
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Survivor path processing in Viterbi decoders using register exchange and
traceforward

Kamuf, Matthias; Öwall, Viktor; Anderson, John B

Published in:
IEEE Transactions on Circuits and Systems II: Express Briefs

DOI:
10.1109/TCSII.2007.891753

2007

Link to publication

Citation for published version (APA):
Kamuf, M., Öwall, V., & Anderson, J. B. (2007). Survivor path processing in Viterbi decoders using register
exchange and traceforward. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(6), 537-541.
https://doi.org/10.1109/TCSII.2007.891753

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/TCSII.2007.891753
https://portal.research.lu.se/en/publications/0ba709a1-58c2-4fd0-95e2-ea1bfb675451
https://doi.org/10.1109/TCSII.2007.891753

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 54, NO. 6, JUNE 2007 537

Survivor Path Processing in Viterbi Decoders
Using Register Exchange and Traceforward

Matthias Kamuf, Student Member, IEEE, Viktor Öwall, Member, IEEE, and John B. Anderson, Fellow, IEEE

Abstract—This brief proposes a new class of hybrid VLSI ar-
chitectures for survivor path processing to be used in Viterbi de-
coders. The architecture combines the benefits of register exchange
and traceforward algorithms, that is, low storage requirement and
latency versus implementation efficiency. Based on a structural
comparison, it becomes evident that the architecture can be ef-
ficiently applied to codes with a larger number of states where
traceback-based architectures, which increase latency, are usually
dominant.

Index Terms—Convolutional codes, register exchange (RE), sur-
vivor path, traceback (TB), traceforward (TF), Viterbi decoder,
VLSI.

I. INTRODUCTION

THE Viterbi algorithm is a maximum-likelihood algorithm
that can be applied to decoding of convolutional codes. In

this brief, we consider convolutional codes of rate , an in-
teger, and high-rate punctured codes that are derived from them.
Their trellises have states, where is the encoder
memory.

A Viterbi decoder typically consists of three building blocks,
as in Fig. 1:

• a branch metric unit (BMU) that calculates the likelihood
for the possible transitions in a trellis;

• add-compare-select units (ACSUs) that discard suboptimal
trellis branches based on current branch metrics and previ-
ously accumulated state metrics;

• and a survivor path unit (SPU) that works upon the deci-
sions from the ACSUs to produce the decoded bits along
the reconstructed state sequence through the trellis.

The ACSUs and SPU are known to be critical parts in a hard-
ware implementation. In particular, the algorithm used for the
SPU affects the overall memory requirement and latency of the
decoder, two important aspects in today’s communication sys-
tems. SPU algorithms rely on the fact that the survivor paths are
expected to have merged with sufficiently high probability after
a certain decoding depth .

Traditional approaches for the SPU are register exchange
(RE) and traceback (TB) [1] algorithms. RE has the lowest
memory requirement bits and latency among all
SPU algorithms. However, bits must be read and written

Manuscript received July 25, 2006; revised October 16, 2006. This work was
supported by the Competence Center for Circuit Design at Lund University.
This paper was recommended by Associate Editor B. Nikolic.

M. Kamuf and V. Öwall are with the Department of Electroscience, Lund
University, Lund S-221 00, Sweden (e-mail: mkf@es.lth.se; vikt@es.lth.se).

J. B. Anderson is with the Department of Information Technology, Lund Uni-
versity, Lund S-221 00, Sweden (e-mail: anderson@it.lth.se).

Digital Object Identifier 10.1109/TCSII.2007.891753

Fig. 1. Principal block diagram of a Viterbi decoder.

every cycle, making an implementation in high density random
access memory (RAM) impractical. Instead, the algorithm is
preferably realized by a network of multiplexers and registers
that are connected according to the trellis topology. For a
larger number of states, though, RE results in power-hungry
implementations due to the low integration density of the
multiplexer-register network and the high memory bandwidth.
RE is primarily used in applications where high speed and low
latency are crucial design parameters.

