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Introduction

When I first started to work with the control systems on the hot rolling
mill at The Danish Steel Works, I was impressed by the complexity of
the computer system planning the rolling. I was also surprised by
the simplicity of the control laws used for controlling the actuators of
the rolling mill. Even if there is a lot of control equipment, all the
control loops are single-input single-output, and are mostly controlled
by PI-controllers.

The simple control algorithms usually work well, are easy to under-
stand and can be tuned on-line. The use of more complex controllers
can however lead to better performance. This is especially relevant
for actuators with a direct impact on product quality. Better control
of these actuators could be an easy and cheap way of improving the
product quality and reduce production costs.

The thickness control system is used for ensuring that the plate thick-
ness meets the customers’ specifications. Since the plate thickness
can not be changed after the rolling, the performance of the thickness
control system has a direct impact on the product quality. Further-
more, the increasing level of automation in the industry increases the
demands on high thickness accuracy of steel plates. The thickness
control therefore qualifies as one of the key processes where the ad-
vanced methods are relevant. A more accurate control of the plate
thickness will, beside the quality improvement, also make it possible
to reduce the target thickness of the plates and hereby save material.
Even small improvements make substantial savings possible. There-
fore high accuracy thickness control is a worthwhile and challenging




Chapter 1. Introduction

problem.

Beside the economical reasons the rolling process is also interesting
from a technical point of view. Several things make the control of the
plate thickness difficult:

o The output of the process — the plate thickness ~ can not be
measured with a sufficient accuracy because of the harsh envi-
ronment near the rolling mill.

¢ The process is multivariable, that is, it has several important
inputs and outputs.

o The material characteristics of the steel plate vary with time.

This makes the process difficult to handle using simple control strate-
gies. The simple control algorithms have the following difficulties:

e They can not handle asymmetric characteristics of the steel plate.

¢ The fact that the thickness can not be measured introduces prob-
lems with the stability of the control loop.

¢ The variations of the material makes the performance of the con-
troller vary with time.

Further details are given in Chapter 2 and Chapter 3. The above
problems make the thickness control of the hot rolling mill a good
process for using advanced control methods.

1.1 Problem formulation

The modeling in this report is made from a control engineer’s point of
view. Normally control engineers work with relatively simple dynam-
ical models for the processes. The relatively simple models make it
possible to use some more or less advanced mathematics for analysis
and design. The point of view in this work will therefore be differ-
ent from the traditional rolling theory, where static nonlinear models
normally are used.

To be able to design better controllers, better models are needed. There-
fore, development of suitable models and determining the parameters

6




1.1 Problem formulation

of these models will be a key subject. To be able to design an advanced
control strategy we need a dynamical multivariable model. To min-
imize the number of parameters of the model and to ensure a good
understanding, a physical model will be derived. Using the model it
will be possible to evaluate the performance of the new control strat-
egy using computer simulations. In the light of the problems described
above, an investigation of the stability of the control loop and the ef-
fects of the varying material characteristics will be made after the
controller design.

We thus arrive at the following problem formulation:

The purpose of this report is to improve the perfor-
mance of the thickness control for a hot rolling mill. The
Improvement will done by:

e deriving a dynamical multivariable model for the hot
rolling process;

¢ designing an advanced control strategy on the basis of
the model.

The performance of the improved control strategy will be
evaluated by computer simulations. The stability of the
control loop and the effects of variation of the material char-
acteristics will also be investigated in connection with the
controller design.

It is usually hard to find a good mathematical model for a process
at the first attempt. Process modeling therefore often is an iterative
procedure. An initial modeling is necessary to decide which input and
output signals to collect for the system identification where the param-
eters of the model are found. Using the results from the identification,
the model is adjusted. Usually it is not necessary to collect new data.
The controller will be designed when the model is ready. Sometimes
the model is also changed in the controller design when the character-
istics of the model are evaluated again. Inspired by [Gustavsson, 1975]
we can illustrate the modeling and design procedure by Figure 1.1. We
will not work with the implementation of the controller in this report,
but it is included in the figure for completeness.

Even if we end up with a controller for the thickness control process

7
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Modeling

Data collection

Identification

Controller desi

| e - 1
IImplementation|
L - - - - |

Figure 1.1 Flow diagram for the work in connection with the modeling and
controller design. The figure illustrates the iterative nature of the modeling

process.




1.2 Outline of the report

and it performs well in the computer simulations, this does not mean
that we are ready for implementation. A lot of work on verifying the
theoretical analysis, possible improvements of measurements, and de-
veloping and implementing the sequence control of the thickness con-
trol remain. This requires people with additional experience of im-
plementation of thickness controllers. The work of this thesis aim to
serve as a theoretical basis for a new and improved thickness control
system, not as a solution ready for implementation in practice.

It should be mentioned that my knowledge of how the thickness con-
trol problem is solved today, comes from the control laws used at The
Danish Steelworks and a fairly large, but probably not complete, liter-
ature study. It is therefore not only possible, but also likely that there
exists more advanced solutions of the thickness control problem, than
the one described as the state of the art in this report.

1.2 Outline of the report

The task of this report is to develop models and control strategies for
the thickness control for a hot rolling mill. To give a background for
this, two introductory chapters are included as an introduction to the
modeling and design. The contents of the report are as follows:

Chapter 2: The thickness control problem. This chapter gives a
basic description of the hot rolling mill and the thickness
control problem.

Chapter 3: Thickness control of hot rolling mills. Here it is de-
scribed how the plate thickness is controlled today. The
state of the art solution is analyzed and an example of
where the traditional control fails is given.

Chapter 4: Modeling of the rolling mill. In this chapter the new
mathematical models for the rolling mill are derived. The
models are later used for the system identification, the con-
troller design, and the computer simulations.

Chapter 5: Data collection and preprocessing. To find the param-
eters of the models, measurements of the input and output

9
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variables are needed. The measurement procedure and the
processing of the measurements are described here.

Chapter 6: System identification. The parameters of the model are
determined. When this is done the models are ready for
controller design, and computer simulations.

Chapter 7: Controller design. The control law for the thickness con-
trol is designed. The performance of the controller is eval-
uated using computer simulations. The stability and effect
of the time varying material characteristics are also inves-
tigated.

The conclusions on the work done in this report are given in Chapter 8.
The variables used throughout the report are listed in Appendix A
and the physical parameters used in connection with the modeling are
derived in Appendix B.

10




2

The thickness control
problem

In this chapter a more detailed description of the hot rolling process
is given. The description will serve as a basis for the work in the
following chapters. The main purposes are to give the reader a feeling
for the problem and to introduce the necessary concepts. It should
here be noted that this is a description of the rolling process seen from
a control engineer’s point of view and therefore a lot of details are left
out. For more detailed descriptions of the process the reader should
read the references as a supplement.

In the following, hot rolling is first described in general and a short
introduction to the planning of the rolling sequence is given. The
functionality of the rolling mill, relevant for the thickness control, is
also described. After this the thickness control problem is described in
more detail.

2.1 Hot rolling of steel plates

The purpose of the hot rolling process is to turn preheated steel blocks
into plates, that is to make them longer and thinner. The steel blocks
are called slabs. The thickness of the slab is reduced by pulling it
through two parallel rolls, see Figure 2.1.

Each time time the plate is pulled through the rollsis called a passand

11
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iMovement of upper roll

Steel plate

Rolling direction

>

Figure 2.1 The principle of the hot rolling process. The thickness of the steel
plate is reduced by pulling it through two parallel rolls.

the difference between the ingoing and outgoing thickness is called the
thickness reduction. As seen from the figure it is possible to change
the outgoing thickness by moving the upper roll. Due to physical lim-
itations the thickness reduction in one pass is limited. It is therefore
necessary with several passes before the plate has obtained the desired
thickness. In practice this is done by reversing the rolls when the pass
is finished and then rolling the plate in the other direction. The series
of passes from slab to finished plate is called a pass schedule. The
above process is called hot rolling and the equipment performing the
deformation of the steel plate is called a hot rolling mill.

The thickness of the slabs at The Danish Steel Works Ltd. are 100,
150, 210, or 260 mm before the rolling is started. Normally the width
of the finished plates is between 2 m and 3 m, the length is between
10 m and 25 m, and the thickness is between 6 mm and 100 mm. The
weight of one plate varies between 1,000 kg and 13,000 kg. The forces
obtained during rolling are quite large, the maximal permitted vertical
force, the rolling force, is 37.3 MN. This is equivalent to the weight
of 1900 Volvos! To be able to handle these large forces the hot rolling
mill is quite a solid construction, it is 13 m high, 5 m wide and the
diameter of the rolls used for deforming the plate is 1 m. Even if the
equipment is large it is possible to obtain quite accurate dimensions
of the rolled plates, typical thickness tolerances for thin plates are in
the range of 0.2 mm.

A schematic diagram of the rolling mill is shown in Figure 2.2. When
comparing to Figure 2.1 it is seen that a number of things are added.

12




2.1 Hot rolling of steel plates

The work rolls are the rolls used for deforming the steel plate, while
the backup rolls are used for supporting the work rolls. This is to
prevent excessive bending of the work rolls. The mill frame is used
for holding the rolls and the equipment used for positioning the upper
roll pack, which consists of the upper backup and work rolls. There
are two ways of adjusting the position of the upper roll pack:

e using the screws;

e uging the hydraulic positioning systems.

The screws are, as the name indicates, two large screws driven by
two de-motors while the hydraulic positioning systems are two grease
cylinders placed between the screws and the upper roll pack. The
screws are used for large position changes between passes while the
hydraulic systems are used for small position changes between and
during the passes. Note that it is possible to adjust the position of the
roll pack independently at the north and south sides and we therefore
have a multivariable system.

The main limitation of the rolling mill is the magnitude of the supply
pressure of the hydraulic systems. If the pressure due to the rolling
force exceeds this limit it is not possible for the hydraulic systems to
operate and the rolling is terminated. This has to be taken into censid-
eration when planning the thickness reductions of the pass schedule.

Using a minimum of time for rolling a plate has several advantages.
One is that the rolling is finished while the plate still is hot and there-
fore soft. Another advantage is that the material flow through the
rolling mill is maximized. Careful planning of the pass schedule to
ensure maximal utilization of the rolling mill capacity is therefore an
important matter. Here maximal utilization implies that all passes
should be rolled with a rolling force as close to the limit as possible.
Today the planning is handled by a computer control system which op-
timizes the thickness reduction in each pass to ensure that the rolling
is done as fast as possible, for a description of a similar system see
[Davies et al., 1983]. This computer control system finds the desired
set-points for the roll position, rolling force, and plate thickness. These
set-points are transferred to the thickness control system, which oper-
ates in two modes:

13
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Side view Front view
— Rolling direction —— @ !
NN NN
,‘M Screws §§§\§\\——§§

| __—— Hydraulic positioning -~
systems

Upper backup rolt

Upper work roll
% EZ3— Steel plate

Lower work roll ——

Lower backup roll

4 Mill frame ——_____|

1
North side ! South side

Figure 2.2 Principal diagrams of the rolling mill seen from the side and the
front. The main thing to note here is the functionality of the positioning systems
for the upper rolls.

¢ relative control, used in the first part of the pass schedule;

e absolute control, used in the last part of the pass schedule.

In relative control the task of the thickness control system is to keep
the thickness close to the value obtained without thickness control in
the beginning of the pass. The goal of the absolute control is to keep
the thickness as close as possible to the value specified by the planning
system. The purpose of the relative control is to prepare the plate for
the absolute control.

2.2 Controlling the plate thickness

The reason why it is necessary to control the plate thickness during a
pass is that the vertical forces obtained in connection with the defor-
mation of the steel plate are sufficiently large for inducing an elastic
deformation of the rolling mill. At the maximal rolling force the de-
formation of the rolling mill is 7 mm, which is of the same order of

14




2.2 Controlling the plate thickness

magnitude as the plate thickness for the thin plates in the final passes.
Due to the elastic deformation of the rolling mill, two different concepts
for the roll gap are used, the unloaded roll gap, which is the roll gap be-
tween the passes, and the loaded roll gap, which is the roll gap during
the pass.

The zero point of the unloaded roll gap varies with time. This is be-
cause of the thermal expansion of the rolls due to heating by the steel
plates and wear of the work rolls. It is therefore necessary to find the
zero point for the unloaded roll gap regularly. This is done is by press-
ing the rolls together with a large force. When the measured position
is corrected for the mill deflection we have a reliable mean value for
the zero point of the unloaded roll gap. Another thing that affects the
zero point of the unloaded roll gap is the roll eccentricity and oval-
ness. These phenomena vary considerably faster with time than the
wear and thermal expansion. Therefore more advanced methods are
needed to compensate for the roll ovality and eccentricity.

Due to the bending of the rolls the plate is always thicker at the center
than at the edges, this phenomenon is called plate crown. This results
in an unnecessary use of material. To cancel this effect, to some extent,
the work rolls are made thicker at the center than at the edges. This
is referred to as roll crown.

If the rolling force during the pass was constant it would be possible
to preset the position of the upper roll pack to ensure that the loaded
roll gap was equal to the desired plate thickness. Unfortunately the
rolling force is hard to predict and it varies during the pass. These
variations are due to different characteristics of the steel plate along
the plate length:

¢ variation of the ingoing plate thickness;

¢ variation of the plate hardness.

The variations of the ingoing plate thickness are due to imperfect thick-
ness control and the variations of the plate hardness are mainly in-
duced by variations of the plate temperature. The temperature varia-
tions are due to inhomogeneous heating by the reheating furnaces and
cooling by the roller tables used for transporting the plate. As will
be seen in the data collection in Chapter 5 these disturbances have a

15
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significant influence on the plate thickness. The steady state gain and
the dynamics of the rolling process vary with material properties, this
will be investigated in Chapter 7. Apart from the material properties
the rolling force also varies with the thickness reduction, see [Roberts,
1983].

The thickness of the steel plate is controlled by varying the position of
the hydraulic systems during the pass, that is, the hydraulic systems
are the actuators of the thickness control system. A main difficulty
in connection with the thickness control is that it is not possible to
measure the plate thickness during the rolling. It is simply not possible
to build reliable equipment for measuring the plate thickness because
of the heat radiation from the steel plate and the steam from the
water used for cleaning the plate surface during rolling. Since it is not
possible to measure the thickness during the the pass it is necessary
to estimate it. This estimate can then be updated using a value of the
thickness measured after the last pass, see [Ferguson et al., 1986].

The available measurements for the thickness control are:

e the positions of the screws;
¢ the positions of the hydraulic systems;

e the rolling forces at the north and south sides.

These signals are usually available for the thickness control. The
rolling force is interesting because it is an internal variable which is
closely related to the plate thickness. Since it is possible to get a reli-
able measurement of the rolling force it is often used for the thickness
control, see [Wood et al., 1977].

2.3 Summary

With the above basic description of the control problem in mind we con-
clude that the thickness control mainly is a regulator problem where
the main task of the thickness control is to eliminate the effects of pro-
cess disturbances. An additional difficulty, which makes the thickness
control problem non-standard, is that it is not possible to measure the
process output in connection with the control.

16




2.3 Summary

A natural question to be asked now is: How Is the thickness control
problem solved today?. This subject will be treated in the following
chapter.

17




3

Thickness control of hot
rolling mills

The purpose of this chapter is to describe the state of the art of thick-
ness control for hot rolling mills. This is done to prepare the reader
for the fundamental ideas used in the following chapters.

First a general statement of the thickness control problem is given
and a general controller structure is derived. After this the state-of-
the-art model is described and using this model the structure of the
thickness controller is found. The performance and stability of this
control structure is then analyzed. The thickness control laws rely
on a fundamental symmetry assumption and in the last section an
example is presented of what happens if the symmetry assumption is
not fulfilled. This is done to illustrate the potential advantages of a
multivariable control strategy.

3.1 What is needed?

Inspired by Chapter 2 we formulate the thickness control problem for
hot rolling mills:

The purpose of the thickness control for a hot rolling mill
is to maintain the specified thickness despite:

e variations of the plate hardness;

18




3.2 What is done already?

e variations of the ingoing thickness.

Since the plate thickness can not be measured during the
pass it has to be estimated.

We conclude that we need a model for the controller design, a controller
able to cancel the above disturbances, and an observer for estimating
the plate thickness during the rolling. Two models will be used. One
for the controller design and one used in the observer for estimating
the plate thickness. The reason for using two different models is that
the rolling force measurement is available when implementing the con-
troller, but is not of much use when designing the controller since it
is just an internal variable of the rolling mill and not an independent
input of the process. As will be seen later the rolling force is of good
use when the thickness is to be estimated, and it is therefore used as
an input for the observer.

At our disposal we have the signals

e the roll positions at the north and the south sides, which are the
sums of the screw and the hydraulic positions, 27 = [z, 2,];

¢ the rolling force measurements at the north and south sides,

fT = [fn fs]

The principal structure of the thickness controller is shown in Fig-
ure 3.1. This controller structure is used both for the existing control
strategy and the new control strategy developed in this report. In the
figure v, is the output of the observer, r is the reference for the plate
thickness and x,, is the control signal for the hydraulic positioning
systems. The controlled output is the plate thickness v.

3.2 What is done already?

Looking at the existing thickness control strategies described in var-
ious articles and papers we conclude that the models and observers
used for control purposes for the rolling stand are static and scalar,
see for instance [Choi et al, 1994], [Edwards, 1978], [Asada et al.,
1986], [Bryant et al., 1975], [Ferguson et al., 1986], [Ginzburg, 1984],

19
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(¥ (¥ Y0
r Xor —
— Controller Mill £0)
2(¢)
v (f) Observer

Figure 3.1 General structure of the thickness controller. Here f is the rolling
force measurement, z is the roll position measurement, v is the plate thickness,
r is the thickness reference, v, is the estimate of the plate thickness, and x,, is
the control signal for the positioning systems. The observer is necessary since
it is not possible to measure the plate thickness during rolling.

[Atori et al, 1992], [Nakagawa et al, 1990], [Saito et al., 1981}, [Tech
et al., 1984], and [Yamashita et al., 1976]. The scalar models are found
by using the mean values of the variables at the north and south sides.
Normally the rolling mill is modeled as a nonlinear spring K(f,w)
where w is the plate width f are the rolling forces. The plateis modeled
as a time varying spring a,(¢). Since a,, and K are spring constants
they are real and positive.

