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Adaptive Feedback Control

KARL JOHAN ASTROM, reLLow, IEeE

Invited Paper

Adaptive control is now finding its way into the marketplace after
many years of effort. This paper reviews some ideas used to design
adaptive control systems. It covers early ideas which primarily
attempt to compensate for gain variations and more general meth-
ods like gain scheduling, model reference adaptive control, and
self-tuning regulators. It is shown that adaptive control laws can
be obtained using stochastic control theory. Techniques for ana-
lyzing adaptive systems are discussed. This covers stability and
convergence analysis. Issues of importance for applications like
parameterization, tuning, and tracking, as well as different ways of
using adaptive control are also discussed. An overview of applica-
tions which includes feasibility studies as well as products based
on adaptive techniques concludes the paper.

. INTRODUCTION

In everyday language ““adapt’ means to change a behav-
ior to conform to new circumstances. Intuitively, an adap-
tive regulator can change its behavior in response to
changes in the dynamics of the process and the distur-
bances. Since ordinary feedback was introduced for the
same purpose, the question of the difference between feed-
back control and adaptive control immediately arises. Over
the years there have been many attempts to define adaptive
control. Truxal [1] proposed to define an adaptive system
asaphysical system which has been designed with an adap-
tive viewpoint. Other definitions were proposed by early
workers in the field [2], [3]. A committee of the IEEE tried to
reconcile the different views and proposed a new vocab-
ulary [4] based on words like self-organizing control (SOC)
parameter adaptive SOC, performance adaptive SOC, and
learning control system. These efforts have, however, not
received much following. A meaningful definition of adap-
tive control which makes it possible to look at a regulator
and decide if it is adaptive or not is still missing. There
appears, however, to be a consensus that a constant gain
feedback is not an adaptive system. In this paper we will,
therefore, take the pragmatic approach that adaptive con-
trol is simply a special type of nonlinear feedback control,
where the states of the process can be separated into two
categories, which change at different rates. The slowly
changing states are viewed as parameters.

Manuscript received February 14, 1986; revised July 21, 1986. The
writing of this paper was supported under Contract 82-3430.
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Institute of Technology, S-221 00 Lund, Sweden.

Research on adaptive control was very active in the early
1950s. It was motivated by design of autopilots for high-pet-
formance aircrafts. Such aircrafts operate over awide range
of speeds and altitudes. It was found that ordinary constant
gain, linear feedback can work well in one operating con-
dition. Difficulties can, however, be encountered when
operating conditions change. A more sophisticated regu-
lator which can work well over a wide range of operating
conditions is therefore needed. The work on adaptive flight
control is summarized in [5] and [6]. It was characterized by
a lot of enthusiasm, poor hardware, and nonexistant the-
ory. Interest in the area diminished due to lack of insight
and a disaster in a flight test; see Taylor and Adkins [7].

In the 1960s, there were many contributions to control
theory, which were important for the development of adap-
tive control. State space and stability theory were intro-
duced. There were also important results in stochastic con-
trol theory. Dynamic programming, introduced by Bellman
(8], increased the understanding of adaptive processes [9].
It was used by Feldbaum to introduce the notion of dual
control [10], [11]. Fundamental contributions were also
made by Tsypkin {12], [13], who showed that many schemes
for learning and adaptive control could be described in a
common framework as recursive equations of the sto-
chastic approximation type. There were also major devel-
opments in system identification and in parameter esti-
mation, see Astrém and Eykhoff [14], which contributed to
gaining insight into the adaptive problem.

In the late 1970s and the early 1980s correct proofs for
stability of adaptive systems appeared albeit under very
restrictive assumptions. Investigation of the necessity of
the assumptions has sparked new interesting research into
the robustness of adaptive control as well as into control-
lers that are universally stabilizing.

The rapid and revolutionary progress in microelectronics
has made it possible to implement adaptive regulators sim-
ply and cheaply. There is now a vigorous development of
the field both at universities and in industry. A number of
commercial adaptive regulators based on different ideas
are appearing on the market and the industrial use of adap-
tive control is growing slowly but surely. In the spring of
1986 there were several thousand adaptive regulators in
industrial use.

There are several surveys on adaptive control. The early
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work was surveyed in [15]-[17]. Surveys of special areas in
the field are given in [18]-[23]. An extensive bibliography
which covers more than 700 papers published before 1976
is given in [24]. The survey paper [25] reviews process con-
trol applications. The textbooks [26] and [27] describe mode
reference adaptive systems and self-tuning regulators,
respectively, the books [28]-[30] contain representative col-
lections of papers dealing with recent applications, and [31]
and [32] give recent theoretical results.

This paper is organized as follows. Different adaptive
schemes are reviewed in Section I1. This includes a number
of early heuristic schemes. Three general approaches: gain
scheduling, model reference adaptive control, and self-tun-
ing regulators; are discussed in more detail. The section
ends with a presentation of dua! control which unifies sev-
eral approaches and suggests improvements to the con-
ventional approaches. Adaptive control theory is covered
in Section lll. The issues discussed include a discussion of
concepts and generic models, stability and convergence.
To discuss these topics it is also necessary to introduce the
notion of persistency of excitation. The issues of parame-
terization and robustness are also discussed. Section |V
deals with the practical aspects of adaptive control. The sec-
tion begins with a presentation of four commercial prod-
ucts. Some speculations on future trends based on the char-
acteristics of the products discussed are also given.

There are many aspects of adaptation that are not cov-
ered in this paper. There is a very vigorous development
in signal processing[33], [34] that parallels the development
in automatic control. This is not discussed in this paper.
Neither are self-optimizing controls [35] or more esoteric
forms of adaptation [36]-{38].

1§, ADAPTIVE SCHEMES

This section gives an overview of some adaptive con-
cepts. Early heuristic schemes are first discussed. Many of
them tried to compensate for variations in the process gain
only. The early schemes contain several ideas which also
appear in later systems; they also display a considerable
engineering ingenuity. It is therefore of interest to know
about them. They have been thoroughly explored by sim-
ulationand flight tests. There is, however, very little analysis
of the early systems. Three schemes, gain scheduling, model
reference adaptive control, and self-tuning regulators, are
discussed in more detail. Finally, we discuss the systems
that arise from stochastic control theory. Such systems are
of interest even if they cannot easily be realized because
they allow fast adaptation and they indicate the need for
new functions which are not present in the previous sys-
tems based on heuristic ideas.

The General Electric Autopilot

An adaptive autopilot, proposed and built by General
Electric [39], is based on the idea that the frequency content
of the error signal in a feedback system changes with the
loop gain. High frequencies dominate if the gain is high and
vice versa. A block diagram of the GE system is shown in
Fig. 1. The gain of the system is changed by a parameter
adjustment circuit which operates on the error signal. A
block diagram of the parameter adjustment mechanism is
shown in Fig. 1(b). The GE system has been successfully
flight tested [40]. Itis critical for the operation of the system
that it is excited by wide-band disturbances. The gain of the
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Fig. 1. Block diagram of General Electric’s adaptive regu-
lator.

system can be driven to its limits by sinusoidal command
signals.

Marsik’s System

Another simple adaptive system [41] which also intends
to compensate for variations in the process gain is shown
in Fig. 2. The system is based on the fact that many closed-

Y

Filter <%
Integrator
u Y
Regulator }—p| Process
-1

Fig. 2. Block diagram of Marsik’s adaptive regulator.

loop systems have a resonance peak that increases with
increasing open-loop gain. The peak occurs approximately
atthe crossover frequency where the open-loop system has
a phase shift of 180°. Assuming that the command signal
has a frequency content which covers a reasonably wide
range, the output signal y has a significant frequency com-
ponent which is out of phase with the error e. Similarly, the
output y will have a significant component in phase with
the error e if the gain is low. Marsik’s system sets the gain
simply from the correlation of the error and the output. The
system can be improved by filtering the output y before
introducing it to the correlator.

A more mathematical explanation is as follows. Assume
that the updating loop is so slow that the parameter 8 varies
much slower than the error e and the output yin the system.
The parameter 4 is then given as follows:

-3—0 = k(fe) - y = k[r — yly8 2.1)
t

where ris the reference value. The system thus attempts to
adjust the gain so that the correlation between the error e
and the output y is zero. Marsik’s system works well under
some circumstances and poorly under other.
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Notice that the parameter adjustment mechanism in the
system shown in Fig. 3 has two multipliers and an integra-
tor. This is a generic part of the parameter adjustment in

Integrator

Fig. 3. Generic part of the parameter adjustment mecha-
nism in Marsik’s systems.

many adaptive systems. Also notice that the adjustment
mechanism can be interpreted as if itattempted to drive the
correlation between two signals in the system to zero. The
system contains a filter which improves the performance
of the system. The system attempts to adjust the parameter
6 while it is in closed-loop operation.

Measurement of Transient Response Features

There are many adaptive schemes where the regulator
parameters are determined from some features of the tran-
sient response of the system. Zero-crossings, overshoot,
damping ratio, etc., are typical features that are considered.
Process control systems are, e.g., commonly adjusted so
that the amplitudes of successive peaks of the impulse
response have a ratio of 1:4. This is called quarter-ampli-
tude damping.

The advantage of these schemes is that they are simple
to implement. They have, however, some drawbacks
because they depend heavily on the disturbances beingiso-
lated steps or impulses. The algorithms are typically based
on detection of peaks and zero-crossings which may be
noise-sensitive. There are improved methods which are
based on area calculations. Such methods have been used
to tune PID regulators automatically [42]. A related method
is based on the fact that second-order systems have the
property that

AT = @f™WT -1

e
where A* is the positive impulse response areaand A~ the
negative impulse response area. An adaptive system which
is based on adjustment of the regulator gain to give a con-
stantA*/A” ratio has been developed by the Ford Company
in 1959 [43]. A similar system has recently been successfully
tested by Leigh [44]. Foxboro has for along time been exper-
imenting with a system which determines characteristic
features of the response to disturbances [45]. An adaptive
regulator for process control based on the concept has
recently been announced. This system will be discussed
further in Section V.

Self-Oscillating Adaptive Systems

An interesting approach for compensation of variations
in the process gain was used in an autopilot proposed by
Minneapolis-Honeywell [46]. A block diagram of this sys-
tem is shown in Fig. 4. The basic idea is to have a feedback
loop whose gain is as high as possible combined with a
feedforward compensation to give the desired response to
command signals. The high loop gain is maintained by
introducing a relay in the feedback loop. This will create a
limit cycle oscillation. It can be shown [47]-{50] that for sig-
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Fig. 4. Block diagram of self-oscillating adaptive system.

nals whose frequencies are much lower than the limit cycle
oscillation, the equivalent amplitude margin is approxi-
mately A,, = 2. The system with relay feedback thus auto-
matically adjusts itself to give a reasonable amplitude mar-
gin.

Notice that the system will always be excited because of
the limit cycle oscillation. The frequency of this oscillation
can be influenced by the lead-lag filter shown in Fig. 4. Its
amplitude can be adjusted by changing the relay ampli-
tude. The limit cycle oscillation is sometimes acceptable,
e.g., in amissile application. For piloted aircrafts, however,
it has been subject to much discussion because experience
has shown that pilots will always notice the limit cycle and
they often will object to it.

There are many variations of the basic self-oscillating
adaptive control system. Attempts have been made to adjust
the limit cycle amplitude by feedback. However, if the relay
amplitude is too small the response to command signals
will be too slow. Attempts have also been made to quench
the relay oscillations by a dither signal. A comparison of a
self-oscillating system to a fixed gain controller is given in
[51].

The externally excited adaptive system (EEAS) is closely
related to the self-oscillating adaptive system. In these sys-
tems, a sinusoidal perturbation signal is introduced into the
system. The process gain is determined by measuring the
signal propagation through the system and the regulator
gain is adjusted appropriately [52].

Different versions of the self-oscillating adaptive system
have been flight-tested on piloted aiicraft. The approach is
being used successfully in flight control systems for many
different missiles.

Gain Scheduling

In some systems there are auxiliary variables which cor-
relate well with the characteristics of the process dynamics.
If these variables could be measured it would be possible
to use them to change the regulator parameters. This
approachis called gain scheduling because the scheme was
originally used to accommodate changes in process gain.
Fig. 5 shows a block diagram of a system with gain sched-
uling.

Gain scheduling is an open-loop compensation. There is

Regulator Operating
parameters Gain conditions
schedule |
u L
¢ u
Regulator $#{ Process y

Fig. 5. Block diagram of a system with gain scheduling.
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no feedback which compensates for an incorrect schedule.
It can be viewed as a system with feedback control where
the feedback gains are adjusted by feedforward compen-
sation.

Theidea of gain scheduling originated in connection with
development of flight control systems [5]. In this applica-
tion, the Mach number and the dynamic pressure are mea-
sured by air-data sensors and used as scheduling variables.
A key problem in the design of systems with gain sched-
uling is to find suitable scheduling variables. This is nor-
mally done based on knowledge of the physics of a system,
For process control, the production rate can often be cho-
sen as a scheduling variable since time constants and time
delays are often inversely proportional to production rate.

When scheduling variables have been obtained, the reg-
ulator parameters are determined at a number of operating
conditions using a suitable design method. Stability and
performance of the system are typically evaluated by sim-
ulation where particular attention is given to the transition
between different operating conditions.

A drawback of gain scheduling is that the design is time-
consuming. The regulator parameters must be determined
for many operating conditions. The performance must be
checked by extensive simulations. The design can some-
times be simplified by introducing normalized dimension-
free parameters in such a way that the normalized model
does notdepend on the operating conditions. The auxiliary
measurements are used together with the process mea-
surements to calculate the normalized measurement vari-
ables. The normalized control variable is calculated and
retransformed before it is applied to the process.

An example illustrates this approach.

