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Abstract

The topic of this thesis is bioprocess control, more specifically control of
industrial-scale microbial fed-batch bioprocesses. Its focus is therefore on
methods which are easy to implement in an industrial setting, which gives
certain limitations on sensors, actuators and control systems.

The main part of the work in the thesis concerns control of the microbial
substrate uptake rate by manipulation of the feed rate of liquid substrate to
the bioprocess. This is an important parameter for improving process yields,
as too low feed rates cause starvation of the microorganisms while too high
rates lead to production of undesirable by-products. By-product formation
decreases metabolic efficiency and the by-products have inhibiting effects on
microbial growth and production. At high concentrations these can even halt
growth completely, leading to process failure.

Due to large batch-to-batch variations and the complexity of the pro-
cesses, model-based control can be difficult to use in this type of system. The
approach used in this thesis circumvents this problem by utilizing perturba-
tions in the feed rate. It has previously been shown that the metabolic state
with regard to substrate uptake rate can be determined by analysing the
perturbation response in the dissolved oxygen level of a microbial process.
In this thesis, the concept is developed through the use of perturbations at a
predefined frequency. This provides a number of advantages and allows for es-
timation of the metabolic state through observing the perturbation frequency
in the measured signal.

The concept has been tested experimentally in industrial pilot and pro-
duction scale. It has been demonstrated that a controller based on this
concept can be used to compensate for batch-to-batch variations in feed de-
mand and can rapidly compensate for changes in the demand. It has also
been shown that the method can be used for monitoring and control in
bioprocesses with a volume over 100 m3, using a low-complexity estimation
algorithm suited for industrial use.

The thesis also concerns mid-ranging control in non-stationary processes.
A modified mid-ranging controller suited for such processes is proposed,
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which allows control signals to increase in unison during the course of a
fed-batch process while maintaining the advantages of classical mid-ranging
control. The concept can for instance be used for control of dissolved oxygen,
an important process parameter in many bioprocesses. It has been success-
fully used for this purpose in pilot scale alongside the type of perturbation-
based feed rate controller which is the main topic of this thesis, also showing
how the latter can be used in conjunction with other control systems.
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Preface

As a graduate student in automatic control with a background in biotechno-
logy, bioprocess control has naturally been a great interest to me. Bringing
together the fields of automatic control, biotechnology and industrial pro-
cess technology can be difficult, as these have to a great extent developed
separately. It can however also be very rewarding as there are many interest-
ing problems and opportunities for development in the intersection between
these fields.

From the outset, my aim has been to work with methods which are rel-
evant and useful in practice and can be implemented for the purposes for
which they were intended. In doing so, the one thing which has always been
important is simplicity and I believe there are few things which are more
satisfying than finding simple solutions to complex problems.

Naturally, this thesis is written from an automatic control perspective. I
have however sought to write it so that it can also be of interest for people
from a biotechnology background seeking to use automatic control in a pro-
cess biotechnology context.
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1

Introduction

Human utilization of microorganisms began before 6600 BCE [McGovern et
al., 2004] although the microbes themselves were not observed until more
than 8000 years later, by the Dutch scientist Antonie van Leeuwenhoek in
the 17th century CE. In the era between these events, although their precise
nature was unknown, their existence was suspected and both the ancient
Romans [Hooper and Ash, 1934] and renaissance scholars [Nutton, 1990]
rightfully accused them of causing diseases. Their fermentative abilities have
however been appreciated since ancient times and a multitude of deities re-
lated to the fermentation process and its products are known to have been
worshipped [Jordan, 2004].

Biotechnology emerged as a separate discipline in the early 20th century,
when a scientific approach was applied to traditional fermentation fields such
as brewing and cheese-making and a new view of microorganisms as biolo-
gical machines developed. Early bioprocesses were used to produce food and
animal feed as well as bulk chemicals and penicillin, which revolutionized
modern medicine [Bud, 1989]. From the 1970s and onwards, genetic engin-
eering has opened up new opportunities for biotechnology by allowing modi-
fications of the genome of organisms to give these new properties [Cohen
et al., 1973]. This has enabled modern industrial biotechnology with its vast
and ever increasing possibilities and number of products.

The aim of the industrial production bioprocess is to reliably ensure the
highest possible product output at lowest possible cost. In order to achieve
this, the host microorganism must be provided with an environment which
is as well suited as possible to its current purpose [Lidén, 2002]. Achieving
this is unsurprisingly no easy task as biochemical reactions are highly com-
plex, with a vast number of states whose interactions occur at many different
levels. Only thanks to modern systems biology have scientists begun to un-
derstand this huge network of interactions which makes up life. The lack of
detailed knowledge has however not deterred pioneers of biotechnology and
procedures for how to run industrial bioprocesses have developed based on
practical experience.
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Chapter 1. Introduction

Automatic control is a powerful tool for enabling and improving pro-
cesses of very diverse types. Feedback control can be highly useful in systems
where many unknown factors may influence the output, such as industrial
bioprocesses, as it allows compensation for measured errors regardless of their
source. Better system models with fewer unknown factors will typically al-
low for better feedback control however. Naturally, good measurements or
estimates of the variables to be controlled are required for appropriate con-
trol action and the availability of such signals can be a critical limitation on
control performance.

The choice of feedback controller for a system depends not only on the
desired output and the system’s properties in themselves but also on many
other factors such as expected disturbances, which measurements are avail-
able and how reliable these are. In a complex system such as a bioprocess,
multiple control objectives of varying complexity and importance to the pro-
cess need to be achieved.

The bioprocesses considered in this work are run in fed-batch mode. This
means that both the biomass and the liquid volume in the process increase
over time since a nutrient feed is added throughout the process. This is a
common mode of operation in industry [Villadsen et al., 2011] but one which
requires certain considerations, as the desired state of the system as well as its
dynamics change over time [Lidén, 2002]. Control structures and objectives
must therefore be designed with this in mind.

In this thesis, work pertaining to feed rate control in bioprocesses is
presented. The work has been done in the perspective of large-scale indus-
trial production bioprocesses, which provide some important challenges not
only due to their size but also because of limitations in process modelling
and sensing [Shimizu, 1993]. The availability of relevant historical data can
also be limited, as new processes are developed to meet new demands and it
is of importance to achieve high productivity from the start.

In such a setting it is desirable to, if possible, maintain a low complexity in
controllers. This is motivated by a desire to keep the computational burden of
the process control software low and to make it possible for persons without
a background in automatic control to use and modify them. It is a common
experience in industry that advanced control systems are used until they are
suspected of causing a problem. At this point they are switched off because
it is not known how to adjust them properly or find out if they are in fact
the source of the problem. Other desirable controller traits are robustness to
process variations and use of standard measurements which are commonly
available in industrial processes.

The core concept in this thesis is the use of periodic perturbations in the
process input. These give rise to responses in measurements, which allows
for estimation of states which can not be measured directly. The simplicity
of this concept and its low requirements on measurements and modelling
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1.1 Contents and contributions of the thesis

makes it attractive for industrial use. However, the effects of scale must be
considered in the choice of perturbation.

A smaller section of this thesis concerns the use of mid-ranging control
in non-stationary processes such as fed-batch bioprocesses. A modified mid-
ranging control structure is proposed which allows actuator signals to increase
in unison when compensating for the changing process state.

The research presented in this thesis has been performed in collaboration
with Novozymes, a biotechnology company with its origins and headquarters
in Denmark. The company was founded in 2000 when it was split off from the
pharmaceutical company Novo Nordisk. Novozymes is currently the world’s
largest producer of industrial enzymes and is estimated to hold about half of
the global enzyme market as per the company’s annual report [Novozymes,
2015]. These products are formed by microorganisms in large-scale biopro-
cesses; many of them are produced in bioreactors with a volume greater than
100 m3, which have been the focus of much of the research presented in this
thesis.

1.1 Contents and contributions of the thesis

This thesis consists of five chapters and five papers. This section describes
the contents of the chapters, the contributions of each paper to the field and
the contributions of each author to the papers.

Chapter 2

This chapter provides a short background to the type of process studied
in this thesis. It describes the key biochemical mechanisms, the industrial
production bioprocess as a whole as well as different approaches to bioprocess
control.

Chapter 3

In this chapter it is shown how periodic perturbations in the feed rate can be
used to estimate the current feed demand in a bioprocess, through measure-
ment of the corresponding frequency in the dissolved oxygen signal. A low-
complexity estimator design, based on a simplified process model, is given.
Results from implementation of the concept for feed rate control in both pilot
scale and production scale processes are shown.

Chapter 4

This chapter describes a method for mid-ranging control of dissolved oxygen
in a fed-batch bioprocess, through use of agitator speed and aeration rate as
actuators. As the process is non-stationary, it is not desirable to maintain
a constant level of either control signal. A modification of the conventional
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Chapter 1. Introduction

mid-ranging control strategy is therefore required to enable the actuators to
act in unison.

Chapter 5

This chapter provides a short summary of the findings of this thesis. It also
briefly discusses their application and possible future development of the
methods which have been developed within the frame of the thesis.

Paper I

Johnsson, O., J. Andersson, G. Lidén, C. Johnsson and T. Hägglund (2013).
“Feed rate control in fed-batch fermentations based on frequency content
analysis”. Biotechnology Progress 29:3, pp. 817–824.

This paper presents a new method for controlling aerated fed-batch
bioprocesses and shows its implementation in pilot scale. The method is based
on the same basic principles as the previously known probing control strategy
but expands the concept using a frequency response approach, enabling con-
tinuous on-line tracking of feed demand and not requiring rectangular feed
rate pulses.

O. Johnsson came up with the idea for the method, wrote the software
for its implementation, designed and performed the experiments for evaluat-
ing it and was the main author of the manuscript. J. Andersson, G. Lidén,
C. Johnsson and T. Hägglund discussed the strategy and experimental res-
ults with O. Johnsson and assisted in writing the manuscript. J. Andersson
also provided technical input regarding the processes in which the method
was implemented.

Paper II

Johnsson, O., J. Andersson, G. Lidén, C. Johnsson and T. Hägglund (2015).
“Modelling of the oxygen level response to feed rate perturbations in an in-
dustrial scale fermentation process”. Process Biochemistry 50:4, pp. 507–
516.

In this paper, modelling of feed and oxygen dynamics based on fre-
quency response experiments in an industrial production-scale bioprocess
is described. Experimental results show the feasibility of perturbation-based
control strategies in the process and that for certain perturbation frequen-
cies and amplitudes, a simple model can be used to describe the response
dynamics.

O. Johnsson came up with the idea for the study, designed and per-
formed the experiments, performed the analysis of resulting data and model-
ling of the process and was the main author of the manuscript. J. Andersson,
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1.1 Contents and contributions of the thesis

G. Lidén, C. Johnsson and T. Hägglund discussed the experiment design,
results and modelling with O. Johnsson and assisted in writing the manu-
script.

Paper III

Johnsson, O., D. Sahlin, J. Linde, G. Lidén and T. Hägglund (2015). “A mid-
ranging control strategy for non-stationary processes and its application
to dissolved oxygen control in a bioprocess”. Control Engineering Practice
42, pp. 89–94.

This paper describes a modification to the conventional mid-ranging con-
trol structure which retains its low complexity while making it suitable for
use in non-stationary processes. This can be used for instance in control of
dissolved oxygen in a bioreactor by simultaneous manipulation of agitator
speed and aeration rate, which can save energy as well as provide a baseline
for dissolved oxygen when used in conjunction with perturbation-based feed
rate control. A successful pilot-scale implementation of such a controller is
also shown.

O. Johnsson came up with the idea for the controller design, supervised
its implementation and was the main author of the manuscript. D. Sahlin and
J. Linde implemented the controller and performed all experiments. G. Lidén
and T. Hägglund discussed the concept with O. Johnsson and assisted in
writing the manuscript.

Paper IV

Johnsson, O., K. Hvalkof Andersen, J. Andersson, G. Lidén and T. Häg-
glund (2015). “On-line detection of oxidative saturation using frequency
response in industrial scale bioprocesses”. Submitted to Process Biochem-
istry.

The work described in this paper focuses on the adaptation of a probing
strategy based on frequency response to process monitoring in industrial-
scale bioprocesses. It is shown in experiments that the frequency response of
such a process can be used to determine the current metabolic state of the
process and hence to track the feed demand, using a simple algorithm suited
for implementation in industrial process control systems.

O. Johnsson planned the study, developed the estimation algorithm to
make it suitable for use in this context, performed experiments, analysed
the resulting data and was the main author of the manuscript. K.H. An-
dersen suggested the type of algorithm to use and made its original design.
J. Andersson, G. Lidén and T. Hägglund discussed the experiment design
and results with O. Johnsson and assisted in writing the manuscript.

15



Chapter 1. Introduction

Paper V

Johnsson, O., F. K. Riisgaard, D. Sahlin, G. Lidén and T. Hägglund. “Feed
rate control in an industrial production-scale bioprocess using a simple
estimator of feed demand”. Manuscript.

In this paper, the implementation of closed-loop feed rate control using
a probing strategy based on frequency response in an industrial production-
scale bioprocess is described. It is shown experimentally that this frequency
response method can achieve sufficiently fast and accurate estimates of the
feed demand in this scale, that it can be used along with a regular PI con-
troller for feedback control of the feed rate during the exponential growth
period.

O. Johnsson oversaw the development and implementation of the con-
troller and estimator, set their parameters, performed experiments and was
the main author of the manuscript. F. Riisgaard and D. Sahlin tested the
implementation to ensure its correct operation, aided in developing it and
assisted in performing experiments. G. Lidén and T. Hägglund discussed the
principles behind the method with O. Johnsson and assisted in writing the
manuscript.

Additional publications

Another related publication by O. Johnsson, not included in this thesis, is
listed below.

Johnsson, O., J. Andersson and C. Johnsson (2011). “Probing control in
B. licheniformis fermentations”. In: Proceedings of the 18th IFAC World
Congress, pp. 7132–7137.
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2

Bioprocesses for industrial

production

The bioprocess shows a high level of complexity with many different levels,
all of which interact with each other. At the lowest level is the microorganism
and its internal workings as well as its interactions with its surroundings, this
level relates to the fields of biochemistry and genetics. A number of transport
processes occur in the medium, the environment of the microorganisms, and
these interactions between forces and molecules are related to fluid dynamics
and transport phenomena. At the next level are the physical components of
the bioreactor itself, whose mechanical properties will influence and set limits
for the process. In an industrial setting the operation of a bioprocess is also
constrained by issues such as scheduling and, ultimately, economy.

2.1 Microbial metabolism in a process perspective

Using microorganisms for production allows for a number of desirable pro-
cess features. Not only can microorganisms produce a variety of products,
which are often not possible to synthesize in purely synthetic chemical pro-
cesses, but they also act under mild temperature and pressure conditions.
This leads to low energy requirements and puts lower demands on the pro-
cess equipment. Compared to many chemical processes, the usage of toxic
and environmentally harmful compounds is also normally low.

It is possible to re-design and improve microbial production processes us-
ing genetic engineering. This is typically done by inserting one or more genes
encoding a desired protein into a production host organism with suitable
properties, such as high growth and production rates.

A large array of host organisms are used today in industrial bioprocesses,
some more common than others. They all belong to one of the following
groups: bacteria, yeasts, fungi, insect cells and mammal cells. The organisms
in these groups have different properties making them suitable for different
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Chapter 2. Bioprocesses for industrial production

Table 2.1 The different types of cells used as industrial production hosts,
outlining some of their relevant properties [Demain and Vaishnav, 2009] and
providing examples of strains. Post-translational modifications are changes
to proteins which occur after their amino acid sequence has been formed.

Organism type Properties Common examples

Bacteria High growth rates Escherichia coli

DNA easily modified Bacillus subtilis

No post-translational
modification of proteins

Bacillus licheniformis

Yeasts High growth rates Saccharomyces cerevisiae

Some post-translational
modification of proteins

Pichia pastoris

Filamentous fungi Good protein secretion Aspergillus niger

Some post-translational
modification of proteins

Trichoderma reesei

Insect cells Post-translational
modification of proteins

Spodoptera frugiperda

Less characterized than
other hosts

Mammalian cells Post-translational
modification of proteins

Chinese Hamster Ovary
(CHO) cells

Expensive to grow

purposes as outlined in table 2.1. Bacteria are prokaryotes while the other
groups are eukaryotes; the principle difference between these is that the latter
have organelles, internal subcompartments such as a cell nucleus and mito-
chondria. Generally, simpler organisms are better for achieving high yields
at low costs but are limited in what types of products they can make.

Many microorganisms have very short generation times, for some types
commonly used in industrial processes these are in the range between 30 and
120 minutes under suitable conditions [Prescott et al., 2005] but generation
times as low as 10 minutes have been reported for the Pseudomonas natrie-
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2.1 Microbial metabolism in a process perspective

Substrates Substrates
Precursor

metabolites

Building

blocks

Metabolic by-products

Macromolecules

Transport Fuelling reactions Biosynthetic

reactions

Transport

Polymerization

reactions

Proteins

Secretion

More biomass

Assembly reactions

Figure 2.1 The major steps in cellular metabolism, adapted from [Villad-
sen et al., 2011, p. 22]. The dashed line indicates the cell border. Substrate
uptake and fuelling reactions are catabolic, while biosynthetic and polymer-
ization reactions are anabolic. Metabolic by-products can in some cases be
re-consumed as substrates.

gens species [Eagon, 1962]. Under optimal conditions their numbers increase
exponentially and due to their short generation times the total biomass can
sometimes increase to several times its starting value in less than an hour.
This is a desirable feature in industrial processes, as it means that only a
small number of organisms (the inoculum) must be present at the start of
the process in order to achieve high productivity within a short time.

The metabolism of an organism can be divided into two principal parts,
catabolism and anabolism. Catabolism involves the uptake of compounds
which can supply the organism with the raw materials and energy required
for its metabolism and the transformation of these into energy carriers and
precursor metabolites. The most common example of the former is aden-
osine triphosphate (ATP); the latter are small metabolites such as pyruvate
and acetyl-coenzyme A [Villadsen et al., 2011]. Most microorganisms are
chemoorganoheterotrophic meaning that organic compounds which are con-
sumed by the organism serve as their source of energy and electrons as well
as carbon, an important raw material for the organism [Prescott et al., 2005].
Anabolism involves the creation of larger compounds such as proteins, phos-
pholipids and carbohydrates from the precursor metabolites and energy car-
riers produced in catabolism [Villadsen et al., 2011]. Figure 2.1 provides an
overview of the major steps in cellular metabolism.
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Microorganisms can respond to oxygen in a number of different ways.
Some are obligate aerobes, meaning that they require oxygen to grow, while
others are facultative anaerobes and can switch between aerobic and anaer-
obic metabolism. Some are aerotolerant and can grow in an aerobic environ-
ment although they do not utilize oxygen while some are obligate anaerobes
and are harmed by oxygen; microaerophilic microorganisms require oxygen
at low concentrations but are harmed by it at atmospheric levels [Prescott
et al., 2005]. Metabolism which utilizes oxygen is termed oxidative and that
which does not is termed fermentative; oxidative metabolism allows for more
efficient use of energy-containing substrates and is therefore often desirable
in industrial processes. For the same reason, facultative anaerobes will meta-
bolize substrates oxidatively rather than fermentatively in the presence of
oxygen although fermentative metabolism would also be possible.

Substrate uptake kinetics

The specific microbial uptake rate of a compound is affected by the concen-
tration of the compound as well as other factors such as the current metabolic
state and concentrations of inhibiting substances. A model for substrate up-
take when utilizing a single rate limiting substrate can be derived from the
widely used, empirical Monod model for biomass growth given in (2.1), where
Cs is the concentration of the substrate, µ is the specific biomass growth rate,
µmax its maximum and Ks is a saturation constant [Villadsen et al., 2011].
The biomass yield on the substrate, Yxs, can be added to give the specific
substrate uptake as in (2.2) where rs is the specific uptake rate of substrate
and rs,max its maximum. To give the simplest possible model Yxs can be
regarded as constant, but it is well known that it depends on a number of
factors such as µ and the model can be expanded to take this into account
[Zeng and Deckwer, 1995].

µ = µmax
Cs

Cs + Ks
(2.1)

rs =
µmax

Yxs

Cs

Cs + Ks
= rs,max

Cs

Cs + Ks
(2.2)

Alternatives to the Monod model exist, which share its basic trait of an
uptake rate which increases monotonically from zero to a maximum uptake
rate for increasing substrate concentrations. A number of modifications to the
Monod model have also been suggested to allow incorporation of for instance
substrate and product inhibition effects [Villadsen et al., 2011].

20



2.1 Microbial metabolism in a process perspective

The central pathways of carbohydrate metabolism

The central catabolic pathways of many oxygen-utilizing microorganisms are
similar in several respects, with key functionalities (pathways) such as glyco-
lysis, tri-carboxylic acid (TCA) cycle and oxidative phosphorylation which
can be seen universally. Many variations in these exist however, providing
some degree of difference in the abilities and limitations of different organ-
isms. The catabolic pathways of 6-carbon sugars (hexoses), a preferred sub-
strate type for many microbial strains, are outlined here.

Glucose is the most common hexose in nature and the standard sugar sub-
strate. Other hexoses can be metabolized in similar ways after some initial
transformation steps. The key steps in the glucose metabolism of B. licheni-
formis are summed up in figure 2.2, most of these apply generally to oxidative
microbial metabolism.

The first pathway in glucose catabolism is glycolysis (see figure 2.2),
it is the only part of glucose catabolism which does not require the pres-
ence of oxygen. In glycolysis, glucose is first phosphorylated into glucose-
6-phosphate which can either be diverted into a separate reaction network
termed the pentose phosphate (PP) pathway or metabolized in the glycolysis
where it is converted and further phosphorylated into fructose-1,6-phosphate.
This intermediate is split up into two 3-carbon compounds which eventually
both end up as glyceraldehyde-3-phosphate (GAP). GAP is then converted
through a series of reaction steps into pyruvate, the end product of glyco-
lysis. The phosphorylation in the first part of glycolysis depletes two units
of adenosine triphosphate (ATP), the general energy carrier of the cell, per
unit of glucose. The reactions from GAP to pyruvate enables the forming of
four units of ATP per unit of glucose, giving a net gain of two units of ATP
per unit of glucose. Two units of NADH, a carrier of reductive power used in
catabolism, are also formed per unit of glucose [Villadsen et al., 2011].

The PP pathway is a flexible reaction network used for several purposes.
Its intermediates can be withdrawn to be used in creation of various struc-
tures, for instance DNA and certain amino acids. When its intermediates are
not withdrawn its function purely becomes production of NADPH, a carrier
of reductive power used in anabolism [Villadsen et al., 2011].

Pyruvate can be further metabolized in the TCA cycle (see figure 2.2).
Pyruvate is entered through conversion into acetyl-coenzyme A (acetyl-CoA)
which combines with oxaloacetate to form citrate. Citrate is further converted
to other compounds through a series of reactions which ends with oxaloacet-
ate. If no intermediates of the cycle are withdrawn, the two pyruvate units
corresponding to one unit of glucose yield ten units of reductive power car-
riers. In B. licheniformis this is six units of NADH, two units of NADPH
and two units of FADH2, another reductive power carrier used in catabolism.
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Figure 2.2 A schematic illustration of the central oxidative carbohydrate
metabolism in B. licheniformis, adapted from [Tännler et al., 2008, p. 8]
and [Villadsen et al., 2011, p. 31]. The pentose phosphate pathway is in-
dicated by dashed lines, the glyoxylate cycle by dotted lines and overflow
pathways by a dash-dotted line. P indicates a phosphate group and a num-
ber in connection to it indicates its location on the carbon structure. Some
pathways and intermediaries are left out for simplicity and the reactions of
oxidative phosphorylation are not shown.
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Each unit of glucose also yields two units of guanosine triphosphate (GTP),
an energy carrier similar to ATP but used for more specific purposes. A separ-
ate but similar pathway, the glyoxylate cycle, incorporates many of the steps
of the TCA cycle. It has the purpose of replenishing oxaloacetate when com-
pounds in the cycle are withdrawn for biosynthetic purposes and allows the
organism to utilize two-carbon carbohydrates such as acetate as substrates,
as shown in figure 2.2 [Berg et al., 2002].