Assuming that the plate thickness is equal to the loaded roll gap we
find that the mean value of the deflection of the rolling mill is the
difference between the mean value of the plate thickness U and the
mean value of the roll position Z:

u(t) - 2(2) - o),

where z = %(zn + 25), 0 is the roll eccentricity and ovalness, and 7 =
%(vn + vs). Uy is the plate thickness at the north edge and v; is the
plate thickness at the south edge.

The deflection of the plate is equal to the thickness reduction:

v_1() — v(t),

20




3.2 What is done already?

A

Figure 8.2 The state-of-the-art model used for thickness control today. The
steel plate and the rolling mill are modeled as springs.

where U = %(v_ln + v_15). U-1, is the ingoing thickness at the north
edge and v_y, is the ingoing thickness at the south edge.

Since the rolling mill and the plate are modeled as springs we find the
mean value of the rolling force f by multiplying the deflection of the
rolling mill by the mill spring coefficient K and the deflection of the
plate by the plate hardness a,,. As illustrated by Figure 3.2 these two
forces are equal and we therefore arrive at the equation

F(#) = an(t)(@-1() —0(t)) = K(f,w)(@() - Z(2) - 0(2)), (3.1)

where f = 1(fu + f;). We are now able to derive the equations for the
mean value of plate thickness v, where we suppress the arguments for
convenience

U:kl—?+z+o (3.2)
K _ Am -
= K+am(z+o)+ K+amv—1' (3.3)

We now see why the mean value of the force f is used for the thick-
ness estimation. Using the rolling force it is possible to estimate the
plate thickness without knowing the plate hardness a,, and the ingo-
ing thickness U_;. The roll eccentricity and ovalness o still enters (3.2)
as an unmeasurable disturbance. Eq. (3.2) is often referred to as the
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Chapter 3. Thickness control of hot rolling mills

gaugemeter equation. Note that the gain of the relation between mean
value of the thickness U and the mean value of the position z in (3.3)
is time varying due to the variations of the plate hardness a,, and the
mill spring coefficient K.

The hydraulic systems are usually controlled using a separate con-
troller, see for instance [Huzyak and Gerber, 1984], [Ginzburg, 1984],
[Saito et al., 1981}, and [Nakagawa et al, 1990]. We consequently
here model the hydraulic systems as a second order system, with unit
steady state gain

Zy = G4z, =

o3
z 3.4
P2+ 20pwpp + @2 (34)

where Z, is the reference for the positioning system from the thickness
controller and zj is the mean position of the hydraulic systems found
using Gy,. p = % is the differential operator, and Gy, is the transfer
function for the hydraulic system.

Using (3.2) we obtain the observer for the thickness estimation
— 1=
Ve = T f+Z+o0,,

where K is an estimate of the mill spring coefficient K, o, is an esti-
mate of the roll eccentricity and ovalness o, and U, is an estimate of
the mean value of the thickness U. Using this for estimating the plate
thickness we have the control law

Z=C,(F-0,) = C, (?— ?—z—o,,), (3.5)

where C, is the transfer function for the thickness controller and 7 is
the reference for the mean thickness v.

The structure of the control system is shown in Figure 8.3. For more
detailed descriptions of the thickness control problem, see [Middleton
and Goodwin, 1990] and [Grimble and Johnson, 1988].
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_ _ v(z)
t z(1 orl — t
r_(_)_’ Controller ®) Controller or () Mill A0
z(¢)
Velt
) Observer

Figure 3.3 The state-of-the-art thickness control. 7 is the reference for the
mean value of the plate thickness v, U, is the estimate of the mean value of the
thickness, z, is the reference for the position controllers, and «x,, are the control
signals for the positing systems. The output signals are the roll positions z,
the rolling forces f, and the plate thicknesses v. In this solution the hydraulic
positioning systems are controlled by separate controllers.

3.3 Analysis of the state-of-the-art solution

Introducing z;, for z in (3.5) and using (3.4) and (3.1) we find that

ERL/ L T SV
T 1+ GyC, K ! )

Inserting this for z in (3.3) and assuming that the material hardness
a,, varies slowly and that the estimate of the mill spring coefficient K
is kept constant during the pass we find that

_ K _ K
(1-¢Gyo = p—_— KGtr+ p——e (o — Gio,)

am K _
—————— 1 - =G —_ .
+am+K( X J”l’(3®

where G; = (G1,C,)/(1+G4C,) and ¢ = (K/K)an/(an+K). Normally
an integrator is included in the thickness controller C, and therefore
the steady state gain of G; will be 1.
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Performance

Several things can be concluded from (3.6). If K = K we will have
full compensation for the mill deflection (v = F) at steady state, since
1- @G, reduces to K /(an, + K) and the term on v_; vanishes. However
if 0, = 0 then the roll eccentricity and ovalness o affects the mean
value of the plate thickness U with a gain of 1 if K = K. It can be
seen from (3.3) that without the thickness control o is reduced by a
factor K /(a, + K). The thickness control therefore tends to amplify
the effect of roll eccentricity and ovalness. For a more detailed analysis
of the accuracy of the thickness control, see [Kokai et al, 1985]

The left side of (3.6) shows that the thickness control uses positive
feedback. This stems from the fact that if the plate thickness for some
reason becomes too large it is necessary to close the roll gap which
increases the rolling force and thereby the plate thickness by a factor
@G,. Since ¢ < 1, for K = K the plate thickness v will however still
be reduced by closing the roll gap in this case. The positive feedback
can also be seen from the fact that a too large rolling force makes it
necessary to close the roll gap which makes the force even larger — this
also illustrates the fact that the thickness control tends to amplify the
rolling force variations.

The problem of eliminating the effects of the roll eccentricity and oval-
ness o has been given much attention. There are two main groups of
methods to reduce the impact of o:

o Traditional methods, where it is exploited that o can be observed
as small periodic variations in the rolling forces f. Here band-
stop filters and dead-zones are used to prevent the thickness con-
trol to react to these variations in the rolling force. These two
methods only compensate partly for the roll eccentricity. An other
possibility is to add an inner force control loop to ensure that the
small variations of the rolling are cancelled. This method is able
to compensate fully for the roll eccentricity and ovalness. For a
comparison of these methods see [Edwards, 1978].

¢ Advanced methods, where o, is estimated and used in the thick-
ness control, as in (3.5).

Quite advanced methods have been used for the last alternative, see
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—1G:(p)

@(t) |

Figure 3.4 Standard representation of thickness control problem for using the
small gain theorem to determine the stability.

for instance [Kitamura et al., 1987], [Yeh et al, 1991], and [Edwards
et al., 1987].

Stability

To illustrate the stability problem we represent the characteristic poly-
nomial on the form shown in Figure 3.4. Assuming that G is stable,
and using the small gain theorem, see [Desoer and Vidyasagar, 1975],
we find that the closed loop will be stable if

\%

71 2 sup |Ge(s)]

s=jo

sup ()

v

T2
ny: < L

Even if it by the controller design is ensured that 73 < 1, the mill
spring coefficient K can vary approximately £+20%, which makes it
necessary to increase the value of the estimate of the mill spring co-
efficient K to ensure that 5 < 1. Normally K is made 20 % larger
than K, this is called detuning and deteriorates the performance of
the thickness control system. Note that the problem with the instabil-
ity is introduced by the fact that it is necessary to estimate the plate
thickness using an observer.
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3.4 What can be improved? — An example

A general comment to the way thickness control is done today could
be that the rolling mill is quite a complex structure which is modeled
by a spring which is a simple mechanical structure. Several questions
about the dynamics and multivariable structure of the process can
be asked. We concentrate on this and will therefore not look at the
compensation for roll eccentricity and ovalness, since this subject is
considered well developed already.

The models described above use the mean values of the variables of
the north and south sides. The implicit assumption is that the rolling
process is symmetric around the vertical symmetry line of the rolling
mill. This symmetry can be disturbed if the plate is not centered in
the mill or if the temperature of one side of the plate deviates from the
temperature of the other side. The variations of the plate hardness is
typically induced by inhomogeneous heating by the reheating furnaces
and inhomogeneous cooling by the roller tables.

The consequence of such asymmetric effects are shown Figure 3.5.
Here the more advanced model derived in the following chapters is
used for simulating the case where the plate hardness across the plate
width is asymmetric. In the simulations asymmetric conditions in the
plate hardness of £20 % between the plate edges are introduced at
¢t = 0.5. For more details refer to Chapter 7.

As seen from the figure the traditional control system does not react
properly, since the mean value of the plate thickness is not changed.
Worse is the fact that the plate length of the two sides will be different
due to the different thickness reductions — this will give the plate an
undesired curved shape.

To compensate for the hardness asymmetry we need:

¢ a multivariable model;
¢ a multivariable observer;

e a controller which can handle the multivariable case.

Due to the nonzero mass of the roll pack and the damping of the rolling
process the rolling mill is also a dynamical system. We will thus de-
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Figure 3.5 The effect of asymmetric material hardness using the traditional
thickness controller. Top plot, full: roll position north side 2, and dashed: roll
position at the south side z;. Middle plot, full: rolling force north side £, and
dashed: rolling force at the south side f;. Bottom plot, full: plate thickness at
north edge v, and dashed: plate thickness at south edge vs. It is seen that the
thickness errors due to the asymmetric material conditions remains unaffected.
The small change in the roll position is due to a slight change of the sum of the
rolling forces.
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velop dynamical multivariable models for the rolling mill in the fol-
lowing.

Since we are not able to measure the plate thickness we use the prin-
ciple illustrated by Figure 3.1 — the main difference will be that we
increase the complexity of the observer, and the model used for the
thickness control. Since we can not measure the process output we
are not able to use a standard observer. We will therefore use an open
loop observer for estimating the plate thickness from the roll positions
z and the rolling forces f.

3.5 Summary

We have now described how the thickness control problem is solved
today. The state of the art is a controller and an observer based on
static scalar models. Investigating the thickness control system we
find that special stability and performance problems occur since it is
necessary to estimate the controlled output.

Since the thickness controllers today rely on a symmetry assumption,
asymmetric rolling conditions cause errors in the control of the plate
thickness. More complex models and controllers are necessary to han-
dle this case. The derivation of these models and control strategies are
the purposes of the work presented in this report.
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4

Modeling of the rolling mill

The purpose of this chapter is to derive physical models for the rolling
mill, which is divided into two subsystems:

o the hydraulic systems used for positioning the roll pack;

e the rolling stand used for deforming the steel plate.

The model for the hydraulic systems is more or less standard, see [Gou,
1991], while the other is new and it will therefore be described in more
detail.

In the beginning of this chapter the model for the hydraulic systems
is derived. This is done by explaining how the real systems works and
from this form a physical model which describes the main character-
istics of interest. Using the physical model the nonlinear differential
equations for the hydraulic systems are found.

A model for the controller design and an observer for the thickness
estimation are derived. The difference between the two is whether
the force measurements are available or not. The above idea with the
physical model is again exploited. It is used to find energy functions
for the rolling stand. From these the partial differential equations for
the stand are found and ordinary differential equations are derived
using modal truncation.

In the final part of the chapter the models for the hydraulic systems
and the model for the rolling stand are combined to a total model for
the entire system.

Aspects connected with the system identification, such as parametriza-
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Chapter 4. Modeling of the rolling mill

tion and identifiability, will be treated later, since they depend on
which realization of the models that is appropriate for describing the
real system.

4.1 Hydraulic system

The modeling of the hydraulic systems has already been done by sev-
eral authors. The suggested nonlinear models do not differ much. For
application to rolling mills see, for instance, [Ginzburg, 1984], [Paul,
1975], and [Gou, 1991].

There are two hydraulic systems on the rolling mill, one for each side.
The two systems are identical and therefore only the north system is
considered in the following. The hydraulic system can be divided into
three main parts, see Figure 4.1:

¢ servo valve — controls the oil flow to the system;
e oil cylinder — positioning of common piston;
e grease cylinder — positioning of grease piston and roll pack.

Since the compressibility of grease is smaller than the compressibil-
ity of oil it is possible to use a higher working pressure in the grease
cylinder. This makes it possible to reduce the area of the grease pis-
ton, which increases the stability of the mechanical construction. The
common piston, which connects the oil and grease cylinders, reduces
the pressure from the grease to the oil side and works as a mechanical
amplifier.

The servo valve is used for controlling the velocity of the common
piston. This is done by varying the flow “through" the oil cylinder.
The velocity of the grease piston is controlled by adjusting the level in
the grease cylinder using the common piston. To ensure a low back
pressure when adjusting the roll pack downwards the right side of
the oil cylinder is drained for oil. Note that since the grease system
is single acting the entire system is single acting. That the system
is single acting implies that it is only possible to push the roll pack
downwards with a large force.

The available measurements are, see Figure 4.1:
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4.1 Hydraulic system

Oil cylinder Common piston  Grease cylinder

Positio } , Pressure measurement :

measurements /A /'(A4
z ‘ !
nl :
i
|
_______________ |

4 Grease piston

Servo valve

Figure 4.1 Schematic diagram of the main parts of the hydraulic system. The
servo valve controls the oil flow to the oil cylinder. The oil cylinder is connected
to the grease cylinder by the common piston. The grease piston moves the roll
pack.

e position of valve glider of the servo valve x,,,
e position of the common piston z,,

e rolling force f;.

Note that even if it is the position of the grease piston we want to
control it is the position of the common piston that is measured. The
two positions can though easily be related by assuming that the grease
is incompressible and using the ratio of the areas of the common piston.

The measurement of the grease pressure is used as a rolling force mea-
surement. The load on the hydraulic system is not directly included
in the model, it enters through the north rolling force f,. The most
significant part of the load is the friction between the work rolls and
the mill frame. This implies that that this measurement also includes
the frictional forces from the movement of the upper roll pack, see
[Zeltkalns et al,, 1977]. Generally, backlash is not a problem when the
plate is in the mill since the mechanical system is pressed together
with a large force. Furthermore, the positioning system is lubricated
with grease. Backlash and friction will therefore not be considered
here.
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Case 1(x,=0) Case 2 (x,,<0)
Qil cylinder Oil cylinder

Servo valve Servo valve

Figure 4.2 The physical model for the hydraulic systems. The model illus-
trates the effects we want to include.

Physical model

To be able to derive a mathematical model we first build a physical
model, which includes the properties of the hydraulic systems we want
to model, see Figure 4.2. Since it is not possible to measure the position
of the grease piston only the oil side is included in the physical model.
The mass and friction of the rest of the hydraulic system will therefore
be included in the load. Furthermore, the function of the servo valve
is not considered since it is not essential for the functionality of the
hydraulic system.

The positive direction of the flow of the left side of the oil cylinder @;
is into the cylinder and the positive direction of the flow of the right
side of the oil cylinder @2 is out of the cylinder. Note the leak flow
between the piston and the cylinder wall. Note furthermore that the
pressures of the return paths of the servo valve are set to zero and the
supply pressure P; is assumed constant.

To derive a model we need to know the pressure at both sides of the
oil piston. To model the oil compressibility it is also necessary to know
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4.1 Hydraulic system

the time derivative of these pressures. Since the pressure is measured
at the grease side only a linear combination of the pressures at the
oil side can be measured, neglecting mass and friction of the common
piston the relation is

% Fa(t) = Apa(t) - Apa(t), (41)
4

where p; and pg are the pressures at the left and right sides of the oil
cylinder, respectively, and f, is the rolling force. Aj, As, and A3 are
the areas of the common piston corresponding to p1, p2, and f,/A4 and
Ay is the area of the grease piston.

Since the oil is drained from the right side of the oil cylinder, we have
an additional leak flow. This makes it hard to find the values of the
flow @2 and the pressure ps. When the valve glider position x,, > 0
and the positioning system is moving downwards there is no flow into
the right side of the cylinder and we might assume that the this side
is drained for oil in this case. This leads us to the assumption

A~ 22000
Azpz(t) ~ 0. (42)

When the valve glider position x,, < 0 and the positioning system
therefore moves upwards there is an oil flow into the right side of the
cylinder and we can no longer assume that it is drained for oil. We here
make the simple assumption that the pressure py =~ 77P;. Intuitively
the coefficient 77 tells us how much of the pressure at the servo valve
that is applied at the common piston. The assumption leads to the
equations

A
A1p1(t) ~ AanP; + —A-Z’- fa(?)
Aspa(t) = Agn Py, (4.3)

which have been shown to work well in practice. Note that since the
areas A; = A (4.1) is still approximatively fulfilled.
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Derivation of model

The model is derived by combining the flow through the servo valve
and the cylinder. Using [Trostmann, 1987] and [Gou, 1991] we find
that the flows through the servo valve can be modeled as

Case 1: x,,(¢) 2 0

{Ql(t) = klxvn(t) \/Pl(t) = Elxvn(t) \/ Fs - fn(t) (4 4)
Qa(2) = k1xun(£)v/p2(t) = 0
Case 2: x,,(£) < 0

Ql (t) = klxvn (t) Vpl(t = z1-"‘31171(75) TZFS + fn(t) (4 5)

Q2 (t) = klxvn(t) \/p2(t) = z1:’(7un(t) T]—Fs’

where k; is a positive constant. The supply pressure P and k; have
been transformed to equivalent constants assuming that A; ~ As.
The zero point for the valve glider is at the middle position and the
positive direction of movement is from the right to the left. The two
sets of equations comes from the different flow paths depending on the
position of the valve glider. The equations are derived using Bernoulli’s
laws for flow through an orifice — which in this case is the variable
opening area of the servo valve.

Choosing the zero point for the common piston in the lowermost (to the
right) position and the positive direction of movement to be upwards
(from the right to the left), the flow through the oil cylinder can be
modeled as

Qu(t) + Qa(t) = —(A1 + A2)2,(t) + Arkale: — () flt) + k3fn(t()7 )
4.6

where z; is the top position of the common piston, z, is the position
of the common piston and kg and k3 are positive constants. The first
term is the flow due to the movement of the piston. The second term
is due to the compressibility of the hydraulic oil which is proportional
to the volume. This explains the appearance of As(z; — z,) which is
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the volume of the left side as a function of the position z,. The third
term is the leak flow between the common piston and oil cylinder wall,
which is assumed proportional to the pressure difference between the
two sides which by (4.2) and (4.3) is proportional to the rolling force

fr-

Combining (4.4), (4.5), and (4.6) we obtain the following differential
equations for the hydraulic system, where we introduce the variable
2y, as the output of the model

Model for hydraulic system

~24, () = ann1&n(t) = Anna(2e = 23, () fr — Ahnafu(t), (4.7)
where
%on(E)\/Ps — fn(t) %on(t) 2 0
én(t) =
%on (&) (W11 Ps + A/NPs + fu())  xun(f) < 0.