Example 2.1: Consider the system

dx

7; = f(X1, x2)

dx

7: = glxq, Xp, U). 2.2)

Assume that the state variables can be measured and that
itis desired to find a feedback such that the response of the
variable x to the command signal is given by the transfer
function

w2

C = — 7. .
(%) s? + 2fws + w? @3)
Introduce new coordinates y, and y, defined by
Y1 =X
dx
y2 = T; = f(xy, Xy) 2.4
and the new control signal v defined by
af af
= F =—f+—g .
v (X4, X9, U) ox, f+ ox, g (2.5)
These transformations result in the linear system
dy,
dt =Y2
b _
i v. (2.6)
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It is easily seen that the linear feedback
v =l —y) - 2oy, 2.7)

gives the desired closed-loop transfer function (2.3) for the
linear system (2.6). It remains to transform back to the orig-
inal variables. It follows from (2.5) and (2.7) that

F(x1, X, U) = @Xr — xq) — 28wf(Xq, Xy). 2.8)

Solving this equation for u gives the desired feedback. It
follows from the implicit function theorem that a condition
for local solvability is that the partial derivative dF/3u is dif-
ferent from zero. O

The generalization of the example requires a solution to
the general problem of transforming a nonlinear system
into alinear system by nonlinear feedback changes of coor-
dinates control variables. This problem was originally dis-
cussed by Krener [53] and Brockett [54] using geometric
control theory and has later been subject to much research,
[551-(60].

A neat application for design of a flight control system
for a helicopter was made by Meyer [57]. The idea has also
been applied to process control [61], [62] and to robotics
[63]-[65]. In robotics, the transformed equation can be writ-
ten as

d’e,
de?

Jn =T,

where J, is the moment of inertia, ¢, a joint angle, and T,
a torque which depend on the motor current, the torque
angles, and their first two derivatives. The equations are
thus in the desired form and the nonlinear feedback is
obtained by computing the current which gives the desired
torque. The scheme is, therefore, called the computed
torque method [66].

Gain scheduling has the advantage that the parameters
can be changed very quickly in response to process
changes. The limiting factors depend on how quickly the
auxiliary measurements respond to process changes.

There is a controversy in nomenclature whether gain
scheduling should be considered as an adaptive system or
not because the parameters are changed in open loop. Irre-
spective of this discussion, gain scheduling is a very useful
technique to reduce the effects of parameter variations. It
is the standard method for design of flight control systems
for aircrafts which operate over a wide range of altitudes
and speeds [67]. The technique is used in some control sys-
tems forindustrial robots. Itis also used increasingly in pro-
cess control [68], [69]. It is easy to implement gain sched-
uling using modern hardware for distributed process
control. It can be expected that applications of the tech-
nique will increase in the future because of its potential
benefits,

Model Reference Adaptive Systems (MRAS)

The model reference adaptive system (MRAS) was orig-
inally proposed by Whitaker at MIT[70]-[72]. He considered
a problem where the specifications were given in terms of
a reference model which tells how the process output ide-
ally should respond to the command signal. A block dia-
gram of the system is shown in Fig. 6. Notice that the ref-
erence model is part of the control system. The regulator
can be thought of as consisting of two loops. An inner loop,
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Regulator Process 4

Fig. 6. Block diagram of model reference adaptive system
(MRAS).

which is an ordinary feedback loop composed of the pro-
cess, and a regulator. The parameters of the regulator are
adjusted by the outer loop in such a way that the error e
between the model output y,, and the process output y
becomes small. The outer loop is thus also a regulator loop.
The key problem is to determine the adjustment mecha-
nism so that a stable system which brings the error to zero
is obtained. This problem is nontrivial. It cannot be solved
with a simple linear feedback from the error to the con-
troller parameters. This is illustrated in Example 3.1. The
following parameter adjustment mechanism, called the
“MIT-rule,” was used in the Whitaker’s original MRAS:

%,'g = —ke grad; e. (2.9)
In this equation, e denotes the model error. The compo-
nents of the vector 6 are the adjustable regulator param-
eters. The components of the vector grad, e are the sen-
sitivity derivatives of the error with respect to the adjustable
parameters. The sensitivity derivatives can be generated as
outputs of alinear system driven by process inputs and out-
puts. The number k is a parameter which determines the
adaptation rate.

Whitaker motivated the rule as follows. Assume that the
parameters § change much slower than the other system
variables. To make the square of the error small it seems
reasonable to change the parameters in the direction of the
negative gradient of e?.

Notice that the parameter adjustment mechanism
described by (2.9) can be thought of as composed of three
parts: alinear filter for computing the sensitivity derivatives
from process inputs and outputs, a multiplier, and an inte-
grator; compare with Fig. 3. Also notice that the MRAS
attempts to adjust the parameters so that the correlation
between the error e and the sensitivity derivatives becomes
zero. The MRAS shown in Fig. 6 is called a direct scheme
because the regulator parameters are updated directly.

A simple example illustrates how the MIT-rule can be
used.

Example 2.2—Adaptation of a Feedforward Gain: Con-
sider the problem of adjusting a feedforward gain. Let the
model and the process have the transfer function G(s). The
error is

e=y—y,=G(por— G(p)

where ris the command signal, y,,, the model output, y the
process output, § the adjustable parameter, and p = d/dt
the differentiation operator. The sensitivity derivative is

ASTROM: ADAPTIVE FEEDBACK CONTROL

de

i G(pr =y,
The MIT-rule (2.9) then gives
do
P —kyne. (2.10)

The rate of change of the parameter should thus be made
proportional to the product of the error and the model
ouput. A block diagram of the model reference adaptive
system is shown in Fig. 7. O

Model

Integrator

~ Process

Fig. 7. Block diagram of an MRAS for adjustment of a feed-
forward gain based on the MIT-rule.

Notice that no approximations were needed in Example
2.2. When the MIT-rule is applied to more complicated
problems it is necessary to use approximations to obtain
the sensitivity derivatives. This is illustrated by an addi-
tional example.

Example 2.3—MRAS for a First-Order System: Consider a
system described by the model

% = —ay + bu (2.11)
where u is the control variable and y the measured output.
Assume that it is desirable to obtain a closed-loop system
whose input-output model is described by the relation

ot = —anyYm + bnr. (2.12)
This goal can be achieved with the feedback
u=kr—ky (2.13)

provided that the feedforward gain k, and the feedback gain
k, are chosen as

b
k, = f
a, — a
k, = == B (2.14)
To use Whitaker’s rule introduce the error
€E=Y ~ Vm

where y is the closed-loop output. This is obtained by elim-
inating u between (2.11) and (2.13). Hence

%’ = —ay + bu = ~ay — bk,y + bk,r

or
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bk,

y= p + a + bk, r
The sensitivity derivatives are given by
de__ b
ak, p+a+ bk,
de bk, re b
ok, (pra+bk? ~ p+ar+bk”

The MIT-rule, (2.9), gives the following equations for updat-
ing the regulator parameters:

dk, b
k{p+a+bky’}e

dt

dk “ b

L =k|———7yte

dt p + a + bk,
These formulas cannot be used because the process param-
eters a and b are not known. Some approximations are,
therefore, required in order to obtain realizable parameter
adjustment rules. First observe that the parameter b may

be absorbed in the adaptation gain k. Furthermore, observe
that for the equilibrium values of the gain it follows that

p+a+bk =p+an

Itis thus reasonable to approximate the quantity on the left-
hand side by the quantity on the right-hand side. The fol-
lowing parameter adjustment rule is then obtained:

dk, { bm }

— = -k rie

dt p+ag (2.15)
dk b

axy _ m

a = {p + am y} & -

The example shows how the MIT-rule may be applied to
obtain a parameter adjustment rule. Although special
examples were considered, there are some characteristics
that are worth noticing. The procedure can be applied to
nonlinear systems. The structure of Fig. 3 appears again.
Some approximations are necessary in order to obtain a
realizable parameter adjustment control law.

The MIT-rule will perform well if the parameter k is small.
The allowable size depends on the magnitude of the ref-
erence signal. Consequently, it is not possible to give fixed
limits which guarantee stability. The MIT-rule can thus give
an unstable closed-loop system. Modified adjustment rules
can be obtained using stability theory. These rules are sim-
ilar tothe MiT-rule. The sensitivity derivatives are, however,
replaced by other functions.

The model reference adaptive system represents an
important line of development in adaptive control. It has
been subject to much theoretical analysis which will be dis-
cussed in more detail in Section 1. The algorithms have
been extended to nonminimum phase systems [73]}-[78],
multivariable systems [79]-{82], and nonlinear systems [83].
The MRAS have also been applied to a wide range of dif-
ferent problems [18], [26], [84]-[93].

Self-Tuning Regulators STR

All schemes discussed so far are called direct methods
because the adjustment rules tell directly how the regulator
parameters should be updated. The self-tuning regulator
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is a different scheme where process parameters are updated
and the regulator parameters are obtained from the solu-
tion of a design problem. A block diagram of such a system
is shown in Fig. 8. The adaptive regulator can be thought

Process parameters

Design $1 Estimation -

Regulator parameters

A

u
___C__’ Yy
Regulator " &1 Process

Fig. 8. Block diagram of a self-tuning regulator (STR).

of as composed of two loops. The inner loop consists of the
process and an ordinary linear feedback regulator. The
parameters of the regulator are adjusted by the outer loop,
which is composed of a recursive parameter estimator and
a design calculation. To obtain good estimates it may also
be necessary to introduce perturbation signals. This func-
tion is not shown in Fig. 8 in order to keep the figure simple.
Notice that the system may be viewed as an automation of
process modeling and design where the process model and
the control design are updated at each sampling period.

The block labeled “’design” in Fig. 8 represents an on-line
solution to a design problem for a system with known °
parameters. This is called the underlying design problem.
Such a problem can be associated with most adaptive con-
trol schemes. However, the problem is often given indi-
rectly. To evaluate adaptive control schemes it is often use-
ful to find the underlying design problem because it will
give the characteristics of the system under the ideal con-
ditions when the parameters are known exactly.

The self-tuner also contains a recursive parameter esti-
mator. Many different estimation schemes have been used,
for example stochastic approximation, least squares,
extended and generalized least squares, instrumental vari-
ables, extended Kalman filtering, and the maximum like-
lihood method.

The self-tuner shown in Fig. 8 is called an explicit STR or
an STR based on estimation of an explicit process model.
It is sometimes possible to reparameterize the process so
that it can be expressed in terms of the regulator param-
eters. This gives a significant simplification of the algorithm
because the design calculations are eliminated. In terms of
Fig. 8, the block labeled design calculations disappears and
the regulator parameters are updated directly. An example
illustrates the idea.

Example 2.4: Consider the discrete time system
described by

y(t + 1) + ay(t) = bu(®) + e(t + 1) + ce(t),
t=----1,01, - (2.16)

where {e(d)} is a sequence of zero-mean uncorrelated ran-
dom variables. If the parameters a, b, and c are known, the
proportional feedback

ult) = —0y(t) = 3;—C ¥ 2.17)
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minimizes the variance of the output. The output then
becomes .

Yo = el. (2.18)

This can be concluded from the following argument. Con-
sider the situation at time t. The variable e(t + 1) is inde-
pendent of y(1), u(t), and e(t). The output y(t) is known and
the signal u(t) is at our disposal. The variable e(t} can be com-
puted from past inputs and outputs. Choosing the variable
u(t) such that the terms underlined in (2.16) vanish makes
the variance of y(t + 1) as small as possible. This gives (2.18)
and (2.17). For further details, see [94].

Since the process (2.16) is characterized by three param-
eters, a straightforward explicit self-tuner would require
estimation of three parameters. Notice, however, that the
feedback law is characterized by one parameter only. A self-
tuner which estimates this parameter can be obtained based
on the model

y(t + 1) = 6y(t) + u(®). (2.19)
The least squares estimate of the parameter @ in this model
is given by
t—-1

Z vl [ytk + 1) = ul]
o(y = &= - (2.20)

2,
k§1 y(k)

and the control law is then given by
ut) = —o(t) y(t). (2.21)

The self-tuning regulator given by (2.20) and (2.21) has a
remarkable property which can be seen heuristically as fol-
lows. Equation (2.20) can be written as

~ ] -

t
3Ttk + 1 yiko = 3 B 1600 Y10 + utk) yik]

k=1

| -

t
2 160 — 6k y*k).

Assuming that y is mean square bounded and that the esti-
mate 6(f) converges as t = o we get
1 t

lli_.m T kg ytk + 1) ytk) = 0. (2.22)
The adaptive algorithm (2.20), (2.21) thus attempts to adjust
the parameter @ so that the correlation of the output at lag
one is zero. If the system to be controlled is actually gov-
erned by (2.16) it follows from (2.18) that the estimate will
converge to the minimum variance control law under the
given assumption. This is somewhat surprising because the
structure of (2.19) which was the basis of the adaptive reg-
ulator is not compatible with the true system (2.16). [

The property illustrated in the example, namely, that the
simple self-tuner based on a simplified model structure may
give the correct minimum variance control law when
applied to a model with correlated disturbances, was
explored more fully in [95].

The self-tuning regulator was proposed by Kalman [96),
who built a special-purpose computer to implement the
regulator. Several experimental investigations were done
as digital computers became available, see [97] and [98]. Self-
tuners based on least squares estimation and minimum vari-
ance regulation were explored in [95], where it was shown
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that they will give the correct equilibrium even for colored
noise, as was illustrated in Example 2.4. The self-tuning reg-
ulator has received considerable attention since then,
because it is flexible, easy to understand, and easy to imple-
ment with microprocessors. Various modifications to the
simple self-tuner have been proposed {99]-[102]. Since the
approach is very flexible with respect to the underlying
design method, many different extensions have been made.
Self-tuners based on phase and amplitude margins are dis-
cussed in [103}-[105]. The pole placement design method
has been used as described in [73], 78], [85], [106]-[119]. Lin-
ear quadratic Gaussian self-tuners are described in [120]-
[134]. It has been shown in [135] that self-tuning does not
necessarily occur for an LQG problem unless the criterion
is modified.

Relations Between MRAS and STR

The MRAS originated from a continuous time, determin-
istic servo-problem and the STR from a discrete time, sto-
chastic regulation problem. The two approaches are quite
similar in spite of their different origins. This can be seen
superficially from the comparison of Fig. 6 and Fig. 8. Both
systems have too feedback loops. The inner loop is an ordi-
nary feedback loop with a process and a regulator. The reg-
ulator has adjustable parameters which are set by the outer
loop. The adjustments are based on feedback from the pro-
cess inputs and outputs. The methods for design of theinner
loop and the techniques used to adjust the parameters in
the outer loop are, however, different.