TB is considered applicable to an almost arbitrary number
of states at the cost of an increase in both memory and la-
tency. This method is a backward processing algorithm and re-
quires the decisions from the ACSUs to be stored in much denser
memory, typically RAM. Only decision bits are written every
cycle, thus the write access bandwidth is greatly reduced. For
an -pointer-odd architecture [1], where is the number
of read pointers, the RAM requirement is .
Furthermore, since information symbols are recovered time-re-
versed, a last-in-first-out (LIFO) buffer of size has
to be introduced to reverse the decoded bitstream. To reduce the
increased memory size and latency, TB is mainly used in con-
junction with the traceforward (TF) [2] procedure, which is dis-
cussed in Section II-B.

After a brief review of existing hybrid SPU architectures in
Section II, a new hybrid approach based on RE and TF is pro-
posed in Section III. Storage requirement and latency can be
traded for implementation complexity. Therefore, this architec-
ture can be applied to a larger number of states, which is justified
by a comparison to existing hybrid approaches in Section IV.

II. EXISTING HYBRID APPROACHES

Several attempts have been made to increase the implemen-
tation efficiency of the SPU by combining different algorithms.
Two prominent members are discussed in the following since
these are the ones our architecture is derived from and competes
with.

A. RE and TB

A hybrid architecture combining RE and TB was first pub-
lished in [3]. The idea was also discovered in [2] and [4], and

1549-7747/$25.00 © 2007 IEEE

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:23:59 EDT from IEEE Xplore. Restrictions apply.

538 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 54, NO. 6, JUNE 2007

later generalized in [5] to derive a class of so-called pre-com-
piled SPUs. This class also includes the TF approach, which
they call precompilation. However, except for the TF
method, these approaches require specific memories which have
to be accessible row- and columnwise.

To reduce both latency and read accesses during the merge
phase, the RE/TB architecture carries out TB operations over
bits at a time instead of one. Let the decoding depth be divided
into blocks of size , that is, , an integer. An RE unit
(REU) of size is used to continuously build segments of
the survivor path for each state. These segments are then stored
every step as -bit column vectors in a RAM. A -bit segment
of a row vector for a certain state contains the starting state of
its survivor path bits earlier; that is, this so-called block TB
covers bits per RAM read access, instead of one bit as in the
traditional TB method. Hence, the number of TB operations to
find the starting state of a decoding segment is lowered from
to . Since the survivors are preprocessed in the REU, the final
decoding can be carried out in one step. Note, however, that the
RAM has to be accessible both row- and columnwise, which
requires a more complex specialized memory implementation.
The overall storage requirement, distinguished by implementa-
tion complexity, becomes

and (1)

where is the number of -bit segments that are finally decoded
once a starting state is found [3].

B. TF and TB

In agreement with its first appearance in the literature [2], we
adopt the name TF for the following procedure. An algebraic
generalization is found in [6] and real hardware effects of this
approach have been recently published in [7] and [8].

TF is a forward-processing algorithm that estimates the
starting state for a decode TB on-the-fly such that TB oper-
ations during a merge phase, which do not contribute to the
actual decoding, can be omitted. The TF method is applied
to lower both memory requirement and latency in TB-based
architectures.

Every survivor path at time , an integer, is connected to
some state at time , called a tail state. According to the lemma
about decoding depth, all survivor paths should stem from the
same state for , that is, their tail states are identical.

Fig. 2 shows the TF unit (TFU) for a 4-state rate con-
volutional code, that is, and the encoder memory is

. At time , each -bit register block is ini-
tialized with the state label it represents; that is, current states
and tail states are identical, and the survivor paths are of zero
length. The decision for state selects the tail state of its
predecessor state to update the current tail state. At time ,
when all survivor paths have merged, all registers contain the
starting state for the decoding segment at time . For illustra-
tion, state “00” is chosen to be read from in Fig. 2. Furthermore,

Fig. 2. TFU for a 4-state trellis, that is,m = 2. Figure adapted from [2].

it is also indicated in [2] that a TFU can be optimized individ-
ually, where area-efficient ACSU topologies are applied due to
the structural equivalence of TFU and ACSU.