Inputs to the model are the valve glider position x,, and the rolling
force measurement f, and the output is the position of the common
piston zj,.

4.2 Rolling stand

As explained in Chapter 3 a model and an observer are needed for
the thickness control. The difference between these two is that the
rolling force measurements are available in the second case but not in
the first. Output of the model is the thickness profile across the plate
width, later more convenient outputs will be introduced. Furthermore,
the force can also be used as an output for the model. The output of
the observer will be the estimate of the states of the model.

The author has found no reports in the literature to build a multivari-
able dynamical model for the rolling stand. For descriptions of simpler
models see, for instance, [Fujii and Saito, 1975], [Kokai et al.,, 1985],
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North positioning
system

Upper roll pack

Mill frame

South positioning
— system

Figure 4.3 Diagram of the main parts of the rolling stand. The parts shown
in the figure are the ones we want to include in the model.

[Mizuno, ], and [Stone, 1969]. See also Chapter 2.

Physical model

The rolling stand consists of three main parts:

¢ roll pack - used for reducing the plate thickness;

e mill frame — holds the rolls;
o steel plate.

Since the border of the model for the hydraulic system is the common
piston, the model for the rolling stand includes the grease cylinder.
This implies that the compressibility and damping of the grease will
be implicitly included in the mill model. A schematic diagram is shown

in Figure 4.3

The main characteristic of interest in the modeling of the rolling stand
is the elastic deflection of the roll pack and the mill frame and the
plastic deformation of the steel plate. The model should cover the
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North positioning

system L South positioning
system
Mill frame —— —— Mill frame
] | _ __ Horizontal

symmetry line

Figure 4.4 Diagram of the main parts of the rolling stand. Here the assump-
tions are illustrated and all unnecessary parts are removed.

behavior of both the rolling stand and the steel plate. We first assume
that the mill frame does not deflect in the sidewise direction and that
the plate is always centered in the rolling mill. Joining the work and
backup roll to one roll makes it possible to make the simplified model
shown in Figure 4.4. It is seen that the width of the rolling stand is
set equal to the plate width. This makes it possible to use the mill
spring coefficient K from the existing control system for the physical
model. An other advantage is that all the parameters are independent
of x, which results in a simpler structure of the mathematical model.

Considering plate halves above and below the horizontal symmetry
line we see that the forces applied for deforming the two parts must
be equal. This is the case since a difference in the two forces will
result in an adjustment of the vertical position and thus reestablish
the equality of the forces. Assuming that the hardness of the plate
is the same for the top and bottom halves gives us the possibility to
establish symmetry. This makes it only necessary to model one half of
the rolling stand — we here choose to consider the top half.

Using the above assumptions and experience from the system identifi-
cation the physical model shown on Figure 4.5 is developed. Here the
rolling stand is modeled as two springs and the roll pack is modeled
as an elastic beam. The springs and the beam are deflected when the
beam is subjected to the pressure distribution from the material during
rolling. Using the positioning systems the thickness of the plate can

37




Chapter 4. Modeling of the rolling mill

£ Roll 3Ve®D f ()

K
Mill frame — Mill frame

Symmetry line Plate P 4(x:t)

Figure 4.5 Physical model of the rolling stand. This figure is the basis for the
energy functions and thus the mathematical model for the rolling stand.

be adjusted. Ideal plastic behavior is assumed, which implies that the
thickness profile of the finished plate is the same as the roll profile. In
the model the beam ends are built-in, this implies that the orientation
of the beam ends are fixed. This gives two of the boundary conditions
for the model derived below.

To obtain a two dimensional model it is assumed that the area of
contact between rolls and plate is a line. The thickness profile of the
plate is 2vg(x,¢) and pg(x,t) is the pressure distribution applied to
the work roll by the plate. Note that z4(0,%) and z4(w, ¢) in the figure
are not the positions of the hydraulic systems since the width of the
rolling stand is set equal to the plate width — this will be taken into
consideration when deriving the model.

The available measurements are also shown in Figure 4.5:

¢ positions of hydraulic systems at the plate edges z4(0,t) and
z4(w, 8);

o rolling forces f(¢) = [fu(t) F:(®)]%;

o thickness profile of the plate in the width direction 1v4(x,?).

Since we only derive a model for the top half of the plate, we work
with half the plate thickness and halfthe roll position. The two first
measurements are the same as for the hydraulic system while the
thickness is measured after the rolling. The output of the model will
be the thickness profile Fv4(x, ).
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The model

Deriving the model is complicated and it is therefore divided in the
following steps:

o choice of material model;

e derivation of a partial differential equation (PDE) for the rolling
stand;

e obtaining an ordinary differential equation (ODE) from the PDE.
The theoretical aspects are described during the derivation.

Material model Since the rolling force is not available in the model
we need a model for how the pressure distribution depends on the plate
thickness. This is a complex problem, but to preserve simplicity we
here assume plane strain, which implies that there is no material flow
in the sidewise direction and that the material is homogeneous in the
sidewise direction. This implies that the pressure in one point is only
dependent on the plate thickness at that point.

Generally, the material characteristics include a stiffness and a damp-
ing term. The input variables are thickness reduction and roll velocity,
see [Roberts, 1983] and [Guo, 1994]. Traditionally the models are non-
linear functions of the reduction

Lvg_1(x,8) — 2va(x,t)
gVa-1(%.2)

rqo(x,t) =

the strain rate (the time derivative of the reduction ry), and plate
temperature T'. %vd_l is the thickness profile for the ingoing thickness.
Using a nonlinear material model will result in a nonlinear PDE as a
model for the rolling stand. This will be hard to handle and assuming
that the thickness control works properly we choose to linearize the
material model at a working point.

To prevent waves in the length direction the computer planning system
tries to withhold a constant relative crown. This means that the shape
of the thickness profile is keep constant in the last part of the pass
schedule. This implies that we can assume that

FVa(x,t) = @(t)dvg_1(x, 1),
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where @ always is smaller than 1.

Using the above and assuming that @ varies slowly we postulate that
the external transverse force applied to the roll is

pa(x,t) = —am (8)(1 - &(t))zva(x, ?)
— ama(t) (1~ m’(t))%%vd(x, £) + ams(H)v,(t), (4.8)

where v, is the rotational speed of the work roll and a1, @msz, and a3
are positive parameters. In the following we will include the variations
of @ in a,,1 and a,,3. Note that the pressure profile will be a function of
the thickness profile obtained in earlier passes, this gives the rolling
process repetitive structure, see for instance [Foda and Agathoklis,
1992].

The variation of the material parameters is mainly due to the varia-
tions of the plate temperature T which does not change much during
one pass. As seen from (4.8) the material model for the steel plate
is time varying. The system identification will be based on data from
one pass and the controller design will also be done for one pass at the
time. The main demand on the model is therefore that it should be
valid for one pass at the time and not for the entire rolling. We there-
fore assume that the material parameters a1, ams, and a,3 varies
slowly compared to the dynamics of the rolling stand. This will make
it possible assume that the material parameters are constant when do-
ing the modeling, system identification and controller design and we
will therefore be able to use methods for time invariant systems for
these tasks.

PDE for the rolling stand Assuming that the roll packs behave as
slender members we can model them as Euler-Bernoulli beams, see
[Abildgaard, 1991] and [Crandall ef al,, 1978]. This implies that there
is no shear strain present when the roll is deflected. The bending
moment of the roll pack is then given by

?3v4(x, t)
ox2

where E is Youngs modulus of elasticity and I is the second moment
of area of the work roll, see Appendix B. The roll pack is, however, not

M, = EI
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exactly a slender member, but since the roll bending is small compared
to the roll geometry the shear strain will be small compared to the nor-
mal strain when the roll is deformed. This justifies the assumptions.

Since a change in position at one side affects the thickness profile
U4(x,2) for all x we introduce the function

1 1 1z
zd(x,t) = [ 1-— x+§§l—-w) x+§§l~w) ] [ 21 n
2%s

] x € [0,w],

where [ is the width of the rolling stand. z4(x,t) describes the effect
of a position change across the plate width.

The model for the rolling stand is found by forming the energy function
for the mechanical structure shown in Figure 4.5 and then using the
Euler-Lagrange equations on the energy functions, see [Meirovitch,
1980]. The method used here is the same as used in optimal control,
here we introduce the performance function

" Li(f)dt = ttz(Tl(t) _ Vi),

31

where Tj is the total kinetic energy and V; is the total potential energy
for the system. In order to fulfill the physical laws, the system will
always be in the state minimizing the performance function L;, see
[Hansen, 1993].

The energy functions for the physical model in Figure 4.5 are found to
be

T = 5 [ pAKOE) ds
Vi(t) = %/ow (%El(v(m(x, )2 + am1iv(x, t)z) dx
+ %21{ ((20a(0,2) — 24(0,8)) + (Rva(w, £) — za(w, £))?),

where () denotes i times partial derivation with respect to to x, p is
the mass density of steel, A is the cross sectional area of the roll pack
and 2K is the spring constant for half a leg of the mill frame, see
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Appendix B. The therm in T} is the kinetic energy due to the velocity
of the roll pack, the first term in V; are the potential energy due to
the bending of the roll pack, the second term is the potential energy
used for deforming the steel plate and the two last terms is the energy
used for deforming the springs of the sides of the rolling stand.

The original Fuler-Lagrange formulation only covers conservative sys-
tems, i.e., systems without losses. To include the losses of the mate-
rial model they are represented as non-conservative virtual work, see
[Meirovitch, 1980]

oW(2) = /Ow (—amzél}(x, t) + amgv,(t)) é'%vd(x, t)dx,

and can in this way be included in the Lagrangian formulation.

Using Euler-Lagranges equations we obtain the PDE, see [Meirovitch,
1980]

EIL (x,8) + amidva(x, t) + pALia(x,t) =

- am2%0d(x, t) + amavr(2), x € (O,w)
with the boundary conditions

%vf})(o, t)=0
%vg)(w,t) =0
(E1/2K)20(0,8) + 1v4(0,8) = 24(0, 1)
~(EI/2K) 0P (w,8) + Lug(w, 1) = za(w, ). (4.9)

Note that since we have a 4th order PDE we have four boundary con-
ditions. The first two boundary conditions state that the orientation
of the beam ends are fixed while the two last imply that the forces at
the beam ends should be equal to the force applied to the springs.

A problem is now that we have non-homogeneous boundary conditions.
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4.2 Rolling stand

This can be solved by the state transformation

u(x,t) = gva(x,t) - £(x)32(t), x € [0,w]

= Lvg(x,t) - } [ (1+cos(Zx)) (1-cos(Zx)) ] [
= va(x,t) — (3 + G cos(Zx)) 3za(2) + (3 — & cos(Zx)) 524(2),

(4.10)

24(0, 1) ]

zq(w, )

where u is the new state variable. The state transformation moves the
terms for the roll position z4(x,t) from the boundary conditions to the
PDE and in this way we obtain an extra input.

Applying the state transformation we obtain the PDE

EIu® + apmatt + amitt + pAil = apavy — am€iz — EIe®W 1z
— amo€ds —pAeli, x € (O,w), (4.11)
with the (now homogeneous) boundary conditions

u(0,£) = 0

uM(w,t) = 0

(E1/2K)u®(0,¢) + u(0,£) = 0
—(EI/2K)u®(w,t) + u(w,t) = 0.

We now have the PDE with boundary conditions on standard form and
can thus proceed with the solution of the problem.

Obtaining the ODE For the PDE we define the eigenvalue problem
Loi(x) = Aimei(x), i=1,...

4 .
<EI%4— + am1> ¢,(x) = /lipAgz)i(x). (4.12)

This equation is, in general, fulfilled for an infinite set of real eigen-
values 4; and eigenfunctions ¢; which furthermore have to fulfill the
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Chapter 4. Modeling of the rolling mill

boundary conditions. Note that the eigenfunctions must belong to the
same function space as the solution to the PDE (they both have the
same number of continuous derivatives).

It can by partial integration and use of the boundary conditions be
shown that the differential operator L is self adjoint (< La,b >=<
a,Lb >) where < - > is the inner product in L3[0,w]. This implies
that the eigenfunctions are orthogonal and they furthermore form a
complete set. Since the solution to the PDE also belongs to this space
it can be expanded as

u(nt) = 3 4i(x)qi(t)
i=1

where the g;’s are called normal coordinates and are continuous func-
tions of ¢.

Since it is hard to work with an infinite series it is necessary to use an
approximate method when obtaining the ODE’s. The method which
will be used here is Galerkin’s method. This has the advantage that it
preserves the symmetry of the system when the approximate solution
is calculated. Furthermore, the method is simple to use and it is easy
to understand the main idea.

It is first of all assumed that the approximate solution # is given by
the finite series '

i(x,8) = [91(x) $2(x) - u(*)][q1(2) g2(2) - ()" (413)

Introducing the approximate solution for u in the PDE, premultiplying
with the eigenfunctions [¢; @2~ ¢,]7 and integrating with respect to
x from O to w yields a set of differential equations for the normal
coordinates g;’s.

We now proceed with finding the eigenfunctions from (4.12) and the
boundary conditions. In order to satisfy (4.12) it is necessary that

P (x) = ki(x), i = 1,...

where k is a real constant. The solution for this differential equation
is

¢l(x) = Cj1 cos(ﬂix) + Ci2 sin(ﬁix) + C;i3 cosh(ﬁix) + Ci4 sinh(,Bix),
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4.2 Rolling stand

which also is suggested in [Meirovitch, 1980]. We thus find that 4; =
(EIBf +am)/pA.

Inserting the solution in the boundary conditions results in the equa-
tion system

0 Bi 0 Bi Ci1
“‘ﬁi sin(ﬂ,-w) ﬁ,’ cos(ﬁ,-w) ﬂ,‘ sinh(,B,-w) ,Ei COSh(ﬂill)) Cio =0
1 -B3EI/2K 1 B3EI/2K cis '

X, X, X3 X, Cit

where

Xy = BY(EI/2K) sin(Baw) — cos(Biw)
Xy = ~B3(EI/2K) cos(Biw) — sin(B;w)
X3 = B3(EI/2K) sinh(B;w) — cosh(Bw)
X4 = B3(EI/2K) cosh(B;w) — sinh(B;w).
The coefficients (up to a scaling constant) lie in the null space of the
above matrix. For the null space to have a dimension larger than zero,
the determinant of the system should be zero — this can be utilized to
find the §;’s. Setting the determinant equal to zero yields the equation
(883K EI sinh(B;w) — 8K 2 cosh(B,w)) cos(Biw) +
883K EI cosh(Bw) — 485 EI? sinh(B.w)) sin(Bw) + 8K? = 0,
which is transcendental and therefore has to be solved numerically. To

ensure uniqueness of the eigenfunctions the coefficients are normalized
such that

w
/ pAPi(x)dx=1,i=1,....
0

Inserting the values for the physical constants found in Appendix B
we can find the eigenfunctions for one specific plate width w.

For us the two first eigenfunctions are the most interesting. The rea-
son for this is that they describe the mean value and the skewness of
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phi_1(x) and phi_2(x)

Figure 4.6 The first two eigenfunctions for the rolling stand. They describe
the mean value and the skewness of the roll gap and are the ones that will be
considered in the following.

the roll gap, see Figure 4.6. The ;s are used in increasing magni-
tude when finding the eigenfunctions, this implies that the variations
of the eigenfunctions as a function of x increases with i. The terms
Iy epidx, [ eWpidx, and [ ¢idx therefore decrease with increasing
i. This is because due to the more and more high frequency nature
of the eigenfunctions and the fact that the mean values of all other
eigenfunctions than ¢ is zero.

Looking at the differential equation found later in this chapter we
conclude that the steady state gains of the differential equations be-
longing to the eigenfunctions decrease with increasing i. Investing
these steady state gains from %z to g we find that they typically are
of a order of magnitude 107! for the two first eigenfunctions ¢; and
@2, and then decrease by a factor 1073 for the following eigenfunc-
tions. The system identification has been performed using the three
first eigenfunctions, but as indicated by the above, it was found that
¢3 hat little or no importance. We therefore only include the two first
eigenfunctions in the model for the rolling stand.
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4.2 Rolling stand

Applying Galerkins method on (4.11) yields the polynomial matrix de-
scription (PMD), see [Kailath, 1980]

(Ip2 + amal1p + EITy + amlFl) q(t) =
amngv,(t) - (,DAF3p2 +amelsp + amil's + EIF4) %Z(t),

where

w 1
Iy = /0 0i(2)05()dx = =6,
4

Tog = [ 09)8,(x)dx = f—;{ai-

Ty = /Ow ¢i(x)e(x)dx
Ty = /0 ¥ i(x)e@(x)dx
T = /0 " p1(x)dx.

d is the unit pulse

1, wheni=j
5ij = .
0, otherwise

The structure of the matrices is

r = {nl Yia ]
Yie Vi
for i = 38,4,6. This is due to the fact that the eigenfunction ¢; is
symmetric while the eigenfunction ¢, is anti-symmetric around w/2.
Y4, = 0 since € and ¢, are orthogonal. T'; and I'y are diagonal due the
orthogonality of the eigenfunctions and the fact that ¢,§4) = Bio;.
Using the state transformation y., = q + pAT3 %z to remove the direct

term and the methods given in [Kailath, 1980] we obtain the state
space equations
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The model
Y1 | [ 4]B -—f;
Yoy C. | D, 2
qc - 12
—amgl"l I 0 0 yq
= | ~EITy —amly 0| EIQAT,Ty —T)) anals | |22
1 0| _DAT, 0 2
Ur
(4.14)

The inputs are the roll positions z and the roll speed v,, and the outputs
are the normal coordinates q.. ¥. = [¥e, ¥ ] are the states of the
model. Since several state transformations are involved when finding
the above model the state variables can not be given any direct physical
relation.

The observer

The purpose of the observer is to estimate the states of the model (4.14)
in an appropriate way. The difference is that we here have the rolling
force measurements at our disposal.

Using the fact that the rolling force is equal to the shear force at the
beam ends we have that

V(0,8) = —EIu®(x,£) = 2Ku(0,£) = f () (4.15)
Vo(w,t) = ETu® (x,1) = 2Ku(w,t) = f(2). (4.16)
Note that these are also the two last boundary conditions for (4.11).