The regulator parameters are updated directly in the
MRAS in Fig. 6. In the STR in Fig. 8, they are updated indi-
rectly viaparameter estimation and design calculations. This
difference is, however, not fundamental because the STR
may be modified so that the regulator parameters are
updated directly as was shown in Example 2.4.

The model reference adaptive regulator can also be mod-
ified so that the parameters are updated indirectly. Such an
MRAS scheme is called indirect, see [136). The direct MRAS
is closely related to the implicit STR and the indirect MRAS
to the explicit STR. More details are found in [112] and {137]-
[140].

Adaptive Schemes Derived from Stochastic Control
Theory

The adaptive schemes discussed so far are based on
purely heuristic arguments. It would be appealing to obtain
adaptive systems from a unified theoretical framework. This
can be done using nonlinear stochastic control theory
where the system and its environment are described by a
stochastic model. To do so, the parameters are introduced
as state variables and the parameter uncertainty is modeled
by stochastic models. An unknown constant is thus mod-
eled by the differential equation

#_,

dt
with an initial distribution that reflects the parameter
uncertainty. This corresponds to a Bayesian approach where
unknown parameters are viewed as random variables.

Parameter drift is captured by adding random variables
to the right-hand sides of the equations. A criterion is for-
mulated as to minimize the expected value of a loss func-
tion, which is a scalar function of states and controls.
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The problem of finding a control, which minimizes the
expected loss function, is difficult. Under the assumption
that a solution exists, a functional equation for the optimal
loss function can be derived using dynamic programming;
see[8],[9], and [141]. The functional equation, which is called
the Bellman equation, can be solved numerically only in
very simple cases. The structure of the optimal regulator
obtained is shown in Fig. 9. The controller can be thought

Ug Nonlinear u y
funktion & Process
{
Calculation
“lof hyperstate,

Hyperstate

Fig. 9. Block diagram of an adaptive regulator derived from
stochastic control theory.

of as composed of two parts: a nonlinear estimator and a
feedback regulator. The estimator generates the condi-
tional probability distribution of the state from the mea-
surements. This distribution is called the hyperstate of the
problem. The feedback regulator is a nonlinear function,
which maps the hyperstate into the space of control vari-
ables. This function can be computed off-line. The hyper-
state must, however, be updated on-line. The structural
simplicity of the solution is obtained at the price of intro-
ducing the hyperstate, which is a quantity of very high
dimension. Updating of the hyperstate requires, in general,
the solution of a complicated nonlinear filtering problem.
Notice that there is no distinction between the parameters
and the other state variables in Fig. 9. This means that the
regulator can handle very rapid parameter variations.
Notice, however, that it is necessary to have prior infor-
mation about the stochastic properties of the variations of
states and parameters.

The optimal control law has interesting properties which
have been found by solving a number of specific problems.
The control attempts to drive the outputto its desired value,
but it will also introduce perturbations (probing) when the
parameters are uncertain. This improves the quality of the
estimates and the future controls. The optimal control gives
the correct balance between maintaining good control and
small estimation errors. The name dual control was coined
by Feldbaum [11] to express this property, see [142]-[144].
Optimal stochastic control theory also offers other possi-
bilities to obtain sophisticated adaptive algorithms, see[37].

Itis interesting to compare the regulator in Fig. 10 with
the self-tuning regulator in Fig. 8. In the STR, the states are

U,10,B8,v)

2.40 4

Fig. 10. Graph of the function U,(0, 8, »).
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separated into two groups, the ordinary state variables of
the underlying constant parameter model and the param-
eters which are assumed to vary slowly. In the optimal sto-
chastic regulator there is no such distinction. There is no
feedback from the variance of the estimate in the STR
although this information is available in the estimator. In
the optimal stochastic regulator there is feedback from the
full conditional distribution of parameters and states. The
design calculations in the STR are made in the same way
as if the parameters were known exactly; there are no
attempts to modify the control law when the estimates are
uncertain. In the optimal stochastic regulator, the control
law is calculated based on the hyperstate which takes full
account of uncertainties. This also introduces perturba-
tions when estimates are poor. The comparison indicates
that it may be useful to add parameter uncertainties and
probing to the STR.

A simple example illustrates the dual control law and
some approximations.

Example 2.5—From [145]: Consider a discrete time sys-
tem described by

y(t + 1) = y(t) + bu(t) + e() (2.23)

where u is the control, y the output, and e normal (0, g,)
white noise. Let the criterion be to minimize the mean
square deviation of the output y. This is a special case of
the system in Example 2.4 with a = 1 and ¢ = 0. When the
parameters are known, the optimal control law is given by
(2.17), i.e.,

_ Yo
u(t) = b (2.24)
If the parameter b is assumed to be a random variable with
a Gaussian prior distribution, the conditional distribution
of b, given inputs and outputs up to time ¢, is Gaussian with
mean b(t) and standard deviation o(t). The hyperstate can
then be characterized by the triple (y(t), b(t), o(t)). The equa-
tions for updating the hyperstate are the same as the ordi-
nary Kalman filtering equations, see [94] and [146].

Introduce the loss function

t+N
= min E— 2 2.25
Vi = min £ - {kgﬂ y (k)IY,} (2.25)
where Y, denotes the data available at time ¢, i.e., {y(?),
y(t — 1), - - - }. Theloss function is thus the conditional mean
square error of the control errors N steps ahead. By intro-
ducing the normalized variables

n=ylo. B=blc u=—ubly (2.26)

it can be shown that V), depends on n and 8 only. The Bell-
man equation for the problem can be written as

VN("L B) = min UN("’I 6/ #) (2~27)
where
VO(’?: B) = 0
and
”21,2
UnG, B, ) = 1+ 9%(1 = p?) + v

+ S_ Vn-1ly, b) ole) de  (2.28)

where ¢ is the normal probability density and
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Yy =n+ Bu + ev1 + y?
b =eu+ BT+ p4?

see [146]. When the minimization is performed, the control
law is obtained as

prln, B) = arg min Uy(n, B, n). (2.29)

The minimization can be done analytically for N = 1. We
get

2
1+ 8%
Transforming back to the original variables we get
1 _Po
b) b + oXb)
This control law is called one-step control or myopic control
because the loss function V; only looks one step ahead. It
is also called cautious control because in comparison with
the certainty equivalence control it hedges by decreasing
the gain when the estimate of b is uncertain.

For N > 1, the optimization can no longer be made ana-
lytically. Instead, we have to resort to numerical calcula-
tions. The solution has some interesting properties. Fig. 10
shows the function Ux(0, 8, u) for different values of 8. Notice
that the function has several local minima with respect to
p. For 8 = 0.40 the minimum at & = 0 is the smallest one
butfor 8 = 0.38 the minimum at » = 0.42 is the smallest one.
The control p4(y, B8) is thus discontinuous in B.Forq =0, the
control signal is zero if 8 is sufficiently large, i.e., the esti-
mates are reasonably accurate. When the estimates become
sufficiently poor, 8 < 0.39, the control signal p jumps to
about 0.4. The discontinuity of the control law corresponds

to the situation that a probing signal is introduced to
improve the estimates.

paln, B) = arg min [(1 — Bu)® + 1 + ¥ =

u(t) = — (2.30)

Some approximations to the optimal control law will also
be discussed. The certainty equivalence control

ult) = —y(tib (2.31)

is obtained simply by taking the control law (2.24) for known
parameters and substituting the parameters by their esti-
mates, The self-tuning regulator can be interpreted as a cer-
tainty equivalence control. Using normalized variables, the
certainty equivalence control faw becomes

p=1 (2.31)
Using normalized variables the cautious control law can be
expressed as
BZ
1+ 8%

u = (2.30)
Notice that all control laws are the same for large 8, i.e., if
the estimate is accurate. The optimal control law is close
to the cautious control for large control errors. For esti-
mates with poor precision and moderate control errors the
dual control gives larger control actions than the other con-
trol laws. A graphical representation of the control laws for
time horizons N = 1, 3, 6, and 31 are given in Fig. 11.

I, THEORY

Theory has different roles in analysis and design of adap-
tive control systems. Analysis aimed at understanding spe-
cific algorithms is one goal. Creation of new adaptive con-
trol laws is another role. Adaptive systems are inherently
nonlinear. Their behavior is also quite complex which
makes them difficult toanalyze. Progress in theory has been
slowand much work remains before a reasonably complete
coherent theory is available. In this section it is attempted

Fig. 11. [llustration of the cautious contro} ¢ and the dual control laws pj, pe, and py.
The graphs show the normalized control variable as a function of the normalized param-

eter uncertainty 8%(1 + 8% and the normalized control error 7/(1 + 7).
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to discuss a number of different issues and results that are
available.

Because of the complex behavior of adaptive systems it
is necessary to consider them from several points of view.
Theories of nonlinear systems, stability, system identifi-
cation, recursive estimation, convergence of stochastic
algorithms, and optimal stochastic controli all contribute to
the understanding of adaptive systems.

Generic Problems

A considerable effort has been devoted to construction
of models which can serve as prototypes for general adap-
tive problems. The early work concentrated on systems
where there was only a variation in the process gain. The
system shown in Example 2.2 is a typical example. This
example can be used to show that adaptive systems are
inherently nonlinear.

Example 3.1—Adaptive Systems are Not Linear: Con-
sider the system in Example 2.2 with G{p) = 1. Assume that
we attempt to use a parameter adjustment rule which is lin-
ear in the model error. The equation for updating the
parameters is then given by

% = —ker = kr(1 — 0). (3.1

This equation is stable only if the product kris positive. With

a fixed adaptation gain k it is thus impossible to obtain a

stable solution if the reference signal can assume both pos-

itive and negative values. O

Much attention has been given to single-input single-out-
put systems described by the equation

AlQ) y(t) = B(g) u(t) + v(t). (3.2)

In this model u is the control variable, y is the measured
output, and v is a disturbance. A and B are polynomials in
the forward shift operator for discrete time systems and
polynomials in the differential operator for continuous time
systems. Multivariable systems where v and y are vectors
and A and Bare matrix polynomials have also been explored.

The model (3.2) represents a system where the system
dynamics is totally unknown. In many applications the sit-
uation is quite different because the system is partially
known. This situation has not been investigated much per-
haps because each problem has a special structure. We
believe, however, that the problem is of significant practical
interest; see [147] and [148].

Itis customary to separate the tuning and the adaptation
problems. In the tuning problem it is assumed that the pro-
cess to be controlled has constant but unknown parame-
ters. In the adaptation problem it is assumed that the
parameters are changing. Many issues are much easier to
handle in the tuning problem. The convergence problem
is to investigate if the parameters converge to their true val-
ues. The corresponding problem is much more difficult in
the adaptive case because the targets are moving. The esti-
mation algorithms are the same in tuning and adaption.
They can be described by

Ot + 1 =060+ POYO [yt + 1) — o) 60]. (3.3)

Compare with the Appendix, where several algorithms are
described in detail. The gain matrix P behaves, however,
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very differently in tuning and adaptation. It goes to zero as
t increases in the tuning case but it does not converge to
zero in the adaptive case.

Stability

Much effort has been devoted to analysis of stability of
adaptive systems. It is important to keep in mind that the
stability concepts for nonlinear differential equations refer
to stability of a particular solution. It is thus often the case
that one solution is stable while another unstable.

Stability theory has been the major inspiration for the
development of model reference adaptive systems. It has,
however, not been applied to systems with gain schedul-
ing. This is surprising since such systems are simpler than
MRAS and STR. When experimenting with Whitaker’s sys-
tem it was found that the system could become unstable
in certain circumstances. This inspired Donalson and
Leondes[149], Shackcloth and Butchart [150], and Parks [151]
to apply stability analysis. This was followed by a lot of
research where stability theories of Lyapunov and Popov
were applied to the analysis of adaptive control systems,

The stability conditions for Whitaker’s scheme have been
explored in detail for the simple case of adjustment of a
feedforward gain shown in Example 2.2[152]. When the ref-
erence signal ris as sinusoid, (2.10) becomes a linear time-
varying differential equation similar to the classical Mathieu
equation. Such an equation can be investigated using Flo-
quet theory. Stability conditions were determined by James
[152] using a combination of analytical and numerical meth-
ods. Fig. 12 shows the results. It shows that the stability con-
ditions can be very complicated even in simple cases.

Adaptation gain k

<

T T T T L

5 w

[=]

Fig. 12. Stability conditions for (2.10) when r = cos wt, and
G(s) = 1/(s + 1). The system is unstable in the dotted areas.

Stability theory has also been used to construct adjust-
ment mechanisms, which give stable closed-loop systems;
see (18], [26]. The example below shows how this can be
done.

Example 3.2—A Parameter Adjustment Rule Derived from
Stability Theory: Consider the same problem as in Example
2.3 and assume that the parameters a and b are constant,
When the parameters of the process are known, the control
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law (2.13), (2.14) gives the desired result. A model reference
adaptive system which can find the appropriate gains k,and
k, when the parameters a and b are not known is obtained
as follows. Introduce the error

€E=Y = VYm
Taking derivatives and using (2.11) and (2.12) to eliminate
the derivatives of y and y,, gives

de
-a-t- = —ape + (@, —a - bky) y + (bk, — by)r.  (3.4)

Notice that the error goes to zero if the gains are given by
(2.14). 1t will now be attempted to construct a parameter
adjustment mechanism which will drive the parameters k,
and k, to the values of (2.14). For this purpose, the Lyapunov
function

— 1 2 1 - 2
Ve, k, k) = 2 [e + bk (bk, + a — a)
_1—.. — 2
+ Y (bk, — bm) )] (3.5)

is introduced. The derivative of V is

1 dk
e =, s - =y
e + X (bk, + a — ap) dt

dk,

+ = [bk, = b,] T

- —ae? 4l _ [ﬁ’ﬁx_ ]
ane +k(bky+a anp) ot kye

1 dk,
+ e (bk, — b,,) [HT + kre].