One purpose of the TCA cycle is to enable use of its intermediates as pre-
cursors for cell synthesis; under anaerobic conditions this is its only purpose
and its activity is very low [Villadsen et al., 2011]. Under aerobic conditions,
for microorganisms with respiratory systems, the reductive power carriers
produced in the TCA cycle can be oxidized through use of oxygen to pro-
duce ATP. This mechanism is termed oxidative phosphorylation. A unit of
NADH can theoretically yield three units of ATP while a unit of FADH2 can
yield two. Although the yields are lower in practice, this nonetheless means
that the yield of ATP on the carbohydrate substrate when oxygen can be
utilized is many times higher than that of glycolysis alone [Villadsen et al.,
2011].

In the absence of oxygen or a respiratory system, the microorganism
must metabolize pyruvate fermentatively. This can be done in different ways
depending on the type of organism, the end product is one or several small
organic compounds such as lactate, formate, acetate and ethanol [Villadsen
et al., 2011].

Overflow metabolism

When the concentration of the carbohydrate substrate is high, a phe-
nomenon labelled overflow metabolism can occur where fermentation meta-
bolites are produced despite aerobic conditions. This effect has been seen
in for instance the common industrial production organisms Saccharomyces
cerevisiae [Sonnleitner and Käppeli, 1986], Escherichia coli [Luli and Strohl,
1990] and Bacillus licheniformis [Voigt et al., 2004]. The explanation for this
is that the rate of oxidative metabolism is limited; when the carbohydrate
uptake rate is high, not all of the consumed carbohydrate substrate can
be metabolized oxidatively. Instead, some of it is directed into fermentative
pathways despite the presence of oxygen. This occurs at substrate uptake
rates above a certain threshold, termed the critical substrate uptake rate,
and as the uptake of substrate increases more of it is directed into the fer-
mentative pathways. As the rate of oxidative metabolism does not increase
further when the substrate uptake rate is increased above its critical level,
the oxygen uptake rate remains constant [Villadsen et al., 2011]. The regulat-
ory mechanisms behind overflow metabolism, in which enzymes facilitating
different reactions are repressed or activated, are so far not fully understood
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Figure 2.3 The relation between specific substrate uptake rate rs and
the rates of specific oxygen uptake ro and overflow metabolite production
rov. This shows the saturation of oxidative metabolism at rs,crit, which is
marked with a dotted line. Dashed lines indicate the specific rate of over-
flow metabolite uptake rc

ov, which will only occur if overflow metabolites
are present and the substrate uptake rate is sufficiently low, and the cor-
respondingly increased oxygen uptake rate. Adapted from [Åkesson, 1999,
p. 20].

although they have been studied extensively for instance in E. coli [Valgepea
et al., 2010].

The limitation in oxidative metabolism can be modelled as a saturation,
where an increased specific substrate uptake rate rs is connected to an in-
crease in specific oxygen uptake rate ro up to the critical uptake rate rs,crit.
The actual relationship is however more complex and dependent on other
factors [Kleman and Strohl, 1994]. The parameter rs,crit corresponds to the
maximal specific oxygen uptake rate ro,max, as changes in substrate uptake
rate above this level will not influence the oxygen uptake rate. This simplified
relationship is illustrated in figure 2.3.

From a productivity point of view, overflow metabolism is undesirable as
it decreases biomass and product yield [El-Mansi, 2004] and also due to the
nature of the end products of the overflow pathways, here termed overflow
metabolites. These are organic acids or alcohols, which are typically harmful
to the organism and can both inhibit growth [Luli and Strohl, 1990] and
reduce production of desired products [Jensen and Carlsen, 1990]. At high

24



2.2 The industrial stirred-tank bioprocess

enough concentrations, overflow metabolites can cause complete process fail-
ure due to their harmful effects. In many organisms, such as B. licheniformis,
overflow metabolites can be used as substrates and re-metabolized oxidat-
ively when the uptake rate of the main substrate is low [Tännler et al., 2008].
This can limit their harmful effects, assuming that the uptake rate of the
main substrate does not remain high.

Product formation

Product formation can occur through a great number of different metabolic
pathways, which can be more or less active in different stages of growth. A
distinction is made between primary and secondary metabolites; the former
are compounds formed as a direct result of microbial growth, while produc-
tion of the latter is not directly coupled to growth and typically occurs in
the late stages of a cultivation when growth has ceased.

In many cases, the desired product of a bioprocess is a secondary metabol-
ite. If so, in the case of genetically engineered organisms, a key gene needed
for production is commonly designed so that its activation requires the pres-
ence of a certain compound in the medium; such a compound is referred to
as an inducer. The inducer is not present at the start of the process, meaning
that the microorganisms will not devote energy to production of this second-
ary metabolite and can instead use it for faster growth. When the biomass
concentration has become sufficiently high, the inducer is added and meta-
bolism is switched from growth to product formation. A classical example
of this approach is induction of the lac-operon in E. coli, by for example
isopropylthiogalactoside (IPTG) [Jacob and Monod, 1961].

2.2 The industrial stirred-tank bioprocess

The industrial bioreactor is designed to provide a means of efficient microbial
growth and production while being robust, safe and cheap to run. To achieve
this it must provide a suitable environment for the microbial processes for
which it is used.

Most bioreactors used in industry are designed for submerged processes,
meaning that microbial growth takes place in a free-flowing liquid medium
encased by the bioreactor, although solid-state processes where the medium
is solid have gained interest in the last two decades [Thomas et al., 2013].
A bioreactor for submerged processes in industrial production is typically
near-cylindrical and can have a volume up to several hundred cubic metres
[Hermann, 2003].

The most common type of bioreactor for submerged processes is the
stirred-tank reactor (STR) [Paul et al., 2004], in which one or more agitators
are used to stir the liquid medium in order to facilitate transportation of vari-
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Figure 2.4 Overview of a stirred-tank bioreactor. Substrate is added
through a port while air is introduced through a sparger at the bottom.
An agitator mixes the liquid medium and allows efficient mass transfer. In-

situ measurements typically include dissolved oxygen, pH, temperature and
gas pressure.

ous compounds within it. This type of bioreactor is illustrated in figure 2.4,
giving the general design as well as detailing some important components
and common measurements. Other types of submerged bioreactors are air-
lift and bubble column bioreactors, both of which utilize gas flow to achieve
sufficient mixing and therefore do not use agitators.

Mixing and homogeneity

In all types of submerged bioreactors it is desirable to achieve good mixing,
meaning that spatial inhomogeneities are small. This is typically quantified
through mixing time, the time it takes to achieve a predefined level of ho-
mogeneity, for which low values are naturally sought. Even in a case where
mixing times are low in most of the bioreactor, there may exist “dead zones”
where mixing is very slow. Appropriate design of the bioreactor and its stir-
rers is required to achieve short mixing times and no dead zones.

Mixing does not only serve to ensure that the process is spatially homo-
geneous, but also to enhance various transport processes which are required
for the bioprocess such as transfer of heat energy, oxygen, carbon dioxide
and substrate. These mixing and transport issues become more important as
bioreactor volume increases, requiring a high energy input through stirring
[Villadsen et al., 2011].
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In industrial-scale bioreactors, inhomogeneities in the process are to be
expected as it is not practically feasible to supply enough mixing power to
achieve near-homogeneity; this is known to have a negative effect on product
quality [Schmidt, 2005] and process yields [Takors, 2012]. Assuming ideal
mixing with no turbulent regions, mixing can be described as a linear first-
order process. It is however well known that effects of turbulence can be
expected in bioreactors, giving less straightforward mixing dynamics [Villad-
sen et al., 2011].

Aeration and gas composition

For STR bioprocesses requiring the presence of oxygen, air is typically added
through a sparger at the bottom of the reactor. The air can be mixed with
pure oxygen to increase oxygen transfer to the biomass, but in industry this
is avoided if possible for economic reasons. Gas is let out through a tube
near the top of the reactor; as oxidative metabolism leads to consumption of
oxygen and emission of carbon dioxide, the levels of the former are lower and
the levels of the latter higher in the outlet gas than in the inlet. Dissolved
oxygen in the medium can be measured on-line using electrodes or optodes.

Transportation of gaseous compounds such as oxygen can be separated
into different steps, diffusion from the gas bubbles to the liquid medium and
diffusion and mixing in the liquid medium. Transportation of a compound
A from the gas phase to the liquid phase depends on the volumetric mass
transfer coefficient kla and a driving force which is the difference between the
current concentration of the compound in the liquid phase cA and its satur-
ation concentration c∗

A. The saturation concentration is the concentration of
the compound when at equilibrium with the gas phase. This relationship is
expressed in (2.3), where qA is the volumetric transfer rate of the compound.
kla consists of the mass transfer coefficient kl which is the transfer rate per
area and the specific surface area a [Villadsen et al., 2011].

qA = kla(c∗
A − cA) (2.3)

The coefficient kla is increased through higher rates of stirring and aera-
tion, while increasing the total pressure or the relative amount of the com-
pound in the gas phase increases c∗

A. A low value of cA also increases mass
transfer, although at very low levels this can have negative effects on the
microbial uptake of the compound.

The gas pressure in a bioreactor is typically measured in the headspace,
the space above the liquid medium in the reactor. It is controlled by manip-
ulating the outlet gas flow and is preferably slightly higher than atmospheric
pressure as this both increases the concentration of dissolved oxygen and
decreases the risk of contamination in the reactor. This puts some demands
on the construction of the bioreactor but the very high pressures used in
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some chemical reactors [Al-Dahhan and Duduković, 1995] are not seen in
bioreactors, which are typically designed to withstand a maximum pressure
of around 3 atmospheres [Chisti, 1992].

The gas passing through the outlet of the bioreactor is termed off-gas,
its composition can be determined using gas analysis methods such as in-
frared sensors for CO2, paramagnetic sensors for O2 and mass spectrometry
for multiple compounds. Together with measurement of the gas flow, this
can provide the current oxygen uptake rate (OUR) and carbon dioxide emis-
sion rate (CER). This type of measurement is sometimes used in industrial
processes [Gnoth et al., 2008], although sampling frequencies can be low in
cases where one mass spectrometer is used to analyse off-gas from multiple
bioreactors.

Temperature and pH

Microbial metabolism often leads to changes in the pH value of the medium.
Most often, pH is decreased due to excretion of weak organic acids from the
microorganisms. Similarly, the reactions of metabolism as well as the viscous
dissipation of stirrer energy generate heat. Microorganisms typically have a
rather small pH and temperature span within which they can maintain their
highest growth and productivity [Rosso et al., 1995; Villadsen et al., 2011]
and it is therefore important to monitor these parameters, which can be done
on-line using electrodes. Acid or base is added to compensate for changes in
pH while excess heat is cooled off through a cooling jacket on the outside of
the bioreactor and/or cooling coils inside the bioreactor, through which cold
water is pumped.

Composition of the liquid medium

Microbial growth requires that a number of different nutrients are avail-
able for uptake by the microorganisms. The substrate must include a carbon
source, which is very often also the energy source, as well as a nitrogen source,
trace metals and essential vitamins. Other compounds may inhibit microbial
growth, some of which are produced by the microorganisms themselves. The
concentrations of these compounds should of course be kept low if possible.
In some cases a substrate is inhibiting at high concentrations, which might
require a tradeoff between nutritient supply and inhibition. Carbohydrates
are excellent sources of carbon and energy; they are typically the main sub-
strate, while nitrogen can be supplied through addition of base if ammonia
(NH3) is used.

Bioprocess media are commonly separated into two types, defined and
complex. Defined media consist of specified chemicals in known amounts,
meaning that the exact composition is known. Complex media, in contrast,
consist of raw materials whose exact composition is not known such as
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molasses or soy meal. Furthermore the composition of complex substrates can
vary from one batch to another. Although defined media allow for greater
precision in the design of the medium, complex media are typically much
cheaper which makes them attractive in industrial applications [Zhang and
Greasham, 1999].

On-line measurement of the main substrate in a bioreactor is possible
in some applications [Luli et al., 1987; Brooks et al., 1988], but traditional
methods requiring sample withdrawal are considered difficult to use in indus-
trial applications due to robustness problems [Johnston et al., 2002]. Infrared
spectroscopy has enabled new types of non-invasive on-line measurements
but precision and detection limits are so far not sufficient for precise control;
glucose measurements with a standard error of 260 mg/L have been reported
[Navrátil et al., 2005] while for instance E. coli has a reported threshold for
overflow metabolism at 30 mg/L [Schmidt, 2005]. Further, due to the mul-
titude of compounds often present in complex media, measurement of one
carbohydrate source is not always sufficient to determine the total availab-
ility of carbohydrates in the medium. Equipment for such measurements is
therefore rarely used in industrial processes [Gnoth et al., 2008].

Biomass concentration is an important process state which can be meas-
ured using for instance capacitance probes [Fehrenbach et al., 1992], in-situ
microscopy [Bittner et al., 1998] and near infrared (NIR) probes [Kiviharju et
al., 2007], all with different advantages and limitations. Direct measurement
of the biomass concentration is however not common in industrial applic-
ations [Gnoth et al., 2008]. The biomass concentration can also be estim-
ated from more commonly available measurements through a soft-sensing
approach using artificial neural networks (ANNs) [Chen et al., 2004].

As described in section 2.1, overflow metabolism leads to excretion of by-
products into the medium. The concentrations of these overflow metabolites
can be measured in some applications [Rocha and Ferreira, 2002; Landgrebe
et al., 2010] but similar to substrate measurements, the equipment needed for
such measurements is not usually used in industrial processes [Gnoth et al.,
2008].

2.3 The fed-batch mode of operation

A stirred-tank bioprocess can be performed in one of three different modes
[Villadsen et al., 2011]:

• Batch mode, where all substrate used in the process is present in the
starting medium and no addition of substrate occurs after the process
is started.
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• Fed-batch mode, where feed containing one or several substrates is
added throughout the process.

• Continuous mode, where feed is added and medium withdrawn
throughout the process.

It is typically the addition of feed containing the main carbon source and
the withdrawal of liquid medium which determines what mode a bioprocess
is considered to be run in. A process is considered batch or fed-batch also
when sparged with air and using a gas outlet, as well as adding acid and base
to maintain a desired pH.

Industrial bioprocesses are often run in fed-batch mode. This has some
advantages over batch processes, such as avoiding substrate inhibition and
enabling control of microbial growth and production through varying the
rate of feed addition to the process, while being easier to operate than con-
tinuous bioprocesses. By supplying substrate at a suitable rate, fast growth
and production can be maintained while avoiding production of undesired
by-products due to overflow metabolism.

A typical fed-batch bioprocess can be divided into two phases. In the first
phase, the amount of biomass and its corresponding feed demand is low and
this constrains the desired feed rate if overflow metabolism is to be avoided.
In this phase microbial growth should ideally be as fast as possible; after a
short period at the start of the phase where the microorganisms adjust to
the medium in the bioreactor, they can grow exponentially. Therefore, this
phase is commonly referred to as the phase of exponential growth.

In the second phase the amount of biomass has grown high and microbial
growth must be constrained due to transport limitations in the bioreactor.
Typically, either the oxygen transport capacity is not sufficient to supply
a larger biomass with enough oxygen or the heat transport capacity is not
sufficient to cool off a larger biomass in order to avoid an increase in temper-
ature. The onset of this phase commonly coincides with induction in cases
where it is used.

2.4 Bioreactor monitoring and control

As described in section 2.2, some of the physical variables of the bioreactor
can be measured although not all measurements are always available. The
measurements usually available in industrial bioprocesses are pH, dissolved
oxygen (DO), temperature and gas pressure; sometimes the fraction of oxy-
gen and carbon dioxide in the off-gas is also measured [Gnoth et al., 2008].
This means that many variables which are of interest for monitoring and con-
trol, such as metabolic states, can not be measured directly and estimation
of these from available measurements is often needed.
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The substrate concentration and hence the rate of substrate feed addition
in a fed-batch process has wide-ranging effects on microbial metabolism, as
outlined in section 2.1. As the substrate concentration and its effects on
microbial growth and production can not be easily measured it is a critical
and difficult parameter to control and many approaches for this exist.

Soft sensors

Estimation of unknown states can be done using observers, where a model is
used to deduce unknown parameters from known ones. Such a combination
of sensors and software-based observers is commonly termed software sensor
or soft sensor [Luttmann et al., 2012].

The models used can be mechanistic or semi-mechanistic, using known
physical and biochemical relationships and possibly empirical ones as well to
estimate the unknown states. These relationships are sometimes very simple
and static models can be sufficient, such as the calculation of OUR and CER
from mass spectrometry and gas flow data, but more complex dynamic mod-
els can be used for estimation of for instance biomass, substrate and product
concentrations. A well-designed mechanistic model allows for monitoring of
a process even when its parameters are changing and can facilitate process
understanding, although this type of model requires good knowledge of the
process and can be time-consuming to design [Luttmann et al., 2012].

Models can also be data-driven, meaning that they are based on previous
data from the process to give empirical relationships between parameters.
This can be as simple as engineering correlations founded in analysis of data,
but more advanced and flexible methods such as artificial neural networks
have gained interest in the last 20 years. Such black-box models have the ad-
vantage of simplicity in application and can be used to describe complicated
nonlinear relationships for which no mechanistic model exists, although they
are naturally limited to the training data used for designing them and are
not suited for extrapolation beyond that dataset [Gnoth et al., 2008]. Even
simple models of this type can give good estimates of biomass concentrations
in fed-batch bioprocesses [Jenzsch et al., 2006].

Combinations of mechanistic and data-driven models, termed hybrid
models, also exist which combine the features of both. This allows for simple
mechanistic relationships such as mass balances to be used where these are
known, while less well-known process dynamics are modelled using data-
driven methods [Gnoth et al., 2008]. While giving the advantages of both
approaches, the drawbacks of both are also kept to some extent. Models of
this type can give good estimates of biomass and product concentrations in
fed-batch bioprocesses [Gnoth et al., 2006].
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Perturbation-based methods

When existing measurements and models are not sufficient for achieving the
desired performance in monitoring and control, one method for resolving this
problem is to excite the process by introducing perturbations to the system.
This approach has some similarities to many system identification methods in
that more information about the process is gleaned by observing its response
to perturbations, but in a monitoring and control context the identification
of process parameters must be performed repeatedly as their values can vary
over time.

One type of perturbation-based method is extremum-seeking control,
in which the controller uses a dither signal to seek out the maximum or
minimum of an objective function. The simplest type of extremum-seeking
method requires no model of the system at all and uses only the system’s
response to a sinusoidal dither signal to determine the local gradient of the
objective function, although use of models can improve their performance
[Dochain et al., 2011].

Another type of perturbation-based method is the probing strategy
[Åkesson, 1999], where the controller switches between controlling and per-
forming perturbations in order to find a saturation point in the system. The
response to a perturbation is used to determine the controller action until
the next perturbation. This strategy can be used for finding and tracking a
saturation point in a process, such as the saturation of oxidative metabolism
in bioprocesses. It has been demonstrated to perform well for this purpose, in
a scale up to 12 m3 [Velut et al., 2007]. The perturbations used are typically
square pulses on the feed rate [Åkesson, 1999; Velut, 2005; de Maré, 2006]
or briefly stopping feeding altogether [Henes and Sonnleitner, 2007]. An ap-
proach using exponential ramping during pulses has also been suggested and
can determine the current state in relation to the saturation in a more pre-
cise manner [Schaepe et al., 2014]. The probing strategy has the advantage
of requiring very little knowledge about the process and requires few meas-
urements, only DO or OUR in the case of feed rate control in bioprocesses,
however the step changes used can be difficult to perform in industrial-scale
processes.
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3

Feed demand estimation

using frequency content

analysis

The strategy which is here termed frequency content analysis (FCA) is essen-
tially a modified type of probing control and is based on the original probing
strategy described by Åkesson et al. [1997]. Its aims are the same, estimation
of the substrate feed demand in a bioprocess to enable on-line tracking of it.
Its core principles are also the same, perturbing the feed rate of the process
and quantifying the dissolved oxygen (DO) response to estimate the demand.

The perturbations and the quantification of them are however quite dif-
ferent and more similar to simple extremum-seeking schemes [Dochain et al.,
2011] in that rather than halting the controller to perform a single pulse
and evaluate the response to it, a repeating perturbation is applied at a pre-
defined frequency and the response is evaluated at each sampling point. The
name of the strategy relates to the fact that it is the content of the perturba-
tion frequency in the measured signal which is used to estimate the system’s
state.

3.1 Basic principles of the method

The core principle behind the FCA strategy is illustrated in figure 3.1, which
shows how the response to a sinusoidal perturbation sent through a saturation
varies depending on the system’s current state in relation to the saturation.
The response is similar to that of a linear system with varying gain; the dif-
ference is the overtones caused by the saturation nonlinearity. The response
at the perturbation frequency can however be used to quantify the system’s
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Input signal

Output signal Frequency spectrum

Figure 3.1 Illustration of the FCA core principle, showing input and
output signals over time and power spectral density over frequency. The
base level of the input signal is indicated by a dashed horizontal line in the
input signal graph and the relevant frequency is marked by a vertical dotted
line in the frequency spectrum graph. In the uppermost case, the base level
of the input signal is far below the saturation level so the saturation is
not active. An unsaturated response is therefore seen in the output, this
gives the maximum power spectral density at the relevant frequency. In the
middle case, the base level is just at the saturation level and the response
is affected by the saturation, which is also seen in the frequency spectrum.
In the lowermost case, the base level is far above the saturation level so
no response is seen in the output signal and hence not in the frequency
spectrum.

proximity to the saturation. In the case of feed demand estimation in biopro-
cesses, the input signal is the feed rate and the output is DO or OUR; here
DO will be considered as the output signal as has been the case within the
frame of this work.
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Process control
system

Bioreactor

Medium

Metabolism

Feed rate

Feed valve

Substrate transport

Substrate uptake

Substrate metabolism Oxygen metabolism

Oxygen uptake

Oxygen transport

Oxygen probe

Dissolved oxygen

Figure 3.2 The chain of dynamics connecting feed rate (F ) and dis-
solved oxygen level (DO) in a bioprocess. This is a simplified description,
as feedback connections and more complicated relationships exist such as
the effects of DO on the metabolism.

3.2 A simplified process model for FCA

The relationship between feed rate (F ) and DO in a bioprocess is not limited
to the saturation in oxidative capacity. Rather, a whole chain of dynamics
determine this relationship as illustrated in figure 3.2. The time scales of the
different dynamics can vary significantly however and it is possible to simplify
the dynamic process model by assuming pseudo-steady state in some of them
and lumping some of them together.

Neglecting mixing dynamics and assuming that all of the substrate ad-
ded through the feed is consumed by the biomass gives the mass balance
FCs,in = V Xrs where Cs,in is the substrate concentration in the feed, V
is the liquid volume, X is the biomass concentration and rs is the specific
substrate uptake rate. Further, assuming that no production or consumption
of overflow metabolites occur and that the substrate required for mainten-
ance of the biomass is negligible, the relationship between specific substrate
uptake rate and specific oxygen uptake rate ro is ro = Yosrs where Yos is
the oxidative yield constant on the substrate. If the oxygen concentration in
the liquid is at pseudo-steady state, V Xro = V qo where qo is the volumetric
flow of oxygen meaning that the microbial oxygen uptake is matched by the
transport of oxygen to the liquid. Combining these expressions with (2.3), the
relationship (3.1) between feed rate and dissolved oxygen level is given, for
a case where the effects of mixing dynamics and the saturation in oxidative
metabolism are not taken into account.

V kla(DO∗ − DO) = YosFCs,in (3.1)
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From this follows the relationship given in (3.2) between the feed rate
perturbation amplitude ∆F around the base level F0 and the amplitude of
its unmodified dissolved oxygen response, ∆DOu, from a base level DO0.

∆(DO∗ − DOu)
DO∗ − DO0

=
∆F

F0
(3.2)

For constant DO∗, ∆(DO∗ − DOu) = −∆DOu. This gives a relationship
between ∆F and ∆DOu as per (3.3).

∆DOu = −
DO∗ − DO0

F0
∆F (3.3)

To provide a more complete model of an industrial bioprocess, its dynam-
ics must also be considered. Optical probes, or optodes, for dissolved oxygen
measurement are well described by first-order dynamics [Glazer et al., 2004]
and modern optodes can have time constants below 30 seconds. The feed
flow in a bioreactor is commonly controlled by a PI controller manipulat-
ing a feed valve, to counteract friction and other disturbances in the valve.
Assuming that friction can be successfully counteracted, a closed-loop valve
control system can be regarded as a linear first-order system with a time
constant which can be as low as a few seconds.