It is in this way possible to use the rolling forces f for finding the
normal coordinates g. Using the approximative relationship

u(x,t) = ¢1(x)qa(t) + P2(x)qa(?).
We can by (4.15) and (4.16) derive the matrix equation
[fn(t)] ~ 0K [¢1(0) ¢2(0)] [Ch(t)] ‘

T 0w) )] a0

£(0) (4.17)
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Using the relationships found from (4.14)
qe(t) = ¥, (£) - pAT332(t) (4.18)
Yer(t) = —amaT1ye,(£) + ye,(2). (4.19)

Introducing g, for ¢ in (4.17) and using this equation together with
(4.18) and (4.19) it is possible to find an estimate for y.. To simplify
the structure of the observer we assume that y., is small and obtain

The observer

s = [, 10 Troe [P0 10 @)

where

re o L [¢1(0) ¢2(0)]‘1

2K | 91(w) ¢a(w)
Inputs are the roll positions z, the rolling forces f. y. is the estimate

of the states of the model y,. The steady state gains of the model and
the observer are the same.

4.3 Total model

As we have seen in (4.15) and (4.16) it is possible to find the rolling
force from the model for the rolling stand. The rolling force and its
time derivative are used in the model for the hydraulic systems this
makes it possible to make a total model for simulation by combining
the models for the hydraulic systems and the model for the rolling
stand. Using (4.17) and inserting ¢, for ¢ we have that

_[fa®] _ qe: (%)
0 = [ i) =27 [ qczm}’ (42
where:
_ [91(0)  ¢2(0)
F= S oo
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Chapter 4. Modeling of the rolling mill

By the above expression we can establish a connection between the
models for the hydraulic positioning systems

—2p,(£) = ahm1n(t) — Anna(2e — 21, (£)) f — Ghnafa(t)
—24,(t) = ansals(f) — ansa(2e — 20, (8)) 5 — anssfs(t)

where
xvn(t) \/Fs - fn(t) xvn(t) >0
gn(t) = — —
xon(8)(\/N1Ps + \/NPs + fu(t)) 2y, (8) < 0
%5 (E)1/Ps — f5(2) xys(t) 2 0
&s(?) =

%ps () (\/NPs + /NP5 + fs(£))  xn(8) <O

and the model

. _am2r1 I 0 0 Ye
|i Yo ] = ——EIFQ - a,,,ﬂ"l 0 EI(pAI“2F3 - I‘4) am3F5 %Z
2 1 o]  -pAL 0 o

By substituting f and % f with

fe(t) = 2K Fq.(t)
d%fc(t) = 2KF%Qc(t)'

Note that ditqc can be calculated using % y. and the models for the hy-
draulic systems. A principal diagram of the model structure is shown
in Figure 4.7. By joining the two models we have a system with the
valve glider positions for the hydraulic systems x, and the roll speed
v, as inputs and the normal coordinates g, as outputs. The complete
model will in the following be used for the simulations.

The controlled outputs, which are the thicknesses at a distance ¢ from
the plate edges, see Chapter 7, can in the simulations be calculated
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from
Cvea®] [ e(w)zn(d)
0= |y =2 l aw - p,2) ] : [ e(w - 1)24(t) ]
_ e (2) e(u)zn(t)
= 20 gold) } + [ £(w - 1)za(t) ] (4.22)
where

[ P1(n) P2(1) ]
pr(w— ) paw—p)l|’

In this way the plate thicknesses at the edges v, can be found using
the normal coordinates g, and the roll positions z;.

The observer

O B P IORY [ PO

amel'1T6 amal's

will be used for estimating the states of the model for the rolling stand
when implementing the controller in the simulations. Here the addi-
tional force measurements are available for a better estimate of the
plate thickness. The estimate for the normal coordinates ¢, can be
calculated from

ge(t) = [I 0]y.() _pAF3%zh(t)-

Again the thickness at the north and south edge v,, and v,, can be
calculated using g, and (4.22).

4.4 Summary

We have now derived models for the hydraulic systems and the rolling
stand. The model for the hydraulic systems is nonlinear with the
rolling force and controlled variable as inputs and the roll position as
output. The model for the rolling stand is linear and multivariable
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fC,. (t)

%fcn (t)

L, (2)
Xon (T | zp (t qc(t)
_().» South syst. m0) T

vr(t) —t Mill Force calc.
d

xps(2 2, (t giYe(t
—vsi—l North syst. e (%)

L, (t)

.ngcs(t)

fcs(t)

Figure 4.7 The total model for the rolling mill made by combining the models
for the hydraulic systems and the model for the rolling stand. The rolling forces

and their derivatives are calculated using two of the boundary conditions for
the PDE.
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4.4 Summary

with roll positions and rolling speed as inputs and normal coordinates
for the eigenfunctions of the rolling stand as outputs. A static observer
with roll positions and the rolling forces as inputs and the states of
the model for the rolling stand as outputs is also found.

Using the boundary conditions for the rolling stand, the rolling forces
can be calculated. This makes it possible to combine the model for
the hydraulic systems and the model for the rolling stand into a total
model for the whole rolling mill. The total model will be used for
computer simulations.

The load of the hydraulic systems is included in the model for the
rolling stand. Since we in this model have a linear model for the
damping the, friction between the roll pack and the mill frame is indi-
rectly modeled as viscous friction. That this and the other assumption
in the modeling is reasonable will be investigated in the system iden-
tification.

To find the unknown parameters of the models for the hydraulic sys-
tems and the rolling stand it is necessary to perform a system iden-
tification. The collection and preparation of the data for the system
identification is described in the next chapter.
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5

Data collection and
preprocessing

This chapter describes the data collection and the preprocessing of the
data necessary before the system identification can be performed. The
data have been collected during normal production and it has been
chosen not to affect the experimental conditions.

It will later be seen that the excitation is not ideal — this could be
improved by injecting an external input signal. Two things can be
said against this. First of all, the bandwidths of the hydraulic systems
are small in comparison to the interesting modes of the rolling stand,
and secondly the rolling process is quite sensitive and there is a risk of
destroying expensive equipment. Because of this it has been chosen to
collect the data during normal operation. This also has the advantage
that they are collected under realistic conditions.

The data shown in this chapter will all be from the same plate, which
has a nominal thickness of 10 mm, a width of 2.15 m and a length of
10.5 m. The data from this plate will also be used for all the examples
in the rest of this report.

5.1 Measurement equipment

From Chapter 4 we know that the relevant input and output signals
for the models are:
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The positions of the servo valve gliders x,, and x;.

The positions of the common pistons z, and z,.

The rolling forces f, and f;.
¢ The rotational speed of the upper work roll v,.

e The plate thickness at the north edge, the center and the south
edge vq(x1,t), va(xe,t), and vg(xs, t).

The plate thickness is measured at the edges and the center since
these three measurements give us the possibility to determine the plate
crown. The four first variable types exist as electrically measurable
signals in the rolling mill control systems, while the thickness has to
be measured after the rolling when the plate is cold. We thus need a
measurement device for electrically measurable signals and a device
for measuring the plate thickness.

Electrically measurable signals

For the data collection of the electrically measurable signals a Sharp
transportable PC with Burr-Brown data acquisition equipment is used.
The data collection software is Labtech Notebook, the measured sig-
nals are shown in Table 5.1. The sampling frequency is chosen to be
400 Hz since this is the maximal sampling rate for the measurement
equipment. Furthermore, this value has proven to be sufficient to cap-
ture the bandwidths of the relevant signals in earlier tests.

The equipment has one A/D-converter with a multiplexer switching
between the signals. The signals are ordered to minimize the delay
between the related signals in the multiplexing. The typical multiplex-
ing time between two channels is 76 us, see [Bur, 1986]. The maximal
distance between two related signals is 4 channels. This gives a max-
imal delay of 0.304 ms. Since the maximal bandwidth of the signals
is found to approximately 15 Hz yielding a time constant of 11 ms we
consider this delay neglectable compared to the system dynamics.

To avoid aliasing the signals are filtered using second order analog
Butterworth filters with a cut-off frequency of 100 Hz, which is half the
Nyquist frequency, see [Astrém and Wittenmark, 1990]. Furthermore,
the signals are amplified to ensure proper utilization of the 12-bit A/D
converter of the measurement system.
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Name Variable
North valve glider position Xyn
North hydraulic position Zn
North rolling force fn
Roll speed vy
South valve glider position Xys
South hydraulic position 2s
South rolling force fs

Table 5.1 The variables of the models which are possible to measure as elec-
trical signals.

The measurements are done in the last pass for the relevant plates, an
example of the signals is shown in Figure 5.1. Since the measurement
of the valve glider positions is quite noisy we measure the reference
signal for the valve glider position instead. In this pass the thickness
control is in absolute mode which yields the best excitation since this
gives that largest variations in force and position. It is also the signals
for the last pass which are related to the plate thickness measured
after the rolling. Note the poor excitation of z, and z,, furthermore,
note that it is only possible to collect data for approximately 4 s for
the plate before the pass ends.

Thickness measurement

It is not possible to measure the thickness of the plate during rolling,
see Chapter 2. Furthermore, the accuracy of the existing thickness
measurement device, which is placed after the rolling mill, is not suffi-
cient. It is therefore necessary to measure the plates after the rolling
when the plate is cold.

It was first tried to measure the plate thickness manually with a dis-
tance of 10 ecm using a micrometer screw gauge. These measurements
showed large variations and it was believed that this was due to poor
precision of the screw gauge. A measurement device with an electronic
screw gauge with serial communication interface was then constructed,
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x_vrn and X_vrs znandz_s

Figure 5.1 An example of the variables which are collected during one pass.
Upper left: the references for the north servo valve x,., (full) and south servo
valve x,,s (dashed). Upper right: north position 2z, (full) and south position
z; (dashed). Lower left: north rolling force £, (full) and south rolling force f;
(dashed). Lower right: peripheral speed of the upper work roll v,.
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a pulse encoder for length measurement was also mounted. A constant
orientation to the plate when performing the measurements in a more
continuous way yielded a higher accuracy. The thickness measure-
ments were collected using a digital controller with the feature that
the sampling frequency could be controlled using the pulse encoder,
see [Bengtsson, 1994]. Notice that we have spatial sampling as a con-
sequence of the measurement procedure.

Before the plate was measured approximately 5 cm were cut off the
edges. This was done since the thickness at the edges is not well
defined due to various boundary effects. The north edge was first
measured, the plate was cut in two and the plate center was measured.
Finally the plate was flipped and the south edge was measured. In
order not to destroy the plates we choose plates where the cutting is
necessary to obtain the specified width. To reduce measurement noise
due to dust the plates were swept before measurement was performed.
The scale is thicker on the thick plates, since they are finished at higher
temperature, this increases the noise level due to holes in the scale.

The roll surface is not straight, as assumed in the modeling. The roll
is actually ground in cigar-shape to reduce the plate crown and hereby
save material, see Chapter 2. To correct the thickness measurements,
the difference between the roll diameter at the center and the edges
are added to the center thickness measurement. Assuming that the
roll is ground in sine shape the correction is
. (I —w)
0 =c(l- B
c(1 — sin( 5 N

where ¢ is the thickness difference between the center and the edges
of the roll.

An example of the data is shown i Figure 5.2. Note the high-frequency
thickness variations, the thickness can vary several tenths of mm
within 20 em. It was found that it was necessary to measure the
thickness every 0.5 cm to catch these variations. This is quite surpris-
ing since the upper roll pack weighs approximately 200 tonnes. The
peaks in the thickness are due to cold zones introduced by cooling from
the roller tables. We find that it is important to avoid these to obtain
proper thickness tolerances, since the thickness variations are too high
frequent to be handled by the thickness control.
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v_d{x_14), v_d(x_2,1}, and v_d(x_3,4}
T

T T T ¥ T T

10.1 T T

ol
0

Figure 5.2 Thickness measurements in the length direction of the chosen
plate. Solid line: thickness at north edge vy(x1,¢), dashed line: thickness at
center vy(xg, t), and dotted line: thickness at south edge vy (x3,t). Note that the

plate is thicker at the center than at the edges, this phenomenon is called plate
crown
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Automatic measurements

i
I
]
1

thickness in mm

6 8
position in m

Figure 5.3 An example of the consequences of cooling by the roller tables.
Solid line: thickness at north edge vy(xq,¢), dashed line: thickness at center
vy{xz, t), and dotted line: thickness at south edge vy(x3,£). The peaks are due
to the cold zones. Note that the amplitude of the peaks are 0.5 mm.

A more extreme example of the consequences of the cooling by the
roller tables is shown in Figure 5.3. This is a 20 mm plate where the
amplitude of the peaks is more than 0.5 mm. The typical distance
of 1 m between the peaks agrees well with the distance between the
rolls of the roller tables. The cold zones are a result of a pause time
of approximately 20 s where the plate was not moved. The thickness
measurements shown in Figure 5.3 are from a measurement test and
will not be used in the system identification.

5.2 Measurements for identification

To obtain representative results for the identification it is chosen to
measure 10 plates with 5 different nominal thicknesses and 2 different
widths, the dimensions are shown in Table 5.2.

The widths of 2 and 3 m are chosen since they are close to the mini-
mum and maximum of the plates rolled. The chosen thickness interval
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Thickness [mm] | Small width [m] | Large width [m]
6 2 3
10 2 3
20 2 3
30 2 3
40 2 3

Table 5.2 Nominal dimensions of the measured plates. The data from these
ten plates will the basis for the system identification.

is representative for the plate production since the thickness of 95 % of
the produced plates are in this interval. The data were collected dur-
ing normal production and additional information about plate temper-
ature, roll position and calculated thickness was thus available from
the reports from control system planning the rolling, see Chapter 2.

5.3 Estimation of plate position

A fundamental problem when using the data is that the electrically
measurable signals are obtained using time sampling and the thick-
ness measurements are obtained using spatial sampling. To perform
the system identification it is necessary that all the data are sampled
in time and we therefore have to find the independent variable of the
thickness measurements in some way.

Unfortunately the plate speed is not measurable, and is not related to
the roll speed v, in any useful way. The two variables are normally
assumed to be related by the equation

vp(t) = (1 + s¢(t))v-(2)
where v, is the plate speed and sy is the so called forward slip, see for

instance [Cumming, 1972]. Generally, it is hard to calculate the slip,
which varies with the rolling geometry. It is therefore not possible to
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find the relations between the plate position and measurement time
in an analytic way. We therefore have to use an approximate solution.

The mean value of the plate thicknesses at the edges T can be estimated
the gaugemeter equation, which models the rolling mill as a spring, see
Chapter 3. Neglecting the roll ovalness and eccentricity the equation
can be written as

T (f) = Z(t) + %

where 7, is the estimate of the mean value of the plate thickness, Z is
the mean value of the roll positions, and f is the mean value of the
rolling forces. K is the estimate of the mill spring coefficient, see Ap-
pendix B. Since the gauge meter principle is also used for calculating
the plate thickness at the Danish Steel Works we can here use the
value of K from the rolling mill control system.

Since there are no time delays involved here we can, using a for the
position of the plate, formulate the optimization problem

N

min <Ee(a(k)) - [E(ae(k)) + &z%lel}})

o) y 1

where & is sample number and N is the total number of samples. a,
can be seen as an estimate of the plate position a as a function of k.
We here model a, using a spline interpolation of based on 10 points.
These points are the parameters of the optimization problem. Z(a.) and
f(a.) are also found using spline functions, this is done using interp1
in MATLAB. Before the optimization is done all the signals are low-pass
filtered to ensure that the static relation of the gaugemeter equation is
valid. To avoid problems with initial conditions the low-pass filtering
is done using FIR-filters. The transfer function of the filters are of
50th order and is found using firl. A cut-off frequency of 2 Hz has
shown to be a good choice.

A result of the optimization is shown Figure 5.4 and the correspond-
ing a. is shown in Figure 5.5. The optimization has been performed
using leastsq and convergence of the problem is generally poor. It is
necessary to give the routine a good initial guess for the result to be
sensible.
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‘overlina{v} and \overiine{v)_e
025 T T T T T T

Figure 5.4 Fitting the variables measured during the pass and the thick-
ness measurements. Measured thickness v (full) and estimated thickness o,
(dashed).

Figure 5.5 The estimate of the plate position @, when it is rolled.
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\overfina(v} and \overline[v}_e
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Figure 5.6 Measured thickness ¢ (full) and estimated thickness 7, (dashed)
thickness, when they are not low-pass filtered.

The thickness measurements are transformed to time sampling using
the estimated a. and spline functions, again using interpi. A result
of this is shown in Figure 5.6. Notice the nice fit. This illustrates that
the gaugemeter principle gives a good estimate of the mean value of
the plate thickness at the two edges.

5.4 Summary

The inputs and outputs for the model for the rolling mill have now
been collected. The data consist of the key variables for the last pass
for 10 plates covering the relevant thickness and width intervals.

Since the thickness measurements are found using spatial sampling
and the other variables are found using time sampling it is necessary
to align the data in some way. This is done by formulating and solving
an optimization problem using the gaugemeter equation.

We now have the model and the input and output data represented as
a time series. We are thus ready for the system identification which
will be carried out in the following chapter.
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System identification

In this chapter the parameters of the models for the hydraulic systems
and the rolling stand will be identified. The purpose of the models
is controller design and simulation. Simplicity will be preferred to
advanced structure, it will in general, be possible to improve the results
by adding more degrees of freedom, but this will imply lack of physical
understanding and will therefore be avoided, if possible.

Due to the lack of excitation, nonparametric methods will not be used.
Instead we will use restrictive parametrizations, this implies that all
constants known in advance will be inserted in the models before the
system identification is performed. The main advantage of this is that
one is quite sure that the model is correct if only a couple of parameters
of a physically derived structure are identified.

Much effort and time has been put into finding appropriate parame-
trizations and the problem of identifying the mill dynamics have been
reduced to finding two parameters. Furthermore, the parameter varia-
tions are correlated with key variables. In this way we find parametric
model variations which will be useful in the controller design.

The author has found no work on identification of rolling mills and the
system identification is therefore described in detail. In the following
the model for the hydraulic systems is transformed to discrete time
and a parametrization of the model is chosen. After this, identifiability
of the model is investigated, the identification method is chosen, and
the results of the identification are presented. The procedure for the
identification of the rolling stand is similar, with the exception that we
here have to find the parameters of both the model and the observer.
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6.1 Hydraulic systems

The model for the hydraulic systems was derived in Chapter 4. Here
it will be rewritten to a form appropriate for the system identification.
This implies a transformation to suitable discrete time form. Since the
model is nonlinear we will be working with nonlinear system identifi-
cation. Only results for the model for the north hydraulic system will
be shown here, since the model for the south system is similar.