If the parameters are updated as
dk,
dt

dk,

dt

—kre

kye (3.6)

we get

%:; = —-a,el (3.7)
The function V will thus decrease as long as the error e is
different from zero and it can thus be concluded that the
erro will go to zero. Notice, however, that it does not follow
that the parameters k, and k, will converge to the equilib-
rium values unless more conditions are imposed. This will
be discussed in more detail later.
The parameter adjustment rule then becomes

— = —kype (3.8

where

The rule is thus similar to the MIT-rule (2.9) but sensitivity
derivatives de/30 are replaced by the regression vector ¢.
a
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An interesting resultis obtained by applying stability the-
ory to the problem of adjusting a feedforward gain.

Example 3.3: The following parameter adjustment law
can be obtained by applying Lyapunov theory to the prob-
lem in Example 2.2:

% = —kre. (3.9

The rate of change of the parameter is proportional to the
product of the error e and the reference r. Notice that the
adjustment law in Example 2.2 obtained by the MIT-rule
gives a rate of change proportional to y,e. In the case of
r = cos wt and G(s) = 1/(s + 1) which corresponds to Fig.
12 it can be shown that the system is stable for all k and w;
see [151]. O

Example 3.3 shows that a minor modification of the MIT-
rule can give a much larger stability region. A direct gen-
eralization of the method used in the examples shows that
it is possible to derive stable parameter adjustment rules
for systems where all the state variables are measurable.
The key step is to derive an equation corresponding to (3.4)
which expresses the error e in terms of the parameter errors.
This equation is called the error equation.

Output Feedback

It is much more difficult to construct parameter adjust-
ment rules when all state variables are not measured
directly. Other methods are then required. Hyperstability
theory [18], [26], [153], is a useful tool. Consider, e.g., the
system in Example 3.3. The block diagram of the system can
be redrawn as shown in Fig. 13. The closed-loop system is

G (s)

£=3

Fig. 13. Block diagram of a model reference adaptive sys-
tem.

thus composed of alinear system with the transfer function
G(s) and a nonlinear system. This is a generic system con-
figuration for which there are several stability conditions.
To express these we need two concepts, positive-real and
passive. Notice that Fig. 13 is an abstract representation
which is useful for analysis but that it does not represent
an implementation of the adaptive system. The notions pos-
itive-real and stricly positive-real originated in circuit theory
to characterize driving-point functions for networks.

Definition:

A transfer function G(s) is called positive-real (PR) if Re
G(s) = 0 for Re s = 0. It is strictly positive-real (SPR) if G(s
— ¢) is PR for some positive e.

Definition:
A system with input u and output y is passive if

195




;
SO y(©) u(t) dt = =0.

A feedback loop which is composed of a linear part and
a nonlinear part, as in Fig. 13, is stable if the linear part is
strictly positive-real (SPR) and the nonlinear partis passive,
see [154].

The nonlinear system which represents the parameter
adjustment mechanism in Fig. 13 is passive because it fol-
lows that

T

T t
SO y(6) u(t) dt = S wlt) Ho @(s) u(s) dS} u(t) dt

0
10¢e7 2
=3 [So o(t) u(t) dt} = 0.

To ensure stability it then remains to ensure that the
transfer function G(s) is SPR. If this is not the case it can be
attempted tofilter the error with alinear system G;such that
the combination GG; is SPR. In this way it is possible to
obtain adjustment rules for systems which are minimum
phase and have relative degree one. To obtain the repre-
sentation shown in Fig. 13, it is necessary to parameterize
the model so that it is linear in the parameters. The model
should thus be of the form

¥ty = o'(t)9 (3.10)

where ¢ is a vector of signals and 6 a vector of parameters.
This requirement strongly limits the algorithms that can be
considered. Notice that if a system is linear in the param-
eters then the error can be represented as the output of a
dynamical system driven by the signal ¢ '[6, — 6] where 6,
are the true parameters, i.e.,

e =G(p) {0 - 651} = G(p) {e'x} (3.11)
where x is the parameter error
X =0 — 6, (3.12)

This equation is an error model of the type discussed in
Example 3.2. Compare also with Fig. 13.

The Augmented Error

The general problem with output feedback poses addi-
tional problems, because the desired representation can-
not be obtained by filtering the model error. A clever idea
was given by Monopoli [155]. He suggested to replace the
error (3.11) by the quantity

e=e+[x'G(ple — G(p) ¢'x] = x'G(p)p (3.13)

where the second equality follows from (3.11). The signal
e is called the augmented error and the correction signal
within brackets is called the error augmentation. This signal
can be generated by realizable operations. Notice that the
augmented error is equal to the error when the parameters
are constant. The correction signal is then zero. Monopoli
suggested using the parameter adjustment rule

de
prie —k{G(p)p}e (3.14)

where ¢ is defined by (3.13). This differs from (3.8) in two
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ways: The regression vector has been filtered by G and the
error e in (3.8) is replaced by the augmented error.

For systems where only a gain is adjusted it is straight-
forward to show that Monopoli’s approach leads to a stable
closed-loop system. It follows from (3.12) and (3.13) that

dx _df 2

gt dr s ~kx[G(p)r°. (3.15)
Notice that ¢ is equal to the reference signal. Compare with
Example 3.1.

Stability Conditions for a Direct MRAS

The stability problem is much more difficult in the gen-
eral case because the ris replaced by the regression vector
¢ whose components are functions of the inputs and out-
puts of the system, these depend on old parameter values,
see the Appendix. It is essential to show that the regression
vector is bounded. Many attempts were made to provide
stability proofs during the 1970s. It was not until the depen-
dence of the regressive vector on the parameters was
explicitly taken into account that correct proofs were given,
This difficulty which remained unnoticed for many years
was pointed outin[156]. Stability proofs were given by [137],
[157]-[166]. The key elements of the proof is to show that
the parameter error is bounded and to use estimates of the
growth rates of the signals in the system to show that the
regressor is bounded. An elegant formalism for estimating
the growth rates is given in [167].

The following assumptions are required to prove stability
of the system obtained when applying a direct MRAS based
on gradient estimation to the system (3.2).

AT the relative degree d = deg A — deg B is known,

A2 the sign of the leading coefficient b, of the poly-
nomial B in (3.2) is known,

A3 the polynomial B in (3.2) is stable,

A4 the estimated model! is at least of the same order as
the process.

The stability theorems are important because they give
simple and rigorous analysis of an idealized adaptive sys-
tem. The assumptions required are, however, very restric-
tive.

Assumption A1 for discrete systems means that the time
delay is known with a precision which corresponds to a
sampling period. This is not unreasonable. For continuous
time systems the assumption means that the slope of the
high-frequency asymptote of the Bode diagram is known.
Together with assumption A2 it also means that the phase
is known at high frequencies. If this is the case, it is possible
to design a robust high-gain regulator for the problem, see
(168]1-[170]. For many systems, such as a flexible aircraft,
electromechanical servos, and flexible robots, the main dif-
ficulty in control is the uncertainty of the dynamics at high
frequencies, see [67]. A comparison between robust and
adaptive control is given in [171].

Assumption A3 s also crucial. It arises from the necessity
to have a model, which is linear in the parameters. The
underlying design method is, in fact, based on cancellation
of all process zeros. Such a design will not work even for
systems which known constant parameters if the system
has an unstable inverse.
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Assumption A4 is very restrictive, since itimplies that the
estimated model must be at least as complex as the true
system, which may be nonlinear with distributed param-
eters. Almost all control systems are, in fact, designed based
on strongly simplified models. High-frequency dynamics
are often neglected in the simplified models. Itis, therefore,
very important that a design method can cope with model
uncertainty; compare [172] and [168].

Bounded Disturbances

The stability results given above require that there are no
disturbances. The signal v in (3.2) thus must be zero. The
analysis in {157], [159], [160], [173]-176] also applies to the
case when the disturbance vin (3.2) is bounded. Egardt has
constructed examples which show that modifications of the
algorithms are necessary. One possibility is to bound the
parameter estimates a priori by projecting the estimates into
a bounded region of parameter space. Another possibility
is to introduce a dead zone in the estimator which keeps
the estimates constant if the residuals are small.

Persistency of Excitation

Notice that even if the error e goes to zero there is no
guarantee that the parameters will converge to their true
values. Some conditions on the input signal are needed
when the parameters of a system are determined from
input-output data. An example illustrates what may hap-
pen.

Example 3.4: Consider the simple adaptive system in
Example 3.2, Let G(s) = 1. The parameter adjustment law
then becomes

de 2
P kr[1 — 6] (3.16)
Assume that the reference signal r is an exponential
r(ty = e™ .

Equation (3.16) then has the solution
6() = 1 + (9 — Ne K -e™
As time increases the solution converges to
O =1+ (6y — Ne *2,

Notice that the limit value depends on the initial condition
and that it is different from the equilibrium value if 8 #
1 O

The reason why the parameter does not converge to the
equilibrium point is that the input signal r does not excite
the system sufficiently. In the example it is easily seen that
any input such that

t
S rX(s) ds
0

going to infinity as tincreases will drive the parameter error
to zero.

The notion of persistent excitation was introduced in [177]
in connection with system identification. An input signal
u is called persistently exciting (PE) of order n if its sample
covariance function

T
C,n) = lim % So ult + Dul® dt = ult + D ul®) (3.17)

To o
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exist and if the matrix

[ Cf0) - -+ Cyn — 1)
(3.18)
I_Cu(n —1) -+ C,0)

is positive-definite.

When estimating parameters in linear models as in (3.2),
the input signal must be persistently exciting of order deg
A + deg B + 1. If it is not, the parameters cannot be esti-
mated. A step signal is persistently exciting of order 1 and
a sinusoidal signal of order 2.

The notion of persistent excitation can also be expressed
in the frequency domain. Generalized harmonic analysis
canbeappliedtoasignal with the property(3.17)and a spec-
trum can then be defined. It can be shown that if the spec-
trum is different from zero at n positive frequencies then
it is also persistently exciting of order 2n. A signal is per-
sistently exciting of any order if the spectrum is different
from zero in any interval, see [178]-[180].

The notion of persistent excitation is important in order
to understand the behavior of adaptive control systems
[181]. If the process input is not persistently exciting, it is
not possible to determine the parameters. This means that
the parameters may drift on hypersurfaces in the parameter
space. The importance of the condition has been noticed
in many papers [182]-{186]. The difficulties with a model ref-
erence system noticed in [187] can also be explained due
to the lack of persistent excitation, see [188] and [189].

In an adaptive system, the input signal is created by feed-
back from the output. It is then a nontrivial task to guar-
antee that it is persistently exciting unless external pertur-
bations are introduced. It is, however, always possible to
monitor the process input and to detect if it is not persis-
tently exciting. Such a monitoring device can be used to
control injection of perturbation signals or to switch off
adaptation when the input signal is not exciting. This device
was suggested in [126]. Simpler versions are also used in
several commercial systems. This is discussed in Section 1V,

Averaging Methods

Many adaptive algorithms are motivated by the assump-
tion that the parameters change slower than the state vari-
ables of the system. We can make sure that the parameters
change slowly by choosing a small adaptation gain. The
variables describing the adaptive system can then be sep-
arated into two groups which change at different rates. The
adjustable parameters are the slow parameters and the state
of the controlled dynamical system are the fast variables.
It is then natural to derive approximations from this fact.

Consider, e.g., the parameter adjustment laws (3.3) and
(3.8). The left-hand side of these equations are the slowly
varying parameters. The right-hand sides contain both slow
and fast variables. One possibility is to approximate the
right-hand sides by taking averages of the fast variables. The
averages are calculated under the assumption that the slow
variables are constant. This approximation is called aver-
aging. The idea originated in analysis of nonlinear oscil-
lations, [190]-[192]. The method has been used extensively
in many branches of applied mathematics, [193], [194].

There are averaging theorems for both deterministic and
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stochastic systems. For deterministic systems it must be
required that the rapidly varying signais are periodic or
almost periodic, see [193], [194]. The averaging approxi-
mations will be better for smaller adaptation gains. In sev-
eral cases it can be shown that the difference between the
" true and the averaged equations is proportional to the
adaptation gain. There are averaging results for stochastic
systems when the signals are ergodic [195].

Averaging methods have been used to analyze adaptive
systems [180], [196]-[201]. The simple self-tuner [95] based
on. stochastic approximation and minimum variance con-
trol was analyzed by Ljung [200]. It was shown that the
parameter estimates converge if the signals are bounded
and if the disturbances are such that C(z) is strictly positive-
real. A similar analysis of the self-tuner based on minimum
variance control and least squares estimation requires the
condition that the function

G@) = 1/C@) - 1

is strictly positive-real. Holst [201] made a detailed analysis
of the local behavior. He showed that the equilibrium cor-
responding to minimum variance control is locally stable
if the function C(2) is positive at the zeros of B(z).

Astrém [202] used averaging theory to understand strange
behavior of MRAS reported by Rohrs [203]. Averaging meth-
ods have recently received much attention and they may
lead to the unification of analysis of adaptive systems. The
monograph [32] gives a lucid exposition of recent appli-
cations of averaging theory to analysis of adaptive systems.

Instability Mechanisms

Apart from the stability proofs it is also useful to have an
understanding of the mechanisms that may create insta-
bility. To develop this insight we will consider a model
which is linear in the parameters with the parameter adjust-
ment rule (3.8) derived from stability theory as in Example
3.2. The system can be described by the equations

y = G(plu

u=10"

de
a; = ‘-k‘pe

e=y—V¥n (3.19)

where u is the process input, y the process output, y, the
desired model output, e the error, and # a vector of adjust-
able parameters. The transfer function of the process is G.
The components of the vector ¢ are functions of the com-
mand signal. In Example 3.2 the vector ¢ is given by

e=1Ir—yI
where r is the reference signal. It follows from (3.19) that
db
s kelG(p) e8] = koY (3.20)

This equation gives insight into the behavior of the system.
Notice that G(p) is a differential operator which operates
on the time function ¢'6.