The extension to TB architectures with TFUs that estimate
starting states at times to further reduce latency is discussed
in [6]. In total the storage requirement is

and (2)

bits in this approach.

III. PROPOSED HYBRID APPROACH: RE AND TF

As stated in [6], the starting state of decoding segments can be
found by means of so-called multiplier feedback loops, which
are equivalent to TFUs. According to this observation, we es-
timate the starting states of length- segments with TFUs in
intervals of ; see Fig. 3. Every th step, a TFU is initialized,
and a total of TFUs are needed to cover the complete decoding
depth ; that is, , for , is initialized at time

. Then, at time , contains the es-
timated starting state of this segment.

Contrary to the previous hybrid approaches, the sequences
in the REU are not used for initializing a block TB operation.
Instead, these partial survivor sequences are stored every th
step in a RAM with first-in-first-out (FIFO) access that can be
implemented in a much denser fashion than the original RE net-
work of length . Once an estimated starting state is established,
the respective partial information sequence is directly read from
the FIFO. Therefore, time reversal upon decoding as in hybrid
TB-based architectures becomes unnecessary and the latency is
not increased.

The proposed SPU architecture is depicted in Fig. 4. It con-
sists of three parts: an REU to continuously update the partial
survivor sequences for each state, a FIFO to store sets of
sequences, and a bank of TFUs that provide the starting states
of the length- segments.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:23:59 EDT from IEEE Xplore. Restrictions apply.

KAMUF et al.: SURVIVOR PATH PROCESSING IN VITERBI DECODERS USING REGISTER EXCHANGE AND TRACEFORWARD 539

Fig. 3. Picture of TF and decode flow. Note that k = L=D is an integer; in this example k = 4.

Fig. 4. Proposed hybrid SPU for feedforward codes. Shown above the FIFO is the address pattern for a partial survivor sequence word. The word consists of N
sequences SP of length D �m. The FIFO could be organized for (D �m)-bit read accesses, that is, multiplexer N : 1 is incorporated in such a specialized
memory.

The following considerations focus on feedforward codes,
that is, an estimated starting state is equivalent to the last in-
formation bits that entered the encoder.1In a straightforward im-
plementation, an REU of length is needed. We note, though,
that for feedforward codes the start of all partial survivor se-
quences is always the same until the trellis is fully extended, that
is, after steps. Thus, only stages are required. Addi-
tionally, due to the trellis topology, the last column of decision
bits can be directly transferred to the FIFO without storing them
in the REU of length . Note that there is a constraint
on the minimum feasible block length .

At times , for each state, a partial survivor sequence from
the REU is stored in the FIFO which is disabled otherwise. The
storage scheme of these sequences is shown above the FIFO.
Here, , denotes an information stream
of length associated with state . It is seen that the
sequence resides at address of the memory word. To find
the part that is linked to the actual survivor path, the estimated
starting state from a TFU is used. For example, at time ,

contains the starting state of the surviving path at time
and the FIFO subword at this address is selected. These bits

represent the information sequence from time 0 to .
The remaining bits are included in the estimated starting state

1An information bit enters the encoder and causes a state transition, and a
decision bit is put out from an ACSU upon decoding. The latter thus indicates
a surviving branch in the trellis diagram. Note that information and decision
bits for a state are not the same for feedforward codes but coincide for feedback
codes.

since it is equivalent to the information sequence that entered
the encoding shift register. Hence, the overall latency of this
approach is . For feedback codes, these remaining bits
are delivered by the REU, which now is of length .

Both REU and TFUs are controlled by the ACSU decisions
and run continuously at data rate, whereas the FIFO only runs
at times the data rate. The FIFO and the multiplexer
both use the same address counter; compared to TB architec-
tures with multiple pointers that require independent address
counters, control is much simpler. The estimated starting state
selects the subword of length by accessing the
multiplexer. No reversal of the output sequence is required since
only forward processing algorithms are used. This preserves low
latency.