Rewriting equations

To be able to perform the system identification it is necessary to trans-
form the differential equation to discrete time form. Exploiting an idea
given in [Johansson, 1993] we simply integrate the nonlinear differen-
tial equations for the north hydraulic system, see (4.7)

—21,(£) = Ann1n(t) — anna(2e — 2, (£)) fn — rna Fu(2), (6.1)

where

%on(E)\/Ps — Ful(t) Xyn(t) 2 0

En(t) =
%on(E) (AN Ps + 4/nPs + fu(t))  xn(t) <O.

If we furthermore divide by 2; — z;, (which is always nonzero) before
integrating we save a numerical differentiation because the integrand
(2¢ - zhn)% fn then can be evaluated analytically. The result is

Yn(t1,t2) = apn1&n, (1, 82) + Qpnabn, (F1,£2) + @nnsng (21, 22), (6.2)
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where
21, (t2)
ya(t1,t2) = In th:(tJ
/t2 \/;—zfg xvn(t) 20
Em(t1,82) = ) :
/tz(m*‘\/ﬁ) %pn(t) < O
t 2t — Zp, (t) "

5712 (tl; t2) = fn(tZ) - fn(tl)
Eon(tits) = / 2 fal®)

151 2t — zhn (t)

Note that the parameters are unaffected by the discretization and that
the system is still linear in the parameters. The integrals which are
not possible to evaluate analytically can be calculated numerically.

Parametrization

Different parametrizations of the hydraulic model have been investi-
gated and it is found that the parameterization of (6.2) works well.
We thus have the three parameters Qhnls Chn2s and ap,3 to estimate.

Identifiability

Identifiability implies that it will be possible to obtain unique esti-
mates of the parameters of the model (6.2) for some inputs and an ini-
tial state. Since it is nonlinear we have a non-standard problem on our
hands. Furthermore, the data are collected during closed-loop opera-
tion. There is therefore a risk for non-unique parameter estimates. We
will now argue that the disturbances from the inhomogeneous heating
of steel plate provides sufficient excitation to identify the parameters
of the hydraulic systems.

Using (4.21) and the model for the mill stand (4.14) the mean value
of the force f, and the north rolling force f,, can be calculated from

o) = Gr.(p)2n(2) + d(t)
feu(?) = Gy, (p)2a(2) + d(2),
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where d(t) is the hardness variations due to the cold zones of the steel
plate. It is assumed that it is the same at the two sides of the rolling
stand. -C—ffc is a transfer function with one input and one output and
G¢,, has two inputs and one output.

The thickness control uses f and the mean value of the positions z
as input signals, see Chapter 3, and since the hydraulic systems have
separate position controllers the control signal x,, is a function of f,
Z, and z,

%on(t) = Cz(p)(Coy(P)Fe(®) + Co (P)Z4(2) — 2, (1)),

where C,, and C,, are the transfer functions for the thickness con-
troller and C, is the transfer function for the position controller. In
the above equation we have inserted the values from the models in-
stead of the measured signals.

It is difficult to analytically show the identifiability of the hydraulic
systems. By making some simplifying assumptions we will show that
we most probably have identifiability.

The identification problem will have an unique parametrization if the
regressors of (6.2) are linearly independent, see [Gustavsson et al,
1977]. This will be the case if the sampling time is properly chosen
and the integrands are linearly independent. That the integrands are
linearly independent implies that

o1(t) = £n(t)
as(t) = (2t = 21, (1) fn
as(t) = fu(?)

should be linearly independent. &, is defined in (6.1).

To show that the parameters are linearly independent we will show
that it is not possible for them to be linearly dependent. If a1, o,
and o3 are linearly dependent there will exist non trivial parameters
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of (6.1) such that that 2, = 0, V¢. This permits us to proceed with

2h" (t) =0
4
zp(t) = 2zno
zhn (t) = zhon’
where zp0 and 2z, are constant. We assume also that 2, = 0 and that
Zpo, < 2z To model the slow hardness variations of the plate due to

the cold zones from the furnace, the disturbance d is chosen to be a
sine wave k; sin(w,t), this implies that

Fe(t) = G, (p)Zho + ks sin(ast)
= kysin(wst) + &

fe. (t) = chn (p)zho + ks sin(a)st)
= kg sin{wst) + kp,

where % and k, are constants. Zjq is the mean value of zp,.
Introducing f, for f, in (6.1) we obtain the ’s for the case of 25, = 0:

xon()/ Py — (s sin(@it) + k) Zon(?) 2 0
alo(t) =

5n(®) (1P + (Besin(@yd) + ka) + \/1P))  un(t) < O
02, (t) = (2¢ — 2ho, ) Wsks cos(wst)
03, (t) = kesin(wst) + kg,

where

xon(t) = Cz(p)(Co,(p)(kssin(wst) + E) + Co, (P)Zho — 210,)
= kyn, sin{@;st) + kyn,.

kun, and kypn, are constants.

We see that we can not have linear dependence since &g, and o3, are
orthogonal and x, is multiplied by the time varying square root in
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01,. We therefore see that there exist no non trivial parameter sets
yielding 2, = 0 and it is therefore not possible for &1, as, and a3 to
be linearly dependent. We therefore conclude that it is not likely that
we will have have problems with non unique parameter estimates for
the hydraulic systems.

Identification

The performance index used in the identification is

N

=Y en(k)?
k=1

where &£,(k) is the prediction error of the model. The model for the
north system is

Yo (R) = apni1(R) + annala (k) + annsés(k), (6.3)

where

/ e P. fn(t %pn(t) 2 0

o2 “Zn(t)

/k (\/n1Ps + falt +\/77P) fonlt) < 0
k

3 2t~ zu(t)
Ex(k) = falk) ~ full—h)
k
Es(k) = /k 1) g

_r2t — 23(%)

1(k) =

The model for the south system is analogous and is therefore not
shown. For the identification it has been found that a sampling in-
terval of A = 0.025 s is a good choice. Using this value of A some
of the noise is averaged out while the dynamics of the system is still
captured. 7 = 0.15 is found to give the best results.

To prevent extensive nonlinear noise transformations and to weight
the data in an appropriate frequency interval they are filtered using a
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6.1 Hydraulic systems

fourth order Butterworth filter with a cut-off frequency of 100 Hz. The
relatively high cut off frequency is necessary due to the high frequency
nature of £,. The filtering is done using the MATLAB-function idfilt.
Assuming that the noise can be described as additive filtered white
noise implies that the model used for the identification is

Yh, () = anné1(k) + apnaba(k) + annss(k) + C(g Ye(k),
where
Cl@h) =1+cigt+ - +cag™

and e(k) is a white noise sequence and ¢ is the forward shift operator.
Note that the model has the same structure as an ARMAX-model with
Alg) =1

Since we have a non-standard problem we formulate the system iden-
tification as an optimization problem. Recalling that the model has
ARMAX structure we simply compute the prediction error as

en(k) = ﬁ 9nlk) = (@rmir (k) + anaba(k) + anmala(®))),

where

z¢ — 2p{k)
k) = D

This implies that we use the Maximum Likelihood method, see [Astrom
and Eykhoff, 1971]. It is found that a third order noise polynomial is
appropriate in the system identification. The minimum of the per-
formance function is found using the nonlinear least squares function
leastsq in MATLAB. The integrals in the regressors are computed us-
ing the MATLAB-function trapz.

Results

The identification is performed on the discrete time model (6.3) using
the ten data sets described in Chapter 5. Since the signal for the
position of the valve glider is very noisy the reference has been used
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North South

Qhnt | 89x1071+5x 1072 | apg | 8.1x1071x5x1072
Qpna | —7.6x1074+2%107% | aps | —92x 107424 x 1074
Qhns | —2.6%x1072+2%x 1072 | apeg | —2.7%1072+£2% 1072

Table 6.1 Table for nominal values of parameters with deviations for the hy-
draulic systems. The parameters are found using the 10 available data sets.

instead. Using spectral analysis it has been found that the dynamics
of the servo valve is neglectable compared with the dynamics of the
process. The change of variables is therefore not expected to affect the
system identification.

A plot of a typical result is shown in Figure 6.1. The agreement is quite
good considering the assumptions made when deriving the model. Fur-
thermore, the prediction error is close to white noise which indicates
that we have an unbiased estimate of the parameters. Note that the
beginning and ends of the passes are included in the data — the peak in
the prediction error for the north system arises when the plate enters
the mill.

An example of a simulation using the original differential equation and
the measured system response is shown in Figure 6.2. The implemen-
tation of the time derivatives when calculating ad—t [ is done using the
backward difference approximation. The simulations are performed
using the MATLAB-function ode45 with the reference for the valve glider
positions x,, and the rolling forces f as input signals. The parameters
used in the model are the ones identified from the data set shown. It
is seen that there is good correspondence between the two responses.
This shows that the assumption that the supply pressure P; is con-
stant and the assumptions regarding the pressures at the right and
left sides of the common piston at the oil side work well in practice.

The parameters obtained from the identification of all the data sets
are shown in Table 6.1, The distribution of the parameters for the
two systems are shown in Figures 6.3 and 6.4. For the design in
Chapter 7 we want to define a set of nominal parameters. The nominal
parameters are chosen to be the center of the interval of the parameter

72




6.1 Hydraulic systems

x10® y-handy_{h_n} x10° Y-sandy_{n_s)

Figure 6.1 Results of the system identification of the hydraulic systems. Left
side top: fit of the measured output y, (full) and the predicted output yj,
(dashed) and bottom: the predietion error £,. Right side top: fit of the mea-
sured output ys (full) and and predicted output y, (dashed) and bottom: the
prediction error &;.
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z_nandz_{h_n}

Figure 6.2 Simulation of the positions of the hydraulic systems using the
same parameters for identification and simulation. Upper plot, full: measured
response for north system 2, and dashed: simulated response for north sys-
tem zp, . Lower plot, full: measured response for south system z; and dashed:
simulated response for north system 2p,.

Values of ahni

10 7 62 8 1 9 4 53
8.4e-01 9.4e-01
Values of -ahn2
3 6 4 10 1 89 7 2
6.7¢-04 9.6e-04
Values of -ahn3
2 5 10 4 6 89 1 3
8.5e-03 4.3e-02

Figure 6.3 The distribution of the parameters for the north hydraulic system.
The numbers refer to the ten data sets.
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Values of ahs1

10 8 3a 7 6 9 51 4
7.5e-01 8.6e-01
Values of -ahs2
4 6 3 980 781 2
5.2e-04 K 1.3e-03
Values of -ahs3
102 7 8 413 5 9 6
1.0e-02 4.4e-02

Figure 6.4 The distribution of the parameters for the south hydraulic system.
The numbers refer to the ten data sets.

estimates.

When identifying the above parameters the regressors were scaled to
be of the same magnitude as the output — this was done to prevent
numerical problems. Generally all the regressors are of the same order
of magnitude and we thus conclude that it are the parameters a1,
and ajs that have major influence. This implies that the model for
the hydraulic systems will be close to an integrator if it is linearized.
It is seen that these parameters vary less than 10% while the other
parameters all vary within the same order of magnitude.

One could expect that the leak flows vary with the positions z, and z;
due to differences in the wear of the oil cylinders. The variations of the
parameters ap,3 and a3 is therefore not surprising. The compressibil-
ity of the oil covers many phenomena and it is therefore difficult to say
much about the variations of the parameters a;,; and ajs. The zero
point for the servo valve for the southern system varies quite much and
it has therefore been necessary to compensate for this. The accuracy
of the parameter estimates are apparently not affected by this.

Due to the small variations of the dominating parameters it is expected
that parameter variations are of little importance. To confirm this we
simulate the differential equation using the nominal parameter values.
The result is shown in Figure 6.5. It is seen that the mean value of
the simulated output drifts away, this is because the system is close to
an integrator. This implies that the model will be sensitive to offsets
in the input and since the zero point of the valve glider varies a bit
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76

z_nand z_{h_n}, nominal parameters

Figure 6.5 Simulation of the positions of the hydraulic systems using the
nominal parameters. Upper plot, full: measured response for north system
zp and dashed: simulated response for north system z; . Lower plot, full:
measured response for south system z; and dashed: simulated response for
north system z;,_.




6.2 Rolling stand

this introduces the above effect. We solve the above problem by simply
including an integrator when designing the controller.

6.2 Rolling stand

The two models for the rolling stand derived in Chapter 4 are linear
and we thus have a more or less standard problem. To preserve the
structure the parameters of the model and the observer will be iden-
tified using the original continuous time state space form. This can
be done using the System identification toolbox in MATLAB, see [Ljung,
1991].

Not considering estimation of the roll eccentricity, the only reference
on identifying rolling mill dynamics found is [Cumming, 1972]. In
this reference the parameters of scalar equations are estimated using
a correlator, and it is therefore a bit out of date.

Parametrization

Since we use the continuous time state space models (4.14) and (4.20)
for the system identification no model transformations are necessary
here. We thus proceed with the parametrization of the models.

The model In the system identification it is found that the periph-
eral speed of the work roll v,(¢) has little or no influence on the plate
thickness and this input is therefore removed from the model. This
is probably due to the fact the the friction inside the material can be
modeled well as static friction, which is independent of the deformation
speed. We thus have the model structure

[ Je(t) j] - [ A i B, ye(t) :I
qc(2) | C| D || 12(0)
[ —am2F1 . 4

0
t

= | ~EITy —amT1 0| EI(pAT.Ts — T) {fC(t) ]
I o]  —paTy 22()

(6.4)
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where am1, amg are unknown scalar parameters. The state space equa-
tions are of fourth order.

The observer Since the influence from the roll position %z is well
determined, it is only necessary to scale the coefficients of the rolling
force f we and we thus introduce the matrix O,. The model structure
then is

qe(t) = OfTsf(2), (6.5)

where

0
Ofe = l:Ofel :| .
0 Of62

The two unknown parameters in the observer are og,,, and of,.

Identifiability

Analysis of the identifiability of (6.4) is relevant since it ensures that
there is no redundancy in the parametrization of the model. Normally,
when working with SISO transfer functions, identifiability is ensured,
see [Bellman and Astrém, 1970], but in this case we have a MIMO state
space model and it is therefore relevant to investigate if identifiability
is present.

Identifiability implies that different parameter sets yields different
outputs for some inputs and initial states, see [Grewal and Glover,
1976]. Using this reference a local test for linear systems is that the
functional matrix of the elements of the Markov parameters should
have full rank. This implies that there is an injective relationship
between the parameters and the impulse response. The criterion is
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satisfied for (6.4) since the functional matrix is

- 0 . T
Dc(:; 1) .
D,(;,2 . :
( . ) 0 0
A 0 _ELgty
C.B.(:,2) %‘? 131
8 | C.AB.(,1) 0 —pAP1Y3
c4te Mo\ - 0 —‘ﬂ(ﬁ4 - )
8A, | C,AlB,(;2) EL (B, - 72, ,
c4te e\ o 7 ﬂ4 3 )
C.A%B.(;,1) EL (B4, — Vg
C.AZB.(;,2) ‘%ﬁ‘%?’al G%)TZ“szIﬁ‘f%l
CcA?Bc (:, 1) _f_iﬂ§731 -(;%-fzaszIﬁ%},al
CAB.(,2) | | ek (Birn — 1) Gm2am (B, — a,)
) %(ﬁ%yaz - 742) _(PLAI)zzamﬂﬁé'y&z - 742) i

where A, = [am am ]. The functional matrices obviously have full rank
for all parameter values. The model is therefore locally identifiable for
all parameter values. We can thus state that there is no general linear
dependence among the parameters.

Since the data are collected during normal operation there is a risk
of feedback in the data. This can add extra algebraic relations to the
system and thus lead to non-unique parameter estimates, see [Gus-
tavsson et al, 1977]. The effect can be seen as linear dependence
among the regressors which implies that the control signal is propor-
tional to the output or its derivatives. Problems due to this are not
expected here since the output used for the control is found using the
gaugemeter principle. This output is therefore only an estimate of the
plate thickness and there is thus little risk that the control signal will
be proportional to the plate thickness or its derivatives.

The key subject left is the excitation of the input signals. As seen in
Chapter 5 the position sometimes is close to a sine wave, which will be
considered as the worst case here. Introducing the input signals Z()
for the mean value of the roll positions and 2(¢) for the difference of
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the roll positions it is possible to reduce the model to two SISO models

pAEIﬁ%y&
PADP? + amap + (am1 + EIBY)
pAEI(,B%}@Z - 742) _ S
PAD? + amop + (am1 + EIBY) PAYs, ) 2(8)-

2a(t) = uo) = ( ~pAn, ) 70

) = G )

Using this fact we see that a sinusoidal variation of the mean value
of the roll position z or the skewness of the roll position 2 is sufficient
for identifying a,,1 and a;,g, see [Astrém and Wittenmark, 1995]. We
thus do not expect problems with identifying the parameters in this
case.

Since the observer is a static model and the matrix I'g have full rank, it
is sufficient that the mean value of the rolling force f, the difference of
the forces f, and the normal coordinates g are different from zero. This
is the case for all the data sets, and we therefore expect no problems
here either.

Identification

Since we have a multivariable problem we use the performance func-
tion

N
V = det (Z e(k)e(k)T> ,

k=1

which implies that we are using multivariable maximum likelihood
identification, see [Astrém and Eykhoff, 1971]. Introduction of noise
models does generally not improve the results and we therefore work
with the state space structure

Acyc(t) + Bc%z(t) + e(t)
Ccyc(t) + D, %z(t) + e(t),

Ye(t)
q(t)

where e is white noise and g are the normal coordinates used in the
series expansion of the solution. The normal coordinates can be deter-
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mined using the thickness measurements at the three different posi-
tions across the plate width and the equation

2
sva(nt) = e(x)z2(f) + Z ¢:(x)qi(?), (6.6)

which is found by combining (4.10) and (4.13). Inserting the thick-
nesses of the three measurement tracks at the north edge, center, and
south edge with positions xi, x2, and x3 yields

Va(x1,7) &(x1) P1(x1)  @a(x1) )
lvg(xa,t) | = | e(xe) | 32(0)+ | G1(x2) ¢a(x2) [ ql(t) ] :
Lug(xs, 1) £(x3) 91(xs) ¢olxs) | L

6.7)

The above equation system is overdetermined and is therefore solved
in a least squares sense in MATLAB.