Substrate and oxygen transport through the liquid medium are ideally
linear processes, however this assumes ideal mixing. For production-scale
bioprocesses, mixing is known to be non-ideal but this does not mean that
a linear model cannot be used to describe the mixing dynamics for per-
turbations of given amplitudes and frequencies. Paper II shows that even in
such processes, it can be possible to approximate the relationship between
perturbation and response by a linear second-order model for certain per-
turbation frequencies and amplitudes. This can be viewed as substrate and
oxygen mixing dynamics, lumped together with other dynamics of the pro-
cess such as those of the feed valve, metabolism and DO probe, each being
well described by linear first-order models given these constraints.

Substrate uptake can be described using different nonlinear models, as
described in section 2.1. However, linearization of the dynamics can give good
local approximations of these dynamics. An example is the data reported for
E. coli in [Xu et al., 1999], the Monod relationship given there is shown in
figure 3.3. For this relationship the onset of overflow metabolism occurs at a
substrate uptake rate of 0.54 g g−1h−1, at which a linear approximation of
the Monod relationship gives a good fit locally.

Lumping microbial uptake dynamics as well as valve and probe dynamics
with the mixing effects and considering only the response at the perturb-
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Figure 3.3 The Monod relationship between substrate concentration and
specific substrate uptake rate for E. coli given in [Xu et al., 1999, table 3
(data from figure 2)]. The onset of overflow metabolism at a specific sub-
strate uptake rate of 0.54 g g−1h−1 and its corresponding substrate concen-
tration of 0.036 g L−1 are indicated by dashed lines.

ation frequency ω, the response modified by the effects of mixing dynam-
ics and the oxidative saturation is ∆DO(ω) = KsatKmix(ω)∆DOu where
Ksat, Kmix(ω) ∈ [0, 1]. Adding this to the model in (3.3) gives a relation-
ship between the amplitude of the perturbation and that of the response as
per (3.4). The total mixing gain at the relevant frequency, Kmix(ω), is as
per (3.5) where Ks, Ts, Ko and To are the static gains and time constants
of the substrate and oxygen mixing dynamics respectively. Kmix(ω) can be
determined experimentally for a given bioreactor as done in paper II.

∆DO(ω) = −KsatKmix(ω)
DO∗ − DO0

F0
∆F (3.4)

Kmix(ω) =

∣

∣

∣

∣

KoKs

(iωTo + 1)(iωTs + 1)

∣

∣

∣

∣

(3.5)
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3.3 A simple FCA design

Analysis of the content of the relevant frequency in the output to determine
the system’s proximity to the saturation can be done through measuring the
power spectral density at this frequency in the frequency spectrum or by
estimating the gain at this frequency. A simple way of doing the latter, de-
rived from the correlation method for system identification through frequency
analysis as described by Ljung [1999], is given in paper IV.

The correlation method itself is designed for finding the gain |G0(eiω)|
and phase φ = arg(G0(eiω)) of a linear time-invariant (LTI) system G0, at
the frequency ω by perturbing its input signal with a sinusoidal as per (3.6).
This gives a sinusoidal response in the system output as per (3.7), where v(t)
is noise and r(t) is a transient.

u(t) = α cos(ωt) (3.6)

y(t) = α|G0(eiω)| cos(ωt + φ) + v(t) + r(t) (3.7)

In the original formulation, for identification of a constant gain, the terms
IC and IS are defined as per (3.8) and (3.9) respectively.

IC(T ) =
1
T

∫

T

y(t) cos(ωt) dt (3.8)

IS(T ) =
1
T

∫

T

y(t) sin(ωt) dt (3.9)

Inserting (3.7) into these yields (3.10) and (3.11) respectively [Ljung,
1999].

IC(T ) =
α

2
|G0(eiω)| cos(φ) + α|G0(eiω)|

1
2T

∫

T

cos(2ωt + φ) dt

+
1
T

∫

T

v(t) cos(ωt) dt (3.10)

IS(T ) =
α

2
|G0(eiω)| sin(φ) + α|G0(eiω)|

1
2T

∫

T

sin(2ωt + φ) dt

+
1
T

∫

T

v(t) sin(ωt) dt (3.11)

The second and third terms in (3.10) and (3.11) go towards 0 as T goes
towards infinity, assuming that the noise does not contain a pure periodic
component of frequency ω. This allows straightforward estimation of the
system gain |G0(eiω)| as shown in (3.12).
√

I2
C(T ) + I2

S(T )
α/2

=
α/2|Ĝ0(eiω)|

√

sin2(φ) + cos2(φ)
α/2

= |Ĝ0(eiω)| (3.12)
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In an FCA context, the system gain can be used to determine how much
the oxidative saturation influences the response and hence the feed demand.
However, a number of modifications to the method are required to follow a
time-varying gain.

In order to track the current value of |G0(eiω)| rather than estimating
its average value, the integration in (3.8) and (3.9) is replaced by low-pass
filtering. The output of filtering is, when considered in the time domain,
a weighted sum of previous outputs and current and previous inputs as in
(3.13). Discrete-time integration is a special case of filtering where the current
input is added to the current output, as seen in (3.14). In these expressions
u is the input, y is the output, k is the cycle number and N the filter order.
A stable low-pass filter accumulates the input similarly to an integrator but
v and w are chosen so that the contribution of input samples diminishes over
time, meaning that newer input values have a larger effect on the output.

yfilt,k =
k−1
∑

i=k−N

viyfilt,i +
k
∑

j=k−N

wjufilt,j (3.13)

yint,k = yint,k−1 + uint,k (3.14)

As T can obviously not be arbitrarily large for a time-varying system
the second and third terms in (3.10) and (3.11) can not be disregarded,
they can however be handled in different ways. A notch filter tuned for the
frequency 2ω can be used to attenuate the second term. In the case where the
gain of a saturation nonlinearity is determined, this also has the advantage
of attenuating the first overtone caused by the saturation which is seen in
figure 3.1. The third term can be attenuated using a low-pass filter, assuming
that the noise is of high-frequency character.

In cases where low-frequency noise also occurs, so that a constant baseline
for the output signal cannot be maintained and the signal will instead drift,
a high-pass filter can similarly be added to attenuate such noise. Noise which
occurs at the perturbation frequency can however, by design, not be attenu-
ated using such methods.

To compensate for the effects on system gain other than the satura-
tion, it is necessary to scale the calculated response by these factors. Using
|Ĝ0(eiω)| = ∆DO(ω)

∆F and the model given in (3.4), the saturation gain can be
estimated as per (3.15).

K̂sat = −
1

Kmix(ω)
F0

DO∗ − DO0
|Ĝ0(eiω)| (3.15)
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3.4 Implementation in pilot scale

In the study described in paper I, a version of the FCA strategy based on
observing the frequency spectrum of the DO signal was implemented in pilot
scale fed-batch bioreactors. The reactors were of the type described by Albæk
et al. [2008], with a volume of 0.550 m3, controlled using the DeltaV control
system which was connected to a computer running the feed rate controller
in Matlab.

The substrate feed was added in discrete pulses rather than as a con-
tinuous feed and the DO signal was measured to determine whether the
processes were over- or underfed. As the feed pulse frequency was known to
vary somewhat, the summed power spectral density over a band around the
pulse frequency in the DO signal was used as the measure of the response. A
PI controller with its gain as a nonlinear function of the current feed rate F
was used to control the feed rate based on the measured response. DO was
controlled to a baseline using agitator speed AG and aeration rate AR, the
controller was set to be sufficiently slow that the DO response to feed pulses
was not significantly affected by it.

Although the estimation method only used the size of the response in
DO as the measure of feed demand, it could detect the presence of excess
substrate and rapidly decrease the feed rate in response to this. Figure 3.4
shows data from an experiment where excess substrate was added at three
points in time to provoke overflow metabolism so that the controller response
could be observed.

A case where the FCA controller is of particular interest is when the start-
ing biomass is low or growth in the exponential phase takes longer time than
expected to start. This scenario was studied through decreasing the inoculum
to 1/8 of its normal volume, thus creating a situation where the starting bio-
mass was lower than normal. The FCA-based controller was compared to a
reference which would not detect and respond to overflow metabolism, this
is illustrated in figure 3.5. The FCA-based controller did not increase the
feed rate during the first hours due to the low feed demand and hence gave
slower biomass growth during this stage. In the reference process, acetate was
accumulated to levels where it inhibited biomass growth and after 18 hours
a complete process failure occurred in the reference process due to acetate
accumulation. The FCA-based controller achieved a higher biomass concen-
tration at the end of the exponential growth phase while avoiding process
failure.
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Figure 3.4 Experiment showing the
response to excess substrate during the
exponential growth phase. At three
points in time during the experiment,
marked by vertical dashed lines, a pulse
of additional substrate was added to
the bioreactor. In all cases, the response
in DO was decreased which caused a
nearly immediate decrease in feed rate.
Although some amount of acetate is ac-
cumulated it is below harmful levels and
the biomass increases as would be de-
sired.
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Figure 3.5 Experiment with de-
creased inoculation volume, data from
the process controlled by FCA are
shown using solid lines while those
from the reference process are marked
by dashed lines. The biomass in the
FCA-controlled process starts lower and
grows slower during the first hours, but
as acetate accumulates in the refer-
ence it inhibits growth and the FCA-
controlled process ends up with higher
biomass concentration and feed rate as
well as lower acetate levels.
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3.5 Implementation in production scale

In the study described in paper V, a version of the FCA method based
on the estimation algorithm described in section 3.3 was implemented in a
production scale fed-batch bioreactor with a volume greater than 100 m3. The
implementation was done in the SattLine process control system used at the
production site. In this process no DO baseline was maintained and instead
DO would instead be decreasing during the exponential growth phase until
it reached a predefined minimum level, which would cause the FCA-based
feed rate controller to deactivate. DO0 was determined by notch-filtering the
DO signal to attenuate the perturbation frequency.

A PI controller using F0 as its actuator signal was used to control K̂sat;
controller parameters and a suitable setpoint were determined using data
from paper IV, where samples had been taken for off-line analysis to determ-
ine the concentrations of sucrose and acetate in the liquid medium. Data
from paper IV showed a clear correlation between K̂sat and the presence of
these compounds, as seen in figure 3.6. The amplitude of the feed rate per-
turbation relative to the current unperturbed feed rate, α = ∆F

F0
, was set to

0.2 in paper IV but was changed to 0.4 in paper V to ensure a clear response.
An experiment where the FCA-based controller was used to control the

feed rate during the exponential growth rate showed that the controller acted
as would be desired; the relevant data from the experiment are displayed in
figure 3.7. At the start of the experiment additional feed was added, cor-
responding to approximately 1.5 hours of feeding at the current rate. This
caused overflow metabolism and the oxidative capacity of the biomass was
saturated during the first 5.5 hours of the experiment due to accumulated
sucrose and acetate, hence F0 was set to its minimum value. When these sub-
stances were depleted the estimated feed demand and hence also the feed rate
increased rapidly until a feed rate near the current feed demand was reached
shortly after 6 hours. After this point, the feed rate increased more slowly
to compensate for an increasing feed demand caused by biomass growth un-
til DO became sufficiently low that the FCA-based controller was switched
off automatically at 8 hours. At this point, the unperturbed feed rate had
increased to six times its starting value and no accumulation of sucrose or
acetate was seen after the first increase in feed rate.
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Figure 3.6 K̂sat over A, the highest of sucrose and acetate concentration
at each point, from five experiments in the pre-study. The three measure-
ments which are marked by circles were taken when microbial metabolism
switched from consumption of sucrose to consumption of acetate, which
appears to give a strong temporary effect in DO. A clear trend can be ob-
served in the data, particularly when the three marked measurements are
exempted, where higher values of K̂sat indicate lower values of A up to a
K̂sat value of 0.2 above which A is near-zero.

43



Chapter 3. Feed demand estimation using frequency content analysis

0

0.5

1

0

100

200

0

0.2

0.4

0

1

2

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

F
(n

or
m

al
iz

ed
)

D
O

(m
m

H
g)

K̂
sa

t
(–

)
S

u
cr

os
e

(g
/L

)
A

ce
ta

te
(g

/L
)

Time (h)

Figure 3.7 Results from an experiment using an FCA-based controller
in a bioreactor with volume greater than 100 m3. The dashed line in K̂sat

indicates its setpoint. Between 1.5 and 2 hours the agitator was repaired
which caused a temporary decrease in DO, it did however not appear to
affect the experiment beyond this. The increase in F started at 5.5 hours,
when sucrose and acetate were no longer present in significant amounts.
At 8 hours, when the unperturbed feed rate had increased to six times its
starting value, the FCA-based controller was automatically switched off due
to decreased DO.
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4

Mid-ranging control of

dissolved oxygen in a

bioprocess

Mid-ranging control is a simple control structure for control of one variable
using two actuators. It can simply be described as using the primary actuator
to regulate the controlled variable while the secondary actuator is used to
prevent the first one from saturating. It is commonly used in industry [Allison
and Ogawa, 2003] and is sometimes labelled valve-position control as this is
a classical example of its usage. The structure of a mid-ranging controller is
given in figure 4.1.

C1

C2

P

u1

u2

y

usp

ysp

Figure 4.1 The classical mid-ranging controller structure, using two con-
trollers C1 and C2 to control the process P . The effects of the actuator
signals u1 and u2 on the controlled variable y can be additive, which is the
simplest case, but they may also interact in other ways.
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Chapter 4. Mid-ranging control of dissolved oxygen in a bioprocess

Ideally, the actuator used to regulate the controlled variable is fast and
thus able to rapidly compensate for variations. It does not need to have a
wide range within which it can operate as the secondary actuator will seek
to control it to the middle of its operating range, hence the name of the
method. Conversely, the second actuator does not have to be fast but should
preferably have a large operating range. In such a set-up, the mid-ranging
control structure allows for the advantages of both actuators to be combined
to give a controller with rapid actuation as well as a large operating range.

4.1 The challenge in non-stationary processes

Mid-ranging control is useful for keeping the controlled variable at its setpoint
when the process it acts on is near steady-state. However for a non-stationary
process where the actuators can be expected to go from one end of their op-
erating range to the other over the course of their operation, the mid-ranging
scheme is not as suitable. This can occur when the process is exposed to a
disturbance whose magnitude increases over time; the problem is illustrated
in figure 4.2 where a ramp disturbance is used. As seen there, the controllers
will take turns increasing to counteract the disturbance. When it is desirable
to have them increase in unison, this set-up will therefore not give satisfactory
performance.

4.2 Handling non-stationarity

A minor modification to the mid-ranging controller structure is proposed in
paper III, which makes it suitable for controlling a non-stationary system
where the actuator signals should act in unison. The secondary controller is
set to control the primary actuator to the secondary actuator’s value, possibly
with an offset and/or scaling, instead of to a constant setpoint. The modified
mid-ranging set-up is illustrated in figure 4.3.

4.3 Dissolved oxygen control

In an aerobic bioprocess, control of dissolved oxygen (DO) is critically im-
portant. The most important objective is to avoid DO limitation, which is
typically achieved by using a setpoint for DO well above zero. It is however
also desirable not to keep DO higher than necessary, as this requires a higher
power input.

DO can be controlled through a number of process inputs, the most
obvious ones being agitator speed AG and aeration rate AR. It can also
be controlled through gas pressure and through addition of pure oxygen
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Time

u
1

u
2

t1 t2

Figure 4.2 Actuator signals in a simulated mid-ranging controller set up
as per figure 4.1. The process is y = u1+u2+d where d is a ramp disturbance,
both controllers are of PI type with constraints on their outputs and high
gains. Limits of the actuator signals are indicated by dashed grey lines.
Before t1 and after t2, only u1 acts to counter the ramp disturbance while
between these points in time only u2 is acting.

C1

C2

P

u1

u2

y

ysp

Figure 4.3 The mid-ranging controller structure, adjusted for control of
a non-stationary system. The set-up is similar to that in figure 4.1 but
rather than controlling u1 to a fixed level, the secondary controller C2 seeks
to control u1 to follow u2. An offset and/or scaling factor between the
actuator signals can be included in C2.
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in the gas inlet, for practical reasons these methods are often not desirable
however. In the case where AG and AR can be used to control DO, this gives
a system with two inputs and one output for which mid-ranging control can
be considered.

In the case of a fed-batch process, oxygen consumption will increase sig-
nificantly throughout the first phase of the process and increased levels of
AG and/or AR are needed to maintain DO at its setpoint. This makes the
mid-ranging strategy for non-stationary processes interesting for this type of
system.

Oxygen transfer through a liquid medium can be described as in (4.1),
where qo is the volumetric mass transfer rate of oxygen, kl is the mass transfer
coefficient, a is the specific surface area and DO∗ is the dissolved oxygen level
when at equilibrium with the gas phase. Hence, DO∗ the highest possible
oxygen concentration given the current oxygen pressure in the gas phase.

qo = kla(DO∗ − DO) (4.1)

kla depends on AG and AR in a multiplicative manner, their relationship
can be expressed as in (4.2). The exponents a and b can vary significantly in
different settings, typical values are a ∈ [1.14, 2], b ∈ [0.025, 0.4] [Villadsen
et al., 2011]. The multiplicative relationship means that increasing them in
unison is desirable, rather than one at a time.

kla ∝ AGa · ARb (4.2)

4.4 Implementation in pilot scale

The mid-ranging controller for non-stationary systems was implemented for
DO control in pilot-scale bioreactors with a volume of 0.550 m3, of the type
described by Albæk et al. [2008], controlled using the DeltaV control system
which was connected to a computer running the mid-ranging controller in
Matlab. Agitation was used as the primary control loop and aeration as the
secondary. This was motivated by the effect of the former on DO being faster
and AG also having a greater effect when actuator values are the same as its
exponent in (4.2) has a higher value.

Both controllers were of PI type using gain scheduling based on AG. The
primary control loop was tuned using the lambda tuning rules as described
by for instance Åström and Hägglund [2006], with Tcl = T . The secondary
control loop was manually tuned to act at low frequencies and not interfere
with the primary control loop. An offset was added to the secondary con-
troller setpoint, as it was considered beneficial to allow AG to increase to a
certain level before AR was raised.

The results of an experiment utilizing the mid-ranging DO controller in
conjunction with a feed rate controller of the type described in section 3.4
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Figure 4.4 Experiment using the mid-ranging controller and a probing
feed rate controller. The DO setpoint of 20 % is shown as a dashed line in
the DO graph. AG and AR rise in unison and maintain a desired offset for
as long as possible. The DO baseline is well maintained over time.

are shown in figure 4.4. As seen there, the controller achieves its objective
of maintaining DO setpoint following while AG and AR increase in unison.
Variations seen in DO are caused by the substrate feed, which was applied
in a pulse-wise manner and was used by the feed rate controller. It was
therefore not desirable to counteract them and the DO signal was notch-
filtered to attenuate the pulse frequency before the signal was passed to the
controller.
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5

Conclusions

The frequency content analysis (FCA) method proposed in this thesis devel-
ops the probing control strategy through the use of a repeated perturbation
at a given frequency. This allows for simple quantification of the response
through the content of the relevant frequency in the measured signal. The
response is evaluated at each sampling point, rather than performing a per-
turbation and waiting for its response to appear.

As probing control has very low requirements on modelling and sensing,
the concept is well suited for industrial applications. FCA-based monitoring
and control is suitable for large-scale processes, as repeated perturbations
of for instance sinusoidal shape can easily be followed by actuators in such
processes. Another advantage of the method is that the DO base level, DO0,
is easily obtained by attenuating the perturbation response using a notch
filter.

In this thesis, the application of the FCA concept has been tested experi-
mentally in industrial pilot and production scale. It has been shown that the
concept can be used to achieve good estimates of the current feed demand
in the process, also when a complex medium is used. Simple controllers us-
ing these estimates to control the feed rate can give fast and appropriate
responses to variations in the feed demand, also in production scale where
the response is delayed due to long mixing times.

The method is based on a concept which does not depend on knowing
the composition of the liquid medium or the values of metabolic parameters
and is relatively insensitive to these, although variations in the sensitivity
to overflow metabolism can have an impact. This means that the method is
easy to transfer to processes utilizing different microbial strains and media
and to compare the outcomes in these.

The factor which has the most significant impact on the method in large-
scale bioreactors is mixing, which depends on bioreactor geometry and stir-
ring. Longer mixing times do not only give a slower system response, the
response can also be strongly attenuated unless the perturbation frequency
is decreased. This means that for implementing the method in a bioprocess

50



Chapter 5. Conclusions

for which reactor geometry and stirring is different from that of processes it
has previously been used in, a pre-study should be performed to determine
the gain and speed of the unsaturated system response.

In a bioprocess using FCA-based control of the feed rate, suitable actuat-
ors for dissolved oxygen control are the agitator speed and aeration rate. In
such a set-up, mid-ranging control is a suitable control structure. However,
the classical mid-ranging control structure is not suited for control of non-
stationary processes when it is desirable to have the actuator signals increase
in unison, for instance due to multiplicative effects of these.

A modified mid-ranging structure is proposed in this thesis, where the
secondary controller seeks to have the actuator signals follow each other.
The modification is minor and does not add to the complexity of the control
structure; an offset and/or scaling factor between the actuator signals can
also be added.

The proposed control structure has been implemented for control of the
dissolved oxygen level in pilot-scale bioprocesses, combined with an FCA-
based feed rate controller. The results show that the modified mid-ranging
control structure performs as intended and maintains a desired offset between
actuator signals for as long as possible. This set-up also demonstrates how
an FCA-based controller can easily be used without having its perturbations
interfere with other control systems, by notch filtering signals to attenuate
the perturbation frequency before they are used for control.

Possible future developments of the FCA method include the use of multi-
frequency perturbations to increase the rate at which the current system state
can be estimated. However, the choice of frequencies has to be considered
carefully. This also adds to the complexity of the method, which may have
an impact on its suitability for use in an industrial context.

Another possible development of the findings of this thesis is to utilize
the transient seen in the dissolved oxygen signal when microbial metabolism
switches from production of overflow metabolites to consumption of these.
Incorporating this into a model of microbial metabolism can allow for better
monitoring and control of the metabolic state during the initial phase of a
fed-batch bioprocess.

Use of more detailed mixing models has the potential to improve the
performance of the method; for use in other bioreactor types than stirred
tank reactors, mixing models for these should be studied. As long as mixing
effects are taken into account, there is conceptually nothing which hinders
the FCA method from being used in a wide range of microbial production
processes in industry.
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Paper I

Feed rate control in fed-batch

fermentations based on frequency

content analysis

Ola Johnsson, Jonas Andersson, Gunnar Lidén,

Charlotta Johnsson and Tore Hägglund

Abstract

A new strategy for controlling substrate feed in the exponential
growth phase of aerated fed-batch fermentations is presented. The chal-
lenge in this phase is typically to maximize specific growth rate while
avoiding the accumulation of overflow metabolites which can occur at
high substrate feed rates. In the new strategy, regular perturbations
to the feed rate are applied and the proximity to overflow metabolism
is continuously assessed from the frequency spectrum of the dissolved
oxygen signal. The power spectral density for the frequency of the
external perturbations is used as a control variable in a controller to
regulate the substrate feed. The strategy was implemented in an indus-
trial pilot scale fermentation set up and calibrated and verified using
an amylase producing Bacillus licheniformis strain. It was shown that
a higher biomass yield could be obtained without excessive accumula-
tion of harmful overflow metabolites. The general applicability of the
strategy was further demonstrated by implementing the controller in
another process utilizing a B. licheniformis strain currently used in
industrial production processes. Also in this case a higher growth rate
and decreased accumulation of overflow metabolites in the exponential
growth phase was achieved in comparison to the reference controller.