In summary, the total memory requirement becomes

and (3)

The architecture is scalable by varying , thus trading memory
requirement for implementation complexity. Different re-
quire different partitions between the processing blocks (FIFO,

, REU) to optimize the implementation. Moreover, an
optimal partition depends on the implementation platform. Two
special cases can be pointed out for feedforward codes, namely

and . In both cases, the REU becomes
redundant. In the former case, the FIFO also vanishes and the
architecture solely consists of TFUs.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:23:59 EDT from IEEE Xplore. Restrictions apply.

540 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 54, NO. 6, JUNE 2007

TABLE I
KEY PERFORMANCE FEATURES OF DIFFERENT SPU ARCHITECTURES. STORAGE REQUIREMENT

FROM (1)–(3) WAS REFORMULATED TO ALLOW FOR EASIER COMPARISON

IV. COMPARISON AND DISCUSSION

Table I lists SPU architectures and their key performance fea-
tures to allow for comparison between different methods. These
comparisons are concerned with the hybrid approaches only, RE
and TB algorithms are mentioned for completeness.

Considering the RE/TB method from [3], it is seen that it
lags our approach when it comes to RAM requirements. More
specifically, given the same latency their RAM size is
larger by

bits

Comparing the number of register bits, their REU has
extra stages. However, due to TFUs in our approach, there are
now an additional register bits compared to
[3]. Note that this is not necessarily the only measure for RE
complexity. For example, a TF operation can be executed se-
quentially in steps, which lowers the numbers of mul-
tiplexers and interconnections by a factor . This observation
concurs with [6], where the complexity of a multiplier feedback
loop is that of one stage of RE since they both operate
sequentially on one single decision matrix at a time. Therefore,
the complexity of additional TFUs are comparable to stages
of RE network. That is, the RE stages in [3] can be set into
relation to equivalent RE stages in our ap-
proach. The RE complexity in our architecture is reduced if

(4)

Since the decoding depth can be expressed as a multiple of
the code constraint length, that is, , (4) holds if

.
Apart from that, the REU from [3] has to employ a so-called

“zone limit,” which distinguishes between RE mode and shift
register mode. This increases implementation complexity due
to a multiplexer in front of every register in the REU, which
requires additional multiplexers.

Another drawback in [3], which also applies to almost all of
the pre-compiled approaches from [5], is that the RAMs have to
be accessible row- and columnwise, which requires a special-
ized memory implementation and increases complexity. Deci-
sion bits are written on a per-state basis (columns) and are read
on a per-time-instance basis (rows). This requirement could pos-
sibly be dropped by means of a pre-buffering scheme to do the

required transposition, which on the other hand increases reg-
ister complexity.

The comparison to TB/TF is carried out on the basis of same
latency. From Table I it is seen that there are twice as many
pointers needed in the TB/TF approach compared to our
method. Let and denote the number of TFUs in RE/TF
and TB/TF methods, respectively, and . Now the
different units can be compared in terms of complexity. To start
with the RAM, partitions are necessary in TB/TF, which
increases peripheral overhead. Note that this overhead is not
considered in the following calculations. On the contrary, our
method needs only one single RAM block, independent of .
Simplifying the difference of the RAM sizes, it is seen that
TB/TF requires an additional

bits

Since there are twice as many TFUs, there are additional
bits in TB/TF. Since the number of bits is comparable to the
ones in the REU, we can directly subtract this overhead from
the size of our REU. Furthermore, because of the small size of
the LIFO bits , an implementation with registers
is favourable compared to RAM cells. Based on these observa-
tions, the register overhead becomes

bits (5)

in our approach. Equation (5) grows with and depending
on the sign of the expression in the parenthesis this overhead is
in or against our favour. If , the register
complexity in our approach is smaller. Modifying this inequality
gives

which holds for many parameter choices apart from the ob-
vious . It is clear that and are critical parame-
ters when comparing implementation efficiency of RE/TF and
TB/TF. One should also keep in mind that the complexity of
a TFU compared to an REU can be adjusted in many ways as
mentioned earlier.