To obtain a well conditioned problem, all the signals are scaled to have
amplitudes of the same order of magnitude. In the identification a
fourth order Butterworth filter with a cut-off frequency of 10 Hz is
used for filtering the position %z, the rolling force f, and the normal
coordinates g. To obtain agreement between the mean thickness cal-
culated by the model and the measurements, the mean value of the
thickness at the plate edges is set to the value calculated using the
gaugemeter equation, see Chapter 3. The procedure for the observer
is similar to the above and is therefore not repeated here.

Results

The identification has been performed directly on the state space struc-
ture using pem in MATLAB. Since the sampling interval is small we can
assume that the input signals are constant between the sampling in-
stants when transforming the model to discrete time. Using the values
found in Appendix B for the mill spring coefficient 2K, the stiffness of
the roll pack EI, the mass of the roll pack pA, and the value for the
plate width w, we calculate £, and B2, and the two first eigenfunctions
¢1 and ¢o. The eigenfunctions are computed in advance and are not
involved in the system identification, where they enter through the
T';-matrices.
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Time-invariant results for the model The identification is based
on the model with the parametrization shown in (6.4), the position
of the hydraulic system %z and the normal coordinates g found using
(6.7). We obtain the results shown in Figure 6.6. The results are
representative for all 10 data sets.

As seen from the figure, the agreement is not very good, this is because
the parameter a1 is time varying. The mean values of the normal
coordinates are however estimated quite well. The variations of an;
will be investigated in more detail in the next section, we will here
be satisfied with estimating the mean values of the parameters. Note
that the difference between the thickness at the two sides is predicted
quite well considering the time varying parameter. This indicates that
the plane strain assumption works well in our case.

Trial and error tests show that the precise value of the damping a2
is not critical for the result of the identification. This is probably
because of the low frequency excitation of the roll positions z. We
thus fix it at the value a,2 = 200, which is the mean value found
in the identification. The parameter a,,; is considered to be the most
important parameter since it, together with f4, determines both the
undamped natural frequency and the stationary gain of the system.
When identifying the parameter for the 10 data sets, we find that
anmi varies one order of magnitude. Trying to correlate it with key
parameters for the rolling process we find that a,,1 varies systematicly
with the plate hardness k.

It is a well known fact that the material parameters varies with the
plate temperature and the reduction, see [Roberts, 1983]. This ref-
erence gives the following formula for the deformation resistance &,
which can be seen as the "specific hardness" of the plate

ky, = -1429+498 e ” ~21.364/r(2) + 33.084/r:(2) K0 -
poo 7\ 1000 TV ToVIRY1000)
(6.8)
T is the plate temperature in ° C and

() — U-1(2)

0= T
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q_1and g_{c_1}

q 2andq_{c_2}

-0.6 ; ; 0.01
0.005
oh-
-0.005 :
00g 1 2 3 4
S
oX 10° ‘ q_2-q_fc__2)

Figure 6.6 Identification results for the model. Left side, top: measured value
of the normal coordinate g1 (full) and estimated value of the normal coordinate
e, (dashed), bottom: prediction error for q.,. Right side, top: measured value
of the normal coordinate gg (full) and estimated value for the normal coordinate
¢, (dashed), bottom: prediction error for g.,. The results are not very good due
to a time varying parameter a,,;.
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Figure 6.7 The parameter a,,1 as a function of material hardness k.

is the reduction. Since the parameter a,,; is the spring coefficient for
the steel plate &, is closely related to a,,; in the model. The correlation
between a,,1 and k, can be seen from Figure 6.7. From the figure we
find that an1 ~ kp is an acceptable model for parameter.

Note that the temperature used for calculating %, is an estimated value
— this might explain some of the deviations. An other reason for some
of the deviations is that there is a phase shift for the material in
the temperature interval between 723°C, and 870°C. In this interval
there will be variations in hardness which can not be calculated by the
formula for k.

Performing the identification on all 10 data sets we find the parameters
shown in Table 6.2. Due to the known variations of a,,1, which are well
correlated with k,, we introduce no nominal data sets here.

A relevant question in connection with the variation of the parameter
am1 1s: How does this influence the dynamics of the rolling stand?. To
investigate this we have seen that the dynamics of the model for the
rolling stand can be divided into two SISO transfer functions. When
transforming from normal coordinates g, to plate thickness v, the di-
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am1 | 1.55x10* — 1.62x 10°
Cm2 2.00x 108

Table 6.2 Parameters for the model found using all 10 data sets.

rect term almost disappears. Neglecting this yields the relationships

Ve (2) = Gy, (p)Z(t)
_ ¢1(u)pAys, EIB}
PADP? + amap + EIBY + am
De(t) = Gu, (p)2(?)
_ __ 0()pAys,EIB;
PADP? + amap + EIBS + am:

2(t)

2(2)

We see that Gy, and Guc have no zeros and it therefore only is neces-
sary to investigate the locations of the poles of the transfer functions.
Inserting the values of ¢,;; and a2 found in the system identification
yields the pole locations shown in Figures 6.8 and 6.9.

We see that the poles tend to become faster and less damped when the
plate hardness a,,; increases. Unfortunately the steady state gain of
—G-vc and G,, also decreases with increasing plate hardness a,,; and it
can therefore not be concluded that is becomes easier to control the
plate thickness for the hard plates.

Time varying results for the model As seen in the last section
the agreement between the model and the collected data were not
satisfactory. Is was assumed that this was because of variations of
the parameter a,;. We saw that a,,; was correlated with the plate
hardness k, which could be calculated using (6.8). Using this equation
we see that two things introduce time variations in &, and thus a,:

e the reduction ry;

o the plate temperature T'.
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Figure 6.8 The pole locations for Evc as a function of a,,1. The crosses corre-
sponds to a,,1 = 0 and the poles with the largest imaginary part corresponds to
the maximal value of a,,;. It is seen that the poles are real when a,,; is small
and becomes faster and less damped when the value of a,,; increases.
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Figure 6.9 The pole locations for évc as a function of a;,1. The crosses cor-
responds to a,,; = 0 and the poles with the largest imaginary part corresponds
to the maximal value of a,,;. It is seen that the poles becomes faster and less
damped when the value of a,,; increases.
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Figure 6.10 The plate hardness %, as a function of the plate temperature T,
for a reduction r; of 0.1.

Typically the reduction r; does not vary much during the pass, since
the thickness control tends to keep the thickness constant. On the
other hand the temperature can vary due to several factors:

o wide cold zones from the reheat furnace, which gives slow tem-
perature variations;

¢ narrow cold zones from cooling by the roller tables, which gives
fast temperature variations.

The temperature variations and their effect on the thickness controllers
are well known in the literature, see for instance [Davies et al., 1983],
[Atori et al., 1992], and [Nishikawa et al, 1986]. A plot of k, as a func-
tion of the temperature T in a representative interval and for r; = 0.1
is shown in Figure 6.10. It is seen that &, varies approximately a fac-
tor ten in the relevant temperature interval. The additional variation
of a,,1 is because the reduction r; also varies.

To investigate the time variations during one measurement series a
discrete time recursive least squares estimator, described in [Astrom
and Wittenmark, 1995] is implemented in OMSIM. Finding the transfer
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function for the model and using the mean value of the position z
as input, the MIMO transfer function reduces to the SISO transfer
function

2K $1(0)pAys, EIB}
pAp2 + Qmap + EI,B% + aml(t)

f.(6) = ( - 2K¢1(0)pAy31> Z(t).

Introducing the new output variable f, = f, + 2K¢1(0)pAys,Z the
problem is on standard form, and it is straight forward to estimate the
plate hardness a,,; keeping the other parameters constant

y2(2) = (pApz + Qmop + Elﬂ%)fz(t)
— 2K ¢1(0)p A, EIB1Z(2) = amif:(2).

Using y, as output and f, as regressor, it is possible to estimate ap;.
Unfortunately the mill spring constant 2K can not be estimated since
this parameter is used for finding ¢4, 73,, and 1. Note that the mate-
rial coefficients can be estimated without knowledge of the plate thick-
ness.

The results of the recursive system identification is shown in Fig-
ure 6.11. The estimation is done with a forgetting factor of 0.90 and a
sampling time of 0.0025 s, which gives an estimator memory of 0.025 s,
see [Johansson, 1993]. With a rolling speed of 4 m/s this implies that
the length of the memory is approximatively 0.1 m. The variations
shown are representative for other measurements investigated. It is
seen that we have both slow and fast variations with an amplitude of
approximately +20 % of the nominal value of a,,1. It is seen that the
amplitude of the fast variations is small compared to the amplitude of
the slow variations.

The value for the parameter a,; obtained using the time invariant
methods is also shown in Figure 6.11. It is seen that there is good
agreement between the two values considering that the fixed value is
calculated using the thickness measurements, while the time varying
value is found using the rolling force measurement.

If excessive cooling by the roller tables occur we will have significant
fast time variations and there is a risk of that we can no longer consider
the system as time invariant. This is fortunately not the case for any

88




6.2 Rolling stand
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Figure 6.11 Upper plot: variations of a,,; (full), found using recursive system
identification. The dotted line shows the constant value of 5.12 x 10* obtained
in connection with the regular system identification. Lower left plot: the mea-
sured and predicted output in connection with the system identification. Lower
right plot: the prediction error obtained in connection with the recursive system
identification.
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of the measurements used for the system identification. When we have
a time varying system the working point may also vary with time. It
is therefore important that we do not use working points in connection
with the system identification and this has therefore been avoided.

Using the model (6.4) and (6.7) it is possible to calculate the thick-
nesses at the center and edges for the plate from the normal coor-
dinates g, the roll positions %z and the time varying value for the
plate hardness a,;. The result is shown in Figure 6.12. It is seen
that the agreement between the model and the measurements is quite
good. Note that the difference between the thickness at the edges and
center, the plate crown, is captured quite well by the model. The good
agreement shows that the linerization of the material model at a work-
ing point works well in practice. That the thickness control ensures
that the thickness variations are small, helps to make the linear model
valid in practice.

Since we use the relationship between the normal coordinates ¢ and
the rolling forces f in the simulations we also here investigate how well
the model is able to predict f. Using (4.21) we obtain the relationship

o) =[5 el L]

Using the model (6.4) with the time varying plate hardness a1 we
obtain the results shown in Figure 6.12. It is again seen that there
is quite good agreement. The deviations between the measured and
calculated thicknesses are probably due to variations of the material
hardness in the sidewise direction which is not covered by the model.
These deviations are to small to have noticeable effect on the calcula-
tion of the plate thickness and can therefore not be seen here.

Time invariant results for the observer Using the observer given
by (6.5), the rolling force f and g found from (6.7) we perform the
system identification for the observer. A typical result is shown in
Figure 6.13. Note that we now are able to predict the normal coor-
dinates g quite well since we have knowledge of the variations of the
plate hardness a,,1 through the rolling force measurement. The results
shown are representative for all 10 data sets.
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Figure 6.12 Calculation of rolling force and plate thickness using the model
and the time varying results for a,,;. Left side, upper plot: the measured north
rolling force f, (full) and the calculated value f;, (dashed). Lower plot: the
measured south rolling force f; (full) and the calculated value f;, (dashed).
Right side, upper plot: the north thickness measurement vgy(x1) (full) and the
calculated value v,, (dashed). Middle plot: the center thickness measurement
vg(x2) (full) and the calculated value v, (dashed). Lower plot: the south
thickness measurement vy (x3) (full) and the calculated value v,, (dashed). It
is seen that there is considerably better agreement between measurements and
model output than in Figure 6.6.
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Figure 6.13 Identification results for the observer. Left side, top: measured
value for the normal coordinate g; (full) and estimated value for the normal
coordinate g., (dashed), bottom: prediction error for g,. Right side, top: mea-
sured value for the normal coordinate g (full) and estimated value for the
normal coordinate g,, (dashed), bottom: prediction error for g,,.
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Figure 6.14 Distribution of the parameter o, for the observer. The nominal
value of the parameter is 1.

92




6.2 Rolling stand

The values of the parameter of,, are shown in Figure 6.14. It is seen
here that op, = 1, as expected. Ideally the parameters oy, should
also have the value 1, but from the system identification we find that
Ofe2 ®~ 0.2 for the plate width w = 2.15 and of = 0.4 for w = 3.15.
The reason that we only have data for two values of the plate width w
is that the ten data sets are from plates with only two different widths.

Inspecting the force measurements we find that the boundary condi-
tions

fa(t) = 2Ku(0,t) =~ 2K (q1(t)91(0) + g2(¢)$2(0))
fs(t) = 2Ku(w,t) = 2K (q1(£)¢1(w) + qa()¢a(w))
U
F(t) =~ 2K ¢1(0)q1(2) (6.9)
£(2) ~ 2K $2(0)qa(t), (6.10)

where f (¢) is the difference of the forces, are not fulfilled. The plots of
the left and right sides of (6.9) and (6.10) are shown in Figure 6.15.
Here we see that the left and right side of (6.9) agrees quite well but
that there is a significant deviation between the left and right side of
(6.10). The amplitude of the difference of the roling forces f is too
large — this explains why oy, becomes smaller than 1.

One explanation to the above could be that the connection between the
two legs of the rolling stand is not included in the physical model. It is
quite possible that the above difficulty could be avoided by inserting a
spring between the two sides of the physical model. Another possibility
that the force measurement is inaccurate. If this is found to be the
case, an improvement of the force measurements is necessary to obtain
a better agreement between model and data.

Using the results from the identification we arrive at the values for
the nominal parameters shown in Table 6.3. Since the identification is
based on a fixed value of the parameter oy, and the variation of oy,
is small, no simulations of the nominal model is shown, since they will
be similar to the results of Figure 6.13.

Using (6.6) the thickness predicted by the observer at the measure-
ment points can be calculated. The results are shown in Figure 6.16.
We note that now the predicted and measured thicknesses agree quite
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Figure 6.15 Illustration of that the rolling force measurements do not fulfill
the boundary conditions. Upper plot: mean value of the rolling forces f full and
2K¢$1(0)qy (dashed). Lower plot: difference between the rolling forces f full
and 2K¢4(0)qs (dashed).

w=215 | w=3.15
Ofe; 1 1
Ofey 0.2 04

Table 6.3 Parameters of the observer as functions of the plate width w. The
parameters are found using all the 10 data sets
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v_nand v_{e_n}

10.2
E 10
9'8 . . . .
06 : : ; i : ;
0 0.5 1 1.5 2 2.5 3 35
s
v_sandv_{e_s}

10.2 ! ! ! ! !

Figure 6.16 The thickness at the plate edges and center calculated using the
observer. Upper plot: the measured value vy (x1) (full) and the calculated value
ve, (dashed) of the thickness at the northern edge. Center plot: the measured
value vg(xg) (full) and the calculated value v,,, (dashed) of the thickness at the
center. Lower plot: the measured value vy(x3) (full) and the calculated value
ve, (dashed) of the thickness at the southern edge vs.

well due to the rolling force measurement. Also for the observer the
calculated plate crown is close to its measured value.

6.3 Total model

In Chapter 4 we derived a total model including both the hydraulic sys-
tems and the rolling stand. The models for the hydraulic systems, the
model for the rolling stand, and the observer for the rolling stand are
implemented in OMSIM using (6.1) and (6.4), see [Andersson, 1994].
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This simulation environment is well equipped for handling discrete
event systems, such as the hydraulic positioning systems where the
structure of the differential equations changes at x,, = 0 and x,; = 0.
The parameters used for the simulations are the ones found from the
system identification. An exception is that the parameter of the ob-
server oy, is set back to 1, for the model and the observer to match.
Note that this only affects the estimation of the states of the model.

The results of a simulation of the total model are shown in Figure 6.17.
The input signals are chosen as

10 0>t<01
xvrn(t) =

0 t>0.1
10 0 gegt < 0.2
xvrs(t) =
0 t> 0.2.

At t = 0 the outgoing thickness is equal to the ingoing thickness of
the plate, which is 11.64 mm and the rolling force is zero. Then the
hydraulic positioning systems movie downwards, the rolling force in-
creases and the outgoing thickness decreases. At ¢ = 0.1 the north
system stops, but it is seen that the rolling force and the thickness at
the north side continue to change due to the movement of the position
of the south system. This illustrates the multivariable structure of the
system.

It is seen that the hydraulic systems act as integrators. They move
with a slightly different speed for the same input due to the different
values of the parameters aj,1 and az,;. The states of the model y, and
the states of the observer y, are shown in Figure 6.18. The simulation
here is the same as the one shown in Figure 6.17. It is seen that
the states of the model and the states of the observer agrees well. One
problem in connection with the estimation of y, is that it is necessary to
know the parameter a,,2 which is hard to find, unless better excitation
is present.

96




6.3 Total model

x.vr z_h
T o
10— — — — ] .............
1
B ......................... ] .............
I
> 6 .......................... .I .............
i
ale oo
i
ol fooreeee s
!
]
0 0.1 0.2
s
fc
6000 T
ST
: s
N 7 :
4000} vereees e e
D7 -
g /. :
7 H
2000 AAAAAAA /...¢ .............
0
o] 0.1 0.2 0.3 0 0.1 0.2 0.3
s s

Figure 6.17 Simulations of total model for rolling mill. Upper left: control
signal for valve glider positions for north x,,, (full) and south x,,s (dashed)
hydraulic system. Upper right: Positions of north hydraulic system z;_ (full)
and south hydraulic system z, (dashed). Lower left: north rolling force f,,
(full) and south rolling force f., (dashed). Lower right, plate thickness north
edge v, (full) and plate thickness south edge v, (dashed).
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Figure 6.18 Comparison of the four states of the model y. (full) and the state
estimate found by the observer y. (dashed). It is seen that the agreement
between the real and estimated value is good.

98




6.4 Summary

6.4 Summary

In this chapter we have found the parameters of the model for the
rolling mill. For the hydraulic systems we have found a set of nominal
parameters and for the model for the rolling stand we have found one
constant and one time varying parameter. For the observer we have
found two parameters, one constant and one which varies with the
plate width. The agreement between model and data are all satisfac-
tory, it was however necessary to introduce extra parameters in the
observer since two of the four boundary conditions used for calculating
the plate thickness were not fulfilled.