© 2013 American Institute of Chemical Engineers. Printed with permission.
Published in Biotechnology progress. The article has been modified to fit the
current format.
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1. Introduction

Many production microorganisms in the biotechnology industry show over-
flow metabolism, that is, the excretion of metabolic by-products such as eth-
anol, acetate and lactate, at high substrate uptake rates [Tempest and Neijs-
sel, 1979]. This is well-known for the commonly used bacterium Escherichia
coli [Neijssel et al., 1980] and the yeast Saccharomyces cerevisiae [Sonnleitner
and Käppeli, 1986] but also for the bacterium Bacillus licheniformis which
for instance is a host organism for amylase production [Voigt et al., 2004].
Overflow metabolism allows for increased short-term growth, but is undesir-
able in many industrial processes [El-Mansi, 2004]. The by-products not only
decrease the yield directly by diverting substrate but furthermore often influ-
ence the process negatively by inhibition effects caused by the by-products;
a well-known example is the inhibitory effects on growth caused by too high
concentrations of acetic acid [Luli and Strohl, 1990]. These compounds can
not only inhibit growth but also reduce the production of heterologous pro-
teins [Jensen and Carlsen, 1990]. Each of these effects may severely impact
the productivity of fed-batch fermentations.

In fed-batch production processes it is therefore important to maintain a
feed rate low enough to avoid overflow metabolism. At the same time, as high
feed rate as possible is desired to obtain a high volumetric productivity. The
challenge in feed rate control is thus to find a feed rate which gives as high
growth rate as possible, while avoiding the saturation in oxidative capacity
or other rate limiting steps in the respiratory metabolism.

The maximum desirable feed rate is determined by overflow metabolism
only in the first phase of the fed-batch cultivation, before oxygen or heat
transfer limitations set in. This first phase will here be referred to as the
exponential growth phase. At sufficiently high biomass concentration, the
oxygen demand of the microorganisms for maintaining exponential growth
at the desired specific growth rate will exceed the oxygen transfer capacity of
the fermentor system. From this point and onwards, the maximum allowable
substrate feed rate will simply be determined by the maximum volumetric
oxygen transfer rate. It deserves to be pointed out that although the overflow
metabolism problem is mostly relevant in the exponential growth phase, this
phase is highly critical for the entire process. Overflow metabolism or carbon
starvation in the exponential growth phase can have a severe inhibiting effect
on cell growth and product formation and can even cause a complete process
failure in the latter phase of the process.

In practice, it is difficult to obtain an optimal feed rate for three reasons.
The first reason is that the optimal feed rate depends on the total amount
of biomass, which increases exponentially, meaning that the rate spans a
large range. Secondly, the concentrations of biomass, substrate and overflow
metabolite can be difficult to measure in-situ. Finally, even if the biomass
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concentration is precisely monitored, its maximum oxidative capacity can
vary due to metabolic shifts [Swartz, 1996].

Observers (software incorporating a model of the system to make estim-
ates of its state from various measurements) can be developed to estimate
these concentrations, but require a well-tuned model and typically require
some measurements for which good in-situ probes are not widely used today
such as substrate concentration and/or assumptions of constant yield para-
meters [Chéruy, 1997; Selişteanu et al., 2008; Dewasme and Vande Wouwer,
2008; Riesenberg and Guthke, 1999; Gnoth et al., 2008]. A further complic-
ation is that industrial processes typically utilize complex media containing
several carbon sources, meaning that even if the concentration of the prin-
cipal carbon source could be measured reliably, it would not necessarily be
sufficient to predict when overflow metabolism occurs due to the presence of
additional carbon sources. Another option for obtaining good process control
is to use artificial neural networks (ANN) and similar methods. These are
popular in some implementations, but have the disadvantage that they re-
quire large amounts of historical data from the process in order to be useful
[Riesenberg and Guthke, 1999; Gnoth et al., 2008].

An alternative strategy, which circumvents these problems, is to instead
measure the system response to variations in the feed rate, a so-called “prob-
ing control” approach [Åkesson, 1999]. A suitable response variable is the
dissolved oxygen saturation (DO) in the fermentation broth, as consump-
tion of oxygen is directly coupled to the occurrence of overflow metabolism.
Robust, fast and precise probes for measuring dissolved oxygen are routinely
used in the fermentation industry, making this a highly suitable measurement
upon which to base feed rate control.

The DO response to perturbations in the feed rate has been used for
control purposes by Åkesson [1999] and, with some modifications, by for
instance Whiffin et al. [2004], Velut [2005], de Maré [2006] and Henes and
Sonnleitner [2007]. Common for all of these strategies is that tracking of
the optimal feed rate is not continuous. Instead, singular perturbations are
performed and after such a perturbation, the DO response is evaluated and
the feed rate changed at a discrete point in time. After a certain delay,
during which DO values are not used to track the optimal feed rate, a new
perturbation is performed and the process is repeated. This typically gives a
piecewise linear feed rate trend.

In the current work, a different method of analysis of the response to
external feed rate perturbations is used. The frequency spectrum of the DO
signal is calculated and the power spectral density for frequencies close to that
of the externally applied disturbances is used to derive a control variable upon
which to base a regulator. This allows continuous tracking of the optimal feed
rate and avoids the risk inherent in probing control that a disturbance in
DO during a pulse will have a significant effect on the feed rate. The method
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Table 1. Nomenclature.

Symbol Unit

Controller variables

Dissolved oxygen saturation DO %
Content of relevant frequency C Power units
Relevant frequency of perturbations ωrel Hz
Feed rate F L/h

Controller parameters

Sampling frequency h Hz
Filter length m Sampling points
Frequency band width d Hz
Controller gain K L/h/power units
Controller integral time Ti s

Off-line measurements

Substrate concentration s g/L
Acetate concentration A g/L
Biomass concentration X g/L

has been implemented, tuned and demonstrated in pilot scale (0.550 m3)
fed-batch production of amylase using a model strain of B. licheniformis as
well as in a second proprietary fermentation process. The fermentations were
characterized in terms of overflow metabolites, biomass yield and volumetric
productivities.

2. Theoretical aspects

2.1 Nomenclature

Throughout this work, a number of different parameters are used to describe
the system and the controller. Their descriptions and units can be found in
table 1.

2.2 Basic principles of the controller

The dynamics from the input signal (feed rate) to output signal (DO meas-
urement) mainly depend on five processes: substrate delivery, substrate mix-
ing, microbial uptake of substrate and oxygen, oxygen mixing and oxygen
measurement. Mixing can be described using first order dynamics, and the
dynamics of substrate delivery and oxygen measurement can be included in
this process. The kinetics of the oxidative metabolism in an aerobic environ-
ment is well described by a saturation kinetics model, as the oxygen uptake
rate ro is determined by and stoichiometrically coupled to the substrate up-
take rate rs, as long as the maximum oxidative capacity of the cell is not
exceeded. The substrate uptake rate at which the maximum ro is exactly
reached at fully respiratory conditions is referred to as rs,crit. This is illus-
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Figure 1. The relation between glucose uptake rate rg and the rates
of oxygen uptake ro and acetate production ra, showing the limitation of
oxidative metabolism at rg,crit which is marked with a dotted line. Dashed
lines indicate uptake of acetate, which can only occur if acetate is present
and the glucose uptake rate sufficiently low [Åkesson, 1999].

trated in figure 1 for a case in which glucose (g) is the limiting substrate and
acetate (a) the overflow metabolite, as in many B. licheniformis processes.

As perturbations to the feed rate occur the substrate concentration in the
broth will change, which in turn will lead to a change in substrate uptake
rate. This will lead to one of three different outcomes:

1. rs is at all points above rs,crit. As the oxidative capacity is limiting, no
change in ro will be observed.

2. rs crosses rs,crit at least once during the perturbation. A change in ro

will occur, but will be limited by the saturation.

3. rs is at all points below rs,crit. The saturation will have no influence on
the outcome and the change in ro will be the highest possible (limited
only by the amplitude of the perturbation).

For outcome 2, the size of the change in ro is related to the distance from
rs to rs,crit. For outcomes 1 and 3, it is possible to determine which of these
that has occurred, giving the sign and minimum value of the distance from rs

to rs,crit. The principle behind the control strategy is that perturbations to
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the feed rate can be repeated with a known time interval (that is, the signal
has a known, constant frequency). The output signal will have a different
shape than the input signal, but its frequency will be the same.

Rather than using the DO signal directly to determine the effect of the
perturbations, as done in the probing control strategy [Åkesson, 1999], the
frequency spectrum of the DO signal is here obtained through Fourier trans-
formation and studied. As noise in the DO signal typically occurs in a differ-
ent frequency band than that of the perturbations, these are easily separated
and it becomes possible to get a direct measure of the influence of the perturb-
ations. A larger content of the relevant frequency indicates that the average
value of rs over time is below rs,crit, while a smaller content indicates that
rs is on average above rs,crit. This means that a controller provided with a
suitable setpoint for the content of the relevant frequency can be used to
keep rs at rs,crit using the feed rate as the manipulated variable.

3. Controller details

The content of a certain frequency in a signal can be described by its power
spectral density (PSD) To dampen the effect of minor process disturbances,
the summed PSD of a small band of frequencies around the relevant fre-
quency was used rather than that of one specific frequency (figure 2). Fur-
thermore, to reduce noise this value was filtered using a very simple filter
giving the average value over a predefined interval of sampling points as the
output. To achieve a good measurement of the system’s response to perturb-
ations, the sampling points used by the filter should cover at least one period
of the perturbation and preferably more, this is however a tradeoff against
the speed of the controller as including more data points will make the filter
respond more slowly to changes in the process. The relationship given in (1),
where PSDω denotes the power spectral density of a frequency ω and d is
the predefined size of the frequency band around the relevant frequency ωrel,
shows the calculation of the frequency content C at the current sampling
point k, filtered over m points. Using the variable C to determine the status
of the process will be referred to as frequency content analysis (FCA).

Ck =
1
m

k
∑

i=k−m





ωreli
+d/2
∑

ω=ωreli
−d/2

PSDωi



 (1)

A small value of C indicates that the system is close to the saturation
caused by oxidative limitation whereas a large value indicates that the sys-
tem is far below this level (figure 1) and therefore, in order to control the
feed rate of the process using FCA it is natural to employ proportional feed-
back control. Such control is typically coupled with integral control in order
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Figure 2. Frequency spectra of the DO signal. The upper diagram is
from a point in time when perturbations have little influence on DO, while
the lower diagram is from a point where perturbations have large influence.
C, the summed content of frequencies in a band around the frequency of
the perturbations in the input (in this case 0.01 Hz, marked with a dotted
line), is shown as a shaded area.

to avoid static errors. In this implementation the microbial consumption of
feed can be considered as a disturbance on the system and as this disturb-
ance follows microbial growth, meaning that it increases exponentially, an
integrating controller will not be sufficient to avoid static errors. This was
not considered a major problem as the true aim of the controller was not to
follow a setpoint for C but to increase the feed rate to keep up with the de-
mands of the exponentially growing consumption without excessive overflow
metabolism. Nonetheless, to partially counteract the exponentially growing
consumption, an integral term was added. The main solution used to solve
this problem was however to add gain scheduling to the controller.

The expression (2) shows how the feed rate, F , is changed based on C and
its setpoint Csp. Its form is similar to that of a discrete-time proportional-
integral (PI) controller with sampling rate h, gain K and integral time Ti.
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A gain scheduling factor, here chosen as in (3), is necessary as the dynamics
of the process change with increasing volume and biomass concentration.

Fk =
K

h



(Csp − Ck) +
h

Ti

∑

1≤j≤k

(Csp − Cj)



 (2)

K = K0

√

Fk−1

Fmin
(3)

To avoid dissolved oxygen limitation while also avoiding an unnecessarily
high agitator speed (AG) or aeration rate (AR) a parallel control system is
run controlling DO (using a setpoint of 20 %) using AG and AR as manipu-
lated variables. A PI controller using gain scheduling based on the AG value
is used to control AG, when it reaches its maximum value the PI controller
switches to controlling AR instead. In difference to the original probing con-
trol scheme, the DO controller and the feed rate controller are active at the
same time. Instead, the parameters of the DO controller are set so that it is
comparatively slow and will not significantly influence perturbations in DO
at the relevant frequency. This is possible as the feed rate controller based
on FCA does not require strict adherence to the baseline defined by the DO
setpoint. The FCA controller is only used until the maximum capacity of
the fermentor (oxygen transfer, pH regulation and/or cooling capacity) is
reached. At this point the exponential growth phase is over and overflow
metabolism is no longer a major issue.

4. Materials and methods

4.1 Fermentation equipment

A number of 0.550 m3 pilot scale fermentors (0.350 m3 fill volume) described
in [Albæk et al., 2008] were used. The feed system of each fermentor is dis-
continuous, with pulses of feed liquid being injected into the fermentor at
a rate and with a volume intended to achieve the same total feed volume
as the integral of the feed rate setpoint curve. While this makes it prac-
tically impossible to implement a sine wave perturbation on the feed rate,
which would be the most natural thing to do for frequency response analysis,
the feed pulses themselves can be seen as regular perturbations if they are
performed with a constant (or near-constant) time interval.

The control system for feed addition allows for some variation in the
time between each feed pulse. As outlined in section 2, the controller can
handle some variation in frequency but in order to avoid too large variations
a minimum time of 100 seconds between pulses is enforced.
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4.2 Strain and growth conditions

In all experiments except where noted otherwise, the recombinant amylase-
producing B. licheniformis strain SJ4628, derived from DN286 [Fleming et
al., 1995], was used. This is an older, low-yielding industrial strain developed
by Novozymes A/S. In one series of experiments a newer, high-yielding strain
currently used by Novozymes A/S was used to study whether the strategy
could easily be transferred to processes using other strains.

For propagation, frozen bacteria were grown on agar plates and then used
to inoculate a seed fermentor of the same type as the main fermentors, using
300 kg of a medium containing: soy meal, 110 g/kg; Na2HPO4·2H2O, 5 g/kg;
antifoam agent (Pluronic/Dowfax 63 N10), 1.67 mL/kg. The seed fermentor
was run for 16 hours at 37◦ C, pH 7 (±0.2), using linear ramps for agitator
speed and aeration rate starting at 125 rpm and 180 L/min and reaching 375
rpm and 300 L/min at 10 hours after which these were constant.

Except where noted otherwise, 33 kg broth from the seed fermentor
was used to inoculate the main fermentors. In fermentations utilizing the
SJ4628 strain, 300 kg of a defined medium was used and the fermentors
were fed with 64 % w/w glucose. The medium contained: K2HPO4, 7 g/kg;
Na2HPO4·2H2O, 7 g/kg; K2SO4, 5 g/kg; MgSO4·7H2O, 4 g/kg; (NH4)2SO4,
4 g/kg; citric acid, 0.78 g/kg; CaCO3, 1 g/kg; trace metal mix, 0.5 g/kg. The
trace metal mix contained 16 % w/w MnSO4·H2O, 63 % w/w FeSO4·7H2O,
7 % w/w CuSO4·5H2O, 14 % w/w ZnSO4·7H2O. In fermentations utilizing
the proprietary strain, a complex, proprietary medium was used and the
fermentors were fed with 64 % sucrose.

4.3 Software implementation

The fermentors were controlled using the commercial DeltaV process control
system, which allowed on-line measurement of dissolved oxygen saturation
(DO), pH, temperature (T ) and the concentration of oxygen and carbon di-
oxide in the outlet gas, allowing for calculation of oxygen uptake rate (OUR)
and carbon dioxide emission rate (CER). The script used to control the fer-
mentors was developed in MATLAB and run on a separate computer, using
an MX OPC server to allow it to write setpoints to and read measured data
from the DeltaV system. The controller was used to control the feed rate (F ),
the aeration rate (AR) and the agitator speed (AG) of the processes. PSD
of the frequencies in the DO signal was calculated using the Fast Fourier
Transform (FFT) function in MATLAB. 2000-point FFT was used over an
interval of 100 datapoints, to increase smoothness of the calculated frequency
spectrum.

For all experiments, the following parameters were used: h = 0.5 Hz,
m = 100 sampling points, d = 0.0025 Hz. The value of m was chosen so that
the filter would include two periods of the perturbation; this was considered
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a suitable tradeoff between noise rejection and speed. The perturbation fre-
quency ωrel varied but was in general between 0.009 and 0.01 Hz, the reason
for this being that the feeding mechanism used in the fermentors only allowed
poor following of its desired value which was 0.01 Hz.

4.4 Experiment design

Experiments were performed with the purpose of regulator tuning, evaluation
of the process control strategy and testing its generality as described later in
this section. Where applicable, comparisons to a reference controller currently
used in industrial fermentations were made; the reference controller utilized a
PI design regulating DO by manipulating F , with predefined ramps limiting
the maximum and minimum values of F during the exponential growth phase.

Regulator tuning Analysis of data from previous fermentations indicated
that a Csp of 400 would be suitable to achieve fast growth without excessive
production of overflow metabolites. Three fermentations were performed us-
ing a similar set-up with Csp set to 400, 500 and 600 respectively. During the
exponential growth phase, the parameters K and Ti were tuned manually to
achieve smooth, yet fast, control of the feed rate.

Evaluation of the strategy To evaluate the strategy, three fermenta-
tions using a standard set-up were performed; two utilizing the FCA feeding
strategy and one reference, using a control system currently implemented in
industrial processes of this type. A similar evaluation, with one fermentation
utilizing FCA control and one reference fermentation, was also performed in
a set-up where the inoculation volume was 1/8 of its normal value to simulate
a situation where the viable cells in the inoculation volume are fewer or the
lag phase longer than expected. This can normally cause severe inhibition of
cells due to excessive accumulation of acetate. In a final fermentation, large
pulses of feed were added at certain points in time via a separate feeding
system to study the controller’s response to accumulated glucose.

Test of generality The FCA strategy was tested on a strain currently used
in industrial production processes rather than the strain used for developing
the strategy. Two fermentors employed the FCA strategy and a third was
used as a reference. The aim was to test whether the control strategy could
easily be transferred to such processes and give the same performance as
in processes using SJ4628, and to assess its performance in a process using
complex medium.

4.5 Off-line measurements

Off-line measurements of substrate and acetic acid were made using en-
zymatic kits: sucrose by “Sucrose Assay Kit”, Sigma, Product code SCA-20;
glucose by “D-Glucose”, R-biopharm, Cat. No. 10 716 251 035; acetate by
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“Acetic acid”, R-biopharm, Cat. No. 10 148 261 035. Cell concentration was
calculated through measurement of cell dry mass, performed as follows. 7–
10 g cell broth was poured in a pre-dried, weighed test tube and total weight
was noted. The remaining volume of the tube was filled with distilled water,
it was centrifuged at 2800 rpm for 20 minutes, the pellet was rinsed with
distilled water and centrifuged again at 2800 rpm for 20 minutes after which
the pellet was dried in an oven overnight. Cell dry weight concentration was
defined as the weight of the pellet divided by the weight of the broth. Three
samples were made for each measurement point in each fermentation. Dry
weight measurements were not carried out for two hours after inoculation as
non-bacterial solid matter from the inoculation volume would distort meas-
urements greatly, an effect which may also be present to a smaller extent in
measurements from two hours and forward.

5. Results and discussion

5.1 Regulator tuning

Over the first 3.5 hours of the fermentations, manual tuning of the controller
took place in order to give a smooth trajectory of F (figure 3). Based on
the shape of this feed rate curve, tuning was considered successful. Glucose
and acetate levels were low in all fermentations as seen in figure 3, indicating
that values of Csp in the chosen interval (400 – 600) would not give excessive
overflow metabolism. For future experiments a Csp value of 400 was therefore
chosen, as higher values would give more conservative feed profiles. In the
fermentation labelled FCA 1:2 volumetric growth of biomass was significantly
slower than in the others, with a very long lag phase after inoculation. This
does however not influence the conclusions drawn from this experiment.

5.2 Evaluation of the strategy

The two FCA-controlled fermentations gave very similar results, with almost
identical feed rate curves as can be seen in figure 4, showing that the FCA
strategy provides good repeatability of fermentations. A comparison between
these two and the reference showed that while neither gives any major acet-
ate accumulation, the increase in biomass concentration from 2 to 10 hours
was 33 % respectively 24 % higher (cell dry weight) in the FCA-controlled
fermentations compared to the reference, whereas none of the fermentations
exhibit excessive production of acetate (figure 4). It is important to note that
the controller is not designed with the purpose of C to reach its reference
value, rather it is the difference between these which drives the increase in F .

In the set-up using 1/8 of the normal inoculation volume, the FCA-
controlled fermentation showed a considerably lower slope of the feed rate
than that of the reference initially (figure 5). Acetate accumulation in the
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Figure 3. Exponential growth phase of fermentations FCA 1:1–1:3, all
of which were controlled using the FCA controller using different setpoints.
From 0 to 3.5 hours tuning of the feed rate controller was performed; after
3.5 hours tuning was considered successful based on the behaviour of the
feed rate curve after this point.
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Figure 4. Fermentations FCA 2:1 and 2:2 were controlled using the FCA
controller (Csp = 400), while the fermentation titled Reference 2:1 used the
reference control strategy to enable a comparison. Glucose was measured
at the same points in time as acetate and was below the detection limit
(0.8 mg/L) at all points.
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FCA-controlled fermentation was higher than in the standard set-up but
was kept below levels considered harmful, this was due to the uptake rate
of acetate in this organism being low and Csp not being perfectly adjusted
to the process. In the reference fermentation high concentrations of acetate
(>1 g/L) were accumulated (figure 5). Although initial biomass was higher in
the reference, the increase in biomass concentration was significantly slower
than in the FCA-controlled fermentation towards the end of the exponential
growth phase when acetate levels were high, as can be seen in figure 5. This
indicates that growth was inhibited by acetate; at 18 hours after inoculation,
this caused complete process failure in the reference fermentation. This shows
that while the standard controller cannot respond to overflow metabolism,
the FCA controller can do so and avoid excessive accumulation of overflow
metabolites caused by it, thereby avoiding process failure.

In the fermentation where large feed pulses were added externally, the
controller responded by decreasing the feed rate within 5 minutes after an
external feed pulse, showing that it can rapidly detect the onset of overflow
metabolism (figure 6). After the feed added by the pulse was consumed, the
feed rate increased again without oscillations. It returned to a value close to
where, tracing an exponential growth profile, it would be had the pulse not
been added and continued following an exponential profile. This shows that
the controller can also rapidly detect that overflow metabolism has ceased
and switch back to increasing the feed rate at a pace suitable for keeping up
with the increasing biomass concentration.

Two of the feed additions in this fermentation occurred 30 minutes or less
before an acetate measurement point (at 4 and 8 hours); these points show
increased acetate levels but not harmfully so, despite the volume of extra feed
added being very high compared to the feed rate. For instance, at 3.5 hours
0.75 L was added while the feed rate was 1 L/h, meaning that the additional
amount was equivalent to the total feed added during 45 minutes at that
feed rate. The response to the pulse at 3.5 hours, whose size corresponds to
45 minutes of feeding at the current feed rate, was over in less than one hour
indicating an efficient controller response.

Theoretically, the most efficient controller response would be to com-
pletely switch off the controlled feed as soon as extra feed was added and
then immediately return it to levels corresponding to exponential growth
when the extra feed had been consumed. This indicates that there is some
room for improvement of the controller, so that the gain for negative changes
of F is higher. This can be accomplished using a nonlinear transformation of
C, although finding the most suitable transformation would require extensive
system identification and tuning.

70



5 Results and discussion

0

1

2

3

4

0

20

40

60

80

0

0.5

1

0 2 4 6 8 10
0

5

10

F
ee

d
ra

te
(L

/h
)

D
O

(%
)

A
ce

ta
te

(g
/L

)
B

io
m

as
s

(g
/L

)

Time (h)

— FCA 3:1, –– FCA 3:2

Figure 5. Controller behaviour in fermentations with decreased inocu-
lation volume, simulating a situation where the viable cell concentration
in the inoculum is lower than expected or the lag phase of the organisms
is longer than expected. Fermentation FCA 3:1 was controlled using the
FCA controller and Reference 3:1 by the reference strategy. In both fer-
mentations, the inoculation volume was 1/8 of its normal value in order
to challenge the FCA controller and enable a comparison to the reference
during these conditions.
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Figure 6. Study of the controller response to excess substrate. In ferment-
ation FCA 4:1, external additions of feed were used to disturb the process
in order to study the FCA controller’s response to such disturbances. For C,
a horizontal dashed line indicates the setpoint. Vertical dashed lines in the
plots of F , DO and C indicate the times for external feed additions. After
each external addition of feed, the fast dynamics in DO disappeared (seen
as less “noise” in the DO signal), indicating that the regular feed pulses
do not cause a response. Hence, C was lowered to a value well below its
setpoint for a while and during this period F was decreased.
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5.3 Test of generality

In the first four hours of these fermentations, tuning of the feed rate controller
proved necessary as the increase in biomass concentration was significantly
faster than in previous fermentations. The FCA strategy could detect the
presence of complex medium at the start of the fermentation, shown by very
low values of C early in the fermentation, which ensures that F is kept at its
minimum to minimize overflow metabolism (figure 7).

