shows the parameter space of the image set with
the adjacency graph for K = 10 overlaid. A typical neighborhood is depicted as a black
subgraph, and it is apparent that the neighborhood covers a much wider relative interval
in terms of light intensity than rotation. Our suggestion is that this difference in intrinsic
scale of the underlying variables makes Laplacian Eigenmaps fail to take the less variant
factor into account. In fact, going back to the Swiss roll data and making the parameter
plane twice as wide yields similar a Laplacian Eigenmaps behavior — only the most variant
factor is captured.

5.4.3 Gene expression data

Dimensionality reduction is frequently used in gene expression data analysis in order to
visualize gene expression profiles of cell samples under varying biological conditions [Alter
et al., 2000, Nilsson et al., 2004]. The aim is to reveal underlying disease factors and/or
discriminate between known and hypothetical subgroups of the samples. As discussed

2Neglecting heterogeneous reflection properties, increasing the light intensity is equivalent to multiplying the
pixels corresponding to the object by some factor.
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(a)

Figure 5.12: (a) Three-dimensional PCA reconstruction of images, and (b) normalized im-
age parameter space with adjacency graph inferred from Xi, overlaid. One neighborhood
is shown as a black subgraph.

throughout this text, different methods capture different aspects of the underlying struc-
tures in data. A way to evaluate the performance of a particular method is to take a data set
where samples have been labelled according to a priori clinical knowledge and see whether
class structures, such as clusters, are clearly detectable in the reconstruction.

In this section we evaluate the RCZ method for visualization of a set of microarray
measurements obtained from various leukemia cancer samples [Ross et al., 2003]. The
data consists of expression levels of 2089 genes over 118 samples, divided into six clinically
different groups.? Figure 5.13 displays two-dimensional representations of the tumor sam-
ples created using PCA, Isomap, Laplacian Eigenmaps and RCZ. The parameters were set
to OLEM = ®, orcz = 3d and K = 3. A brief analysis concludes that Laplacian Eigenmaps
and RCZ perform well, and notably better than Isomap, with respect to the clustering of
known diagnostic classes. However, not all diagnostic aspects are captured. The separation
between the yellow and the dark blue groups appears only in PCA, demonstrating that no
single method alone fully separates the groups and that different methods should be used
as complements to fully explore different aspects of the data.

5.5 Conclusions

This work demonstrates how an electrical circuit framework enables robust approximation
of geodesic distances on an underlying manifold. We use these distances for the purpose
of dimensionality reduction, thus constructing nonlinear dimensionality reduction more
topologically stable than Isomap. We demonstrate performance on typical data sets and
discuss the relations between choice of parameter values and performance for the proposed
and competing manifold learning methods, specifically under conditions of sparse or noisy
data. Briefly, we find that, relative to the other methods, 1) Isomap is globally and locally

30ne of the groups (T-ALL) was excluded from the analysis as its gene expressions were very different from
the other sample groups.
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Figure 5.13: Two-dimensional representations of leukemia tumor samples.
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well-performing but topologically unstable; 2) Laplacian Eigenmaps is topologically stable
but globally and locally less correct; and 3) the proposed method, RCZ, is topologically
stable and globally correct but produces larger local errors. The experiments show that
the proposed method may be seen as a ’robustization” of Isomap or a ’globalization’ of
Laplacian Eigenmaps.
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Chapter 6

Discussion and outlook

Recall from Section 2.4 the assumption that data are samples from a biologically rele-
vant Riemannian manifold in expression space. This suggests that the use of nonlinear
dimensionality reduction should be appropriate. Indeed, in Chapters 4 and 5 results are
presented that show that nonlinear dimensionality reduction methods, such as Isomap and
RCZ often perform better than linear methods on gene expression data sets. These results
demonstrate that the assumption above is useful, even if they do not verify that it is correct.
A main reason that stronger conclusions can not be drawn lies in the sparseness of the data.
The number of samples M is in the order of 100, while the extrinsic data dimensionality
is in the order of 1000 or more. The intrinsic dimensionality of the observation manifold
may be much less, but still, most likely, large enough to make the manifold sparsely sam-
pled as m~ 100. In the light of this, can we assume that approximate geodesic distances, as
computed by Isomap or RCZ, are close approximations of real geodesic distances? Proba-
bly not. On the other hand, it might not be necessary to accurately estimate these in order
to produce biologically relevant reconstructions. Instead, it suffices to recover the ordering
of the samples along the manifold. This explains how, despite the sparseness of data, good
results can still be be obtained if data lie on a biologically relevant manifold. Moreover, it
motivates the use of non-metric multidimensional scaling in the dimensionality reduction
step of Isomap and RCZ.