The models have been implemented in a suitable simulation environ-
ment and we are now ready to do and evaluate the controller design.
This will be done in the next chapter.
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Controller design

The purpose of this chapter is to design a thickness controller for the
rolling mill, which consists of the hydraulic positioning systems and
the rolling stand. The purpose of the controller is to ensure that the
desired plate thickness is obtained with as small deviations as possible,
despite the process disturbances.

The performance specifications of the control systems are first given,
this includes description of typical disturbances and the multivariable
nature of the system. Then the controlled outputs are chosen and the
multivariable structure, the dynamics of the system, and the steady
state gains are analyzed.

The above forms the basis for the choice of methods for controlling the
rolling mill. The controllers are then designed using the models and
parameters found in the previous chapters. In general, time invari-
ant methods will be used for the controller design and we therefore
assume that the material parameters are constant during the pass in
the following. The effects of the variations of the material parameters
will be investigated in the simulations.

Due to variation of several central parameters and the fact that it is
not possible to measure the process output, stability is an important
issue in connection with the thickness control. Therefore, the stability
of the closed loop system will be analyzed and bounds on the param-
eter variations will be found. In the last section of this chapter the
performance of the control system is investigated using computer simu-
lations. Here the effects of reference changes and typical disturbances
are found and commented.
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No work on multivariable thickness control of hot rolling mills has
been found. Several descriptions of the single-input single-output case
are given in [Kokai et al, 1985], [Saito et al, 1981}, [Teoh et al,
1984], [Ferguson et al., 1986] and many more. Furthermore, advanced
control and estimation methods have been used in connection with the
elimination of the effects of roll eccentricity, see [Yeh et al, 1991],
[Teoh et al, 1984], and [Asada et al, 1986]. For further details see
Chapter 3.

7.1 Performance specifications

As described in Chapters 2 and 3 the purpose of the thickness control
is to obtain a specified constant thickness, despite disturbances such
as:

e variations of the plate hardness;

e variations of the ingoing thickness.

The thickness control problem is thus a regulator problem, see [Astrdm
and Wittenmark, 1990]. A central goal of the control is to minimize the
thickness variations of the rolled plates. The quality level possible to
obtain depends on saturation of the control signal and the amplitude
of the variations. It might therefore be necessary to minimize the
variations by other means to obtain the desired value of the thickness
variations.

The rolling process is a multivariable system, this has to be taken into
consideration when controlling the process. A natural demand is to be
able to control the thickness at the north and south edge independently
of each other. This will make it possible to handle reference changes
and control errors at one edge with minimal effect on the thickness at
the other edge. Furthermore, the controller has to be able to compen-
sate for asymmetric material conditions. This is not possible with the
existing control, see Chapter 3.

A third important issue is the stability of the thickness control system.
The stability is disturbed by two effects:

e variations of the material characteristics;
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e the controlled variable (the thickness) has to be estimated.

This has lead to a detuning of the compensation for mill deflection in
traditional thickness control systems, see Chapter 3. An analysis of
the stability of the thickness control system is therefore relevant in
connection with the design.

In system identification of the hydraulic systems in Chapter 6 we found
that the models of the hydraulic systems were sensitive to offsets in
the control variable. It was concluded that including an integrator
in the controller would solve this problem when controlling the roll
position. We therefore include an integrator in the controller design.
It will bee seen later that using an integrator will also be a good idea
in connection with the control of the plate thickness.

The handling of the start and the end of the pass will not be discussed
in the following. Since the plate ends usually are curved, the physical
model for the rolling stand does not cover this case, since the plate
will not have full width when entering the roll gap. The plate ends
furthermore tends to be colder than the rest of the plate. To ensure a
proper start up and shut down of the control it is likely that a special
control strategy is necessary to handle the beginning and end of the
passes.

7.2 Analysis of model

The first natural question that arises is, at how many points in the
width direction is it possible to control the tickness of the plate using
the two hydraulic actuators. We do this to choose the number of out-
puts we want to control. Looking at the state equations of the model
we see that in steady state we have that

Je(t) =0 = Acyc(2) + Bc%z(t)
U .
ye(t) = A7 Bo32(2),

noting that the system matrix A, is invertible. The above implies that
we are only able to control the state vector in stationarity within a
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two dimensional plane. We can therefore not control more than two
outputs in stationarity with the thickness control. The thicknesses of
a plate are normally measured at a distance i from the plate edges.
Our outputs are thus chosen as

)
€
=2 [¢1(;fﬂ) ¢2(§)ﬁﬂ)} [Z:(t)} " [e(wlj'u)

Using our physical insight we choose the north position z, for control-
ling the north thickness v, and the south thickness z; for controlling
the south thickness v;.

Investigating the multivariable structure of the system we apply a step
of 1 mm at the north position z,. The open-loop step response is shown
in Figure 7.1. We see that the thickness at both edges are affected by
the position change at one of the sides. Furthermore, it can be seen
from the step responses that two systems with different dynamics are
involved. This is due to the fact that the dynamics for for the normal
coordinates g, and g, are different. Note the direct term, which is
the result of inaccuracies in connection with the state transforms used
in the modeling. The direct term is small compared to the steady state
gain of the system and it will be neglected in the controller design. It
will though be included in the simulations.

}z(t).

The multivariable effect illustrated in Figure 7.1 causes trouble when
controlling the thickness at the two sides independently. If the thick-
ness at the north side deviates from the specified value while the south
thickness does not, it is not possible to obtain the right thickness by
just adjusting the hydraulic position at the north side. It is thus neces-
sary to consider the multivariable nature of the system when designing
the controller. Ideally it should be possible to control the thicknesses
at the two sides independently of each other.

Looking at the mean values for position z and thickness 7, and ne-
glecting the direct term, the relationship is

¢1(W)pAys, EIBY
PADP? + apmop + EIBY + am

o(t) = Gu.(p)2(t) = 2(9).
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Figure 7.1 Open-loop result of a step change of 1 mm in the north position
zp. Full: thickness at north edge v, and dashed: thickness at south edge ve,.
It is seen that the position change at one side affects the thickness at both sides
of the rolling stand
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The dynamics of this transfer function varies due to the variations of
am1. A similar transfer function G,, can be derived for the skewness
of the position  and the skewness of the thickness o = (v, —v;). Us-
ing the values obtained from the system identification the undamped
natural frequencies of the two transfer functions @, and @, are in the
intervals

o, € [200, 432] rad/s
, € [342, 658] rad/s.

The steady state gains of the rolling stand Eg and k g are in the inter-
vals

%y €[0.136, 0.404]
k, € [-0.0142, 0.287],

that is, they vary a factor 3. Generally, Eg will lie in the interval
between zero and one. If the plate hardness is close to 0, &, will be
close to 1 and when the plate becomes very hard Eg will be close to
zero. This illustrates why an important part of the optimization of the
rolling mill is to do the rolling in minimal time to keep the plate as
hot as possible.

Since the hydraulic positioning systems are the actuators of the thick-
ness control system, they set the limits of achievable performance. The
variables that mainly affect the limitations of the positioning systems
are:

e the supply pressure Pg;

e the valve glider positions x,.

This introduces limits on the values of the rolling forces f, the roll
positions z and the reduction r;. The maximal mill deflection is deter-
mined by the maximal rolling force and thus by P;. Since this limit
is smaller than the maximal position z; it is the above limitations and
not the structure of the hydraulic systems that set the limits for the
positions z.
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The hydraulic systems operate under very different conditions. The
rolling force, which determines the gain of the system, varies from 0
to the value of the supply pressure P, and this should be taken into
consideration, when designing the controller for the hydraulic systems.

Using small closed loop step responses for the hydraulic systems we
find that they have a damping factor of { = 0.7 and a peak time
tp = 0.07. This yields a undamped natural frequency of the hydraulic
systems of

Wy, = 24.6 rad/s.

We see that the dynamics of the hydraulic systems are considerably
slower than the dynamics of the mill stand. This is one of the reasons
why it is difficult to eliminate the high frequency variations of the plate
thickness. Making the hydraulic system faster is of course a question
about saturation of the control signal, but according to the constructor
of the existing control system it is possible to make it considerably
faster when implementing a digital controller.

7.3 Choice of control methods

The controller design will be done in continuous time. This is necessary
to utilize the structure of the physical models we have derived and
identified in the previous chapters. It will be necessary to implement
the control strategies using digital equipment and the control strategy
therefore has to be transformed to discrete time. This can be done
using the approximate methods described in [Astrom and Wittenmark,
1990]. The price to be paid for this procedure is that it is necessary
to implement the controller using a higher sampling frequency than if
the design was done in discrete time.

To make the hydraulic systems work well at all operating points, it
is necessary to use a non-linear control strategy. Since we only have
a first order system and all states and inputs can be measured or
estimated, it is chosen to use feedback linearization for controlling the
hydraulic systems, see [Slotine and Li, 1991].

The responses of the two sides of the rolling mill are separated using
eigenspace design as described in [Harvey and Stein, 1978]. This de-
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sign method makes it possible to assign specified values to the eigen-
vectors of the closed loop system. The additional eigenvectors and
eigenvalues for which we have no specifications are furthermore placed
in a “nice" way.

The variation of the material hardness a,,; changes the steady state
gain of the system and it is necessary to compensate for this in some
way. The plate thickness can, despite the parameter variations, be
estimated using the observer. Using an integrator it is possible to
ensure that the closed loop steady state gain is not affected by the
parameter variations. The variations of the plate hardness a,;; will
still affect the dynamics and the stability of the system.

The parameter variations make adaptive control relevant. Since we
use an advanced control strategy the adaptive control will though be
complicated. It will therefore in simulations be investigated if the
performance of the above strategy is satisfactory or if a truly adaptive
controller is needed.

7.4 Design of controllers

In the following sections the controllers for the hydraulic systems and
the rolling stand will be designed. The hydraulic systems will be con-
trolled using feedback linearization and the rolling stand will be con-
trolled by a state feedback, found using eigenspace design.

Hydraulic systems

Since we have a first order system it is quite easy to derive a control
law which linearizes the system. Even if some of the usual assump-
tions on the input function such as independence of the control variable
and smoothness are not fulfilled it is still possible to do the feedback
linearization. As usual we only show the results for the north sys-
tem since the procedure of the south system is the same. To increase
number of the degrees of freedom in the eigenspace design we give
the hydraulic systems a time constant x when doing the feedback lin-
earization. «x is then used as a design parameter in the eigenspace
design.
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We choose the control signal as

Xyrn(t) = M(—ahnzfz(t) — apn3(t) + 11, (8) — K24(2)),

\/Ps = fa() Xpn(t) 2 0

\/ﬂ—ﬁs + \/n_P_s + () xa(f) <0

E2(8) = (et~ 2alt) ., (1)
&s() = falt).

r;, is the control signal from the thickness controller. The north po-
sition z,, the position of the valve glider x,,, and the north rolling
force f,, can be measured directly and % fc. can be estimated using the
relationship

where

&1(8) =

d d
Efcn(t) = 2KFch(t),

found in Section 4.3. To determine the derivative of the normal co-
ordinates %qc we can use the model for the rolling stand and the
differential equation for 2, . This is not trivial since a good estimate
of the plate hardness a1 is necessary to do this. An alternative is to
use a})proximative numerical differentiation of the rolling force f to
find &f.

We note that the control strategy demands that f, < P;. When the
pressure due to the rolling force f, gets close to the supply pressure
P, the thickness control will in any case be switched off to prevent
overload of the hydraulic system. It is therefore not necessary to worry
about the case f, = P,.

Using the above strategy the model for the hydraulic system reduces
to

2p, (t) = —x2p, (t) + 11, (2)

and can thus be inserted as an extra state in the state space equations
for the rolling stand.
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Rolling stand

We now proceed with the design of the controller for the rolling stand.
The design will be performed on the model for the rolling stand com-
bined with the now linear hydraulic systems and two additional in-
tegrator states. The main idea in the eigenspace principle is that, in
addition to the desired closed loop poles, a set of desired closed loop
eigenvectors is also specified — this is possible since we are working
with a multivariable system, see [Kailath, 1980] and [Moore, 1976].

The response of the closed loop system due to the initial conditions g,
can be written as

ve(®) = > Covi(vEqe,)e™, (7.1)
Jj=1

where the A;’s are the closed loop eigenvalues and v; are the closed
loop eigenvectors defined by

(IAj — (Ac = B:L))vi =0 (7.2)
and
[vie vip - vi]"=[vi va - wva]™

It is possible to affect the eigenvectors by the choice of the feedback
matrix L. It is here assumed that the closed loop eigenvalues are
simple, this implies that the closed loop eigenvectors all are linearly
independent. Assuming that the closed loop eigenvalues 4; # sp(A.)
we can rewrite (7.2) as

vi = (IA; - A)™ Bep (7.3)
Hj = —LVJ'.

The idea of the eigenspace design is then to choose the feedback matrix
L to obtain the desired eigenvectors, if possible.

The desired closed loop eigenvalues for the new thickness controller
are chosen to give the same magnitudes of the control signals as used
by the existing control system. There are two reasons for this:
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e It is hard to say when the hydraulic positioning systems satu-
rate since this depends on the nature of the disturbances and
the characteristics of the supply equipment. It is therefore more
natural to adjust the response speed of the controller when it is
implemented.

e It will be possible to compare the performance of our control sys-
tem to the performance of the existing control system.

Using the eigenspace design approach first described in [Harvey and
Stein, 1978] and later generalized in [Stein, 1979] we find that by
choosing the weighting matrices for a LQG controller in a special way
it is possible to obtain a set of specified closed loop eigenvalues and
eigenvectors. The eigenvalues and eigenvectors are obtained asymp-
totically as the control weight o tends to zero. The number of design
parameters are thus reduced to one when the eigenvalues and eigen-
vectors are chosen.

Using the general approach it is possible to assign p < n — m finite
eigenvalues with the associated eigenvectors

Vi (Ml —A) ' Bepy, i=1,...,p (7.4)

and for the n — p asymptotically infinite eigenvalues the eigenvectors
can be chosen as

Vieg-ne 0 Vil = [Be(i)ty - AEBe(ni)i],
1,. '

7.5
,m, k=1+2%F (75)

[
Jj=
Here n is the number of states and m is the number of inputs and

outputs. There will be m sets of infinite eigenvalues. Each set goes
toward infinity in the Butterworth pattern

()"

[Bc(:.]),uj Ach(,])ﬂj]

and has the eigenvectors
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The generalized approach makes it possible to handle the case where
multiple closed loop eigenvalues are needed, this will be exploited in
our case. The point now is to choose the desired finite and infinite
eigenvectors and to do this we need a state space representation of the
whole system.

Using the control law found in the previous section the hydraulic sys-
tems can be included as a part of the state space model. Since it is
half of the position %z that is used in the model for the rolling stand
it is most convenient to use half of the position as a state. As seen
in the previous section the steady state gain of the open loop system
varies due to the variations of the plate hardness a,1. The simplest
way of avoiding this for the closed loop system is to calculate the plate
thickness

ve(t) = [D 0]yc(t)

and introducing two integral states i

i(t) = 1r(8) — ve(2)
where rT = [r, 5] are the references for the plate thickness. The
state space representation including the hydraulic positions and the
integral states is : :

. ye(2)
yc(t) 1
o - 22n(%)
720(8) | _ | Acn|Ben i(t)
l(t) Cch Dch
PClE '
) ()
i —a,,,zl“l I 0 010 O yc(t)
—EIFZ —amll"l 0 EI(pAI“ZFg—H) 0j0 0 %Zh(t)
= 0 0 —-xI 0| 0 i(t)
- 0 0 0|0 I ri(t)
i ) 0 0 ojo 0] | ir(®
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where r; = [r;, r;, ] The state space representation has 8 states. For
convenience we define

Ba, =[0 0 I 0]F
Be,=[0 0 0 I.

Using the PBH rank test, see [Kailath, 1980], it is possible to show
that the system (Acp, Beny» Cens Dep) is controllable. It is therefore not
necessary to worry about uncontrollable modes in the following.

We now perform the eigenspace design on the new state space descrip-
tion. Using (7.3) and (7.6) we find that the possible directions of the
two finite eigenvectors are

(A,)pAEI(p AToT'3 — Ty)
H(ﬂ,f)(pA/'ll + a,,,z)EI(pAI"ZF3 - F4)

Vi Ve]~ peg(Ai) 0 ,
vl )[4 0] i )
(1/A)T(Af)EIpAD ["cz(‘,"" pq?m] (pAT,T3 — Ty)
(7.7)
where
Do, (P) = pAp2 + Amap + EI,B‘% + Gm1
DPe,(D) = PADP? + amap + EI,B% + am1
and

) = [pcl(li) 0 )] .

0 pCZ(ﬂ“i

The main objective of the eigenspace design is to separate the two sides
of the rolling stand. Using (7.1) we find that the output is given by

8
ve(t) = > Convie™ (vigy,).
Jj=1
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Looking at the response for two finite eigenvectors and choosing A5 =
A1 = Ag we end up with

ve(t) = Cch[Vl(ViT;qco) V2(Vi1;qco)]elft-

Looking at the directions of the two eigenvectors we build the matrix

|:vcrm Uty

vcsn vcss

}z[@ 0 0 0][V1 Vz].

Tor the two sides to be decoupled it is necessary that

Ve Uty 10
Vo vcss 0 1 ,

a choice of the eigenvectors should then be
[vi v2] = s

where * indicates that we do not care about that submatrix. We see
that if we choose

(A =
[ pa] = ([p gf) ch?if) pAEI(pAF2F3—l“4)> o1

then the two desired finite eigenvectors are obtained. Note that the
above choice for 1y and us also separates the integrator states.

A natural demand would be also to try to separate the rolling forces of
the two sides. Using the same procedure as above we find the matrix

[f Cnn f Cns

P ]:[21{1«" 0 2KpAFTs 0][vs v4]
Csn Css
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and the desired eigenvectors are thus

(2K F)-1
*
—(2KpAFT3)!

*®

[vs va]=

Looking at (7.7) we see that there is no choice of closed loop eigenvalues
As, A4, and [ s pa] that yields the above set of eigenvectors. The
only thing we demand from the force in the following is therefore that
it should be well damped to avoid unnecessary exceeding of the force
limit.