Due to the complex medium containing carbon sources for the bacteria,
some overflow metabolism is unavoidable and all fermentations show accu-
mulation of low levels of acetate during the first 2 hours after inoculation
as seen in figure 7. However, the FCA-controlled fermentations moved away
from overflow metabolism and showed decreased acetate levels sooner than
the reference.

Volumetric productivity of biomass is higher in the fermentations using
the FCA strategy (biomass concentration at the onset is about the same as
in the reference but 30 % higher at 8 hours). This, along with low acetate
levels, shows that the oxidative capacity has been utilized efficiently while
excessive overflow metabolism has been avoided.

6. Conclusions

In this study a new feeding strategy for aerated fed-batch fermentations has
been presented, aimed at giving as high levels of oxidative metabolism as
possible in the exponential growth phase while avoiding excessive overflow
metabolism leading to undesirably high levels of by-products. Its basic prin-
ciple is the same as for the pre-existing probing control strategy and has
the advantage that only dissolved oxygen measurements are needed, but it
improves this concept by use of frequency analysis. This allows continuous
tracking of a feed rate corresponding to the substrate uptake rate and de-
creases the sensitivity to disturbances compared to probing control as dis-
turbances occurring at most frequencies do not affect the measurements.

A simple feed rate controller based on this strategy has been tested in
pilot scale fermentations (0.550 m3), which has shown that it can achieve a
significantly higher volumetric productivity of biomass than in a reference
process while production of harmful by-products has been minor. For fer-
mentations with a lower initial viable cell mass, it can detect the decreased
feed demand and adjust the feed rate accordingly, where the reference con-
troller (used today in industrial fermentations of this type) causes complete
process failure through excessive formation of overflow metabolites. The con-
troller response to excess substrate in the medium has been tested and it has
been shown that it can detect and compensate for this by temporarily de-
creasing the feed rate. While there is room for improvement of the controller
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Figure 7. FCA control applied to a current production process scaled
down to pilot scale. Fermentations FCA 5:1 and FCA 5:2 used the FCA
strategy, while Reference 5:1 used the reference strategy. From 0 to 4 hours
re-tuning of the FCA controller was necessary in order to adjust it as the
B. licheniformis strain used here was faster-growing than that which the
controller was previously tuned for, which caused discrete changes to the
feed rate. Re-tuning was not necessary in the reference fermentation as its
parameters could be altered on beforehand to suit this process, using a

priori knowledge. In the fermentations using the FCA controller, F reached
its highest allowed level at 7 hours; this limit was set so that saturation of
the fermentor’s oxygen and heat transport capacity was avoided.
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by tuning and by finding a suitable nonlinear transformation of the measured
variable, the new concept as such has shown itself successful.

Although most practical testing has been carried out in a process using an
old production strain from Novozymes A/S growing on defined medium, one
series of experiments was carried out in a process utilizing an industrial strain
currently used in large-scale enzyme production growing on complex medium
to study the feasibility of the strategy in such processes. The strategy gave
significantly higher growth of biomass in this process as well, although re-
tuning of controller parameters was necessary as this strain is faster-growing
than the old strain.
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Modelling of the oxygen level response

to feed rate perturbations in an

industrial scale fermentation process

Ola Johnsson, Jonas Andersson, Gunnar Lidén,

Charlotta Johnsson and Tore Hägglund

Abstract

A study of the feasibility of perturbation-based control methods in
industrial fed-batch fermentations based on experiments in industrial
production scale bioreactors (>100 m3) is presented, as well as mod-
elling of the relation between substrate feed rate and dissolved oxygen
level in such a process. Several different types of perturbation-based
control methods have been suggested for control of this type of pro-
cess but it has been reported that perturbations in the feed rate may
cause decreased productivity in fermentations. The results of this study
show that perturbations in the feed rate of production scale fermenta-
tions can achieve significant dissolved oxygen level responses without
decreased productivity. A model based on data for dissolved oxygen
responses and a simulation using a simple observer are given, showing
that it is possible to model industrial mixing dynamics in a simple way
and that this can be used for perturbation-based on-line estimation of
the metabolic state of the system with regard to overflow metabolism.
A frequency region where the model can be used has been identified,
indicating which frequencies would be suitable for perturbation-based
control in industrial fermentations.

© 2015 Elsevier B.V. Printed with permission. Published in Process Bio-
chemistry. The article has been modified to fit the current format.
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1. Introduction

In industrial fermentations, high volumetric productivity and product yield
are highly desirable. To achieve a high productivity in a fed-batch fermenta-
tion, it is typically desirable to go from a low starting biomass concentration
to a high biomass concentration in as short time as possible. However it is
often not desirable to have high substrate concentrations even though this
will lead to high specific substrate uptake and growth rates. This is due
to the effects of a series of metabolic reactions labelled as overflow meta-
bolism, caused by inhibition of the oxidative metabolism, which leads to
the production of by-products at high substrate uptake rates [Tempest and
Neijssel, 1979]. These by-products, such as ethanol, acetate and lactate, are
commonly harmful to the organism; a well-known example is the inhibitory
effects on growth caused by high levels of acetate [Luli and Strohl, 1990] but
such compounds can not only inhibit growth but also reduce production of
heterologous proteins [Jensen and Carlsen, 1990].

Although overflow metabolism allows for fast short-term growth it is re-
garded as an undesirable trait both due to the inhibitory effects of the by-
products and because substrate is diverted into producing these [El-Mansi,
2004]. Overflow metabolism occurs both in model organisms such as the bac-
terium Escherichia coli [Neijssel et al., 1980] and the yeast Saccharomyces
cerevisiae [Sonnleitner and Käppeli, 1986] and in other commonly used in-
dustrial microorganisms such as Bacillus licheniformis [Voigt et al., 2004].

In fed-batch fermentation processes, overflow metabolism can be avoided
by maintaining a sufficiently low feed rate. The challenge in controlling the
feed rate of such processes is therefore to keep the feed rate as high as possible
to get a high volumetric productivity, while not exceeding the rate over which
overflow metabolism occurs.

In a fed-batch fermentation, avoiding overflow metabolism will only limit
the feed rate in the first phase of the process before oxygen or heat transfer
limitations occur. After this point, these factors will give a stricter limitation
of the feed rate than the avoidance of overflow metabolism would. In this
first phase the biomass concentration can increase exponentially and it will
therefore be referred to as the exponential growth phase. It must be pointed
out that although the exponential growth phase may only make up a small
fraction of the duration of the process sequence, this phase can be critical for
the entire process. Both overflow metabolism and carbon starvation can have
a strong inhibiting effect on cell growth and product formation, potentially
leading to a complete process failure in the latter phase of the process, and
in the exponential phase these two must be balanced against each other.
The undesired effects of excessive overflow metabolism are demonstrated
in [Johnsson et al., 2013]. Therefore, in order to ensure high productivity
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without risking process failure, it is of high importance to ensure that the
feed rate is set so that excessive overflow metabolism is avoided throughout
the whole exponential growth phase.

There are several problems in achieving an optimal feed rate during the
exponential growth phase. One is that as the optimal feed rate depends on
the total amount of biomass, which increases exponentially, the feed rate
must span a large range. The major difficulty is however one of sensing; con-
centrations of biomass, substrates and overflow metabolites can be difficult
to measure in-situ, meaning that estimation of the metabolic state with re-
gard to overflow metabolism becomes difficult. Although sensors for some of
these exist and can be used in fermentations with chemically defined media
[Bittner et al., 1998; Rocha and Ferreira, 2002], the measurement problem can
become significantly more difficult when using complex media as is typically
the case in industrial production fermentations. Even in situations where
biomass concentration can be measured or estimated in a precise manner,
the maximum oxidative capacity depends on oxygen and overflow metabol-
ite concentrations in the medium [Konstantinov et al., 1990] and can vary
due to metabolic shifts [Swartz, 1996].

Several different approaches to the problem of finding the best feed rate
while avoiding overflow metabolism exist today. One well-known approach
to this type of problem, where the parameter to control cannot be meas-
ured directly, is to use observer-based regulators. Observers utilize software
sensing, including a model of the system allowing on-line estimations of un-
measured states [Luttmann et al., 2012]; the accuracy of such estimations
depends on the accuracy of the model used. Although many interesting meth-
ods for estimating the states of and controlling this type of system exist, they
typically require measurements for which fast and reliable in-situ measure-
ments are not commonly available in industrial production processes today
such as concentrations of substrate and biomass in the fermentation medium
or concentrations of oxygen and carbon dioxide in the outlet gas and/or as-
sumptions of constant yield parameters [Luttmann et al., 2012; Chéruy, 1997;
Selişteanu et al., 2008; Dewasme and Vande Wouwer, 2008; Dewasme et al.,
2011; Riesenberg and Guthke, 1999; Gnoth et al., 2008; Warth et al., 2010;
Vargas et al., 2012]. In addition, in production processes with complex media,
measurements of the principal substrate are not sufficient to determine the
specific substrate uptake rate as several other substrates may be available
for uptake.

Data-driven methods, such as artificial neural networks (ANNs), can to
some extent be used to create observers requiring fewer nonstandard meas-
urements. These can be used to achieve good control of bioprocesses, but
require large amounts of historical process data for tuning them [Riesenberg
and Guthke, 1999; Gnoth et al., 2008]. Although this needs not be a problem
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when using them to improve control in processes of which many batches have
already been run, it makes implementation more difficult in processes which
are rapidly developed and changed.

Our previous research in fermentation control has focused on utilizing
periodic perturbations in the feed rate of fed-batch fermentations to determ-
ine its metabolic state with regard to overflow metabolism and to control
the fermentation process based on this [Johnsson et al., 2013]. Using peri-
odic perturbations to determine the state of a system and how to control
it is known from for instance perturbation-based extremum-seeking control
[Dochain et al., 2011], from which algorithms have been developed intended
for control of fed-batch processes where overflow metabolism is a concern
[Dewasme et al., 2011; Vargas et al., 2012]. The research presented here has
some similarity to such schemes but is, like our previous work, based on the
principles utilized by for instance Åkesson et al. [1999], de Maré et al. [2003]
and Velut et al. [2007].

The aims of this research have been threefold. Firstly, to determine
whether periodic perturbations in the feed rate of a large industrial produc-
tion fermentation could yield detectable variations in output signals without
decreasing product yield significantly; it has been reported that variations
in the feed rate of a laboratory-scale fed-batch process can decrease both its
biomass and product yield [Lin and Neubauer, 2000]. Secondly, to develop a
model of the relation between feed rate and dissolved oxygen level in the pro-
cess, as the latter is a measurement for which on-line probes are available and
can be found in typical industrial bioreactors for aerobic processes [Alford,
2006] and modern dissolved oxygen probes allow for fast and robust meas-
urements [Glazer et al., 2004]. Thirdly, to utilize the model in an observer
for on-line estimation of the system’s metabolic state.

2. Materials and methods

2.1 Theory

Considering the feed rate of liquid substrate (F ) as the input signal and
dissolved oxygen (DO) measurements as the output signal, the dynamics of
the fed-batch fermentation process can be regarded as containing a series of
phenomena as follows.

1. Substrate mixing, which determines the rate at which substrate is trans-
ported to the cells.

2. Microbial uptake of substrate and oxygen, which determines the con-
sumption rates of these compounds.
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3. Oxygen mixing, which determines the rate at which oxygen is trans-
ported to the cells.

4. Dissolved oxygen (DO) probe dynamics, which determines the response
time of the measured DO signal.

Oxygen mixing dynamics can be regarded as divided into two parts, diffusion
of oxygen from gas bubbles into the liquid phase and mixing of oxygen in the
liquid phase to distribute it in the medium.

Ideally, mixing of feed and oxygen in the liquid phase can be regarded as
linear time-invariant (LTI) processes of first order. It is known however that
in large-scale mixed tanks, tank and impeller geometry can have significant
effects on mixing dynamics which can require advanced models to describe
[Paul et al., 2004]. Diffusion of oxygen from gas bubbles can be considered as
a first-order LTI process [Villadsen et al., 2011] and typical dissolved oxygen
probe dynamics have been showed to be near first-order [Glazer et al., 2004].

As the dynamics of microbial substrate and oxygen uptake are consider-
ably faster than mixing dynamics in industrial-scale bioreactors, microbial
dynamics will be at pseudo-steady state in such processes and can be ap-
proximated into their static form. Microbial uptake of substrate and oxygen,
as well as production of overflow metabolites, has been studied to a large ex-
tent and biochemical models to describe this exist. Such models can contain
a large number of parameters [Dauner and Sauer, 2001], meaning that fitting
them to a certain strain can be difficult. However, models considering only
the relations between uptake rates can be made considerably simpler.

The static relationship between substrate and oxygen uptake can be re-
garded as a saturation, where increasing substrate uptake rates lead to in-
creased oxygen uptake rates until limitation of the oxidative metabolism
sets in and production of overflow metabolites occur (the Crabtree effect)
[Sonnleitner and Käppeli, 1986; Dewasme and Vande Wouwer, 2008]. This
saturation effect is not dependent on the types of overflow metabolites; this
is of significance as the exact compounds produced in overflow metabolism
are not always known [Voigt et al., 2004].

As outlined earlier in this section, the system can ideally be regarded as
a number of first-order LTI processes and a saturation. This model of the
system can be simplified by lumping together oxygen mixing in the liquid,
oxygen diffusion and DO probe dynamics. As illustrated in figure 1, this gives
a model with two first-order processes and a saturation yielding four model
parameters in total.

Ideally, F should be controlled so that the substrate concentration in the
bioreactor gives a substrate uptake rate rs equal to the critical substrate
uptake rate for overflow metabolism, rs,crit. It is however not necessary to
completely avoid production of overflow metabolites; for instance, acetate
concentrations below 1 g/L appear to have little or no effect on E. coli growth
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(a) The full process model, including a saturation and four first-order LTI processes.
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(b) The simplified process model, including a saturation and two first-order LTI processes.

Figure 1. The full and simplified process model structures. This shows
how the full model of the system is simplified into a form with two first-order
LTI processes and a static saturation.

in fed-batch fermentations [Luli and Strohl, 1990]. This means that a vary-
ing value of F , causing rs to vary, could possibly be used to determine the
system’s metabolic state with regard to overflow metabolism without influ-
encing the process yield negatively. This would require that variations in F
small enough that process yield is unaffected can achieve variations in output
signals which can be separated from noise.

2.2 Bioreactor

Experiments were performed in industrial production bioreactors at the No-
vozymes A/S site in Kalundborg, Denmark. These are cylindrically shaped
bioreactors similar to what is described in [Li et al., 2000] with a volume of
more than 100 m3, stirred by multiple axial agitators. Feed is added through
ports in the upper half, while air is inserted through a sparger at the bottom.
Dissolved oxygen in the medium is measured by a probe positioned near the
bottom of the bioreactor, in experiment 1 and 2 this was an electrode while
in experiment 3 and 4 it was an optode (an optical sensor device).

The feed rate to a bioreactor is controlled to its setpoint by an internal
control loop measuring the feed rate and controlling the position of a valve
in the feed stream. This internal loop was re-tuned to allow it to keep up
with rapid variations in the feed rate setpoint.

2.3 Microorganism and culture conditions

The microorganism used in all experiments is a recombinant B. licheniformis
strain originating from Ca63 expressing Subtilisin.

For inoculation, cells were added from an inoculation stock and grown in
an inoculation flask. This was subsequently added to an aerated seed biore-
actor with a medium similar to the inoculum medium described in [Kaasgaard
et al., 2004]. The cells were grown until the end of the exponential growth
phase, determined by observing the oxygen uptake rate trend over time, and
then transferred to the main bioreactor.
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In the main bioreactor, a complex fermentation medium similar to that
used in [Van Putten et al., 1996] was used. The fermentation temperature and
pH were kept constant throughout the perturbation periods and the culture
was continuously fed carbohydrate, while at all times maintaining a measured
DO level above 20 % saturation. pH was controlled through addition of NH3,
meaning that further addition of a source of nitrogen was not needed as the
amount added through pH control together with that present in the initial
medium was sufficient for it to exist in non-limiting concentrations during
the whole process.

2.4 Software

On-line control and measurement of the processes was performed with a
sampling period of 6–12 seconds. As the process supervision system was
unable to provide measurements with even sampling interval, interpolation
between sampling points was necessary. Analysis of data was performed in
Matlab, where the nonlinear grey-box model estimation methods in the Sys-
tem Identification Toolbox were used for fitting models to data and for cre-
ating a nonlinear estimator for the system.

2.5 Experiment design

In all experiments, sinusoidal waves were superimposed on F , a set-up similar
to that used in some perturbation-based extremum-seeking control schemes.
Wave amplitude varied between 20 and 170 L/min and wave frequency varied
between 2.5 and 20 mHz in order to determine for which settings a response
in the dissolved oxygen signal could be achieved. In the fourth experiment
no variation of the frequency was done, as a suitable frequency region was
known when it was performed. The productivity of all fermentations was
evaluated to determine whether the oscillations in the feed rate would have
a significant effect on these.

The first and third experiments were performed towards the end of fer-
mentations, when biomass concentration is high and the feed uptake rate is
far from the critical one, to allow for modelling of the system without inter-
ference from the saturation in oxidative metabolism. The third experiment
also included step changes in Fsp.

The second and fourth experiments were performed during the exponen-
tial growth phase at the start of fermentations, as this phase is of greatest
interest for avoiding overflow metabolism and the fermentation may be more
sensitive to variations in F in this phase than in the later phase.

85



Paper II. Modelling of the oxygen level response to feed rate perturbations

3. Results and discussion

The result analysis in this study focuses to a large extent on the relationship
between F and DO. Mean values are removed from these to allow fitting of
transfer function models.

3.1 Perturbation responses and process robustness

F and DO for all four experiments are shown in figure 2, giving an overview
of input and output data. A detailed view of the last part of experiment 1 is
shown in figure 3, illustrating that responses to perturbations are visible in
the DO signal, significantly higher than the noise level and easy to distinguish
frequency-wise.

The results of experiments 2 and 4 are of particular relevance when study-
ing process robustness as they were performed at the start of fermentations,
when these can be expected to be more sensitive to disturbances due to
the lower biomass concentration. Although perturbations in F during the
exponential growth phase of experiment 2 do not give rise to variations in
DO, this can be attributed to the oxidative metabolism being saturated dur-
ing this phase; immediately after the exponential increase in F is stopped
at 5.5 hours, clear responses in DO can be seen. If the appearance of a re-
sponse in DO was due to increased biomass or feed rate in itself this response
should be proportional to F , this not being the case indicates that it is due
to saturation of the oxidative metabolism. In experiment 4 some perturba-
tion responses can be seen towards the end of the exponential growth phase,
indicating a move away from overflow metabolism at this time.

In all four fermentations no significant decrease in productivity (defined as
product activity at the end of the fermentation) was seen, as shown in figure 4.
This indicates that the robustness of the process to periodic variations in F
is high and it is possible to achieve responses in DO without influencing
productivity negatively.

3.2 Modelling

Although feed rate perturbations give rise to significant variations in DO,
this is not necessarily sufficient to fit a simple model to data. Data from the
two experiments performed at the end of fermentations were used so that
the oxidative saturation would not have an effect on modelling. This means
that using previous modelling assumptions, the model of the ideal system
should be on the general form given as a transfer function in (1), meaning a
second-order LTI system.

DO(s) =
K

(1 + sT1)(1 + sT2)
F (s) (1)
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(a) Input and output for the first experiment, at the end of a fermentation. Mean values
are removed to allow fitting of transfer function models.
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(b) Input and output for the second experiment, in the exponential growth phase.

Figure 2. Input F and output DO. This shows all four frequency re-
sponse experiments performed in industrial production scale (continued on
next page).
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(c) Input and output for the third experiment, at the end of a fermentation. Mean values
are removed to allow fitting of transfer function models.
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(d) Input and output for the fourth experiment, in the exponential growth phase.

Figure 2. (Continued)

88



3 Results and discussion

4 4.2 4.4 4.6 4.8 5 5.2

−100

−50

0

50

100

4 4.2 4.4 4.6 4.8 5 5.2
−1

0

1

2

F
(L

/
m

in
)

D
O

(%
)

Time (h)

Time (h)

Input signal

Output signal

(a) Detailed view of input F and output DO for the last part of the third experiment. In
the first region where F is perturbed this gives rise to significant variations in DO with the
same frequency as the perturbation, while in the second region where F is nearly constant
with only minor variations due to the internal feed rate control loop no such response is
seen. Mean values are removed to allow fitting of transfer function models.

0 5 10
0

200

400

600

800

1000

1200

P
ow

er
sp

ec
tr

al
d

en
si

ty

Frequency (Hz)

(b) Frequency spectrum of the DO signal
when perturbed by a 2.5 mHz sine wave.
The signal has a high content of the per-
turbation frequency.
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(c) Frequency spectrum of the unper-
turbed DO signal.

Figure 3. Comparison of perturbed and unperturbed DO. This shows
that a clear response to the perturbations in F can be seen, when compared
to the unperturbed system.
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Figure 4. Productivity for the four experiments compared to a batch of
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erences and a dashed line indicating their average productivity. The pro-
ductivities for all four experiments are within the confidence interval.
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Figure 5. Fitting of the model to input-output data from step responses.
Full lines are measured data, a dashed line indicates model output. Mean
values have been removed to allow fitting of transfer function models. The
best fit, shown in the figure, is 42.66 % and is given for T1 = 27.81 s,
T2 = 400.12 s, K = −0.11323 % / (L/min).

For determining the static gain K of the model, studying low-frequency
behaviour and in particular the response to step changes is suitable. Fitting
the model to data from the step changes of Fsp at the start of experiment 3, as
illustrated in figure 5, suggests the value K = −0.11 % DO / (L feed / min)
for the equipment used in this experiment.

Step responses, acting on low frequencies, are not well suited for describ-
ing the dynamic behaviour of a process at higher frequencies. This means
that although they can be relied on to provide a fairly accurate estimate of
process gain, the estimations of the time constants T1 and T2 are not as re-
liable. Responses to sinusoidal perturbations such as those employed during
most of experiments 1 and 3 are however suitable for determining system
characteristics at their respective frequencies.

The model could not be well fitted to data over all perturbation frequen-
cies (2.5–20 mHz, corresponding to period times of 400–50 s), indicating that
it could not be used to describe process behaviour in the whole frequency
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range. This is not surprising, as this would require ideal mixing. A set of
common models were fitted to data: unstructured models of ARX, ARMAX,
Output error and Box-Jenkins type [Madsen, 2008] (orders 1–8) to determine
to what extent the use of unstructured models could improve fit to data and
structured process models of order 1–3 on transfer function form with and
without a zero and/or time delay to determine whether structured models of
similar complexity as (1) could improve model fit. None of the models gave a
good fit to all data and as no model could describe process behaviour across
all frequencies, the following areas were investigated:

1. Whether the model in (1) could be used within a limited frequency
range, indicating that it could be used to describe the process response
to perturbations of certain frequencies.

2. Whether other model structures could give a better fit to data within
a limited frequency range or give a similar fit while being simpler,
indicating that the model structure can be improved.

For each perturbation frequency, model fitting was performed for all
model types in the set as well as for the model suggested in (1). For all
structured models in experiment 3, the value of K was set to the value de-
termined by the step response experiment when modelling based on data
from this experiment. As a different probe was used in experiment 1, it was
calibrated differently and the value of K found in experiment 3 could not be
relied on in that case. Labelling for structured models is given in table 1, the
model in (1) is labelled as PP. A summary of model fitting results for data
from experiments 1 and 3 can be seen in table 2 and 3 respectively, showing
that for all model types the fit is low at perturbation frequencies of 5 mHz
and higher. Several of the model types have significantly better fit to data
at frequencies 3.33 and 2.5 mHz, indicating that they may describe system
dynamics more accurately in this frequency range. Fit is defined as how well
the variance of data is explained by the model, using (2) where a fit of 100 %
would indicate that the model describes all of the variance of the data.