Assume first that the adaptation loop is much slower than
the process dynamics. The parameters then change much
slower than the regression vector and the term G(p)¢'0 in
(3.3) can then be approximated by its average
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G(p)e™0 = [G(p) ¢"(O)0. (3.21

Notice that the regression vector depends on the param-
eters. The following approximation to (3.20) is obtained:

do
dt

This is the normal situation because the adaptive algorithm
is motivated by the fact that the parameters change slower
than the other variables in the system under this assump-
tion. Notice, however, that it is not easy to guarantee this.

Equation (3.22) is stable if kg[G(p)¢'] is positive. This is
true, e.g., if G is SPR and if the input signal is persistently
exciting.

The approximation (3.21) is based on the assumption that
the parameters 6 change much slower than the other sys-
tem variables. If the parameters § change faster than ¢ then
(3.20) can be approximated by

+ ke®)[G(p) ¢"O)10 = keypm. (3.22)

% + ko G(P)8 = keyn, (3.23)
A linearization for constant ¢, shows that the stability is
governed by the algebraic equation

det [sl + kegeiG(s)] = 5" '[s + KG(s)] = 0
where [ is the identity matrix and K given by
K = kegeo

is the equivalent adaptive loop gain. The stability can then
be determined by a simple root-locus argument. Equation
(3.23) was originally derived by Shackcloth and Butchart
[150]. 1t was also used by Parks [151] under the name ““adap-
tive step response’”” and by Rohrs et al. [187] who called it
‘“d*-root locus.”

For sufficiently large kodeq the system will always be un-
stable if the pole-excess of G(s) is larger than or equal to 2.
Also notice that the equivalent gain K is proportional to
egeo. The equivalent gain can thus be made arbitrarily large
by choosing the command signal large enough. It thus
seems intuitively clear that the adaptive system can be made
unstable by making the command signal large enough.
Once the source of the difficulty is recognized it is easy to
find a remedy. Since the equivalent gain K in the adaptive
loop is too large because of its signal dependence, one pos-
sibility is simply to modify the parameter updating law to

do d

= = ——— e 3.24
dt 1+ ol ve 3.24)

The equivalent gain in the adaptation loop is then bounded
and the parameters § will change arbitrarily slow atall signal
levels. A suitable value of the adaptation gain k can be cho-
sen based on a simple root-locus argument.

The modification of the parameter updating law is also
essential for the stability proofs such as those in [162], [165],
and [166]. It is also worthwhile to note that a law of this type
is obtained automatically when adaptive laws are derived
from recursive estimation, see [188].

Universal Stabilizers

After the appearance of the stability proofs much research
was initiated to find out if the assumptions given above are
necessary in order to obtain a stable adaptive system. It was
conjectured by Morse [204] that assumption A2 was nec-
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essary. Morse also suggested the following test problem.
Consider the system
dy

-&;=ay+bu.

Find a feedback law of the form
u=1£@,y

df
- =86,y

dt
which stabilizes the system for all a and b. Morse also con-
jectured that there are no rational f and g which stabilize
the system. Morse’s conjecture was proven by Nussbaum
[205], who also showed that there exist nonrational f and
g which will stabilize the system, e.g., the following func-
tions:

f@, y) = y8* cos 8

86, y) =y

This problem has been explored further in [206] and {207].
Martensson [208], [209] has shown that the order of any sta-
bilizing regulator is the necessary and sufficient a priori
knowledge needed for adaptive stabilization.

Parameter Convergence

The behavior of the parameters is an important issue in
adaptive control. This has also been the subject of much
theoretical investigation [210]. A typical approach is to
assume that the system to be controlled is known and to
investigate the behavior of the estimated parameters. The
key problems are determination of convergence condi-
tions, possible convergence points, and convergence rates.
These problems have also been investigated in connection
with system identification, see, e.g., [14] and [211]. The
results depend in a complicated way on the process model,
the disturbances, and the estimation algorithm. There is,
however, one additional complication in the adaptive case
because the input to the process is generated by feedback.

A few simple observations can be made. If there are no
disturbances, if the process input is persistently exciting,
and if the model structure is appropriate then the param-
eters can be determined exactly in a finite number of sam-
pling periods. If the recursive least squares method given
by (3.3) is used the matrix P will then decrease rapidly. It
becomes zero when the parameters are known exactly.
Algorithms with constant gain such as the gradient method
or (3.3) with constant P or constant trace, or algorithms with
covariance resetting have exponential convergence.

There are considerable differences between the conver-
gence rates obtained by different algorithms. This is illus-
trated in Fig. 14 which shows the parameter estimates
obtained when the standard model reference algorithm of
Example 3.2 is applied to a first-order system where the
command signal is a square wave. The estimates obtained
with a recursive least squares algorithm are also shown.
Notice the drastic difference in convergence rates. The least
squares estimate converges in a few steps to the correct
values since the model structure is correct and there are no
disturbances. The conventional MARS which is based on
a gradient method has a much slower convergence rate.

When discussing convergence rates it is also important
to keep in mind that performance measures are approxi-
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Fig. 14. Comparison of the parameter convergence rates
obtained with an MRAS based on the gradient method and
on STR based on least squares estimation.

mately quadratic functions of the parameter errors. This
means that the differences in performance can be very small
for moderate parameter errors.

When the system has constant parameters and there are
random disturbances the parameters of the adaptive sys-
tems will fluctuate. The magnitude of the fluctuations
decreases with decreasing adaptation gain. Selection of
suitable gains in adaptive control algorithms is thus a com-
promise between the tracking rate and precision. It is nec-
essary to have algorithms with decreasing gain in order to
obtain estimates that converge. The gain will typically
decrease as 1/t.

Avery general proof for convergence of the least squares
algorithm is given in [212] and [213] by applying a Martin-
gale convergence theorem. The algorithm is given in the
Appendix by (A13) (with § = ¢) and (A16). The model is given
by

Ay = Bu + e

where e is white noise. The convergence condition is simply
that P(t) — 0as t — o. The approach is Bayesian which means
that the parameters are assumed to be random variables.
This poses some conceptual difficulties because nothing
can be said about convergence for particular values of the
parameters.

A convergence theorem for the simple self-tuner based
on modified stochastic approximation estimation, where
the adaptation gain is given by

P(t) = a()/t

and the minimum variance control, was given in [214]. A
system described by the model (3.2) with

v =Ce (3.25)

where e is white noise was investigated. To prove conver-
gence it was required that the function

G(2) = Cz2) — ay/2

were strictly positive-real. Parameter convergence in adap-
tive systems are also discussed in [215]-[219].

Equilibrium Conditions

In many cases it is possible to calculate possible equi-
librium values of the parameters. Such calculations give
insight into possible behavior of the systems. The simple
self-tuner based on minimum variance control and least
squares or stochastic approximation was investigated in
[95]. it was shown that the equilibria were characterized by
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the equation

Epe = Q.
This equation implies
1
fim ¢ 2y o =0
r=d,d+1,--,d+deg$

¢
lim 1 5 y(t + Du® =0,
(amtk=1
r=d,d+1,+--,d+degR (3.26)

where d = deg A — deg B. This characterizes the possible
equilibria even if the process is nonlinear or of high order.
Itwas also shown in [95] that surprisingly the minimum vari-
ance control is an equilibrium even when C # 1in (3.25)
and the least squares estimates are biased.

Other examples of calculation of equilibrium values are
given in [188], [189]. The property that the parameters con-
verge to values that correspond to optimal controls for a
specified criteria is called self-tuning. The property of self-
tuning was investigated by Kumar {135], [196] who showed
that several differentalgorithms are self-tuning. Kumaralso
showed that there are algorithms which are not self-tuning.
Ideas for modifying criteria to obtain self-tuning were also
proposed.

Robustness

Several of the stability proofs for adaptive systems are
based on the assumption that the model structure used in
the adaptive regulator is correct. The system in Example 2.2
where a feedforward gain is adapted will be stable for all
values of the adaptation gain if the transfer function G is
SPR. The adaptive control law derived in Example 3.2 is
based on the assumption that the system to be controlled
is actually a first-order system. Condition A4 for stability of
the direct MRAS requires that the model used to design the
adaptive control law has the same complexity as the real
system. These assumptions are, of course, highly unreal-
istic because in most real problems the plants that are con-
trolled will be very complex while the adaptive regulators
like most controls will be designed based on comparatively
simple models.

A simple example gives some insight into the conse-
quences of neglecting high-order dynamics.

Example 3.5: Consider a system as in Example 3.3 where
only a feedforward gain is adjusted. Such a system will be
stable if the transfer function Gis SPR. To see what happens
when this assumption is violated assume that the command
signal is a sum of sinusoids, i.e.,

n
r(t) = k21 a; sin (o t).

Using the model reference algorithm developed in Example
3.3 the parameter estimate is given by

df

gt kr{1 — 6] G(p)r.
Assuming that the adaptation gain is small and using aver-
ages we find that the estimates are approximately given by

0=mn—m

d
9t 3.27)
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where

a =1 2 a} cos [arg Gliwy)].

2 (3.28)

Equation (3.27) is stable if a is positive. This is the case when
the transfer function G is SPR because each term in the sum
(3.28) is then positive. If G is not SPR there may be negative
terms in (3.28) which can be made to dominate by choosing
the frequency of the reference signal appropriately.

The example thus shows that if G is not SPR then it is
essential to make sure that the excitation is in a frequency
range where the phase of G(iw) is less than 90°. O

The consequences of neglecting high-frequency dynam-
ics have been illustrated in {220] and [203] where it is shown
that assumption A4 is essential for the simple adaptive algo-
rithms to work. This work has inspired much research to
understand the mechanisms involved and to find appro-
priate modifications of the algorithms. This is currently an
area of intensive research in adaptive control theory, see
[32], {202], [188], [189], {221]-[246].

To explain some of the ideas first notice that the effect
of unmodeled dynamics can be described by modifying the
model (3.2) to

Ay = Bu + 8Ay + 6Bu + v = Bu + w (3.29)

where A and B are the models used in the adaptive design
and 8A and 8B represent the unmodeled high-frequency
dynamics. The effect of unmodeled dynamics can thus for-
mally be described as a disturbance. Notice, however, that
the disturbance wis no longer bounded even if vis bounded
because w also contains internal signals which may be
potentially unbounded.

The unmodeled dynamics can be reduced by filtering of
the signals. This is particularly noticeable for sampled data
systems where anti-aliasing together with sampling gives
asignificant reduction of the high-frequency content of the
signals; see [247]. Even if filtering reduces the unmodeled
dynamics in the estimated model it does not imply that the
signal w in (3.29) will be bounded.

The idea of normalization was introduced in [248]. [t can
be described as follows. Introduce the variable p defined
by

do _ _
i wlul + |yl — 0

and normalize the signals as follows:
‘)7=X =2 =% w=Y%
p o o o
The normalized signals are bounded and satisfy (3.29). The
parameter adjustment law is then given by
do k
- rtele pe. (3.30)
The stability analysis is reduced to a problem with bounded
disturbances and the previous results can then be applied.
Stability results for systems with unmodeled dynamics have
been developed along these lines in [31], [235], [236], {246],
[248]-[250]. It should be noticed that a normalization similar
to (3.30) is obtained automatically if a method based on
recursive parameter estimation is used. See the Appendix.
One possibility to obtain stability for systems with
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bounded disturbances is to bound the parameters. This can
be done by using projections. Another possibility has been
suggested in [228], [251], where the parameter adjustment
rule (3.30) is changed to

b _ ke 0 (3.31)
dt o+ ¢lp ve oo )
This is called s-modification or leakage. The added term —df
will drive the parameters towards the origin. The term will,
however, also give a shift in the equilibrium values. A sta-
bility analysis for this case is given in [251] and [252]. An addi-
tional modification proposed in [250] and [31] is
do k vlel

—_ = = e — a. (3.32)
dt P+ ot

In this case the shift in the equilibrium will be much smaller.
The analysis in [250] gives stability conditions for this algo-
rithm. The analysis shows an interesting interplay between
persistency of excitation and unmodeled dynamics.

Another possibility to deal with unbounded disturbances
is to switch off the adaptation when the error is small. This
is often referred to as introducing a dead-zone in the esti-
mator [157], [173], [174], [253]. The size of the dead-zone is
related to the unmodeled dynamics and to the bound on
the disturbance, see [157]. In [254] it is proposed to change
the dead-zone adaptively. A stability analysis is also pro-
vided. This is equivalent to using a fixed 'dead-zone with
normalized variables. Many of these madifications are used
in the commercial adaptive regulators, see (255]. An algo-
rithm that incorporates many of the features has been ana-
lyzed in [256].

IV. APPLICATIONS

There have been a number of applications of adaptive
feedback control over the past 30 years. The early experi-
ments which used analog implementations were plagued
by hardware problems. Systems implemented using mini-
computers appeared in the early 1970s. The number of
applications have increased drastically with the advent of
the microprocessor which made the technology cost-effec-
tive. Because of this the adaptive regulators are also enter-
ing the marketplace even in single loop controllers. This
section gives an overview of the applications. Four indus-
trial adaptive regulators are first discussed in some detail.
General aspects on the industrial use of adaptive tech-
niques are then given.

Feasibility Studies

A number of feasibility studies have been performed to
evaluate the usefulness of adaptive control. They cover a
wide range of control problems:

autopilots for aircrafts and missiles [257], [258]
autopilots for ships [2591-[263]

ship propulsion [264]

diesel engines [265]

motor drives [266]-[272]

motion control [273]-[275]

industrial robots [89], [93], [276]-{282]

machine tools [283]

power systems [284]-[288]}

process control [289]-[298]
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pulp and paper [299]-[306]

rolling mills [307]-[309]

cement mills [310]-[314]

chemical reactors [101], [315]-[317]

distillation [318]-[321]

pH-control [322]-[325]

glass furnaces [326]

heating and ventilation [101], [115], [265], [327], [328]
ore crusher [329]

biomedical [330]-{332].

The survey papers [25], [188], [333] and books [27]-[29] con-
tain more details and many additional references.

The feasibility studies have shown that there are cases,
where adaptive control is very useful and others where the
benefits are marginal.

