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On Information Rates for Faster than Nyquist
Signaling

Fredrik Rusek and John B. Anderson
Dept. of Information Technology
Lund University, Lund, Sweden

Email: {fredrikr,anderson}@it.lth.se

Abstract— In this paper we consider the information rates of
faster than Nyquist (FTN) signaling schemes. We consider binary,
quaternary and octal schemes that use root raised cosine pulses.
Lower and upper bounds to the information rates are given.
The main result is that the lower bounds are often above the
information rates for standard Nyquist signaling schemes. This
implies that FTN must be superior to Nyquist signaling in some
cases. Test results for one coding scheme are given; these show
that high throughput communication based on FTN is indeed
practical.

I. INTRODUCTION AND SYSTEM MODEL

The concept of Faster Than Nyquist (FTN) signaling is well
established. If a PAM system

∑
a[n]v(t − nT ) is based on

orthogonal pulse v(t), the pulses can be packed closer than the
Nyquist rate 1/T without suffering a loss in minimum square
distance in the signaling system.

The result is a much more bandwidth-efficient coding sys-
tem. Mazo showed [1] that for ideal sinc pulses the symbol
time can be reduced to .802T without loss in minimum
Euclidean distance. We refer to this value as the Mazo
limit. More recently the limits for root raised cosine pulses
with nonzero excess bandwidth were derived in [2]. Efficient
receivers for FTN signaling were also presented in this paper
for the first time. Methods of computing the minimum distance
of FTN signaling can be found in [3] and [4]. Mazo–type
limits can also be derived for other pulse shapes [5]. Mazo
limit phenomena turn up in other places as well; see [6] and
references therein. A generalized version of FTN is given in
[7]. More FTN results appear in [8].

The capacity calculation for a channel involves a maximiza-
tion over all probability distributions on the input symbols. In
the AWGN channel in this paper, the ultimate capacity is

∫ ∞

0

log2[1 +
2|Φ(f)|2
N0

]df

where N0/2 is the noise density and Φ(f) is the signal power
spectral density (PSD). This rate is shown as a heavy line
in plots that follow. Coding schemes with the same Φ(f) but
additional constraints on the symbols or signal generation must
perform worse. In the case of a given distribution or generation
form, the limiting data rate will be called the information rate.

The information rate of an FTN system with a standard
alphabet is still an open question and it is not even known
whether FTN is superior, inferior or equivalent to ordinary

multilevel Nyquist signaling. Moreover, the throughput prob-
lem is very different from the distance problem. Here we will
compute upper and lower bounds to the information rate of
FTN. These will show that FTN can indeed have rate superior
to multilevel Nyquist signaling.

Consider a baseband PAM system based on a T -orthogonal
root raised cosine (RC) pulse ψ(t) where α denotes the excess
bandwidth. When α = 0 a sinc pulse is obtained. The one
sided bandwidth of ψ(t) is then W = (1 + α)/(2T ). The
signal transmitted over the channel is

sa(t) =
∞∑

n=−∞
a[n]ψ(t− nτT ), τ ≤ 1 (1)

where a[n] are independent identically distributed (i.i.d.) data
symbols from an alphabet A and 1/τT is the signaling rate.
We assume ψ(t) to be unit energy, i.e.

∫ ∞
−∞ |ψ(t)|2dt = 1.

Since the pulse is T -orthogonal the system will not suffer
from intersymbol interference (ISI) when τ = 1. For τ < 1
we say that we have FTN signaling, and ISI is unavoidable
for i.i.d. input symbols.

Signals of the form (1) with i.i.d. data symbols have PSD
[6]

Φ(f) =
σ2
a

τT
|Ψ(f)|2 (2)

where σ2
a = E{a[n]a[n]∗}. Note that the shape of the PSD is

not affected by FTN.
The channel is assumed to be the AWGN channel with one

sided PSD N0/2; the signal presented to the decoder is then
r(t) = sa(t) + n(t). Forney has shown [10] that a set of
sufficient statistics to estimate a[n] is the sequence

y[n] =
∫ ∞

−∞
r(t)ψ∗(t− nτT )dt (3)

Inserting the expression for r(t) into (3) yields

y[n] =
N∑
m=1

a[m]gψ[n−m] + η[n] (4)

where

gψ[n−m] =
∫ ∞

−∞
ψ(t− nτT )ψ∗(t−mτT )dt (5)

and

η[n] =
∫ ∞

−∞
n(t)ψ∗(t− nτT )dt (6)



Eq. (4) is the so called Ungerboeck observation model. The
autocorrelation of the noise sequence η[n] is

E{η[n]η∗[m]} =
N0

2
gψ[n−m] (7)

In matrix notation (4) can be written as yN = GN
ψ aN + ηN .

