Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing.

Kamra, Tripta LU ; Chaudhary, Shilpi LU ; Xu, Changgang LU ; Montelius, Lars LU ; Schnadt, Joachim LU orcid and Ye, Lei LU orcid (2016) In Journal of Colloid and Interface Science 461. p.1-8
Abstract
One challenging task in building (bio)chemical sensors is the efficient and stable immobilization of receptor on a suitable transducer. Herein, we report a method for covalent immobilization of molecularly imprinted core-shell nanoparticles for construction of robust chemical sensors. The imprinted nanoparticles with a core-shell structure have selective molecular binding sites in the core and multiple amino groups in the shell. The model Au transducer surface is first functionalized with a self-assembled monolayer of 11-mercaptoundecanoic acid. The 11-mercaptoundecanoic acid is activated by treatment with carbodiimide/N-hydroxysuccinimide and then reacted with the core-shell nanoparticles to form amide bonds. We have characterized the... (More)
One challenging task in building (bio)chemical sensors is the efficient and stable immobilization of receptor on a suitable transducer. Herein, we report a method for covalent immobilization of molecularly imprinted core-shell nanoparticles for construction of robust chemical sensors. The imprinted nanoparticles with a core-shell structure have selective molecular binding sites in the core and multiple amino groups in the shell. The model Au transducer surface is first functionalized with a self-assembled monolayer of 11-mercaptoundecanoic acid. The 11-mercaptoundecanoic acid is activated by treatment with carbodiimide/N-hydroxysuccinimide and then reacted with the core-shell nanoparticles to form amide bonds. We have characterized the process by studying the treated surfaces after each preparation step using atomic force microscopy, scanning electron microscopy, fluorescence microscopy, contact angle measurements and X-ray photoelectron spectroscopy. The microscopy results show the successful immobilization of the imprinted nanoparticles on the surface. The photoelectron spectroscopy results further confirm the success of each functionalization step. Further, the amino groups on the MIP surface were activated by electrostatically adsorbing negatively charged Au colloids. The functionalized surface was shown to be active for surface enhanced Raman scattering detection of propranolol. The particle immobilization and surface enhanced Raman scattering approach described here has a general applicability for constructing chemical sensors in different formats. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Colloid and Interface Science
volume
461
pages
1 - 8
publisher
Elsevier
external identifiers
  • pmid:26397901
  • wos:000363437400001
  • scopus:84941975867
  • pmid:26397901
ISSN
1095-7103
DOI
10.1016/j.jcis.2015.09.009
language
English
LU publication?
yes
id
1a3f3ea8-8a39-4a8f-940c-4fc2805599f0 (old id 8035156)
date added to LUP
2016-04-01 10:49:07
date last changed
2023-11-10 06:12:12
@article{1a3f3ea8-8a39-4a8f-940c-4fc2805599f0,
  abstract     = {{One challenging task in building (bio)chemical sensors is the efficient and stable immobilization of receptor on a suitable transducer. Herein, we report a method for covalent immobilization of molecularly imprinted core-shell nanoparticles for construction of robust chemical sensors. The imprinted nanoparticles with a core-shell structure have selective molecular binding sites in the core and multiple amino groups in the shell. The model Au transducer surface is first functionalized with a self-assembled monolayer of 11-mercaptoundecanoic acid. The 11-mercaptoundecanoic acid is activated by treatment with carbodiimide/N-hydroxysuccinimide and then reacted with the core-shell nanoparticles to form amide bonds. We have characterized the process by studying the treated surfaces after each preparation step using atomic force microscopy, scanning electron microscopy, fluorescence microscopy, contact angle measurements and X-ray photoelectron spectroscopy. The microscopy results show the successful immobilization of the imprinted nanoparticles on the surface. The photoelectron spectroscopy results further confirm the success of each functionalization step. Further, the amino groups on the MIP surface were activated by electrostatically adsorbing negatively charged Au colloids. The functionalized surface was shown to be active for surface enhanced Raman scattering detection of propranolol. The particle immobilization and surface enhanced Raman scattering approach described here has a general applicability for constructing chemical sensors in different formats.}},
  author       = {{Kamra, Tripta and Chaudhary, Shilpi and Xu, Changgang and Montelius, Lars and Schnadt, Joachim and Ye, Lei}},
  issn         = {{1095-7103}},
  language     = {{eng}},
  pages        = {{1--8}},
  publisher    = {{Elsevier}},
  series       = {{Journal of Colloid and Interface Science}},
  title        = {{Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing.}},
  url          = {{http://dx.doi.org/10.1016/j.jcis.2015.09.009}},
  doi          = {{10.1016/j.jcis.2015.09.009}},
  volume       = {{461}},
  year         = {{2016}},
}