Industrial Products

Adaptive techniques are being used in a number of prod-
ucts. Gain scheduling is the standard method for design of
flight control systems for high-performance aircrafts, see
[67]. It is also used in the process industries, see [68], [69],
[334]. The self-oscillating adaptive systems are used in mis-
siles. There are several commercial autopilots for ship steer-
ing, see [259], [262], [264]. There are adaptive motor drives
and adaptive systems for industrial robots. Some general-
purpose adaptive control systems for industrial use are
described below in the following subsections.

The SattControl Autotuner

Most industrial processes are controlled by PID regu-
lators. A large industrial plant may have hundreds of reg-
ulators. Many instrument engineers and plant personnel
are used to select, install, and operate such regulators. In
spite of this, it is common experience that many regulators
are poorly tuned. One reason is that simple robust methods
for automatic tuning have not been available. A PID (pro-
portional, integral, and derivative) regulator can be
described by

u—K< +—1-S‘()d—Tﬂ> 4.1
= e Tioes s Ehrn 1)

where
e=r—y

and u is the control variable, y the measured variable, and
r the set point.

The Swedish company SattControl has developed an
auto-tuner that adjusts the parameters of a PID regulator
automatically. It is available in two different versions. The
auto-tuner is a part of a small (about 45 loops) DDC system
(Direct Digital Control system) for industrial process con-
trol. The tuner can be connected to tune any loop in the
system. The auto-tuner is also available as a stand-alone PID
regulator with a mode switch for manual, automatic, and
tune.

The auto-tuner is based on a special technique for system
identification which automatically generates an appopriate
test signal and a variation of the classical Ziegler-Nichols
[335] method for control design. An interesting feature is
that it has the ability to determine if derivative action is nec-
essary. The auto-tuner is described in (103]-[105].
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The Basic Idea: The Ziegler-Nichols method is based on
the observation that the regulator parameters can be deter-
mined from knowledge of one point on the Nyquist curve
of the open-loop system. This point is the intersection of
the Nyquist curve with the negative real axis. It is tradi-
tionally described in terms of the ultimate gain k. and the
ultimate period T. In the original scheme, described in [335],
the critical gain and the critical period are determined in
the following way: A proportional regulator is connected
to the system. The gain is gradually increased until an oscil-
lation is obtained. The gain k. when this occurs is the critical
gain and the oscillation has the critical period. It is difficult
to perform this experiment automatically in such a way that
the amplitude of the oscillation is kept under control.

A block diagram of the SattControl auto-tuner is shown
in Fig. 15. It is based on the idea that the critical gain and

Yref

PiD
A u Y
)2 __:1\-—0 Process

I

Fig. 15. The SattControl auto-tuner. The system operates
as a relay controller in the tuning mode (T) and as an ordi-
nary PID regulator in the automatic mode (A).

the critical frequency can be determined from an experi-
ment with relay feedback. A periodic oscillation is then
obtained. The critical period T is simply the period of the
oscillation and the critical gain is easily determined from
the relay amplitude and the amplitude of the oscillation.
The relay amplitude is initially set to 10 percent of the out-
put range. The amplitude is adjusted after one half period
to give an oscillation of 2 percent in the output. The mod-
ified relay amplitude is stored for the next tuning. The relay
has a hysteresis which is set automatically based on mea-
surements of the measurement noise.

Parameter Estimation: Fig. 16 shows the input and output
signals, under relay feedback. If the process attenuates high
frequencies so that the first-harmonic component domi-

0 A :
\//\\//\

0 5 10 15 20

Fig. 16. Process inputs and outputs for a system under relay
feedback.

nates the response it follows that the input and the output
are out of phase. Furthermore, if the relay amplitude is d
it follows from a Fourier series expansion that the ampli-
tude of the first-harmonic component of the input is 4d/r.
If the amplitude of the output is a, then the process gain
is wa/4d at the critical frequency. The critical gain is then
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Exact analyses of relay oscillations are also available; see
[48], [103], [336], [337]. The period of an oscillation can easily
be determined by measuring the times between zero-cross-
ings. The amplitude may be determined by measuring the
peak-to-peak values of the output. These estimation meth-
ods are easy to implement because they are based on count-
ing and comparison only. Simulations and extensive exper-
iments on industrial processes have shown that the simple
estimation method based on zero-crossing and peak detec-
tion works very well in comparison with the more sophis-
ticated estimation methods. The simple methods have also
some additional advantages, see [338].

Control Design: When the critical gain k. and the critical
period are known the parameters of a PID regulator can be
determined by the Ziegler-Nichols rule which can be
expressed as

ke
2

I
3"
This rule gives a closed-loop system which is sometimes too
poorly damped. Modifications of the basic Ziegler-Nichols
rule are, therefore, common.

Prior Information: A major advantage of the auto-tuner
is that there are no parameters which have to be set a priori.
To use the tuner, the process is simply brought to an equi-
librium by setting a constant control signal in manuai mode.
The tuning is then activated by pushing the tuning switch.
The regulator is automatically switched to automatic mode
when the tuning is complete. Different control objectives
may be obtained by modifying the parameters in the Zie-
gler-Nichols rule.

The properties of the auto-tuner are illustrated in Fig. 17
which shows an application to level control in three cas-
caded tanks. After bringing the system to an equilibrium,

k= T, = % Ty = 4.2)

Tuning Measured value

™ %

Control deviation
_.1 '-_—

P-function Pl-tunction

Setpoint change 4%

Output signal

Fig. 17. Results obtained when using the auto-tuner for
level control of three cascaded tanks.

the auto-tuner is initiated. The relay oscillation then
appears. After 5 half-periods, good estimates of the critical
gain and the critical period are obtained and the regulator
is switched to normal PID control. A set point change is later
introduced manually. This shows that the tuning has
resulted in a system with good transient behavior.
Simplicity is the major advantage of the auto-tuner. This
has proven particularly useful for plants which do not have
qualified instrument engineers and for operation during
the night shiftwhen instrumentengineers are notavailable.
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Itis also easy to explain the principles of operation of the
auto-tuner to the instrument engineers.

EXACT—The Foxboro Adaptive Regulator

This regulator is based on analysis of the transient
response of the closed-loop system to set point changes or
load disturbances and traditional tuning methods in the
Ziegler-Nichols spirit. The regulator is thus similar to those
discussed in Section Il. The ideas behind it are described
in [45] and [339]. Some details about the actual implemen-
tation are given in [340].

Parameter Estimation: Fig. 18 shows how the control error
respondstoastep oranimpulse disturbance. Heuristic logic

R

Tp

Fig. 18. Typical response of control error to steporimpulse
disturbance.

is used to detect that a proper disturbance has occurred and
to detect the peaks e4, €,, and e; and the period T,. The heu-
ristic logic is outlined in Fig. 19. The estimation process is
simple. Itis based on the assumption that the disturbances
are steps or short pulses. The algorithm can give wrong esti-
mates if the disturbances are two short pulses because Tp
will then be estimated as the distance between them.
Control Design: The control design is based on specifi-
cations on damping, overshoot, and the ratios TiT,and Ty
T, where T; is the integration time, T, the derivative time,
and T, period of oscillation. The damping is defined as

€3 — &
€~ €

d=

and the overshoot as

€

Upset
accepted

Fig. 19. Heuristic logic used in the EXACT system.
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First peak
accepted

Second peak

In typical cases, it is required that both d and z are less than
0.3. The Ziegler-Nichols tuning rule (4.2) gives

I = 0.5 and Ty = 0.12.
Tp Tp

The numbers 0.5 and 0.12 have been modified based on
empirical studies. Smaller values are chosen for processes
with dominant dead-time and larger values are selected for
processes with a dominant lag.

Prior Information: The tuning procedure requires prior
information on the regulator parameters k, T;, and T,. It also
requires knowledge of the time scale of the process. This
is used to determine the maximum time the heuristic logic
waits for the second peak. Some measure of the process
noise is also needed to set the tolerances in the heuristic
logic. There are also some parameters which may be set
optionally. They are damping d, overshoot z, maximum
derivative gain, and bounds on the regulator parameters.

Pretune: The regulator has a mode called pretune which
can be used if the prior information needed is not available.
A step test is made where the user specifies the step size.
Initial estimates of the regulator parameters are deter-
mined from the step. The time scale and the noise level are
also determined. The pretune mode can be invoked only
when the process is in steady state.

Electromax V—The Leeds and Northrup Adaptive
Regulator

This regulator is an adaptive single-loop controller based
onthePID structure. The regulator has an adaptive function
asanoption. The adaptation is aself-tuning regulator where
a second-order discrete time model is estimated. The
parameters of a PID regulator are then computed from the
estimated model using a pole parchment design, see [341]-
[343]. The regulator is primarily intended for temperature
control. The regulator can operate in three different modes
called fixed, self-tune, and self-adaptive. In the fixed mode,
the regulator operates like an ordinary fixed gain PID reg-
ulator. In the self-tune mode, a perturbation signal is auto-
matically introduced, a model of the process is estimated,
and PID parameters are computed from the model. The
parameters are displayed to an operator who may accept
or reject the new parameters. In the self-adaptive mode the
parameters are updated continuously.

Parameter Estimation: Parameter estimation is per-

Second peak

accepted
Detect
third peak

Detect
second peak

not found
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The Basic Idea: The Ziegler-Nichols method is based on
the observation that the regulator parameters can be deter-
mined from knowledge of one point on the Nyquist curve
of the open-loop system. This point is the intersection of

- the Nyquist curve with the negative real axis. It is tradi-
tionally described in terms of the ultimate gain k. and the
ultimate period 7. In the original scheme, described in [335],
the critical gain and the critical period are determined in
the following way: A proportional regulator is connected
to the system. The gain is gradually increased until an oscil-
lation is obtained. The gain k. when this occurs is the critical
gain and the oscillation has the critical period. It is difficult
to perform this experiment automatically in such a way that
the amplitude of the oscillation is kept under control.

A block diagram of the SattControl auto-tuner is shown
in Fig. 15. It is based on the idea that the critical gain and
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Fig. 15. The SattControl auto-tuner. The system operates
as a relay controller in the tuning mode (7) and as an ordi-
nary PID regulator in the automatic mode (A).

the critical frequency can be determined from an experi-
ment with relay feedback. A periodic oscillation is then
obtained. The critical period T, is simply the period of the
oscillation and the critical gain is easily determined from
the relay amplitude and the amplitude of the oscillation.
The relay amplitude is initially set to 10 percent of the out-
put range. The amplitude is adjusted after one half period
to give an oscillation of 2 percent in the output. The mod-
ified relay amplitude is stored for the next tuning. The relay
has a hysteresis which is set automatically based on mea-
surements of the measurement noise.

Parameter Estimation: Fig. 16 shows the inputand output
signals, under relay feedback. If the process attenuates high
frequencies so that the first-harmonic component domi-
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Fig. 16. Process inputs and outputs for a system under relay
feedback.

nates the response it follows that the input and the output
are out of phase. Furthermore, if the relay amplitude is d
it follows from a Fourier series expansion that the ampli-
tude of the first-harmonic component of the input is 4d/x.
If the amplitude of the output is a, then the process gain
is ma/4d at the critical frequency. The critical gain is then
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4d
k. = a

Exact analyses of relay oscillations are also available; see
(48], [103], [336], [337]. The period of an oscillation can easily
be determined by measuring the times between zero-cross-
ings. The amplitude may be determined by measuring the
peak-to-peak values of the output. These estimation meth-
ods are easy to implement because they are based on count-
ing and comparison only. Simulations and extensive exper-
iments on industrial processes have shown that the simple
estimation method based on zero-crossing and peak detec-
tion works very well in comparison with the more sophis-
ticated estimation methods. The simple methods have also
some additional advantages, see [338).

Control Design: When the critical gain k. and the critical
period are known the parameters of a PID regulator can be
determined by the Ziegler-Nichols rule which can be
expressed as

T
= =, 42
Ty 3 4.2)

This rule gives a closed-loop system which is sometimes too
poorly damped. Modifications of the basic Ziegler-Nichols
rule are, therefore, common.

Prior Information: A major advantage of the auto-tuner
is that there are no parameters which have to be set a priori.
To use the tuner, the process is simply brought to an equi-
librium by setting a constant control signal in manual mode.
The tuning is then activated by pushing the tuning switch.
The regulator is automatically switched to automatic mode
when the tuning is complete. Different control objectives
may be obtained by modifying the parameters in the Zie-
gler-Nichols rule.

The properties of the auto-tuner are illustrated in Fig. 17
which shows an application to level control in three cas-
caded tanks. After bringing the system to an equilibrium,
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Fig. 17. Results obtained when using the auto-tuner for
level control of three cascaded tanks.

the auto-tuner is initiated. The relay oscillation then
appears. After 5 half-periods, good estimates of the critical
gain and the critical period are obtained and the regulator
is switched to normal PID control. A set point change is later
introduced manually. This shows that the tuning has
resulted in a system with good transient behavior.
Simplicity is the major advantage of the auto-tuner. This
has proven particularly useful for plants which do not have
qualified instrument engineers and for operation during
the night shift when instrumentengineers are not available.
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It is also easy to explain the principles of operation of the
auto-tuner to the instrument engineers.

EXACT—The Foxboro Adaptive Regulator

This regulator is based on analysis of the transient
response of the closed-loop system to set point changes or
load disturbances and traditional tuning methods in the
Ziegler-Nichols spirit. The regulator is thus similar to those
discussed in Section Il. The ideas behind it are described
in [45] and [339]. Some details about the actual implemen-
tation are given in [340].

Parameter Estimation: Fig. 18 shows how the control error
respondstoastep oranimpulse disturbance. Heuristic logic

€y

p

Fig. 18. Typical response of control error to step or impulse
disturbance.

is used to detect thata proper disturbance has occurred and
to detect the peaks ey, e,, and e; and the period Tp. The heu-
ristic logic is outlined in Fig. 19. The estimation process is
simple. Itis based on the assumption that the disturbances
are steps or short pulses. The algorithm can give wrong esti-
mates if the disturbances are two short pulses because T,
will then be estimated as the distance between them.
Control Design: The control design is based on specifi-
cations on damping, overshoot, and the ratios TiT,and Ty
T, where T, is the integration time, T, the derivative time,
and T, period of oscillation. The damping is defined as

€3 — €
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and the overshoot as

e
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Upset
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Detect
first peak

Fig. 19. Heuristic logic used in the EXACT system.
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Intypical cases, it is required that both d and z are less than
0.3. The Ziegler-Nichols tuning rule {4.2) gives

LA = 0.5 and Ty = 0.12.
Tp T

The numbers 0.5 and 0.12 have been modified based on
empirical studies. Smaller values are chosen for processes
with dominant dead-time and larger values are selected for
processes with a dominant lag.