A related question is whether the problem of topological instability and graph shortcuts
is relevant in sparse gene expression data. Clearly, as data becomes sparser it becomes more
difficult determine what is a shortcut. In some sense, more or less all graph edges are
shortcuts, connecting geodesically distant points on the manifold. Again, what we may
hope for is that the approximate geodesic distances are monotonically related to the true
geodesic distances. Intuitively, an estimation algorithm like the RCZ increases the chances
for this. It is clear, however, that in order to answer this type of questions, theoretical
investigations are needed, addressing the question of how dense the data has to be, in
relation to the manifold curvature, for the distance approximations to relate monotonically
to the true distances.

Figure 6.1 displays the results of Isomap and RCZ on the lymphoma and lung cancer
data sets used in Chapter 4. The fact that there are no significant differences in global
structure between the Isomap and RCZ reconstructions indicates that, either there were no

93
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Figure 6.1: Two-dimensional representation of lymphoma data (first row) and lung cancer
data (second row) created using classical MDS on Isomap distances (left column) and RCZ
distances (right column).
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Figure 6.2: Two-dimensional representations of randomly permuted microarray data can-
cer created using Isomap (left) and RCZ (right).

shortcuts in the data, or, there were, and RCZ could not efficiently handle them. This can
also be confirmed by checking that the respective distances in large relate monotonically
to each other. Nevertheless, there are other features of RCZ that are useful. In particular
the RCZ representation of the lymphoma samples shows more detailed structure than the
corresponding Isomap projection. For example, the DLBCL group appears to segregate
into three main groups. In Chapter 5 it was pointed out that RCZ, and to some extent
Isomap, has a tendency of over-clustering, that is, fluctuations in data density are amplified
in the resulting reconstructions. This is a possible explanation of the ability of RCZ to
detect finer structure. If there are tendencies of cluster structures in the data, RCZ will
discover this more successfully. On the other hand, it is not able to determine whether this
structure has a real biological meaning or if it corresponds to spurious random fluctuations.
In order to estimate the impact of the over-clustering effect we may apply RCZ and Isomap
to data where the expression profile of each sample has been randomly permuted. Figure
6.2 shows the Isomap and RCZ reconstructions of such a random configuration based
on the lymphoma data. These representations show some, but little, structure, which
indicates that, although present, the over-clustering problem is not extremely severe.

It is worth emphasizing that manifold learning is not only useful for dimensionality
reduction. For example, approximate geodesic distances may be used as inputs to clus-
tering algorithms. Results of hierarchical clustering and K-medoids clustering applied to
Euclidean, Isomap- and RCZ distances for the lymphoma data are shown in Figure 6.3 and
Figure 6.4, respectively. The K-medoids clustering algorithm [Kaufman and Rousseeuw,
1990] is similar to K-means clustering (cf. Section 2.3.2), with the principal difference
that only actual data points are used as cluster centers. Not surprisingly, the RCZ distance
seems well suited for clustering purposes.

Two parallel themes run through this thesis — gene expression data analysis and nonlin-
ear dimensionality reduction. Both fields are young and still under intense development.
To conclude this thesis, I will attempt to point out some directions that seem important
to enable full utility of manifold learning and nonlinear dimensionality reduction in gene
expression data analysis.

First, the merging of kernel methods and graph-based methods of manifold learning is
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to diagnostic class (cf. Figure 4.2).
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an important development. The kernel field is relatively well-developed and many general
problems relevant to graph-based methods have already been studied. An example in this
respect is the use of the kernel framework to extend Isomap, Laplacian Eigenmaps and
LLE to project test samples [Bengio et al., 2003, Choi and Choi, 2004]. One potentially
complicating circumstance here is the fact that no explicit kernel function is available,
since the kernel matrix is typically learnt from the data.

Another line of direction, where there seems to be a lot to gain, is the development of
alternative ways to construct adjacency graphs, in order to more efficiently capture aspects
of the underlying manifold. A lot of efforts have been directed at developing algorithms
to extract geometrical properties from the adjacency graph, but most methods adopt the
same K-nearest neighbors or e-graph as the discrete approximation of the underlying man-
ifold. Interesting exceptions in this respect can be found in [Costa and Hero, 2004] and
[Carreira-Perpinan and Zemel, 2005].

Concerning the development in biotechnology, it will be of benefit to increase the
sampling capacity; both by performing larger single microarray studies and by systemizing
the comparison of data sets across studies, but also by incorporating protein expression
data in a coordinated way.
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