Fit to data = 100
(

1 − ‖DO − DOmodel‖2

‖DO − DO‖2

)

(%) (2)

This is investigated further by fitting models to data corresponding to
these input frequencies in the third experiment. Results of this model fitting
are shown in table 4 and illustrated in figure 6. With the model in (1) as a
starting point, the following conclusions can be drawn:

• Replacing one pole with a time delay gives approximately the same fit
(PD).

• Removing one pole and adding a zero detoriates the fit somewhat (PZ).
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• Structured models with a greater number of parameters achieve a some-
what better fit.

• Reducing the number of parameters by using a double pole detoriates
the fit somewhat. Of the two-parameter models (P, 2P and 3P), this
gives the by far best fit.

• High-order unstructured models can improve the fit somewhat.

Figure 6a shows that it is possible to model the system response to
perturbations in a satisfactory manner. Although there is significant high-
frequency noise leading to a lower model fit, the oscillations caused by the
perturbations are modelled well. Figure 6b shows that the outputs of the
illustrated models are very similar. Therefore, as has been seen in table 4,
it can be concluded that not much accuracy is lost when constraining the
two-pole model to having a double pole.

3.3 Simulation

As the model in (1) is based on ideal mixing it can be concluded that for
input frequencies of 3.33 and 2.5 mHz, process dynamics can be well approx-
imated by those of ideal mixing in the bioreactor. This strongly implies that
the model holds in the whole spectrum between these frequencies, while the
model can not be used to accurately describe the system response at higher
input frequencies due to non-ideal mixing effects being more prominent at

Table 1. Labelling for structured models. This provides a nomenclature
for structured models used in this work.

Model structure Symbol Transfer function form

One pole P
K

1 + sT

Two independent poles PP
K

(1 + sT1)(1 + sT2)

Three independent poles PPP
K

(1 + sT1)(1 + sT2)(1 + sT3)

Double pole 2P
K

(1 + sT )2

Triple pole 3P
K

(1 + sT )3

Zero Z (1 + sTz)

Time delay D e−sL
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Table 2. Comparison of results for model fitting for experiment 1. The
expression for model fit is given in (2). For unstructured models, orders 1–8
were used and the best fit is shown. Labelling for structured models is given
in table 1.

Perturbation frequency (mHz)

20 10 5 2.5

Model type Fit to data (%)

Unstructured

ARX 11 3.7 4.9 35
ARMAX 16 4.5 4.9 41
Output error 19 4.5 5.5 41
Box-Jenkins 24 7.8 6.0 42

Structured

P 8.3 0.58 2.6 27
PD 11 2.0 4.4 33
PZ 8.3 0.58 3.2 32
PDZ 11 2.0 4.4 33
2P 4.1 3.2 4.2 33
3P 11 3.5 4.2 33
PP 4.1 3.2 4.2 33
PPD 14 3.3 4.3 33
PPZ 11 3.3 4.3 33
PPDZ 14 3.3 4.3 33
PPP 11 3.5 4.2 33
PPPD 14 3.5 4.2 33
PPPZ 15 3.7 4.4 33
PPPDZ 15 3.7 4.4 33

these frequencies. It can also be concluded that although assuming similar
time constants for feed and oxygen dynamics decreases the model’s degree of
freedom, it does not decrease model fit to data by a lot.

The total substrate and oxygen fluxes into the biomass, that is, the total
uptake rates of all biomass in the bioreactor, are νs = V Xrs and νo = V Xro,
respectively. Including the saturation in oxidative metabolism into the model
as per figure 1(b) and defining the saturation as ro = min(rs, rs,crit) gives
a nonlinear model with one unknown parameter to estimate, the critical
substrate uptake flux νs,crit = V Xrs,crit. Fitting this model to on-line data
gives a nonlinear observer and by estimating νs in relation to νs,crit in this
manner, a controller can be constructed for controlling F to give a desired
value of νs.
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Table 3. Comparison of results for model fitting for experiment 3. The
expression for model fit is given in (2). For unstructured models, orders 1–8
were used and the best fit is shown. Labelling for structured models is given
in table 1.

Perturbation frequency (mHz)

16.7 10 6.67 5 3.33 2.5

Model type Fit to data (%)

Unstructured

ARX 7.7 11 5.4 14 36 48
ARMAX 18 16 13 23 40 55
Output error 20 16 13 23 40 55
Box-Jenkins 21 17 13 24 40 57

Structured

P 0.0 4.9 0.93 3.8 19 39
PD 2.4 9.6 1.7 10 31 47
PZ 0.0 8.2 1.6 11 35 47
PDZ 2.5 9.6 1.7 11 35 47
2P 5.8 9.0 2.7 11 34 42
3P 5.7 5.4 0.16 3.5 14 17
PP 8.7 9.2 2.7 11 35 47
PPD 11 9.6 2.9 11 35 47
PPZ 9.5 9.5 3.7 11 35 47
PPDZ 13 9.6 3.7 11 35 47
PPP 5.7 9.9 0.97 11 35 47
PPPD 5.9 10 1.7 11 35 47
PPPZ 5.9 9.9 1.7 11 36 47
PPPDZ 5.9 10 1.7 11 36 47

No long-term accumulation of substrate will occur as long as the max-
imum substrate uptake rate rs,max is not exceeded. When this occurs, max-
imal overflow metabolism will also occur and for a controller which can avoid
long-term overflow metabolism it follows that long-term accumulation of sub-
strate will also be avoided. Hence, it can be assumed that the relation between
F and V Xrs will only depend on mixing dynamics.

To illustrate how the model can be used for estimation of the metabolic
state with regard to overflow metabolism, allowing control of the feed rate
based on this estimation, we provide a simple example.

Using an in silico model of the system in figure 1(b), the system was
perturbed using a sine wave with amplitude A = 4 L/min and frequency
ω = 3.33 mHz. White noise with an amplitude equivalent to 10 % of the
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Figure 6. Illustration of model fit to output data for perturbation fre-
quencies 3.33 and 2.5 mHz in experiment 3. A full line indicates measured
data, a dashed line the model in (1), a dash-dotted line a model with a
double pole and a dotted line the best unstructured model (an 8th order
Box-Jenkins model). Mean values have been removed to allow fitting of
transfer function models.

amplitude in unsaturated oscillations in DO was added to the system output
to simulate process disturbances. An estimator using the same nonlinear grey-
box model approach used for analysis of experimental data was employed
to determine values for the saturation variable νs,crit. The system used a
sampling period of 10 seconds and a 600 second window for the estimator.

This simple approach has two drawbacks. First, it assumes a constant
value of νs,crit − F throughout the estimation window, meaning that it will
give an averaged value over the time period in the window although it is
in fact the latest value which is of interest. Ideally, νs,crit − F should be
allowed to vary within the window using recursive methods. Second, it gives
rise to oscillations in the estimate following the oscillations in DO, requiring
a filter which introduces an additional delay. However, high performance is
not sought for here, merely a proof of concept.
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Table 4. Comparison of results for model fitting for data corresponding
to input frequencies 3.33 and 2.5 mHz in experiment 3. The expression for
model fit is given in (2). For unstructured models, orders 1–8 were used and
the best fit is shown. Labelling for structured models is given in table 1.

Model type Fit to data (%)

Unstructured

ARX 43
ARMAX 44
Output error 44
Box-Jenkins 44

Structured

P 30
PD 42
PZ 41
PDZ 42
2P 38
3P 14
PP 42
PPD 42
PPZ 42
PPDZ 42
PPP 42
PPPD 42
PPPZ 42
PPPDZ 42

Performance of the estimator when using a constant value for the unper-
turbed feed rate and a predefined ramp for the values of νs,crit are shown
in figure 7. This shows a delay in estimations as expected but variations in
νs,crit can be tracked. The maximal value of |νs,crit −F | which can be tracked
is proportional to the amplitude of the perturbations in F . For perturba-
tion amplitudes proportional to the current feed rate, A = kpF , this relation
becomes

|νs,crit − F |max = kdkpF

For time constants as given in this model, kd = 0.45. This means that
for kp = 0.3, deviations up to 13.5 % of the current unperturbed feed rate
can be tracked accurately. If νs,crit deviates from F by more than this the
estimator can determine whether the value is above or below this interval,
corresponding to no saturation effect and full saturation respectively, but not
the actual value. This is a fundamental limitation in this type of perturbation-
based approach.
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Figure 7. Outcome for the estimator. F is the input signal, νs is the sub-
strate uptake rate, νs,crit − F is the remaining oxidative capacity (negative
values indicate that the capacity is exceeded by the unperturbed feed rate)
where a full line indicates the actual value and a dashed line the estimated
value, DOavg is an average dissolved oxygen level in the bioreactor and DO

is the measured dissolved oxygen level.

4. Conclusions

First, this work shows that it is possible to employ perturbations in the
feed rate to achieve measurable responses in the dissolved oxygen signal of a
large-scale (>100 m3) industrial fed-batch fermentation without decreasing
its productivity, showing that perturbation-based methods are viable in such
processes.
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Second, it shows that a simple model for mixing dynamics in the relation
between feed rate and dissolved oxygen can give good fitting to experimental
data from industrial-scale fermentations. Models of the suggested type can be
incorporated into advanced biochemical models to simulate large-scale mix-
ing effects and used in development of perturbation-based control strategies
for this type of process. As it is a 2nd order LTI model it offers an easy way
of comparing results in different scales with regard to feed rate and dissolved
oxygen relationships and can easily be implemented in many types of compu-
tational tools and process monitoring software. A suitable frequency region
for perturbations to the input signal in the industrial scale fermentation pro-
cess has been identified as well, which is of importance for the implementation
of perturbation-based control strategies.

Third, a simple observer utilizing the suggested model is given to illustrate
how it can be used for on-line process surveillance and control.

5. Nomenclature

Throughout this work, a number of different parameters are used to describe
the system and the controller. Their descriptions and units can be found in
table 5.

Table 5. Nomenclature.

Variable Symbol Unit

Biomass concentration X g / L
Liquid medium volume V L
Feed rate F L / min
Specific substrate uptake flux rs L / (min g)
Substrate uptake flux νs L / min
Critical specific substrate uptake flux rs,crit L / (min g)
Critical substrate uptake flux νs,crit L / min
Specific oxygen uptake flux ro L / (min g)
Oxygen uptake flux νo L / min
Unsaturated specific oxygen uptake flux r∗

o L / (min g)
Unsaturated oxygen uptake flux ν∗

o L / min
Average dissolved oxygen in medium DOavg % of maximum
Measured dissolved oxygen level DO % of maximum
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A mid-ranging control strategy for

non-stationary processes and its

application to dissolved oxygen control

in a bioprocess

Ola Johnsson, Daniel Sahlin, Johanna Linde,

Gunnar Lidén and Tore Hägglund

Abstract

In this study a modified mid-ranging strategy is proposed where the
controller for the secondary manipulated variable uses its own output
as its setpoint, possibly with an offset and/or re-scaling. This modific-
ation allows the manipulated variables to increase in unison so that the
mid-ranging advantage of utilizing the fast dynamics of the primary
controller to regulate the process can be achieved also in non-stationary
processes, while not adding complexity to the controller. The proposed
control strategy has been implemented in pilot-scale (0.550 m3) indus-
trial bioprocesses where it is used to control the dissolved oxygen level
by manipulating agitator speed and aeration rate. The controller is
demonstrated to perform well in these, outperforming a reference con-
troller which has previously been shown to give satisfactory control
performance. It is also shown in similar experiments that the strategy
can easily be adapted to control dissolved oxygen in bioprocesses where
the feed rate is controlled using an extremum-seeking controller. The
proposed strategy is generally applicable to non-stationary processes
where a mid-ranging approach is suitable.

© 2015 Elsevier B.V. Printed with permission. Published in Control Engin-
eering Practice. The article has been modified to fit the current format.
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1. Introduction

In an aerobic bioprocess, maintaining aerobic conditions in the liquid medium
is important to ensure efficient microbial growth and production. Oxygen
transfer through the medium is more efficient at low oxygen concentrations
[Garcia-Ochoa and Gomez, 2009] so maintaining a low yet non-zero oxygen
concentration is therefore desirable, meaning that well-designed control which
allows for lower set-points can improve process efficiency [du Preez and Hugo,
1989]. When using oxygen control in conjunction with other control systems
it can also be highly important that a steady baseline in the oxygen level is
maintained, so that disturbances in oxygen concentration do not influence
these other systems [Åkesson and Hagander, 1999].

Mid-ranging control is a commonly used approach for control of a single
variable using two manipulated variables (process inputs). Although model
predictive control (MPC) can be more suitable to handle complex systems,
mid-ranging control is often preferred due to its simplicity [Allison and
Ogawa, 2003]. The control of oxygen concentration in a biotechnical pro-
cess in a stirred-tank reactor can be regarded as such a process, where the
manipulated variables are agitator speed and aeration rate. There are other
variables which can be used to influence the oxygen concentration, such as
oxygen concentration of inlet air and total pressure, but these are often not
practical to use.

Many industrial bioprocesses are performed as fed-batch and are therefore
non-stationary [Rani and Rao, 1999]. This causes certain difficulties with
regard to mid-ranging control as it is then typically not desirable to maintain
one manipulated variable at a predefined level for as long as possible, which
is the aim of classical mid-ranging control. In this study, a modification to the
classical mid-ranging scheme for the purpose of adapting it to non-stationary
processes is proposed and evaluated in the context of oxygen control in a fed-
batch industrial bioprocess.

2. Industrial bioprocesses

In an industrial bioprocess, the aim is commonly to maximize microbial
growth and/or production of some compound produced by microorganisms.
To achieve this in an efficient manner, it is necessary to maintain a suitable
environment for the microorganisms at all times. This is commonly done by
using stirred-tank bioreactors, where microorganisms are grown in a liquid
medium which is stirred to achieve an even spatial distribution of compounds
in the medium.
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Substrate feed

Aeration

Agitation

Pressure

Temperature

pH

Dissolved oxygen

Gas outlet

Figure 1. Illustration of a typical fed-batch bioreactor. Liquid substrate
is added continuously while air is introduced through a sparger at the bot-
tom of the tank. Agitation ensures that the liquid medium is suitably mixed
and the air bubbles small enough to allow efficient oxygen transfer. Temper-
ature, pH and dissolved oxygen concentration are monitored continuously,
while the oxygen and carbon dioxide concentrations in the gas outlet are
analyzed by a mass spectrometer. Total pressure is controlled by varying
the gas outlet flow, temperature through cooling and pH through addition
of acid/base.

2.1 Fed-batch bioprocesses

In order to control microbial growth a limiting compound, that is, one which
does not exist in excess in the medium, can be added by means of a continu-
ous feed throughout the process. This mode of operation is termed fed-batch
and is commonly used in large-scale industrial bioprocesses today [Lidén,
2002]. An illustration of a fed-batch bioreactor showing some common meas-
urements and actuators is given in figure 1.

A fed-batch bioprocess can be divided into at least two distinct phases,
an initial growth phase in which microbial growth is emphasized followed by
a production phase where as much as possible of the product compound is
produced. During the growth phase, exponential growth of the biomass at a
high rate is desired as a higher biomass concentration will be able to generate
more product. The growth phase ends when the mass transfer capacity of the
bioreactor limits biomass growth, meaning that if the biomass would increase
further it would not be possible to supply oxygen at a high enough rate,
transport away heat fast enough or some other transport limitation occurs.
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This leads to a change in control objective and typically means that it is
necessary to decrease the substrate feed rate to limit growth.

2.2 Oxygen dynamics in a fed-batch bioreactor

Exponential growth of microorganisms can in the right environment be very
rapid, with a doubling time lower than 10 minutes [Eagon, 1962]. This means
that in the case of microorganisms using oxygen as a substrate, termed aer-
obes, the oxygen consumption during the initial growth phase of a fed-batch
bioprocess will be exponentially increasing at a high rate.

Maintaining a steady concentration of oxygen above zero in the liquid
bioreactor medium is required in aerobic bioprocesses, as oxygen deficiency
leads to either cessation of growth (obligate aerobes) or less efficient metabol-
ism as well as production of undesirable by-products (facultative anaerobes)
[Villadsen et al., 2011]. As the consumption of oxygen increases with both
biomass concentration and specific growth rate, the supply of oxygen must
also increase to maintain a desired concentration. The supply of oxygen can
be described as in (1), where qo is the volumetric mass transfer rate of oxy-
gen, kl is the mass transfer coefficient, a is the specific surface area, C∗

o is
the oxygen concentration when at equilibrium with the gas phase and Co is
the current oxygen concentration [Villadsen et al., 2011].

qo = kla(C∗
o − Co) (1)

As seen in (1) the oxygen supply is determined by several factors, which
can be manipulated in order to vary the supply. In a stirred-tank reactor
(STR) kla can be increased by increasing the aeration rate and the agitator
speed, but it is also possible to increase the transfer by increasing the partial
pressure of oxygen in the gas phase and hence C∗

o or decreasing the dissolved
oxygen level Co. However, increasing the partial pressure of oxygen in the gas
phase is often not feasible as it either requires increased total pressure which
increases strain on the bioreactor or addition of pure oxygen which is costly
compared to using pure air. Decreasing Co does not come with these practical
limitations but brings the process closer to oxygen deficiency, meaning that
better control is required to avoid this undesirable state.

Empirical correlations for the effects of aeration (AR) and agitation (AG)
on kla exist, but coefficient values will vary depending on the size and geo-
metry of the bioreactor. Most of them can be written in the form given in (2),
where us is the superficial gas flow (proportional to aeration rate), Pg/Vl is
the power input per volume of gassed medium and k, α and β are coefficients
which will depend on medium properties [Villadsen et al., 2011].

kla = k · uα
s

(

Pg

Vl

)β

(2)
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A correlation between the power input into gassed medium Pg and the
power input into ungassed medium P was suggested by Hughmark [1980],
as given in (3) where Vl is the liquid volume, g is the acceleration of gravity
and ds and ws are the diameter and width of the stirrer respectively.

Pg = P · 0.1
(

AR

AG · Vl

)−1/4
(

AG2 · d4
s

g · ws · V
2/3

l

)−1/5

(3)

The power input into ungassed medium, P , can be expressed as in (4)
where Np is the dimensionless power number which depends on the viscous
and inertial forces and ρl is the density of the liquid.

P = Np · ρl · AG3 · d5
s (4)

Relations (3) and (4) give that the power input per volume of gassed
medium relates to AG and AR as in (5).

Pg

Vl
∝ AG2.85 · AR−0.25 (5)

Villadsen et al. [2011] give examples of coefficient values in (2) for different
settings, the values for α are in the range 0.2 – 0.5 and the values for β are
0.4 – 0.7. Inserting this into (2) and using the relation in (5), it can be seen
that kla depends on AG and AR as in (6) where a is in the range 1.14 – 2.00
and b is 0.0250 – 0.400. As the exponent for AG is at least 2.85 times greater
than that for AR, variations in AG will have a larger impact on kla. In a
setting where a primary control variable should be chosen, AG is therefore
the most suitable choice.

kla ∝ AGa · ARb (6)

3. Control strategies

For a process with two inputs and one output, mid-ranging control as il-
lustrated in figure 2 is a classical solution to the control problem. Utilizing
the first input to control the output directly and the second input to con-
trol the first, it allows for rapid control of the process output through one
of the inputs while the other input ensures that the first does not become
saturated. Mid-ranging control is a simple control structure which is widely
implemented in industry today [Haugwitz et al., 2005]. It has been known
for long and is described by Shinskey [1988] who terms it valve positioning
control (VPC), since one common use of it is to control a liquid flow using
two valves of different sizes. For non-stationary processes, however, classical
mid-ranging control can be unsatisfactory as keeping one process input at a
constant level for as long as possible may not be desirable.
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Figure 2. Classical mid-ranging control of a process with two inputs and
one output. C1 is used to regulate the controlled variable y to ysp using
u1 while C2 is used to control the value of u1 to usp using u2. P1 and P2

describe the process dynamics for inputs u1 and u2 respectively, the model
assumes that these are decoupled.

We here propose a strategy for control of a non-stationary process where it
is desirable to maintain the process inputs at similar levels or with a constant
scaling factor or offset between them. This strategy employs a mid-ranging
approach, with minor modifications compared to classical mid-ranging con-
trol which in no way add to the complexity of the controller. The key idea
is to use one process input to control the process output and the other to
control the first input in a way similar to mid-ranging control, but using the
value of the second input as the setpoint for the first input. This scheme is
illustrated in figure 3. Controlling the difference between the input signals
to a non-zero value is merely a matter of adding a constant offset to one of
the inputs of the second controller. Similarly, adding a scaling factor to one
of the inputs to the secondary controller (C2) allows controlling the inputs
to different levels. As minimum and maximum levels of inputs are typically
well known, calculation of offset and scaling factors is a trivial matter even
if they are not normalized to 0–100 %.

4. Materials and methods

4.1 Fermentation equipment and growth conditions

Pilot scale bioreactors with a volume of 0.550 m3 (0.350 m3 fill volume) of the
same type as described in [Albæk et al., 2008] were used in all experiments.

The microbial strain used in the experiments was the recombinant
amylase-producing Bacillus licheniformis strain SJ4628, derived from DN286
[Fleming et al., 1995]. This is an industrial strain developed by No-
vozymes A/S. 24 kg medium from a seed bioreactor was used to inoculate
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Figure 3. The proposed strategy for control of non-stationary processes.
C1 is used to regulate the controlled variable y to ysp using u1 while C2

is used to control the value of u1 to u2 using u2. P1 and P2 describe the
process dynamics for inputs u1 and u2 respectively, the model assumes that
these are decoupled.

the bioreactors at the start of each experiment. 300 kg of a defined starting
medium was used and the bioreactors were fed with 64 % w/w glucose.

4.2 Software implementation

The bioreactors were controlled using the commercial DeltaV process con-
trol system which allowed on-line measurement of dissolved oxygen satura-
tion (DO), which is a measure of Co given as the saturation percentage of
oxygen in the liquid medium. 100 % corresponds to the dissolved oxygen
concentration when the liquid is in equilibrium with air.

Other measured variables include pH, temperature (T ) and the concentra-
tion of oxygen and carbon dioxide in the outlet gas. The latter two, together
with gas flow rate measurements, allow for calculation of oxygen uptake rate
(OUR) and carbon dioxide emission rate (CER). Although these are not
directly related to the results of this study, they were monitored to ensure
that no unexpected deviations occurred during the experiments.

The script implementing the controller was developed in Matlab and run
on a separate computer, using an MX OPC server to allow it to write set-
points to and read measured data from the DeltaV system. The controller
was used to control the feed rate (F ), the aeration rate (AR) and the agitator
speed (AG) of the processes. The sampling and control period was 2 seconds
in all experiments.

4.3 Experiment set-up

Two experiments were performed to evaluate the performance of the control
strategy and two reference experiments were performed to allow a compar-
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ison to a reference strategy. The reference strategy is the split-range method
described by Johnsson et al. [2013] where AG is used to control DO until it
saturates, at which point AR is used instead until it saturates too.

In the evaluated DO control strategy, controller set-up was done as fol-
lows. AG was used to directly regulate DO to a setpoint of 20 % and was
controlled using a proportional-integral (PI) controller. AR was used in the
secondary loop to regulate AG and was also controlled by a PI controller.
The choice of AG as the primary manipulated variable was due to the know-
ledge that the dynamics of its effects on DO are faster than those of AR. All
PI controllers used were on the form given in (7), which for the implement-
ation were discretized into the form in (8) where h is the sampling interval
and k is the current sampling instance. In the implementation, a conditional
integration scheme was also used for anti-windup.

U(s) = K
sTi + 1

sTi
E(s) (7)

u(k) = K

(

e(k) +
h

Ti

k
∑

n=1

e(n)

)

(8)

Controller design and tuning was done based on a series of modelling ex-
periments in which the system response to step changes in AG and AR were
evaluated from different starting levels of the control signals. In these exper-
iments DO was controlled between step changes using only a PI controller
for AG so that a baseline of 20 % DO saturation was maintained, while AR
was held constant at values varying between experiments.