Generally, the different architectures’ feasibility depend on
the choice of implementation parameters. That is, a factor sets

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:23:59 EDT from IEEE Xplore. Restrictions apply.

KAMUF et al.: SURVIVOR PATH PROCESSING IN VITERBI DECODERS USING REGISTER EXCHANGE AND TRACEFORWARD 541

the cost of register and RAM bits into relation. Such a factor
would depend on the number of RAM bits, partitions, RE inter-
connects, folding of TF operations, and so on.

The proposed architecture is seen as means to lower the RE
complexity by employing denser storage cells for the survivor
sequences. Thus, the architecture can be applied to codes with
larger number of states. At the same time, the desirable high-
speed low-latency feature of RE is preserved.

Throughout the preceding considerations, we assumed a two-
port memory for the FIFO that allows a read-before-write access
on the same address, so the old value is present at the output
while the new value is written into the chosen memory location.
However, if a single-port memory is employed, the read access
has to be carried out one cycle prior to the write access to the
same address, and hence an additional RAM word is needed to
temporarily store the old value. Since the two-port constraint
was also assumed in the competing hybrid architectures, the ef-
fect of an additional storage word is cancelled out.

V. CONCLUSION

We presented a new class of hybrid survivor path architecture
based on RE and TF concepts. Latency and storage requirement
can be traded for implementation complexity. To be specific, the
RE complexity is lowered by employing denser storage cells.
No partitioning is necessary for this memory, independent of
the number of decoding blocks, contrary to combined TB and
TF architectures. Therefore, our approach can be seen as means
to extend the desirable high-speed low-latency feature of pure

RE implementations even for a larger number of states. Further-
more, contrary to some other existing hybrid architectures, this
new architecture is not bound to a specialized memory imple-
mentation and can thus be optimized for different platforms.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their com-
ments, which were invaluable in improving this brief.

REFERENCES

[1] G. Feygin and P. G. Gulak, “Architectural tradeoffs for survivor
sequence memory management in Viterbi decoders,” IEEE Trans.
Commun., vol. 41, no. 3, pp. 425–429, Mar. 1993.

[2] P. J. Black and T. H. Meng, “Hybrid survivor path architectures for
Viterbi decoders,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Minneapolis, MN, Apr. 1993, pp. 433–436.

[3] E. Paaske, S. Pedersen, and J. Sparsø, “An area-efficient path memory
structure for VLSI implementation of high speed Viterbi decoders,”
Integr. VLSI J., vol. 12, no. 1, pp. 79–91, Nov. 1991.

[4] P. J. Black and T. H. Meng, “A 140-Mb/s, 32-state, radix-4 Viterbi
decoder,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1877–1885,
Dec. 1992.

[5] E. Boutillon and N. Demassieux, “A generalized precompiling scheme
for surviving path memory management in Viterbi decoders,” in Proc.
IEEE Int. Symp. Circuits Syst., Chicago, IL, May 1993, vol. 3, pp.
1579–1582.

[6] G. Fettweis, “Algebraic survivor memory management for Viterbi de-
tectors,” IEEE Trans. Commun., vol. 43, pp. 2458–2463, Sep. 1995.

[7] J.-S. Han, T.-J. Kim, and C. Lee, “High performance Viterbi decoder
using modified register-exchange methods,” in Proc. IEEE Int. Symp.
Circuits Syst., Vancouver, Canada, May 2004, pp. 553–556.

[8] Y. Gang, A. T. Erdogan, and T. Arslan, “An efficient pre-traceback
architecture for the Viterbi decoder targeting wireless communication
applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 9,
pp. 1918–1927, Sep. 2006.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:23:59 EDT from IEEE Xplore. Restrictions apply.