The matrix GN
ψ is a N × N Toeplitz matrix formed from

{gψ[0], gψ[1], . . . , gψ[N ]}, and aN denotes the column vector
formed from {a[1], . . . , a[N ]}; later we will use the notation
an2
n1

which denotes the column vector {a[n1], . . . , a[n2]}tr.
Since the noise variables are correlated it is convenient to

work with the whitened matched filter (WMF) model instead
of the Ungerboeck model. By filtering y[n] with a whitening
filter the sequence encountered by the decoder becomes

x[k] =
k∑
l=1

b[k − l]a[l] + w[k] (8)

where b[n] is a causal ISI tap sequence such that b[n] �
b∗[−n] = gψ[n] and w[k] are independent Gaussian variables
having variance σ2 = N0/2. Since the whitening filter is
invertible x[k] also form a set of sufficient statistics. In matrix
notation we write xN = BNaN + wN The generator matix
BN is a N ×N lower triangular matrix constructed from the
ISI response b[n].

II. BOUNDS ON THE INFORMATION RATE

In this section we bound the information rate of an FTN
system. More bounds and reviews of what is known about
capacity of ISI channels can be found in [9], [12], [13].
Methods to closely approximate the information rate are found
in [14]. The bounds here are extensions of bounds in [9] and
are therefore not new in themselves. However, our emphasis
is their application to FTN.

We start by defining the information rate when pulse ψ(t)
is being used:

Iψ � lim
N→∞

1
N
I(yN ;aN ) = lim

N→∞
1
N
I(xN ;aN )

= lim
N→∞

1
N

[H(xN ) −H(xN
∣∣aN )] (9)

where H(U) denotes the differential entropy of the random
variable U and I(V ;U) is the mutual information between U
and V . The data aN take values from A according to a given
probability distribution. The WMF and Ungerboeck models
are assumed to be derived from ψ(t).

The fact that ψ(t) has infinite support generates a problem;
it is hard to find its WMF model from the Ungerboeck model.
To solve that we seek another pulse ψ1(t) that has a finite
time discrete model and has an information rate Iψ1 that can
be related to Iψ . Construct the pulse ψ1(t) as

ψ1(t) = ψ(t) + ψ2(t) (10)

where ψ2(t) has a Fourier transform that satisfies

Ψ2(f) = 0, |f | ≤W (11)

This implies that ψ(t) and ψ2(t) are non overlapping in
frequency. Now, take ψ2(t) to be a pulse that has τT -sampled
autocorrelation

gψ2 [n] =




∑
|m|>L |gψ[m]|, n = 0

0, 0 < |n| ≤ L
−gψ[n], |n| ≥ L

(12)

Existence of the pulse ψ2(t) follows from the positivity of
the Fourier transform of gψ2 [n], see [8], [15]. Since ψ2(t) and
ψ(t) are mutually orthogonal we have

gψ1 [n] = gψ[n] + gψ2 [n] (13)

and consequently gψ1 [n] = 0, n ≥ L; i.e. ψ1(t) has a finite
time discrete model.

If a signaling scheme is based on pulse ψ1(t) the receiver
filter should be matched to ψ1(t); its output samples are yN1 .
However, yN1 could be obtained by having two matched filters
ψ2(t) and ψ(t); after τT -sampling the decoder then sees yN2
and yN . Since ψ2(t) and ψ(t) are mutually orthogonal it is
clear that yN1 = yN + yN2 and thus yN2 and yN also form
a set of sufficient statistics for estimating aN . Furthermore,
since ML decoding can be done either with yN1 or with the
pair (yN ,yN2 ) we have

I(yN1 ;aN ) = I((yN2 ,y
N );aN ) (14)

By a standard result Iψ1 and Iψ can be related as

I((yN2 ,y
N );aN ) ≤ I(yN2 ;aN ) + I(yN ;aN ) (15)

Consequently,
Iψ ≥ Iψ1 − Iψ2 (16)