From step responses in DO first-order time delay (FOTD) models were
fitted to the system, meaning that the parameters Kp, T and L in the transfer
function process model (9) were determined. As it is known that the effects
on DO of AG and AR are not additive, a series of local FOTD models were
created. These were used in conjunction with a gain scheduling set-up to
tune a PI controller for the primary control loop according to the lambda
tuning rules as described by for instance [Åström and Hägglund, 2006], with
Tcl = T . It was found that the level of AR had no clear effect on the model
parameters and therefore only gain scheduling based on AG was required.
The secondary controller was manually tuned to act only at low frequencies
so that it would not interfere with the primary control loop and also used
gain scheduling based on the step response experiments.

P (s) =
Kp

sT + 1
e−sL (9)

The AG setpoint was set to the current value of AR plus an offset as
described in section 3. In addition, the setpoint was given a maximum value
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equal to 95 % of the maximum AG so that the slower aeration rate controller
would saturate just before the agitator speed controller. Agitation and aer-
ation were limited to 125 – 475 rpm and 150 – 450 L/min respectively, due
to the physical constraints of the system.

In one reference and one evaluation experiment, the feed rate was con-
trolled to follow predefined ramps. In the others, a feed rate controller similar
to that used in Johnsson et al. [2013] was used in which the DO response
to pulses in the feed rate at a predefined frequency of 10 mHz was used to
evaluate the current metabolic state of the process and control the feed rate
based on this. This controller utilizes the saturation-like effect seen in oxygen
consumption when overflow metabolism occurs, meaning that the oxygen re-
sponse to feed variations decreases, to ensure that the feed rate is close to
the critical feed rate for overflow metabolism. Hence, a high growth rate is
achieved while no long-term accumulation of overflow metabolites occur. In
all experiments, a maximum limitation on the feed rate at 5 L/h was em-
ployed. The experimental set-up when using the extremum-seeking feed rate
controller is schematically shown in figure 4.

When using the feed rate controller the evaluated DO control strategy
was modified by addition of a notch filter, which attenuates the frequency of
the feed rate pulses from the measured DO signal sent to the AG controller
without affecting other frequencies, hence allowing fast control without re-
moval of the feed pulse responses in DO needed for the feed rate controller’s
evaluation of the metabolic state. The notch filter used here was second order,
with a transfer function H(s) as per (10) with a Q-factor of 3, meaning that
for the nominal perturbation frequency ω0 of 10 mHz the filter bandwidth is
3.33 mHz.

H(s) =
s2 + ω2

0

s2 + ω0

Q s + ω2
0

(10)

In practice, the frequency of the feed rate perturbations varied somewhat
but this was tracked by the notch filter to ensure that the highest dampening
occurred at the perturbation frequency.

5. Results and discussion

Results of all experiments are shown here as graphs of DO, AG, AR and
F over time. It should be noted that due to the perturbations in feed rate
used by the extremum-seeking feed rate controller, it is here not desirable
to achieve a low standard deviation in DO. Since the deviations from the
setpoint will determine the behaviour of this controller the aim of the dis-
solved oxygen controller is rather to achieve a steady baseline, meaning good
setpoint following over longer periods of time.
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CAG

CAR

CF

H

P

AG

AR

F

DO

DOfilt

DOsp

Figure 4. The set-up for control of the bioprocess. The DO signal is both
used by the extremum-seeking feed rate controller CF and notch-filtered in
H to be used by the mid-ranging DO controller. CAG is used to regulate the
notch-filtered DO, DOfilt, to DOsp using AG while CAR is used to control
the value of AG to AR using AR.

In all experiments, DO is initially above the setpoint and does not reach
it until after a few hours. This is not due to the controllers but rather the
built-in constraints of the process, as with a low biomass concentration DO
will be high even when AG and AR are at their respective minima. This effect
is seen in all processes of this type, as with a low starting biomass and hence
low oxygen consumption rate it will take some time until oxygen consumption
reaches a level where a major part of the added oxygen is consumed. If the
minima are relatively high and the starting biomass relatively low, the effect
will become more pronounced.

5.1 Experiments using static feed rate ramps

As shown in figure 5, the mid-ranging controller achieves its aim of main-
taining a steady baseline (average value at the setpoint) over time, except
for between 7 and 8 hours when an error in the implementation occurred.
This was due to an erroneous modification done to the controller script at
this time, intended to make its computations more efficient but causing it to
crash and need re-starting, it is therefore not related to the performance of
the controller itself. The control signals AG and AR rise in unison as desired
and the fast process response to AG can be fully exploited until both signals
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Figure 5. Experiment using the mid-ranging controller and predefined
feed rate ramps. The DO setpoint of 20 % is shown as a dashed line in the
DO graph. AG and AR rise in unison and maintain a desired offset for as
long as possible. Except for between 7 and 8 hours where an implementation
error occurred, the DO baseline is well maintained over time.

reach their maxima due to the mid-ranging set-up. The outcome of the ref-
erence split-range controller is shown in figure 6, where a small deviation in
the DO baseline is seen when changing control signal.

5.2 Experiments using extremum-seeking feed rate control

The controllers employed here are similar to those in section 5.1 but with a
notch filter added to the mid-ranging controller as described in section 4.3.
The outcome of the evaluation experiment as seen in figure 7 shows that the
proposed mid-ranging control strategy for non-stationary processes performs
well also in this case, similar to the outcome in section 5.1. The reference
split-range controller also shows similar performance to when a static feed
ramp is used, as seen in figure 8.
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Figure 6. Experiment using the reference split-range controller and pre-
defined feed rate ramps. The DO setpoint of 20 % is shown as a dashed line
in the DO graph. As the DO controller is a split-range controller, AG is
first increased and then AR. A small deviation in the DO baseline can be
seen when switching from one control signal to the other.

5.3 Quantitative evaluation of results

To evaluate the performance of the mid-ranging controller, more specifically
its ability to maintain a stable baseline for DO over time, DO data from
all experiments was low-pass filtered using a first-order filter with a cutoff
frequency of 0.1 mHz to remove short-term deviations caused by feed pulses
as attenuation of these is not desirable here. A visual comparison of the DO
data from the different experiments can be seen in figure 9, clearly demon-
strating that the mid-ranging controller can maintain a DO baseline with
only minor deviations.

The root mean square and maximum deviation from the setpoint in DO
for all experiments are given in table 1, showing that the mid-ranging con-
troller gives low values for both root mean square and maximum deviations.
In comparison, the reference controller gives deviations which are 3–6 times
greater than those of the corresponding mid-ranging controllers. This shows
that although the reference controller is known to be sufficiently good to
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Figure 7. Experiment using the mid-ranging controller and an
extremum-seeking feed rate controller. The DO setpoint of 20 % is shown
as a dashed line in the DO graph. AG and AR rise in unison and maintain
a desired offset for as long as possible. The DO baseline is well maintained
over time.

control bioprocesses when used in conjunction with a feed controller, the
mid-ranging controller performs better and could be used to improve control
of this type of bioprocess.

6. Conclusions

In this work a simple modified mid-ranging control strategy has been pro-
posed for use in non-stationary processes where it is desirable to vary two ma-
nipulated variables in unison, without limiting controller performance by for
instance making them follow each other exactly. The modified mid-ranging
controller has been successfully implemented in fed-batch bioprocesses and
shown to perform well in regulating the dissolved oxygen concentration in
these with agitator speed and aeration rate as manipulated variables, a typ-
ical example of a non-stationary industrial process.
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Figure 8. Experiment using the reference split-range controller and an
extremum-seeking feed rate controller. The DO setpoint of 20 % is shown
as a dashed line in the DO graph. As the DO controller is a split-range
controller, AG is first increased and then AR. A small deviation in the DO

baseline can be seen when switching from one control signal to the other.

Table 1. Deviations in low-pass filtered DO data. The root mean
square and maximum deviation for all experiments are shown. All numbers
given are in DO percentage units.

Experiment Root mean Maximum
square deviation deviation

Mid-ranging with feed ramp 0.17 0.38
Reference with feed ramp 0.79 1.77
Mid-ranging with feed controller 0.11 0.36
Reference with feed controller 0.51 1.19
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Figure 9. Low-pass filtered DO data from all experiments. The time
interval (7.8–17.8 h) was chosen so that the deviation caused by an im-
plementation error (see figure 5) would not influence the outcome while
providing a good view of the experiments as a whole.

Evaluation was done using both predefined ramps and an extremum-
seeking feedback regulator for feed rate control while dissolved oxygen is
controlled using the proposed modified mid-ranging controller. In compar-
ison to a split-range controller, which has previously been shown to perform
satisfactorily together with the feedback feed rate controller in question, the
modified mid-ranging strategy was shown to perform better.

The principle of the proposed controller is not specific for the process in
which it has been implemented in this study. It can be generally applied to
non-stationary processes where one process output is controlled using two
inputs.
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Paper IV

On-line detection of oxidative

saturation using frequency response in

industrial scale bioprocesses

Ola Johnsson, Karsten Hvalkof Andersen, Jonas Andersson,

Gunnar Lidén and Tore Hägglund

Abstract

On-line monitoring and control of the feed demand in fed-batch
bioprocesses can be a significant problem, particularly in industrial
processes where complex media are often used, detailed models are
difficult to come by and only few measurements are commonly avail-
able. In this study, a method for on-line estimation of feed demand by
tracking of the oxidative saturation in metabolism was developed and
implemented in industrial production-scale bioprocesses (>100 m3).
Sinusoidal feed rate perturbations were used and by analysis of the
dissolved oxygen response good estimates of substrate and by-product
levels, and hence the feed demand, were obtained. The method has very
low demands on sensing and computational equipment, as it utilizes
simple calculations with a low computational cost and needs only meas-
urement of dissolved oxygen, and requires very little a priori knowledge
of the process. This makes it particularly suitable for monitoring and
control of the feed demand in an industrial setting.

Submitted to Process Biochemistry
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1. Introduction

In an industrial bioprocess the chemical environment of the microorganisms
will influence their growth and productivity, one of the major factors in this
being substrate availability. A very common mode of operation in biopro-
cesses is fed-batch [Villadsen et al., 2011] where the main substrate, typic-
ally a sugar which serves as the main carbon and energy source, is fed in a
controlled manner so that microbial growth can be regulated. The principle
problem in feed rate regulation is that while a too low availability of substrate
will lead to decreased growth and productivity, a too high availability will
lead to production of undesirable by-products such as ethanol, acetate and
lactate through a biological mechanism termed metabolic overflow [Tempest
and Neijssel, 1979].

Although it allows for faster short-term growth, metabolic overflow de-
creases biomass and product yields as it diverts substrate into by-product
formation. These by-products are typically harmful to the organism, a well-
described case of which is the inhibitory effects on growth caused by acetate
[Luli and Strohl, 1990]. As this has significant negative long-term effects in
an industrial bioprocess, metabolic overflow is an undesirable trait [El-Mansi,
2004]. The overflow mechanism has been seen and described in main indus-
trial production organisms such as Escherichia coli [Neijssel et al., 1980], Sac-
charomyces cerevisiae [Sonnleitner and Käppeli, 1986] and Bacillus licheni-
formis [Voigt et al., 2004].

In the current work, it is investigated whether the dissolved oxygen re-
sponse to sinusoidal feed rate perturbations can be used to monitor over-
flow metabolism on-line in production-scale bioprocesses, utilizing a low-
complexity estimator of the current metabolic state. In such case, this would
enable industrial implementation of feedback control strategies to avoid accu-
mulation of overflow metabolites with its associated negative effects on yield
and stability.

2. Theory

The control problem in fed-batch feed rate control is mainly a problem of
sensing. Typically the liquid concentration of biomass, substrate and over-
flow metabolites as well as other parameters will vary significantly over the
course of the process, particularly in the initial stage of a bioprocess when ex-
ponential growth can occur. Although on-line measurements of some of these
are possible in bioprocesses utilizing chemically defined media [Bittner et al.,
1998; Rocha and Ferreira, 2002], measurements in industrial-scale biopro-
cesses with complex (non-synthetic) media are significantly more difficult
and usually not done. Similarly, off-gas analysis can be used to provide in-

124



2 Theory

formation regarding the metabolic state but in industrial applications such
measurements are usually not available [Gnoth et al., 2008] and can be of low
frequency due to sharing of analytical devices which decreases their reliabil-
ity. Furthermore, the effect of liquid concentrations on important metabolic
parameters can sometimes be complex and difficult to predict [Swartz, 1996].
The batch to batch reproducibility of such processes is typically low and mod-
elling to predict such variations is difficult. Data-driven models can be used
to create observers which allow for successful control of processes even with
few online measurements, but require large amounts of historical data and
are therefore limited to processes for which such data are available [Gnoth
et al., 2008].

One approach for sensing in a fed-batch bioprocess is the probing strategy,
used by for instance Åkesson et al. [1999], de Maré et al. [2003] and Velut
et al. [2007], in which perturbations are superimposed on the feed rate (F )
and the response in the dissolved oxygen (DO) level is used to determine the
current feed demand in the process in order to maintain a high feed rate while
avoiding excessive overflow metabolism. This strategy utilizes the saturation
of oxidative metabolism which coincides with the onset of overflow meta-
bolism and controllers using this core principle have been used in processes
utilizing for instance E. coli [Åkesson et al., 1999], Vibrio cholerae [de Maré
et al., 2003] and S. cerevisiae [Henes and Sonnleitner, 2007]. The strategy has
seen some new developments by for instance Schaepe et al. [2014], suggesting
among other things measurements of oxygen in off-gas rather than dissolved
oxygen which however requires similarly fast and reliable measurements of
off-gas content.

A method using the same probing principle but utilizing regular feed
rate perturbations to enable a frequency-response approach, similar to
perturbation-based extremum-seeking control [Dochain et al., 2011], has been
shown to give good performance in pilot-scale (0.550 m3) industrial processes
[Johnsson et al., 2013]. This method has the important practical advantage
that it only requires measurement of the dissolved oxygen level in the liquid
medium, which is a standard on-line measurement in industrial bioprocesses
[Alford, 2006; Gnoth et al., 2008]. Modern probes for dissolved oxygen provide
fast and robust measurements [Glazer et al., 2004], which can be fully utilized
in such a strategy. Methods using this principle have however so far not been
applied to production-scale processes, which provide certain challenges such
as the effects of large-scale mixing dynamics on the perturbation response.
A study in industrial production-scale bioreactors has however shown that
in a defined frequency and amplitude range the dissolved oxygen response
to sinusoidal feed rate perturbations can be described by second-order linear
dynamics. In addition, it was shown that such perturbations did not notice-
ably harm the process [Johnsson et al., 2015]. This indicates the possibility
of using a modified probing strategy in an industrial setting.
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3. Materials and methods

3.1 Process model

The metabolic overflow effect causing by-product formation can at its core
be described as a saturation in the system. Increasing substrate uptake rates
give cause to increasing oxygen uptake rates up to a point where the oxidative
metabolism saturates and the oxygen uptake rate does not increase further.
Beyond this point, increased substrate uptake instead leads to production
of overflow metabolites which are excreted into the medium. If the oxidative
metabolism is not saturated by the main substrate and these by-products are
present, the overflow metabolites can be consumed and the remaining oxid-
ative capacity used to utilize these as substrates. This metabolic relationship
is illustrated in figure 1, where the microorganism is assumed to consume
sucrose and produce acetate as its overflow metabolite.

rs

ra

ro

rs,crit

r
c

a

r
max

o

r
c,max

a

Figure 1. The relation between specific sucrose uptake rate rs and the
specific rates of oxygen uptake ro and acetate production ra. This shows the
saturation of oxidative metabolism at rs,crit, which is marked with a dotted
line. Dashed lines indicate the specific rate of acetate uptake rc

a and the
correspondingly increased oxygen uptake, which will only occur if acetate is
present and the substrate uptake rate sufficiently low [Åkesson et al., 2001].
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Although these relationships describe a steady-state situation which does
not capture dynamic metabolic effects, it can be assumed that the time scale
of such effects is significantly shorter than that of transport dynamics in an
industrial-scale bioreactor. This means that the microbial metabolism will be
at pseudo-steady state and hence its dynamics can be neglected. A second-
order dynamic model using this assumption has been shown to describe the
effects of feed and oxygen uptake in industrial scale [Johnsson et al., 2015],
which can be seen as feed and oxygen mixing dynamics each being of first
order.

For maximal utilization of the oxidative capacity and minimal by-product
formation, rs should be as close as possible to the critical specific substrate
uptake rate rs,crit which marks the onset of overflow metabolism. This corres-
ponds to a critical substrate feed rate Fcrit as in (1) where X is the biomass
concentration, V is the liquid volume and Cs,in is the substrate concentration
in the feed. As the biomass concentration and volume change over time and
rs,crit can vary due to metabolic variations [Swartz, 1996], Fcrit will vary over
the course of a fed-batch process and can not be estimated using standard
on-line measurements. This is further complicated by overflow products also
being used as substrates.

Fcrit = rs,crit
XV

Cs,in
(1)

Assuming no production or consumption of overflow metabolites and
negligible maintenance energy of the biomass, the relationship between spe-
cific substrate and oxygen uptake is determined only by the oxidative yield
coefficient on the substrate Yos, that is ro = Yosrs. Assuming that sub-
strate and oxygen are at pseudo-steady state in the liquid medium, neglect-
ing mixing dynamics and using the volumetric mass transfer relationship
qo = kla(DO∗ − DO), this gives the relationship in (2). The dissolved oxy-
gen response to a feed rate perturbation ∆F is denoted ∆DO; when the
response is unmodified with regard to saturation and mixing effects it is de-
noted ∆DOu. The relation between ∆DOu and ∆F is as per (3) where F0

and DO0 are the unperturbed feed rate and dissolved oxygen level respect-
ively, as ∆(DO∗ −DO) = −∆DO for constant DO∗. ∆ denotes the variation
in the variable caused by the perturbation.

V kla(DO∗ − DO) = YosFCs,in (2)

∆(DO∗ − DOu)
DO∗ − DO0

=
∆F

F0
⇒ ∆DOu = −

DO∗ − DO0

F0
∆F (3)
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Assuming linear first-order mixing dynamics for both substrate and oxy-
gen, the total mixing gain Kmix at the perturbation frequency ω is as per
(4) where Ks, Ts, Ko and To are the static gains and time constants of the
substrate and oxygen mixing dynamics respectively. Kmix can be determ-
ined experimentally for a given bioreactor as done by Johnsson et al. [2015].
As ∆DO=KsatKmix(ω)∆DOu, the relationship between ∆F and ∆DO is as
per (5).

Kmix(ω) =

∣

∣

∣

∣

KoKs

(iωTo + 1)(iωTs + 1)

∣

∣

∣

∣

(4)

∆DO(ω) = −KsatKmix(ω)
DO∗ − DO0

F0
∆F (5)

3.2 Principles of the monitoring method

The current state of the system with regard to the metabolic saturation is
determined by observing the response in DO to sinusoidal perturbations in
F . The concept is illustrated in figure 2, showing three characteristic states
of the system, although the system can also be at any state between these.
As seen in equation (5) the saturation and the variable gain dependent on
DO∗ − DO0 and F0 are the only nonlinear components of the system. The
latter of these is easily compensated for as its value can be calculated when
DO∗, DO0 and F0 are known.

A simple and well-known approach for determining the system gain |G0|
and phase φ at a frequency ω, based on the response to sinusoidal perturba-
tions, is the so-called correlation method [Ljung, 1999]. In its original form it
can be used to determine a constant gain of a system, but with some modi-
fications it can be used to track a varying gain. Using a sinusoidal input as
in (6) over a time interval T , the response of a linear system will also be
sinusoidal as per (7) where v(t) is noise and r(t) is a transient.

u(t) = α cos(ωt) (6)

y(t) = α|G0(eiω)| cos(ωt + φ) + v(t) + r(t) (7)

In the original formulation, for identification of a constant gain, the terms
IC and IS are defined as per (8) and (9) respectively.

IC(T ) =
1
T

∫

T

y(t) cos(ωt) dt (8)

IS(T ) =
1
T

∫

T

y(t) sin(ωt) dt (9)
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Feed rate

Dissolved oxygen Frequency spectrum

Figure 2. Illustration of the monitoring principle, showing feed rate and
dissolved oxygen over time and the frequency spectrum of the latter. A
dashed line in the feed rate indicates its base level. In the frequency spec-
trum, a dotted line indicates the frequency of the perturbations. In the
uppermost case, rs ≪ rs,crit so the saturation is not active and an unsatur-
ated response in DO is seen, this gives the maximum power spectral density
at the relevant frequency. In the middle case, rs = rs,crit and the response
in DO is affected by the saturation, which is also seen in the frequency
spectrum. In the lowermost case, rs ≫ rs,crit so no response is seen in DO

and hence not in the frequency spectrum.

Inserting (7) into these yields (10) and (11) respectively [Ljung, 1999].

IC(T ) =
α

2
|G0(eiω)| cos(φ) + α|G0(eiω)|

1
2T

∫

T

cos(2ωt + φ) dt

+
1
T

∫

T

v(t) cos(ωt) dt (10)

IS(T ) =
α

2
|G0(eiω)| sin(φ) + α|G0(eiω)|

1
2T

∫

T

sin(2ωt + φ) dt

+
1
T

∫

T

v(t) sin(ωt) dt (11)

The second and third terms in (10) and (11) go towards 0 as T goes
towards infinity, assuming that the noise does not contain a pure periodic
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component of frequency ω. This allows straightforward estimation of the
static system gain |G0(eiω)| as shown in (12).

√

I2
C(T ) + I2

S(T )
α/2

=
α/2|Ĝ0(eiω)|

√

sin2(φ) + cos2(φ)
α/2

= |Ĝ0(eiω)| (12)

However, for a time-varying system it is clear that T can not be arbitrarily
large and that a current rather than average value of |Ĝ0(eiω)| must be
sought. As the former means that the second and third terms in (10) and
(11) can not be disregarded, these must instead be negated through other
means. A notch filter at the frequency 2ω attenuates the second term, while
the third is attenuated in the low-pass filtering assuming that the noise v(t) is
high-frequency. Low-frequency noise can be attenuated by addition of a high-
pass filter, making the method highly insensitive to drift in the measured
signal. Replacing the integration in (8) and (9) by low-pass filtering means
that newer values will be assigned higher weight and enables tracking of a
varying gain. In the case of the bioprocess and its metabolic saturation, low-
pass filtering will also attenuate overtones caused by the saturation as seen
in figure 2.

The saturation gain Ksat as described in (5) is estimated as per (13),
where DO0 is given by notch-filtering the measured DO signal to attenuate
the perturbation response. A set-up for the method is illustrated in block
diagram form in figure 3, showing that the method requires only very simple
mathematical operations. This means that it can be implemented for on-
line use in an industrial process monitoring system even if its computational
capacity and ability to perform more advanced operations is limited.

K̂sat =
1

Kmix(ω)
F0

DO∗ − DO0

∆DO(ω)
∆F

=
1

Kmix(ω)
F0

DO∗ − DO0
|Ĝ0(eiω)| (13)

3.3 Experiments

Experiments were performed in industrial production bioreactors at the No-
vozymes A/S site in Kalundborg, Denmark. The reactors were of the same
type as used by Johnsson et al. [2015]. These are cylindrically shaped biore-
actors with a volume of more than 100 m3, stirred by multiple axial agitators.

The initial medium was similar to that in [Van Putten et al., 1996] and
contained a complex hydrocarbon source. The added feed contained sucrose,
which is the main source of hydrocarbon in the process. Feed was added
through ports in the upper half of the bioreactor, while air was inserted
through a sparger at the bottom.
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DO
High-pass

sin(ωt) cos(ωt)

× ×

Notch 1Notch 1

Low-pass Low-pass

(·)2(·)2

u1 + u2

√

(·)

Notch 2

DO0

α

2
u1
u2

DO∗

u2 − u1

u1
u2

K̂sat

Figure 3. A set-up for the monitoring method, which requires only simple
calculations. The inputs are DO and the relative perturbation amplitude
α = ∆F

F0
, but DO∗ must also be known. The perturbation frequency is

denoted ω. In operations using two input signals, the first (uppermost) is
labelled u1 and the second (lowermost) u2. The notch filters labelled Notch 1
attenuate the frequency 2ω and that labelled Notch 2 attenuates ω.
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The feed rate to each bioreactor was controlled to its setpoint by an
internal control loop measuring the feed rate and controlling the position of
a valve in the feed stream. These internal loops were set to enable them to
keep up with rapid variations in the feed rate setpoint.