Prior Information: The tuning procedure requires prior
information on the regulator parameters k, T;, and T,. It also
requires knowledge of the time scale of the process. This
is used to determine the maximum time the heuristic logic
waits for the second peak. Some measure of the process
noise is also needed to set the tolerances in the heuristic
logic. There are also some parameters which may be set
optionally. They are damping d, overshoot z, maximum
derivative gain, and bounds on the regulator parameters.

Pretune: The regulator has a mode called pretune which
can be used if the prior information needed is not available.
A step test is made where the user specifies the step size.
[nitial estimates of the regulator parameters are deter-
mined from the step. The time scale and the noise level are
also determined. The pretune mode can be invoked only
when the process is in steady state.

Electromax V—The Leeds and Northrup Adaptive
Regulator

This regulator is an adaptive single-loop controller based
onthePID structure. Theregulator has an adaptive function
asan option. The adaptationis a self-tuning regulator where
a second-order discrete time model is estimated. The
parameters of a PID regulator are then computed from the
estimated model using a pole parchment design, see [341]-
[343]. The regulator is primarily intended for temperature
control. The regulator can operate in three different modes
called fixed, self-tune, and self-adaptive. in the fixed mode,
the regulator operates like an ordinary fixed gain PID reg-
ulator. In the self-tune mode, a perturbation signal is auto-
matically introduced, a model of the process is estimated,
and PID parameters are computed from the model. The
parameters are displayed to an operator who may accept
or reject the new parameters. In the self-adaptive mode the
parameters are updated continuously.

Parameter Estimation: Parameter estimation is per-

. Second peak
First peak accepted
accepted Detect Detect
second peak third peak

Second peak
not found
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formed in the self-tune and the self-adaptive modes. In both
cases, the estimation is performed in closed loop. Set point
changes are generated automatically in the self-tune mode
to ensure that the estimation is based on good data. The
changes are cycles of positive and negative pulses as shown
in Fig. 20. The pulse height (acceptable set point upset) is

iD DONE
Fig. 20. Set point changes used in the self-tune mode.

set by the operator. The cycle time is computed from the
response time which is also set by the operator. The good-
ness of fit is determined after each cycle. When the fit is
good enough a message is given. The operator may view
the regulator parameters obtained. If the fit is still poor after
five cycles the procedure is aborted and a message is given.

in the self-adaptive mode, the parameter estimate and
the computation of PID parameters are repeated at each
sampling period. The estimated model is a second-order
pulse transfer function. The parameters are estimated using
the instrumental variable method where components of
the regression vectors are formed from the model output,
see the Appendix and [344]. The signals are high-pass fil-
tered before they are fed to the estimator. The parameter
updating is discontinued when the control error is below
a certain limit, see [343].

Prior Information: To use the regulator it is necessary to
specify five numbers: nominal values of the PID parame-
ters, the process response time, and the admissible set point
upset. The nominal values of the regulator parameters are
needed because the estimation is done in closed loop. The
process response time is defined as the time it takes for the
open-loop step response to reach 90 percent of the steady-
state value. This number is used to determine the pertur-
bation signal in the identification phase, the sampling
period of the discrete time model and the desired response
of the closed-loop system. The performance is quite sen-
sitive to the choice of the response time. The admissible set
point upset gives the amplitude of the pulses used in the
identification phase. Values of 3 to 5 percent are typical.
Tests are performed to make sure that the output does not
saturate.

Pretune: If good estimates of the prior data is not avail-
able it is recommended that an open-loop step response
is performed.

Novatune—The ASEA Adaptive Regulator

The ASEA Novatune is an adaptive regulator which is
incorporated as a part of a distributed system for process
control. The system is block-oriented which means that the
process engineer creates a system by combining blocks of
different types. The system has blocks for conventional PID
control, logic, and computation. There are three different
blocks called STAR1, STAR2, and STAR3 which are adaptive
regulators. These are self-tuning reguiators based on least
squares estimation and minimum variance control. All the
regulators use the same algorithm; they differ in the reg-
ulator complexity and the prior information which has to
be supplied when using them.

The Novatune differs from the other regulators discussed
in this section, because it is not based on the PID structure.
[tis, instead, a general sampled data regulator which is more
general. It also admits dead-time compensation and feed-
forward control. The system may be viewed as a tool box
for solving control problems. There are also Novatune sys-
tems that are tailored to particular applications such as
heating and ventilation and control of paper rolling.

Principle: The Novatune is an implicit self-tuning regu-
lator of the type discussed in [95]. The parameters of a dis-
crete time model are estimated using recursive least
squares. The control design is a minimum variance regu-
lator which is extended to admit positioning of one pole
and a penalty on the control signal. Fig. 21 shows the dif-
ferent adaptive modules available in the Novatune system.
In the block diagram, the input signals are shown on the
left and top sides of the box, the output signals on the right,
and the parameters are at the bottom. The parameters can
be changed at configuration time. The parameters PL, T, and
PN can also be changed on-line. All other signals can be
changed instantaneously.

The simplest module, STAR1, has three input signals: the
manual input UEXT, the measured value FB, and the set point
REF. It has three parameters. The variable PY is the smallest
relevant change in the feedback signal. The adaptation is
inhibited for changes less than PY. The parameters MAX
and MIN denote the bounds on the control variable, and
T is the sampling period.

STAR3 BRI

STAR2 * ' * * ON LOAD AUTO REG SOFT
ON AUTO REG SOFT AD
AD 1 2 3 4 s
12 ‘3
STAR1 * * —md UEXT 1 — = UEXT 1
ON AUTO —zdFB 2 o 2
—@=—q REF 3 SELF-
UEXT SELF- ——J « TUNNG —=— REF 3 SELF-
TUNING —&—1 FF 4 TUNING
——fieead FB u ADAPTIVE U
s R L C RS
REF REGULATOR —med Ml 8 " s
—dl0 @
i LO ]
PY MAX MIN T —={on 7 on 7
J 1 11 —=—j 0L 6 —=iDL 8
t 2 3 123
PYMAXMIN T PN KD L 23 4 s 1234567
J41 J11 PLPUPYMAXMIN T PN NA NB NG KO INT

Fig. 21. Block diagram of the adaptive modules STAR1, STAR2, and STAR3 which are avail-

able in Novatune.
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The module STAR2 has more input signals. It admits a
feedforward signal FF. There are also four signals HI, LO,
DH, and DL which admit dynamic changes on the bounds
of the control variable and its rate of change. There are also
additional parameters: PN for a penalty on the control vari-
able and KD which specifies the prediction horizon. The
module also has two additional mode switches. REGAD
which turns off adaptation when false and SOFT which
admits a soft start.

The module STAR3 has an additional mode LOAD which
admits parameters stored in an EEPROM to be loaded. It
also has several additional parameters which admit posi-
tioning of one pole PL and specification of controller struc-
ture NA, NB, NC, and INT. Parameter estimation is sus-
pended automatically when the changes in the control
signal and the process output are less than PU and PY. The
parameter updating may also be suspended on demand
through the switch REGAD. In combination with the other
modules in the Novatune system this gives a convenient
way to obtain robust estimation.

Parameter Estimation: The parameter estimation is based
on the model

y(t + KD) — PLy(t + KD — 1) — (1 — PL) y(t) =
ATy Ay(®) + B(@™") Au(t) + Clg™") Av(H) (4.3)

where A, B, and C are polynomials in the delay operator,
y is the measure variable, u the control signal, v a feed-
forward signal, g™ "the delay operator, and A the difference
operator. The integers NA, NB, and NC give the number of
coefficients in the polynomials A, B, and C. The number PL
is the desired pole location for the optional pole. When the
parameter INT is zero a similar model without differences
is used. The parameters are estimated using recursive least
squares with a forgetting factor A = 0.98.
Control Design: The control law is given by

B@™") Ault) = (PL — 1) y(t) — A(@™") Ay()
- C@~"y Av(p. (4.4)

Since the algorithm is an implicit self-tuner the regulator
parameters are obtained directly.

Industrial Experiences

In 1986 there is moderate experience in industrial use of
adaptive control. The autopilots for ship steering were
probably the first adaptive systems that were produced.
Today there are a few hundred of these systems in contin-
uous operation. In the process control field the Electromax
V was introduced in 1981, the ASEA Novatune in 1982, the
SattControl auto-tuner and the Foxboro Exact in 1984. There
are also a handful of other adaptive systems which have
been announced. Today there are several thousand loops
under adaptive control. The actual industrial experience of
adaptive control is, however, not well documented. There
are only a few publications from manufacturers, [340], [343],
[345] and from users [346], {347].

Some experiences related to the use of Electromax V,
which can operate both as a PID tuner and an adaptive PID
regulator, are reported in [343]. The majority of applications
are in temperature control. The experiences are generally
quite favorable, although it is noted that adaptive control
is not a panacea for everything. Most of the benefits are
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derived from self-tuning although there are a number of
cases where the continuous adaptation has been profit-
able. Difficulties in using the regulator have been observed
with processes which have unsymmetric process response
(typically heating and cooling), rapid parameter variations,
or strong nonlinearities. The regulator cannot be applied
to processes such as silicon crystal growing which do not
tolerate the process upsets required in the identification
phase. Difficulties with regulators used in the self-adaptive
mode have also been found under operating conditions
where the measured value is suddenly disconnected. The
parameter estimation is then performed on totally irrele-
vant data. The remedy is to stop the parameter updating
when the output is disconnected.

The Novatune applications cover a wide range of indus-
trial processes in steel, pulp, paper, petrochemical, waste
water treatment, and climate control, {345]. In the spring of
1986 there have been about 1000 loops adaptively con-
trolled by the Novatune. The ability to deal with systems
having time delays, and to use adaptive feedforward have
been found particularly useful.

A comparison between the Novatune and the Exact is
reported in [346] and [347]. The comparison is based on sim-
ulation and field tests.

Uses of Adaptive Control

Based on the products discussed above and others we
can now discuss uses of adaptive control in a more general
setting. It is clear that adaptive techniques can be used in
several different ways.

Auto-Tuning: Simple regulators with two or three param-
eters can be tuned manually if there is not too much inter-
action between adjustments of different parameters. Man-
ual tuning is, however, not possible for more complex
regulators. Traditionally, tuning of such regulators has fol-
lowed the route of modeling or identification and regulator
design. This is often a time-consuming and costly proce-
dure which can only be applied to important loops or to
systems which are made in large quantities.

All adaptive techniques can be used to provide automatic
tuning. In such applications the adaptation loop is simply
switched on. Perturbation signals may be added to improve
the parameter estimation. The adaptive regulator is run until
the performance is satisfactory. The adaptation loop is then
disconnected and the system is left running with fixed reg-
ulator parameters. Adaptive techniques can be used in this
way in all four products discussed in the beginning of this
section. The auto-tuner has some particularly attractive fea-
tures because it requires no prior information and it gen-
erates an appropriate test signal automatically.

Auto-tuning can be considered as a convenient way to
incorporate automatic modeling and design into a regu-
lator. It simplifies the use of simple regulators and it widens
the class of problems where systematic design methods can
be used cost effectively. This is particularly useful for design
methods such as feedforward which critically depend on
good models.

Automatic tuning can be applied to simple PID control-
lers as well as to more complicated structures. Itis very con-
venient to introduce into a DDC-package because one tun-
ing algorithm can serve many loops. Auto-tuning can also
beincludedinsingle-loop regulators. Itis, for example, pos-
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sible to obtain standard regulators where the mode switch
has three positions: manual, automatic, and tuning.

The available industrial experiences indicate that there
is an industrial need for automatic tuning of PID control-
lers. The industrial regulators are often poorly tuned. Deriv-
ative action is seldom used although it can often be ben-
eficial. One reason is that PID regulators are more difficult
to tune than Pl regulators: see [346], [347]. An auto-tuner
should be very simple to use. Some of the available schemes
do, however, require a priori information which makes them
more difficult to use. This is probably the reason for intro-
ducing the “pre-tune” mode. The experiences with the
SattControl auto-tuner indicated it was particularly useful
when commissioning new industrial plants where there is
no prior knowledge of regulator parameters. it has been
shown that the commissioning time can be shortened con-
siderably by using the auto-tuning, especially for plants that
have many slow loops. It also seems clear that auto-tuning
will be a very useful feature on more complex regulators.

Automatic Construction of Gain Schedules: Auto-tuning
or adaptive algorithms may be used to build gain schedules.
A scheduling variable is first determined. The parameters
obtained when the system is running in one operating con-
dition are then stored in a table together with the sched-
uling variable. The gain schedule is obtained when the pro-
cess has operated at a range which covers the operating
range.

If a good scheduling variable can be found, automatic
generation of gain scheduling could be introduced in the
commercial systems discussed in the beginning of this sec-
tion. A table for storing regulator parameters and appro-
priate commands for recalling them are the only facilities
required. The Novatune has a facility to save and recall one
set of parameters. The SattControl auto-tuner has gain
scheduling. A discussion of the needs for adaptation in pro-
cess control is given in [343]. Most of the cases discussed
there could be covered by auto-tuning combined with gain
scheduling. Systems of this type will be able to follow rapid
changes in the operating conditions.