We will later show how to lower bound Iψ1 ; since the
Ungerboeck model is finite the method can be based on the
Forney model which can be found exactly. However, Iψ2 still
has an infinite time discrete model. This difficulty we avoid by
using a very loose upper bound: For signals with given PSD
the so called Gaussian upper bound [9] for any Ψ is

Iψ ≤ IG,ψ �
∫ ∞

0

log2[1 +
2σ2

a|Ψ(f)|2
τTN0

]df (17)

Inserting (17) into (16) gives

Iψ ≥ Iψ1 − IG,ψ2 (18)

The spectrum |Ψ2(f)|2 can be expressed in terms of |Ψ1(f)|2
and |Ψ(f)|2. The spectra |Ψ1(f)|2 and |Ψ(f)|2 can be found
exactly, thus |Ψ2(f)|2 can be given exactly even though its
sampled autocorrelation is infinite.

Now we lower bound Iψ1 . To simplify notation we omit the
subscript and write xN instead of xN1 etc. The last term of (9)
can be directly computed as

H(xN
∣∣aN ) = H(wN ) =

N

2
log2(2πeσ

2) (19)

By the chain rule we have

H(xN ) =
N∑
l=1

H(x[l]
∣∣xl−1) (20)



Since conditioning does not increase entropy we get

H(x[l]
∣∣xl−1) ≥ H(x[l]

∣∣xl−1,al−k) (21)

This implies that

Iψ ≥ lim
N→∞

1
N

N∑
l=1

H(x[l]
∣∣xl−1,al−k) − N

2
log2(2πeσ

2)

(22)
In [9] k is 1; here we calculate the bound for k > 1. By

the chain rule

H(xll−k+1

∣∣xl−k,al−k) = H(xl−1
l−k+1

∣∣xl−k,al−k)
+ H(x[l]

∣∣xl−1,al−k) (23)

The last term of (23) is the entropy we are seeking in (21);
rearranging gives

H(x[l]
∣∣xl−1,al−k) = H(xll−k+1

∣∣xl−k,al−k)
− H(xl−1

l−k+1

∣∣xl−k,al−k) (24)

Since wN are i.i.d. Gaussian and the ISI response is causal
the conditioning on xl−k in (24) can be removed, i.e.

H(xll−k+1

∣∣xl−k,al−k) = H(xll−k+1

∣∣al−k) (25)

Now, since the data aN are i.i.d.

H(xll−k+1

∣∣al−k) = H(x̃ll−k+1) (26)

where

x̃[s] =
s−l+k−1∑
m=0

a[s−m]b[m]+w[s], l−k+1 ≤ s ≤ l (27)

That is, x̃[s] is formed by subtracting the interference to
xl−k+1
l caused by al−k. To summarize, the entropy in (26)

is equal to the entropy of the variable zk, where zk =
Bkak + wk. For l larger than the ISI length the terms to be
summed in (22) are all identical and the limit can be removed.
If we express the information rate in bits/s we have shown that

Iψ ≥ IkLB,ψ � I(zk;ak) − I(zk−1;ak−1)
τT

(28)

We have not found any closed form expression for (28) when
k > 1. Instead we calculate it by direct evaluation of the
integral H(zk) in (28). Inserting (28) into (16) the lower bound
is complete and reads

Iψ ≥ IkLB,ψ1
− IG,ψ2 , k ≥ 1 (29)

It should be noted that as N0 → 0 we have IG,ψ → ∞
and the lower bound therefore tends to −∞. However, by
choosing L large, the power in ψ2(t) is very small which
leads to IG,ψ ≈ 0 for reasonable SNRs.

The lower bound (29) was derived for infinite root RC
pulses. In the bounding technique it was necessary to work
with finite time discrete models which led to the construction
of pulses ψ1(t) and ψ2(t). However, a finite model can be
obtained by truncating the root RC pulse. Altough the results
for truncated pulses probably would be extremely close to our

results they would not be valid bounds for the infinite root RC
pulse.

Next we derive upper bounds. Since ψ1(t) was constructed
from ψ(t) by adding an orthogonal part it is clear that

Iψ ≤ Iψ1 (30)

A more intuitive explanation that (30) holds is that the decoder
can choose between either matching against ψ(t) or ψ1(t)
when decoding a system based on ψ1(t).