Experiments were performed in two types of processes using different in-
dustrial strains of B. licheniformis, both producing subtilisin type proteases.
Two experiments were performed using strain 1 and three using strain 2.

In all experiments, the feed rate F was set to follow a predefined ramp
during the first 7–9 hours of the process. A sinusoidal perturbation with
period time 400 seconds (a frequency of 2.5 mHz) and amplitude 20 % of
the current unperturbed feed rate was superimposed on the feed rate to give
excitation of the system. The choice of frequency and amplitude was guided
by the results and conclusions of Johnsson et al. [2015], where it was seen
that perturbations with these properties gave clear sinusoidal responses when
the oxidative metabolism was unsaturated.

On-line data was sampled at 10 second intervals. The most important
variable measured on-line was the dissolved oxygen concentration DO in the
medium, which was measured by an optode positioned near the bottom of the
bioreactor. The optode used was of a standard commercially available type
with a time constant shorter than 30 seconds; its response time was evalu-
ated before experiments to ensure that it would not impact this application
significantly.

Samples for off-line analysis were taken at one-hour intervals. Off-
line analysis consisted of measurement of biomass concentration (cX),
sucrose concentration (cs) and acetate concentration (ca). The biomass
concentration was calculated from dry weight measurements; sucrose and
acetate concentrations were measured using enzymatic kits, R-Biopharm
Cat. No. 10 139 041 035 and 10 148 261 035 respectively.

4. Results and discussion

In all five experiments, DO displayed changing characteristics over time
which could be analyzed using the correlation method described previously
to determine the DO response to the feed rate perturbations. The estimated
saturation gain, K̂sat, was compared to the concentrations of biomass, main
substrate (sucrose) and acetate in the liquid medium to draw conclusions
regarding the relationships between these.

In the first experiment on-line data up to 5 hours into the process was
lost due to an error in the logging system and in the second experiment
off-line sampling was only possible during the first 2 hours, both of these
experiments used strain 1. Although this limits the amount of useful data
from these experiments, the data yielded can nonetheless be compared to
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data from other experiments. In experiments three to five, using strain 2,
on- and off-line data could be collected from at least the first 8 hours of
the processes. Data for F and DO as well as biomass, sucrose and acetate
concentrations and K̂sat are displayed in figure 4.

As seen in figure 4, all experiments are characterized by an initial peak
in sucrose concentration, which causes overflow metabolism and hence acet-
ate accumulation during the first 3–5 hours of each experiment. After the
sucrose has been consumed, consumption of acetate begins. When neither
sucrose nor acetate is present at high levels, the characteristics of the DO
signal become markedly different as a sine wave with the same frequency as
that in F appears. This is as expected based on the assumption that the
metabolism is no longer saturated here. The changing characteristics lead to
a significant increase in the value of K̂sat, indicating that this signal captures
the metabolic state of the system.

As can also be seen, an early peak in K̂sat occurs between 2 and 5 hours
when the value of DO changes rapidly at one point. As can be seen by
comparing DO and acetate data in figure 4, this occurs at the time when the
metabolism switches from acetate production to acetate consumption. From
a metabolic perspective, it can be expected that switching from one type of
metabolism to another leads to a temporary decrease in metabolic rates while
this change takes place. This therefore indicates strongly that detection of a
sharp peak in K̂sat can be used to determine on-line when this shift occurs.

When either sucrose or acetate is present at high levels the oxidative
metabolism will be saturated, unsaturated metabolism will only occur when
both concentrations are low. To investigate whether K̂sat can provide a meas-
urement of the current metabolic state, it should therefore be compared to
the current availability of these substrates. A simple measure of substrate
availability is the maximum of these two concentrations at each point in
time, here labelled A, defined as in (14).

A = max(cs, ca) (14)

A plot of K̂sat over A for all five experiments is given in figure 5, where
a clear trend in the relationship between these can be observed. It can be
seen that a value of K̂sat above 0.2 indicates a value of A below 0.15 g/L
and a K̂sat value below 0.05 indicates that A is 1 g/L or higher. In the
region between these values of K̂sat a trend can be observed where higher
values of K̂sat relate to lower values of A. The three measurements which are
affected by the early peak in K̂sat are exempted from these groupings. The
data points from experiments 1 and 2 agree well with those from experiments
3 to 5, meaning that the two different processes studied here show similar
characteristics with regard to K̂sat.

This result shows that K̂sat can be used to estimate substrate availability
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Figure 5. K̂sat over A. Data is taken from all experiments, included
are all data points from which both K̂sat and off-line measurements are
available. The three measurements which are affected by the early peak in
K̂sat are marked by circles. Exempting these, a clear trend can be observed
in the data where higher values of K̂sat indicate lower values of A, up to a
K̂sat value of 0.2. Above this value, A is near-zero.

and the degree of saturation of the oxidative metabolism. Values of A above
1 g/L can not be clearly distinguished from each other, indicating that at
these levels the oxidative metabolism is saturated during the whole perturba-
tion cycle. This is of course dependent on the amplitude of the perturbations
in the input. Although there is no clear trend in A for high values of K̂sat,
based on the metabolic model a higher value would indicate that the current
substrate uptake rate is far below its critical value. This means that no over-
flow metabolites are produced but also that the oxidative metabolism is not
fully utilized.

The most desirable values of K̂sat would be those which are as low as pos-
sible without increasing A significantly. This could for instance correspond to
a normalized value of around 0.2 in the case examplified in figure 5, depend-
ing on the sensitivity of the organism to high levels of overflow metabolites.
This would constitute a suitable setpoint for a controller manipulating the
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unperturbed feed rate to control K̂sat in order to achieve maximal utiliza-
tion of the oxidative metabolism while minimizing accumulation of overflow
metabolites.

As shown by Johnsson et al. [2013], even simple controllers can be used for
growth control using the response to feed rate perturbations. Such a simple
controller would temporarily give an undesired response during the peak
in K̂sat seen in connection to the switch from production to consumption
of overflow metabolites. This effect can be diminished by heavier filtering of
K̂sat, but another possibility would be to add logic to the controller to enable
detection of this peak and using it to enhance the controller, as it provides
additional information regarding the state of the system.

5. Conclusions

This study has shown that the dissolved oxygen response to feed rate per-
turbations can be used to estimate the substrate availability and hence the
metabolic state in industrial-scale fed-batch bioprocesses. A simple scheme
for quantifying the dissolved oxygen response on-line is proposed. This al-
lows for extraction of a signal which can be used both for on-line monit-
oring of substrate availability and as a controlled variable by a closed-loop
feed rate controller. A clear relationship between output signal and substrate
availability has been observed in experiments, allowing for accurate estim-
ates. Although an exception to this relationship occurs when the metabolism
switches from production of overflow metabolites to consumption of these,
this observation can also be utilized to provide further insight into the current
metabolic state. A controller using this principle can give high utilization of
the oxidative metabolism and hence efficient growth, as well as avoidance of
excessive overflow metabolism which might otherwise cause process failure.
This is of high relevance in an industrial setting, where a single process failure
can equal loss of large monetary values.

This approach allows for monitoring and control of the metabolic state
using only an oxygen sensor, to achieve a high microbial growth rate without
accumulation of overflow metabolites. This is particularly useful in indus-
trial bioprocesses where the availability and usefulness of advanced sensors is
highly limited. The ability to directly monitor and control the metabolic state
rather than only the liquid concentrations of certain compounds is however a
desirable trait in all bioprocesses where the relationships between microbial
uptake, growth and excretion rates are not clearly defined.
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Abstract

In this study, the implementation of a method for feed rate control
in an industrial-scale bioprocess is described. A bacterial fed-batch
process for heterologous protein production in a bioreactor with volume
greater than 100 m3 was chosen for the implementation. The controller
is based on estimating the current feed demand through observing the
system response to a sinusoidal perturbation in the feed rate. This
approach requires minimal knowledge of the biochemical parameters of
the organism and the only measurement needed is the dissolved oxygen
level which is a standard measurement in industrial bioprocesses.

The method circumvents multiple problems connected to feed de-
mand estimation, such as the effects of complex medium and metabolic
shifts in the cell culture, by directly estimating the available capacity of
the oxidative metabolism. The main challenge in this implementation
is large-scale mixing effects, which give longer lag times and decreases
the perturbation response. In this study, it is however shown that the
feed demand estimation is sufficiently fast and precise that a desirable
controller response can be achieved even when combining the estimator
with a regular PI controller.
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1. Introduction

Fed-batch processes, both chemical and biotechnical, have an advantage over
batch-processes in that the rate of reaction can be controlled by regulating
the inlet feed. For microbial processes, the inlet feed typically contains the
main carbon and energy source for growth and/or product formation. Fed-
batch operation is common in industry and is often combined with an initial
batch phase [Villadsen et al., 2011]. Control of the inlet feed rate is however
not trivial, as the biomass and hence the feed demand grows over time.
Other factors such as the concentrations of oxygen and certain metabolic
by-products, as well as the current metabolic state of the organisms, also
influence the feed demand.

If the feed rate is low compared to the demand, starvation effects will
occur and lead to decreased growth and productivity. A higher feed rate
gives higher specific substrate uptake rates which is beneficial as it stimulates
growth and/or product formation. However, when the uptake rate becomes
too high this causes production of by-products such as acetate, lactate or
ethanol. This mechanism is termed overflow metabolism and the by-products
are referred to as overflow metabolites.

Although it allows for faster short-term growth, overflow metabolism
causes decreased biomass and product yields as substrate is diverted to
by-product formation. In addition to this, many overflow metabolites are
known to inhibit microbial growth [Luli and Strohl, 1990] and production
of heterologous proteins [Jensen and Carlsen, 1990]. Overflow metabolism is
therefore considered an undesirable phenomenon in industrial processes [El-
Mansi, 2004]. It is known to occur in many types of organisms, examples
include widely used industrial production organisms such as Escherichia coli
[Neijssel et al., 1980], Saccharomyces cerevisiae [Sonnleitner and Käppeli,
1986] and Bacillus licheniformis [Voigt et al., 2004].

For long-term growth and productivity, the feed rate should ideally be
such that the specific substrate uptake rate is just below the limit for overflow
metabolism, which is here termed the critical substrate uptake rate. The feed
demand can however vary greatly over the course of a fed-batch bioprocess,
particularly during the period of exponential biomass growth seen at the
start of such a process, and the batch-to-batch variation in growth rates and
other factors can be significant. This means that predefined feed rate ramps
are unsuitable and relatively small variations in the process can lead to feed
rates which are far too high or too low. Feedback control of the substrate
feed rate is therefore highly desirable.

A major limitation in feedback control of bioprocesses, particularly in an
industrial context, is sensing. It would be desirable to measure the liquid con-
centrations of biomass, substrate and by-products directly but although this
can be possible in some cases [Luttmann et al., 2012], such measurements are
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for practical reasons not commonly seen in industry. Use of complex medium
such as yeast or plant extract also makes some such measurements more dif-
ficult. In addition, it means that even when the concentration of the main
substrate can be measured this might not be enough to give a true meas-
ure of substrate availability. The measurements which are usually available
in industry are pH, dissolved oxygen, temperature, total gas pressure and
sometimes the oxygen and carbon dioxide content in the gas outlet [Gnoth
et al., 2008].

First-principles models can be used to estimate relevant system states
from measurements in bioprocesses [Sundström and Enfors, 2008], although
this is considered time-consuming [Luttmann et al., 2012]. Another possibility
is the use of data-driven models, where historical data from the process is used
for model creation. An example of this is artificial neural networks (ANNs),
which have been shown to work well for bioprocess monitoring [Jenzsch et
al., 2006] and can be combined with known fundamental relationships in the
system to create hybrid models [Gnoth et al., 2006]. This type of data-driven
model can be very easy to create, but has a significant limitation in that it is
only suited for use within the range of the data it has been created with and
should not be used for extrapolation [Gnoth et al., 2008]. This means that the
data-driven approach can be suitable for processes for which much historical
data exists, but limits its usefulness in those which are new or constantly
developed.

Perturbation-based methods provide a different approach to the measur-
ing and estimation problem. Here, the process input is perturbed in order
to glean information regarding the current process state. One such type of
method is probing control, which measures the response to square pulses in
the input signal to determine the system’s state with regard to a saturation
[Åkesson and Hagander, 2000]. This method requires only measurement of
dissolved oxygen and can be used to control the feed rate in bioprocesses
so that the substrate uptake rate follows the trajectory of the critical up-
take rate and has been implemented for this purpose in a scale up to 12 m3

[Velut et al., 2002]. For large-scale implementation the use of square pulses
is however undesirable as they can be difficult to realize.

A frequency response method using the same principles has been sug-
gested [Johnsson et al., 2013] and it has been demonstrated that it can be
used for estimation of feed demand in industrial bioprocesses with a volume
greater than 100 m3 [Johnsson et al., 2015b]. Prior to the current study, this
or any similar method has however not been used for feedback control in
processes of this scale and it has not been shown whether the feed demand
estimates are sufficiently fast and accurate to achieve acceptable feed rate
control performance.
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2. Theory

The metabolic overflow effect can be modelled as a saturation in the system,
where specific oxygen uptake rate ro follows substrate uptake rate rs up to a
point rs,crit. Above this point no further increase in ro is seen, as the oxidative
capacity of the biomass is saturated and excess substrate is metabolized non-
oxidatively. The non-oxidative metabolism causes production of undesirable
by-products, which can however be re-consumed if excess oxidative capacity
becomes available.

Ideally, the feed of substrate to the bioreactor should be such that the
specific substrate uptake rate is equal to rs,crit at all times. However, this
parameter changes over the course of a fed-batch process due to biomass
concentration and the microbial metabolism and cannot be measured dir-
ectly.

2.1 Estimation method

The current feed demand, here defined as the feed rate corresponding to
rs = rs,crit, can be estimated from the dissolved oxygen response to feed
rate perturbations by determining the effect of the saturation in oxidative
metabolism on the response. The principle is illustrated for a sinusoidal per-
turbation in figure 1, showing how the dissolved oxygen response at the
perturbation frequency is affected by the saturation level.

The relationship between a feed rate perturbation Fp and dissolved oxy-
gen response DOp at the perturbation frequency ω can be described as in
equation (1) [Johnsson et al., 2015b]. F0 and DO0 are the unperturbed feed
rate and dissolved oxygen level respectively, where the former is known while
the latter can be determined by notch-filtering the measured DO signal to
attenuate the perturbation frequency. DO∗ is the dissolved oxygen level when
in equilibrium with the gas phase, which can be either calculated based on
physical relationships or measured in a bioprocess before inoculation has oc-
curred. Ks, Ts, Ko and To are the gains and time constants of the substrate
and oxygen mixing dynamics respectively and can be determined experi-
mentally as done by Johnsson et al. [2015a], while Ψsat is the effect of the
saturation nonlinearity.

DOp(s) = −
Ko

sTo + 1
DO∗ − DO0

F0
Ψsat

Ks

sTs + 1
Fp(s) (1)

The system in (1) is linear except for the saturation and the effects of
variations in DO∗−DO0 and F0. It therefore follows that for a sinusoidal per-
turbation as per (2), for which variations in DO∗ −DO0 and F0 over a period
are small enough to be regarded as negligible, the unsaturated dissolved oxy-

144



2 Theory

Feed rate

Dissolved oxygen Power spectral density

Figure 1. Illustration of the feed demand estimation principle, showing
feed rate and dissolved oxygen over time and the power spectral density
over frequency. In the latter, a dotted line indicates the frequency of the
perturbations. In the uppermost case, rs ≪ rs,crit so the saturation is not
active and an unsaturated response in DO is seen, this gives the maximum
power spectral density at the relevant frequency. In the middle case rs =
rs,crit and the response in DO is affected by the saturation, which is also
seen in the frequency spectrum. In the lowermost case, rs ≫ rs,crit so no
response is seen in DO and hence not in the frequency spectrum.

gen response will be as per (3). ∆F and ∆DO denote the amplitude of the
perturbation and the response, respectively.

Fp = ∆F sin(ωt) (2)

DOp = ∆DO(ω) sin(ωt + ϕ) (3)

When only observing the response at the perturbation frequency the sat-
uration nonlinearity can be regarded as a time-varying gain, Ψsat = Ksat ∈
[0, 1], which can be estimated as per (4). From this, it follows that the process
gain at the perturbation frequency, ∆DO(ω)

∆F , can be used to determine the
metabolic state of the system with regard to overflow metabolism.
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K̂sat =

∣

∣

∣

∣

(iωTo + 1)(iωTs + 1)
KoKs

∣

∣

∣

∣

F0

DO∗ − DO0

∆DO(ω)
∆F

(4)

A simple algorithm for tracking ∆DO(ω)
∆F has been described by Johnsson

et al. [2015b]. It is based on the classical correlation method for frequency
response system identification [Ljung, 1999] but incorporates a number of
changes to facilitate tracking of a varying response amplitude rather than
finding a constant value of it. The modified method replaces integration of
previous estimates with low-pass filtering, so that the varying response can
be tracked, and the relation between the filter cutoff frequency ω0 and per-
turbation frequency ω is an important tuning parameter for the estimation
algorithm. A low cut-off frequency gives a slower estimator, less sensitive to
disturbances, while a high cutoff frequency makes tracking faster and thus
allows good following of a more rapidly changing system state.

3. Materials and methods

3.1 Feed rate controller

The feed demand estimator and a controller for manipulation of the un-
perturbed feed rate F0 were implemented in the SattLine system used for
monitoring and control of the process. A sinusoidal perturbation Fp was su-
perimposed on F0, with frequency 2.5 mHz and amplitude ∆F proportional
to the current F0 value. The estimator and controller set-up is illustrated
in figure 2. The proportionality factor α = ∆F

F0
was set to 0.4 in this imple-

mentation, as previous experiments indicated that lower values would give an
insufficient response at low feed rates (data not shown). The relative cutoff
frequency of the estimator, ω0/ω, was set to 1/8 as analysis of data from
[Johnsson et al., 2015b] indicated that this gave a good tradeoff between
speed and accuracy.

For control of the feed rate, a standard proportional-integral (PI) control-
ler was used. During the exponential growth phase of a fed-batch bioprocess,
the feed rate should in theory increase exponentially to give the appropriate
amount of feed at all times and avoid both starvation effects and overflow
metabolism. Although a PI controller cannot perfectly track such an effect,
the duration of the exponential growth is limited meaning that control errors
can be kept within acceptable limits. The PI controller has the important ad-
vantages of being very widely used and accepted in industry. This means that
there are standard modules for its implementation in industrial process con-
trol systems and process operators are familiar with it, making widespread
application in an industrial context easier than for more advanced controller
types.
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Controller

Estimator

+ Process
F0

K̂sat

F

Fp

DO

K̂sat,sp

DO
∗, α, ω

Figure 2. The set-up of the estimator and controller, showing the inputs
and outputs of each. The estimator also acts as generator for the feed rate
perturbation Fp.

As the gain of the system is proportional to DO∗−DO0

F0
, gain scheduling

based on the inverse of this expression is ideal. However, this is not possible
in the current implementation due to software limitations and hence a sim-
plification was necessary. In this case, one may assume that the substrate and
oxygen uptake rates are stoichiometrically connected at a fixed yield. This
means that F0 and DO∗ − DO0 will be linearly related during the process,
hence a constant controller gain can be used. The PI controller was tuned
based on previous studies on the same process type [Johnsson et al., 2015a;
Johnsson et al., 2015b] and experience from other feed rate controllers used
on this process type. The setpoint for K̂sat was set to 0.2 as a previous study
had shown that this was the lowest value of the saturation gain for which no
significant overflow metabolism occurred.

As the controller determines the feed demand based on the critical sub-
strate uptake rate, it can be used in the exponential growth phase of the
process where this is the critical limitation on the feed rate. After this phase
the process is constrained by the rate at which oxygen can be supplied, as
aerobic conditions need to be maintained. Therefore, control is switched to a
different controller after DO has decreased past a fixed limit to ensure that
oxygen limitation will not occur.

3.2 Experiment set-up

The experiment was performed in an industrial production bioreactor at the
Novozymes A/S site in Kalundborg, Denmark, of the same type as used
by Johnsson et al. [2015a]. These are cylindrically shaped bioreactors with a
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Substrate feed

Aeration

Agitator

Pressure

Temperature
pH

Dissolved oxygen

Gas outlet

Figure 3. Overview of the type of bioreactor used in this study. Substrate
is added through a port in the side of the bioreactor while air is introduced
through a sparger at the bottom. An agitator mixes the liquid medium
and allows efficient mass transfer. Dissolved oxygen as well as some other
process-critical parameters are measured in-situ.

volume of more than 100 m3, stirred by multiple axial agitators. An industrial
strain of B. licheniformis producing a heterologous protein was used.

A feed containing sucrose, which is the source of hydrocarbon in the pro-
cess, was added through a port in the side of the bioreactor, while air was
inserted through a sparger at the bottom. Dissolved oxygen in the medium
was measured by an optode of a standard commercially available type, posi-
tioned near the bottom of the bioreactor. The time constant of the dissolved
oxygen optode was significantly lower than the sampling time of the estim-
ator and its dynamics were known to not have a significant influence on
measurements in this application. An illustration of the type of bioreactor
used here is given in figure 3.

The feed rate to the bioreactor was controlled to its setpoint by an internal
control loop measuring the feed rate and controlling the position of a valve
in the feed stream. This internal loop was tuned to enable it to keep up
with rapid variations in the feed rate setpoint. On-line data was sampled
at 30 second intervals, the most important variable measured on-line being
dissolved oxygen concentration DO which was used for estimation of current
feed demand. The response time of the DO probe was evaluated to ensure
that it would not impact this application. Samples of the liquid medium were
taken for determination of sucrose and acetate levels.
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4. Results and discussion

An overview of the results is given in figure 4. A large addition of sucrose feed
occurred at the start of the experiment (not seen in data), the added feed cor-
responded to approximately 1.5 hours of feeding at the current rate and was
added over a few minutes. Therefore, accumulated sucrose and acetate were
present during the first 5.5 hours of the process meaning that the oxidative
metabolic capacity was saturated during this period. The feed rate controller
therefore maintained the minimum feed rate, which is the desirable response
in this situation. Due to an error in the initialization of the estimator, very
large values of K̂sat were seen during the first 30 minutes. During this period
F was however constrained by a maximum allowed value set for it, meaning
that this had no impact on the outcome of the experiment.

After 5.5 hours, substrate and by-product concentrations were close to
zero and the feed demand increased rapidly. The feed rate was increased
over one hour until it corresponded to the current feed demand, from 6.5
to 8 hours it then increased at a slower rate as the feed demand increased
with growing biomass. At 8 hours DO had decreased sufficiently that the
controller based on feed demand estimation was switched off. F0 had then
increased to six times its starting value and, as no accumulation of sucrose
or acetate had occurred at 7.5 hours, no significant overflow metabolism had
occurred after the feed rate was first increased.

5. Conclusions

The experimental results of this study show that the method for feed demand
estimation used here is fast and precise enough to be used for closed-loop con-
trol of the feed rate in an fed-batch bioprocess with a volume over 100 m3.
Despite the limitations introduced by large-scale mixing dynamics, the con-
troller can perform as desired. The mixing effects do however constrain the
choice of relative perturbation amplitude at low feed rates, indicating that
the mixing dynamics contain a nonlinearity giving lower process gain for very
low perturbation amplitudes.

These results demonstrate that the method can be used in an industrial
application and that sufficiently good control performance can be achieved
even with a standard PI controller. It has been demonstrated that the con-
troller can reach and maintain a feed rate near the estimated feed demand in
the exponential growth phase. The same method for estimation of the feed
demand can be used with other controller designs which, if these are more
suited to handling the non-stationary nature of the fed-batch process, would
presumably allow for improved control performance.
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Figure 4. Results from the experiment. Between 1.5 and 2 hours the
agitator was repaired which caused a temporary decrease in DO, it did
however not appear to affect the experiment beyond this. The increase in
F started at 5.5 hours, when sucrose and acetate were no longer present
in significant amounts. At 8 hours, when the unperturbed feed rate had
increased to six times its starting value, the controller based on feed demand
estimation was automatically switched off due to decreased DO.
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