Adaptive Regulators: The adaptive techniques may, of
course, be also used for genuine adaptive control of sys-
tems with time-varying parameters. There are many ways
to do this. The operator interface is important, since adap-
tive regulators may have parameters, which must be cho-
sen. It has been my experience that regulators without any
externally adjusted parameters can be designed for specific
applications, where the purpose of control can be stated
a priori. Autopilots for missles and ships are typical exam-
ples, see [259]. In many cases it is, however, not possible
to specify the purpose of control a priori. It is at least nec-
essary to tell the regulator what the regulator is expected
to do. This can be done by introducing dials that give the
desired properties of the closed-loop system. Such dials are
called performance related. New types of regulators can be
designed using this concept. For example, it is possible to
have a regulator with one dial, which is labeled with the
desired closed-loop bandwidth. Another possibility would
be to have a regulator with a dial, which is labeled with the
weighting between state deviation and control actionin an
LQG problem. Adaptation can also be combined with gain
scheduling. A gain schedule can be used to quickly get the
parameters into the correct region and adaptation can then
be used for fine tuning.
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Feedforward control is very useful when there are mea-
surable disturbances. Feedforward control, being an open-
loop compensation, requires, however, good models of
process dynamics. Adaptation, therefore, appears to be a
prerequisite for effective use of feedforward. The experi-
ences with the Novatune have shown that adaptive feed-
forward control can be very beneficial [345].

Expert Control

Algorithms such as the STR and the MRAS may be viewed
as local gradient methods. They will drive the regulator
parameters to values which give close to optimal perfor-
mance. The methods will, however, also require substantial
prior information. This is illustrated by the pre-tune facility
in the Foxboro and Leeds and Northrup autopilot. Systems
like the SattControl auto-tuner require very little prior
information. The performance obtained with this is, how-
ever, limited because of the restrictions on the regulator
structure. It seems natural to design systems which com-
bine different types of algorithms. For example, an auto-
tuner could be used initially. The prior information required
by a self-tuner like the one used in the Novatune can be
extracted from the auto-tuner and the self-tuner can then
be switched on. If this approach is taken it is natural also
to include many different algorithms for parameter esti-
mation and control design and to combine these with algo-
rithms for diagnosis and supervision. Facilities for gener-
ation of gain schedules and learning can also be included.
Experiments with such systems are described in [348)-[353].

Abuses of Adaptive Control

Anadaptive regulator, being inherently nonlinear, is more
complicated than a fixed gain regulator. Before attempting
to use adaptive control it is, therefore, important to first
examine if the control problem cannot be solved by con-
stant gain feedback. Problems of this type have only rarely
been investigated. Two exceptions are[354] and [355]. In the
vast literature on adaptive control there are many cases
where a constant gain feedback can do well as an adaptive
regulator. A typical example is the very ambitious feasibility
study of adaptive autopilots for aircrafts [257]. The aircraft
used in the experiments could easily be controlled with
conventional methods.

Notice that it is not possible to judge the need for adap-
tive control from the variations of the open-loop dynamics
over the operating range. Many cases are known where a
constant gain feedback can cope well with considerable
variations in system dynamics [356]. There are also design
techniques for constant gain feedback that can cope with
considerable gain variations, see [168] and [171]. It must,
however, also be kept in mind that for large classes of prob-
lems it requires very little effort to get a system like the
Novatune to work well.

V. CONCLUSIONS

Adaptive techniques are emerging after a long period of
research and experimentation. Importanttheoretical results
on stability and structure have been established. Much the-
oretical work still remains to be done and the field is cur-
rently in a state of rapid development. The advent of
microprocessors has been a strong driving force for the
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applications. Laboratory experiments and industrial fea-
sibility studies have contributed to a better understanding
of the practical aspects of adaptive control. Also a number
of adaptive regulators are now appearing on the market.
Several thousand loops are now under adaptive control.

APPENDIX
EXAMPLES OF ADAPTIVE ALGORITHMS

Some adaptive control laws are given in this Appendix.
A design problem for systems with known parameters is
first described. Different adaptive control laws are then
given. A pole-placement design is chosen as the underlying
design problem. This is useful in order to discuss similar-
ities and differences between self-tuners and model ref-
erence adaptive systems. Itis also a convenient way to unify
many algorithms.

The Underlying Design Problem for Systems with Known
Parameters

Consider a single-input, single-output, discrete time sys-
tem described by

Ay = Bu (A1)

where u is the control signal, y the output signal, and A and
Brelatively prime polynomials in the forward shift operator,
i.e.,

A=AQ=q"+qq¢" "+ - +a,
B =B(q) =byq” + b;q" "+ -+ + by,
The relative degree or the pole excess is
d=deg A —degB=n—m. (A2)

Assume that it is desired to find a regulator such that the
relation between the command signal rand the desired out-
put signal y,, is given by

AnYm = Bnr (A3)

where A, and B, are polynomials in the forward shift op-
erator.
The desired control law is given by

Ru = Tu, — Sy (A4)

where R, S, and T are polynomials. This control law rep-
resents a negative feedback with the transfer function
—S/R and a feedforward with the transfer function T/R. To
see how R, S, and T can be determined proceed as follows,
see[357]. Elimination of uin (A1) and (A4) gives the following
equation for the closed-loop system:

(AR + BS)y = BTu,. (A5)

The process zeros, given by B(q) = 0, will thus be closed-
loop zeros unless they are canceled by corresponding
closed-loop poles. Since unstable or poorly damped zeros
cannot be canceled the polynomial 8 is factored as

B = B*B~ (A6)

where B* contains those factors which can be canceled and
B~ the remaining factors of B. The zeros of B* must be sta-
ble and well-damped. To make the factorization unique it
is also required that B* be monic.

It follows from (A5) that the characteristic polynomial of
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the closed-loop system is AR + BS. This polynomial has
three types of factors, canceled process zeros given by B*,
desired model poles given by A,,,, and observer poles given
by the observer polynomial A,. Hence

AR + BS = B*A_ A, (A7)
It follows from this equation that B* divides R. Hence
R = B*R,. (A8)
Equation (A7) can then be written as
ARy + B7S = AjA,, (A9)

We require that the relation (A5) between the command
signal u. and the process output y should be equal to the
desired closed-loop response given by (A2). Hence

B,, = B~ By,
T = A¢Br. (A10)

The specifications must thus be such that B~ divides B
otherwise, there is no solution to the design problem.

To complete the solution of the problem it remains to
give conditions which guarantee that there exist solutions
to (A7) which give causal control law. Itis shown in [357] that
the condition

mr

deg Ag = 2deg A —deg A, — deg B* —1 (A1)

guarantees that the feedback transfer function S/Ris causal.
Similarly, the inequality

deg A, — deg B,, = deg A — deg B (A12)

implies that the feedforward transfer function T/R is causal.

To solve the design problem, (A9) is first solved to obtain
R; and S. The desired feedback is then given by (A4) with
R given by (A8) and T by (A10). There may be several solu-
tions to the Diophantine equation (A7) which satisfy the
causality conditions. All solutions give the same closed-loop
transfer function. They may, however, give different
responses to disturbances and measurement errors.

Itfollows from the equations that the control law (A4) can
be written as

_ S
u=GnGlu. — E[y = Yml

where
G, =BIA G, =B, /A, and vy, =G,u.

This shows that the pole-placement design can be inter-
preted as model following. This is important in order to
establish the relations between the STR and the MRAS.
Equation (A4) is, however, preferable in realizations.

Parameter Estimation

The control law (A4) is not realizable if the parameters of
the model (A1) are unknown. However, the parameters can
be estimated. There are many ways to do this, see [344].
Many estimators can be described by the recursive equa-
tion

6 =00t — D+ Pt — 1) Yt — 1) e(t) (A13)

where the components of vector § are the estimated param-
eters, vector ¢ is a vector of instrumental variables, and ¢
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is the prediction error e. The quantities ¢ and e depend on
the identification method and the model structure. For
example, if the least squares method is applied to the model
(A1) the prediction error is given by
et) = [A*@™") y(t) — BXg™") u(t - d)]
= y(t) o"(t — 1) 6t ~ 1)

where A* and B* are the reciprocals of the polynomials A
and B, respectively, i.e.,

AT =1+ qiq7 + - - +a,q"
B¥q™ ") =by+ biqg '+ -+ + b,q"

and

- =plt -1 =[-yt -1 =yt —n)
cut —d) - ut - Y.

The elements of vector ¥ are thus delayed values of the input
u and the output y.

The quantity P in (A13) depends on the particular esti-
mation technique. It may be a constant which gives an
updating formula similar to the MIT-rule. Another method
due to Kaczmarz [358] can be viewed as the solution of a
set of linear algebraic equations using successive projec-
tions. This method is described by (A13) with y = ¢ and

.
e (1) o(®)

In stochastic approximation methods P is a scalar given by

P(t) = (A14)

t

-1
Pt = [ka @' (k) «:(k)] : (A15)
The recursive least squares method is given by (A13) with
Y = ¢ and

t

-1
P(t) = L§ o(k) J(k)] : (A16)

Some minor modifications have to be made if the denom-
inator in (A14) is zero or when the matrices in (A15) or (A16)
are singular.

The properties of the estimates depend on the model and
the disturbances. In the deterministic case when the data
are generated by (A1) which has no disturbances there are
estimates which converge to the correct values in a finite
number of steps. The algorithms with P given by (A16) have,
e.g., this property. Algorithms with a constant P converge
exponentially. When data are generated by (A1) with inde-
pendent random variables added to the right-hand side it
is necessary to have algorithms where P(t) goes to zero for
increasing tin orderto get estimates which converge to the
correct value. This is the case when P is given by (A15) or
(A16). These algorithms are said to have decreasing gain. An
algorithm with decreasing gain is, however, useless when
the process parameters are changing. For such a case (A14)
can be used or (A16) can be replaced by

t ~1
Pt) = [kg N (k) Mk)} . (A17)

where 0 < N < Tisaforgetting factor or a discounting factor.
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This choice of Pcorresponds to a least squares estimate with
an exponential discounting of past data. A disadvantage
with exponential forgetting is that data are discarded uni-
formly in time. Therefore, it has been suggested to change
the forgetting factor adaptively [359], [360]. Another
approach is directional forgetting which means that data
are discarded only in those directions where new infor-
mation is received [361]-[363].

To obtain numerically stable algorithms it is advanta-
geous to base the algorithms on the square root of the matrix
Pinstead of Pitself. Numerically stable algorithms are given
in [364]-[367].

To obtain an estimator which is insensitive to spurious
large errors it is also useful to introduce a nonlinear func-
tion which reduces the influence of large errors as is done
in robust statistics [368], [369].

An Explicit Self-Tuner

An explicit self-tuner based on the pole-placement design
can be expressed as follows:
Algorithm 1

Step 1: Estimate the coefficients of the polynomials A
and B in (A1) recursively using (A13) with (A14),
(A15), (A16) or (A17).

Step 2: Substitute A and B by the estimates obtained in
step 1 and solve (A10) to obtain R, and S. Cal-
culate R by (A8) and T by (A10).

Step 3: Calculate the control signal from (A4).

Repeat steps 1, 2, and 3 at each sampling period. O

An Implicit Self-Tuner

Inthe implicit self-tuner, the design calculations are elim-
inated and the regulator parameters are updated directly.
The algorithm can be derived as follows. We have

ApAgy = ARy + B™Sy = BRiu + B~ Sy = B™[Ru + Syl
(A18)

where the first equality follows from (A9), the second from
(A1), and the third from (A8). Notice that equation (A18) can
be interpreted as a process model, which is parameterized
in B, R,and S. An estimation of the parameters of the model
(A18) gives the regulator parameters directly. A solution to
the bilinear estimation problem is given in [74]. In the spe-
cial case of minimum phase systems when B~ = b, the
implicit algorithm can be expressed as follows.
Algorithm 2

Step 1: Estimate the coefficents of the polynomials R, S
in (A18) recursively using (A13) with

e(t) = AgAn y(O) — bR*u(t — d) + S*y(t — d)]

= ASAL Y — Tt — d) ot — 1)
where
plt —d)=[-ylt —d) - —ylt —d — deg S)
* bou(t — d) - - - bou(t — d — deg R)]
and (A14), (A15), (A16), or (A17).
Step 2: Calculate the control signal from (A3), with Rand

S substituted by their estimates obtained in Step
1

Repeat steps 1 and 2 at each sampling period. O
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The simple self-tuner in [95] corresponds to this algo-
rithm with P given by (A17).

There are many variations of the algorithm. One simple
madification is to replace € by

) =y — o't — d) B(t — 1)

where

_ 1
plt) = m w(B).

Other Implicit Self-Tuners

Algorithm 2 is based on a reparameterization of the pro-
cess mode! (A1). The reparameterization is nontrivial in the
sense that (A18) has more parameters than (A1). The param-
eterization (A18) has the drawback that the model obtained
is not linear in the parameters. This makes the parameter
estimation more difficult. It is thus natural to investigate
other parameterizations. One possibility is to write the
model (A18) as

AjAny = Ru + Sy (A19)
where
® =BR
8§ = B~S.

The estimated polynomials will then have a common factor
which represents poorly damped modes. To avoid cancel-
lation of such modes it is then necessary to cancel the com-
mon factor before calculating the control law. The follow-
ing control algorithm is then obtained.

Algorithm 3

Step 1:  Estimate the coefficients of the polynomials ®
and 8 in the model (A19)

Step 2:  Cancel possible common factors in ® and $§ to
obtain R and S.

Step 3: Calculate the control signal from (A4) where &
and 8 are those obtained in step 2.

Repeat steps 1, 2, and 3 at each sampling period. d

This algorithm avoids the nonlinear estimation problem.
There are, however, more parameters to estimate than in
Algorithm 2 because the parameters of polynomial B~ are
estimated twice.

There are several other possibilities. For the case B* =

const it is possible to proceed as follows. Write the model
(A1) as

Az = u
y = Bz. (A20)

If the polynomials A and B are coprime there exist two
polynomials U and V such that

UA + VB =1, (A21)
It follows from (A10), (A20), and (A21) that
AgAmz = AgAn(UA + VB)z = (RA + SB)z
Equation (A20) gives
ApAnUu + AgApVy — Ru — Sy =0

or
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UAgAnt) + V(AgAny) — Ru — Sy = 0. (A22)

Notice that this equation is linear in the parameters. An
adaptive algorithm similar to Algorithm 3 can be con-
structed based on (A22). This was proposed in [75].
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