We now derive the upper bound for Iψ1 . As with the lower
bound we omit the subscript and and write xN instead of xN1
etc. Replace (21) by

H(x[l]
∣∣xl−1) ≤ H(x[l]

∣∣xl−1
l−k) (31)

Similarily to the lower bounding technique we apply the chain
rule and obtain

H(x[l]
∣∣xl−1
l−k) = H(xll−k) −H(xl−1

l−k) (32)

Since

H(xll−k) = I(xll−k;a
l) +H(xll−k

∣∣al)
= I(xll−k;a

l) +H(wl
l−k) (33)

we have shown that

Iψ ≤ lim
N→∞

1
N

N∑
l=1

I(xll−k;a
l) − I(xl−1

l−k;a
l−1)

τT
(34)

For l such that l − k is larger than the ISI memory L, the
terms in (34) are statistically equivalent and we can remove
the limit. A computational problem here is that xl−1

l−k depends
on L data symbols a[n]. Therefore L has to be taken quite
small; for large alphabets L has to be very small which makes
the bound loose.

Finally we remark that we have derived a more advanced
and better construction that can replace (10). This construction
is based on solving a linear program to get a pulse that can
be shown to be finite and to have superior/inferior information
rate compared to ψ(t). The main benefit of this construction is
that it eliminates the loose Gaussian bound from the final lower
bound. For the upper bound the main benefit is that the pulse
found can have very short discrete model, while still having
an information rate quite close to ψ(t). The improvements
in the actual bounds are not very significant for low SNRs.
The improved constructions have not been used in following
sections.

III. NUMERICAL RESULTS AND COMPARISONS

Before we give numerical results we discuss some com-
peting systems. For Nyquist systems higher throughput is
obtained by expanding the signaling alphabet. Here we will
consider 8PSK, 16QAM, 32CR and 128CR; these alphabets
are defined in [6]. Although slightly better alphabets exist
these are standard alphabets in the literature as well as in
practice. They are all two dimensional; when we compute
their information rates we compute them per dimension, i.e.
the 16QAM system’s maximal throughput is 2/T bits/s per
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Fig. 1. Information rates for binary FTN transmission. System 1 has signaling
parameters τ = .9 and α = .3. System 2 has signaling parameters τ = .7
and α = .3. The solid lines are lower bounds and dashed are upper. Dotted
lines are information rates for equiprobable 8PSK and 16QAM. The heavy
solid line is the Gaussian upper bound (17) for root RC pulses with α = .3.

dimension. When comparing FTN to Nyquist systems we
demand that both have same PSD shape. This implies that both
systems use same ψ(t) and α. The data symbols form an i.i.d.
sequence and all outcomes are equiprobable. In some cases
we will compare the FTN schemes against Nyquist schemes
with unconstrained alphabets; in that case the optimal data
distribution is Gaussian.

Nyquist systems suffer from a major weakness: They cannot
benefit from excess bandwidth. When α increases, the infor-
mation rate of a Nyquist system remains constant. For FTN
the story is different. When α grows the ISI pattern becomes
milder, i.e. energy concentrates in the first ISI taps. This makes
the information rate grow and it eventually eclipses that of the
Nyquist system.

For FTN we consider 2-, 4- and 8-ary signaling, i.e. A =
{−1, 1} or {−3,−1, 1, 3} or {−7,−5,−3,−1, 1, 3, 5, 7}, with
appropriate energy normalization.

In figure 1 lower and upper bounds for binary FTN and
α = .3 are given. Although not strongly bandwidth efficient,
α = .3 is a common value in practice. Lower and upper bounds
are calculated with k = 2. It is seen that the FTN scheme with
τ = .7 outperforms 8PSK Nyquist signaling over a wide range
of SNRs. For Eb/N0 < 1 dB, system 1 outperforms 16QAM
Nyquist as well. The gap between the lower and upper bounds
is less than 2 dB for τ = .7 (system 2) and virtually closed
for τ = .9 (system 1).

In figure 2 we show lower bounds calculated with k = 2 for
binary FTN with α = .5 and τ = .7 and quaternary FTN with
α = .5 and τ = .8. The comparison system is here a Nyquist
system with unconstrained alphabet. This is the best rate that
any Nyquist system of the form (1) can achieve. Even so, the
FTN system outperforms the Nyquist system.

Comparing system 3 against the Nyquist 32CR system
we observe the following. First, the maximal throughput of
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Fig. 2. Lower bounds on information rate for binary and quaternary FTN.
System 3 is quaternary signaling with τ = .8 and α = .5. System 4 is binary
signaling with τ = .7 and α = .5. The dotted line is the information rate
of equiprobable 32CR. The dashed line is the capacity of an unconstrained
Nyquist system. The heavy solid line is the Gaussian upper bound (17) for
root RC pulses with α = .5.

both systems is 2.5 bits/T seconds (per dimension), thus it is
fair to compare them. Second, system 3 has always superior
information rate; in Eb/N0 =5–8 dB the gain of FTN is ≈1.5
dB.

Third, one can argue that α = .5 is too large, but FTN
systems can profit from large α. The bandwidth efficiency of
both schemes is 2Iψ/(1 + α). For a given value of Eb/N0

the throughput of the Nyquist scheme is significantly lower
than for the FTN system. Thus, in order to equalize both the
bandwidth and power efficiencies the Nyquist system has to
choose a smaller value for α. If we choose Eb/N0 = 5.5dB as
an example, the Nyquist system needs α ≈ .3. Thus the FTN
scheme can work with a much larger value of α, resulting
in lower implementation complexity. Recall that the shown
information rate of the FTN system is only a lower bound.

In figure 3 a lower bound with k = 2 for octal FTN with
α = .2 and τ = .8517 is given. The value for τ is chosen
to give the FTN system the maximal information rate of 3.5
bits/T seconds which is equal to the information rate of a
128CR Nyquist system. Even for such a low α as .2 the FTN
system has higher information rate than the 128CR system.
In fact the FTN system beats even the Nyquist system with
Gaussian symbol distribution. This we find remarkable for
such a small value of α. Equalizing both the bandwidth and
power efficiencies of the systems, we find that the 128CR
Nyquist system requires α ≈ .11 for Eb/N0 � 12dB. Also
shown is a lower bound with k = 2 for quaternary FTN with
α = .2 and τ = .9. The bound lies above the information rates
for both 16QAM and 32CR Nyquist systems at low SNRs.

IV. A TEST CODING SCHEME

In this section we give the results of a test coding scheme
to illustrate that the information rates for FTN are indeed
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practically obtainable. The coding scheme used is described in
[16], and we review it briefly here. A block of 50000 binary
information bits is encoded by a rate 1/2 repetition code,
then an S-random interleaver with blocksize 100000 bits is
applied to the output of the repetition code. A rate 1 recursive
precoder follows and finally an FTN system with α = .3
and signaling rate τT is used as modulation over the AWGN
channel. Decoding is done with standard iterative decoding.
The bit rate of this scheme is 1/2τT bits/s. Receiver details
and tests for interleaver length 10000 are found in [16].

In figure 4 the bit rate is plotted against the needed Eb/N0

to obtain BER 10−5, for various values of τ .1 It is seen
that the FTN systems are very competitive compared to the
Nyquist systems; for τ = .5 the FTN system outperforms the
best performance of any coding system based on equiprobable
16QAM scheme.

V. CONCLUSIONS

In this paper we have given lower and upper bounds of the
information rate for FTN. First we constructed a finite time
discrete model from the infinite time support root RC pulse.
This was done by finding pulses that have superior/inferior
information rate than the root RC pulse has. The actual bounds
must be computed explicitly.

We find that FTN indeed has superior information rate to
Nyquist signaling in many cases. This seems to be especially
true when the signaling alphabet grows. For example, system 6
above has excess bandwidth of only 20% but is still superior to
any form of Nyquist signaling with the same PSD shape. When
compared with standard signaling methods such as 128CR the
FTN system is better.

1Technically the information rates should be computed against BER 10−5,
but the difference is invisible in the figure.
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Fig. 4. Receiver test results for a coding scheme based on FTN signaling with
α = .3. Solid lines are information rates of 8PSK, 16QAM and unconstrained
alphabets (Gaussian). The circles are the needed Eb/N0 to obtain BER 10−5

for FTN schemes with various τ .

The power gains for FTN can also be converted into
increased α values. The Nyquist systems are able to match the
FTN systems both in power and bandwidth efficiency but only
by selecting a smaller, less practical value of α. For example,
we gave an example where Nyquist systems with α = .3 have
the same power and bandwidth efficiency as FTN with α = .5.
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