Since we only have demands for two eigenvectors we choose to have 2
finite eigenvectors and the system is of 8th order we will thus have 6
infinite eigenvectors. We find these using (7.5) and (7.6) with & = 2

Kt
0
[va ve]= I [us  p4]
| 0
i 0
EI(pATyT's - T
[va vi]= (pATTs ) [us pa]
—xI
| 0
[ EI(pAT'2l's — Ty)
—KEI(pAF2F3 — F4)
[vs vs]= Iy (13 p4].
i 0

The only demand on the infinite eigenvectors is that the symmetry of
the system should be preserved, this is obtained by chosing

[us pal = [; (ﬂ
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7.4 Design of controllers
Choosing the weighting matrices as described in [Stein, 1979] we ob-

tain the weighting matrices

R =0l
Q = HTH.

Noting that the chosen eigenvectors are linearly independent, H is
found by solving the equation

H=[01 0 0][vy - vs]™
which gives
0 T
H= [%(Ayzafg(m Wx(/lv:;(—luz(if)] (pATel's — 1"4)‘1 ’
I
(PAEID(pAT3T3 — T))™
where

y1(Ar) = Ar(k(pAAf + ame) + pe,(Ar))
wa(Ar) = 3A,EI(B] - B3),

This, together with the algebraic Riccati equation
0 = PAy, + ALP+Q+ PB,, R™'BL, P/o (7.8)
can be used for finding the feedback matrix
L =R'B} P/o.

Unfortunately it is difficult to solve the Riccati equation algebraicly
and we therefore have to use numerical tools for finding L. An example
of the results of the design with closed loop eigenvalues Ay = 125,
a time constant for the linearized hydraulic systems x¥ = 50, and a
control weight 0 = 1x10~* are shown in Figure 7.2. Note that the two
sides are not entirely decoupled,. Full decoupling requires large gains
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Amplitude

i 1 L 1 1 1 1 1 n 1 s
0 0.005 001 0015 002 0025 003 0035 004 0045 0.05
Time (secs)

v_e

Amplitude

i i i i i H H
0.005 001 0.015 002 0.025 003 0.035 004 0045 005
Time (secs}

-0.5 H :
0

Figure 7.2 Result of eigenspace design, response for step reference change of
the thickness at the north edge. Upper plot, full: north position z, and dashed:
south position z;. Lower plot, full: thickness at north edge v, and dashed:
thickness at south edge vs;. Note that the south thickness is almost unaffected
by the change of the thickness at the north edge.

of the feedback matrix. This is not a good idea considering saturation
and stability aspects.

When computing the steady state gain of the closed loop system we
find that

Cch(’—Ach + BchlL)_chhz ~ 1,

This indicates that the separation of the two sides has been successful
since a reference change for one. of the sides does not affect the other
side in stationarity.

As stated earlier it is not possible to measure the process output, and
we can therefore not use a traditional observer. Instead we use the
static relationships found in Section 4.2 and extend it with the position
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measurement %z and the integral states i

ATz T 0
ye(t) Loy |70 20
{%m =mhfm}= drale ne 110 g[fm}.wm
i(0) it O R0

The advantage of this approach is that we capture the variations of
am1 using the rolling force measurement. Introducing f. instead of f
and z;, instead of z in (7.9) we find that

Ye(t) ye(?)
{%Zh(t)} =T, {%zh(t)jl
i(t) i(t)
0 0 I 07 [ ()
=D, | 2KF 0 -2KpAFT; 0} l%zh(t)] (7.10)

0 0 0 I i(2)

which gives the connection between the estimate of the observer and
the states of the model. Setting y, equal to y. the state space descrip-
tion of the closed loop system is given by

Je(?) ye(t)
%éh(t) _ A | By %Zh(t)
l(t) - Cer | Do l(t)
ve(£) r(t)
ye(t)
={Am—3mﬂn &M} 12,0
Cen | Der ity |’
' r(f)

which will be used for the stability analysis.

The controller structure is shown in Figure 7.3. Note that the principal
structure is the same as the traditional one described in Chapter 3.
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Figure 7.3 The structure of the total controller, including feedback lineariza-
tion, state feedback and integrator. Note that here the direct term is included

when calculating v,.
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7.5 Robustness considerations

7.5 Robustness considerations

Until now we have considered the model as time invariant, but we
have already seen that some of the parameters of the model vary with
time. In the following analysis we consider variations of the material
parameter a1, the mill spring coefficient 2K, and the stiffness of the
roll pack EI. The variation of a,,1; and 2K is a well known problem
in rolling mill control, see the description in Chapter 3. We will here
find that they are allowed to vary more than 20% before the stability
is affected.

To keep the stability analysis simple we assume that the feedback lin-
earization works well and we can approximate the hydraulic systems
with the linear models from the previous section. Further we do not
consider the fact that the controller will be implemented in discrete
time - if the sampling frequency is large compared to the bandwidth
of the system this will be neglectable, see [Astrém and Wittenmark,
1990]. We thus work with the linear continuous time state space model
for the closed loop system in the following.

We have the time varying parameters:

Ami(t) = (1 + 8,(2))@m1
2K (£) = (1+ 6,()2K
EI(t) = (1+6,()ET, (7.11)

where 8, € [~rp,7p] and 8p € [~Tm,Tm]. @mi, 2K, and ET are the
nominal values of the parameters used for finding the observer. In the
following it is assumed that it is the mean values of 2K and EI during
the pass that are used for finding 2K and EI. We vary 2K and EI
together since we in this way ensure that the eigenfunctions are not
affected by the time variations.

It is hard to say anything about the nature of the variations of d,, and
dp. Since the variations of the mill spring coefficient 2K are mainly
caused by variations of the rolling force f and therefore the varia-
tions of the material hardness ap1, 6, varies with 8,. As seen from
the system identification in Chapter 6, a,1 contains both high and
low frequency variations and it is therefore chosen to do the stability
analysis for arbitrary time variations.
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The parameter variations can be divided into two main groups:

e large variations over the entire rolling;

o small variations during the pass.

Generally, 2K and EI belongs to the last category since it only varies
around its mean value while the material hardness a,,; belongs to both
categories. From the system identification we found that a,; varies
+20% during the pass. For the variations over the entire rolling the
maximal value found for @,,; is 2x 10° and the minimal value for @,
is chosen to be 0 since the thickness also should also be able to handle
very soft plates. Using the mill spring curve we find that the mill
spring coefficient 2K is able to vary £20% around its mean value for
all values of the rolling force f.

The purpose of the stability analysis will be to find bounds on the vari-
ations 0, and §,,. If these bounds are larger than the actual parameter
variations the thickness control system will be stable. The parameter
@m1 varies much during the entire rolling and the thickness control
system should be stable for all values of the parameter. The bounds
on &, and &, will therefore be found for all the actual values of @,,;1.
Normally the thickness control system is detuned to avoid instability,
see Chapter 3. Making a proper stability analysis may therefore make
it possible to improve the performance of the controller by avoiding the
detuning.

To investigate the stability of the system it is sufficient to look at the
system matrix for the closed loop system A.;. Using a state transfor-
mation it is possible to separate the algebraic Riccati equation (7.8)
into two separate equations. It is then easy to show that the state
feedback L has the structure

L_[ll lh s Lo Is Ig Iy lg]
I 7R PO N S A A A

Inserting the time varying parameters (7.11) into the model for the
rolling stand — the variables of the observer is of course constant —

120




7.5 Robustness considerations

and using the state transformation matrix

O O O O O O O K

make it possible to give A,

have two 4 x 4 matrices

_%m2

pA

_ ami () E10)}

Acll (t) = ZKZ‘;!LL

9K pA

_¢1

—%m2
pA
_am O+EL0)B}
A812 (t) = pA
__2K(t) dg
2K pA

—P2

where

O O O R O - O O

o O O

[ e T -]

000 0 0 0]
100 0 0 O
001 1 0 0
ooo0 o I 1%
000 0 0 O
010 0 0 O
001 -10 0
000 0 % -1

block diagonal structure. We therefore

0 0
EI(t)B1%, 0
~K + 6, (8)13,d1 — (Is +1s)  —2(l7 +1s)
0 0
0 0
EI()B1* (73, — Yay) 0
—K + 6m (t)732d2 - (l5 - l5) —2(l7 - lg)
0 0

d1 = 2(l1pA + lgamz)
dz = 2(l2pA + l4am2)

A simple method for investigating the stability of A;;, and A, is to
use the small gain theorem, see [Desoer and Vidyasagar, 1975]. It is
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Csl (SI - AS1)—1381

[5p(t) Y ]
0 on(t)

Figure 7.4 The standard representation of a system with time varying pa-
rameters. The representation is used in connection with the stability analysis.

possible to implement this stability test using relatively simple numer-
ical routines. Since it only gives sufficient conditions for stability, the
bounds found using the small gain theorem can be rather conserva-
tive. The conservatism can be reduced by introducing scaling factors
in the description of the parameter variations. The stability bounds

will further be investigated using simulations.

To be able to use the small gain theorem we first transform A.; and
A, to a standard form used in stability analysis. This standard rep-
resentation is a transfer function with a feedback of the time varying
parameters, see Figure 7.4. The standard representations of A, and

Ay, are

7! 0 0 0 1

_a_m1;flﬂ41 0 ET,B14731 0 3_51,21; _E}f_gi

Ay |By, | 4 0 —k—(s+l) -2 +ls)| O -%

Ci, | D, -4 0 0 0 0 0

-5 0 0 0 0 o0
L1 0 -pAy, 0 U

(7.12)
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ENENS
| Cs, | Ds,
| 0 0 0 0 0
@y +ETBY T/ pod g, El(ﬂ%_;;l) Ely,
- pA 0 El(ﬁz 732 - 742) 0 S_;:;JZ - pA 2 pAyaz
& 0 —k-(s-l) -2(i-1l)| O -5 0
-3 0 0 0 0 0 0
-S89 0 0 0 0 0 0
1 0 —pAys, 0 0 0 0
. -1 o0 0 0 0 0 0

(7.13)

sy and sp are scaling factors used for finding the least conservative
estimate for the stability bounds.

Using the small gain theorem and ensuring that A;, is stable for all
nominal values of a,,1, we will have stability for the arbitrary time
variations 8, and &y, if
7 2 sup G (Cs,(sI — Ag,)"'By,)
s=jo

max(sxtlp |6 (8)] Sltlp |6, (2))

\Y

72
nye < 1,

where & denotes the maximal singular value. When ¥; has been found
the bound on the 8,, and &, are found by setting 72 = 1/y1. The results
will in principle be the same for the other system and they are therefore
not shown here.

That A,, is stable is ensured by computing the eigenvalues of the ma-
trix for the values of @,,; used in the stability analysis. The norm for
finding ¥1 can be calculated using the state space description and MAT-
LAB. If such advanced numerical tools are not available it is possible to
use the Frobenius norm which is the square root of the sum of squares
of the numerical values of the elements of the transfer function matrix.
The result will be a polynomial which can be evaluated using simpler
tools. The Frobenius norm is more conservative than the above, but is
not found to be of major importance in this case.
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Time varying stability bounds

07—

0.8

05

0.4

0.3

0.2

0.1

Figure 7.5 The limits on the variations of §, and Jp,. Full: the limit for A5,
and dashed: the limit for A,.

Using the small gain theorem on (7.12) and (7.13) we find the results
shown in Figure 7.5. The figure shows ¥, as a function of the nominal
value of the plate hardness @,;. To cover also very hard plates the
maximal value of the analysis has been chosen to 2 x 108 even if the
maximal value found in the identification is 2 x 10°. The best choice
of the scaling factors have been found to be s; = 1.5 and s3 = 1.
Simulations show that for a1 = 5x 10* the system will be stable for
Sn = 0.2 and unstable for §,, = 0.3, this indicates that the results not
are very conservative.

The results of Figure 7.5 shows that the system is stable for all mean
values of the plate hardness during the pass @1 € [0,2x10°] found in
the system identification. It is seen from the figure that @,1 > 2x 105
smaller and smaller variations of §,, and 6, are permitted. When @1
is large the plate is cold and we can here also expect large temperature
variations during the pass, it is therefore not sure that the control will
be stable when the plate is very hard. It should be mentioned that
it is likely that the plate will be rejected due to poor metallurgical
properties when the plate hardness @, is above the values found in
the system identification. The above results indicate that it will not
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be necessary to detune the thickness compensation system. This will
make a better thickness control possible.

7.6 Evaluation of performance

Several questions can be asked in connection with the performance of
the thickness control. The two usual main concerns are:

e response to reference changes;

o effects of typical disturbances.

Both subjects will be investigated in the following. The performance
of the new control system will be compared to the performance of the
existing control system, when possible. A central question is whether
it is necessary to redesign the controller and how often this should
be done. This will also be investigated below. Again we simulate the
whole system in continuous time, that is we assume that the control
law is implemented using a high sampling frequency.

The linear transfer functions for the existing controllers for the hy-
draulic systems and the thickness controller used in the computer sim-
ulations have been provided by the constructor of the control system
on the rolling mill at The Danish Steel Works. To be able to com-
pare the new and existing controllers the existing control is adjusted
to compensate fully for the mill spring.

The feedback linearization is implemented using the mean values of
the parameters for the north and south sides. To keep the implementa-
tion simple g; f is found using %qc from the model used for simulating
the rolling stand.

Simulations

To investigate the response to reference changes and the effect of typ-
ical disturbances we will perform a number of simulations using the
simulation model described in Chapter 6. The dynamics, static gain,
and the decoupling of the two sides can be investigated using a step
change of the reference at one and both sides. Even if the integrator
ensures that the static gain is unity despite the variations of the plate
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hardness a,,1, the dynamics of the system varies with this parameter.
From the system identification it is found that a,,; € [2% 104, 2x109].
The controller is designed for a,; = 5 x 10% It is therefore cho-
sen to simulate the responses for mean values of the plate hardness
Tm1 = {2x10% 5x10% 2x 105} to investigate the effects of the pa-
rameter variations on the dynamics of the closed loop system and the
decoupling of the two sides. The above values of @1 can be considered
representative for the values where it is important that the thickness
control operates well.

The simulations of changes of the thickness reference at both sides
and at one side subsequently are shown in Figures 7.6 and 7.7. It
is chosen to show the control signals for the servo valves x,, and the
plate thicknesses at the edges v.. The reference at both sides r is
changed from 11.64 mm to 10.5 mm at ¢ = 0 s and the reference at
the north side r, is changed from 10.5 to 10.25 at ¢ = 0.5 s. Since it is
not possible to control the two sides independently with the existing
control system, r,, is not changed at ¢ = 0.5 in this case.

From the simulations of the reference changes it is seen that the mag-
nitudes of the control signals are similar. The existing control system
is less damped and has a considerably longer settling time than the
new one. Furthermore the integrator of the existing control is con-
siderably slower, which is not desirable. It should be noted here that
the existing control system is tuned on line and it might turn out that
the less damped dynamics are desirable here. It will be natural fo
investigate this in connection with the implementation of the control
system.

From Figure 7.7 it is seen that the time constant of the new control
system varies quite much with the plate hardness a,1. The separation
of the two sides works well when the value for @,,1 used for the design.
In the other cases the thickness at the south side varies a couple of
hundredths of a mm when the thickness at the north sides is changed.
The damping of the control system is satisfactory for all three values of
@mi1. Since the limits on the control signal are the same for all values
of an1, not much will be gained from redesigning the controller.

From the above simulations we conclude that it is not necessary to
redesign the controller because of the variations of a1 unless very
hard demands on damping and separation of the two sides are present.
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Figure 7.6 Simulation of the existing control system. A step change of the
thickness references for both sides to 10.5 mm is done at ¢ = 0. Left plots,
full: control signal for north servo valve x,,, and dashed: control signal for
north servo valve x,5. Right plots, full: the thickness at the north edge v,, and
dashed: the thickness at the south edge v;,. The top plots show a simulation
for a soft plate and the lower plot a simulation for a hard plate. The plots in
the middle are for the value used for the design of the eigenspace controller.
Since we are not able to change the thickness at only one side two responses
are similar and can therefore not be distinguished. It is seen that it will take a
while before the thicknesses reach the desired value of 10.5 mm.
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Figure 7.7 Simulation of the new control system. A step change of the thick-
ness references for both sides to 10.5 mm is done at ¢ = 0, and a step change of
the thickness reference for the north side is done at ¢ = 0.5. Left plots, full: con-
trol signal for north servo valve x,,, and dashed: control signal for north servo
valve xyrs. Right plots, full: the thickness at the north edge v., and dashed:
the thickness at the south edge v,,. The top plots show a simulation for a soft
plate and the lower plot a simulation for a hard plate. The plots in the middle
are for the value used for the design of the eigenspace controller.
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Note that, because of the variation of the model parameters with the
plate width w, it will only be necessary to design the controller when w
changes. Since the plate width does not change significantly during the
rolling of one plate, it will only be necessary to redesign the controller
once for each plate.

We now proceed with investigating the effects of the variations of a1
during the pass. As mentioned before these variations mainly consist
of slow variations due to cold zones from the reheat furnaces and fast
variations from the cooling by the roller tables. It is here chosen to
use step changes of the plate hardness to be able to investigate the
dynamics and the steady state characteristics of the response to the
variations of the plate hardness a,,;. The variations of a,,1 are divided
into

e changes in the mean value;

e changes in the value across the plate width.

In the first type of variations the symmetry of the rolling process is
preserved, this is not the case for the second type of variations.

In the modeling in Chapter 5 it is assumed that material characteris-
tics are symmetric, but it is quite easy to introduce asymmetric ma-
terial conditions in the model for the rolling stand. This can be done
assuming that that the plate hardness across the plate width is’

2% —w
w

am1(x,1) = am(t) (1 + 7(t) > , x € [0, w].

The last term represent a linear variation of the plate hardness across
the plate width and 7 is a unit step. Inserting the above in the model
we find that the only thing that changes is I'; which becomes

1 (1) [ gax) o2l
1(8) = .

7(2) fow ¢2(x)2"T”wdx ;715

Inserting the above in the simulation program we are able to investi-
gate the effects of asymmetric material conditions.

The simulations of the variations of the plate hardness a,;; during
the pass are shown in Figures 7.8 and 7.9. Again the simulations are
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done for mean values @,,1 = {2x 10%, 5x 10% 2 x 10°} to investigate
the responses for different plate hardnesses. The reference is changed
from 11.64 mm to 10.5 mm at ¢ = 0, a,,; is changed to 0.8a,,; at
t = 0.5 and 7 is changed from 0 to 0.2 at ¢ = 1. The variations
of mean value and the skewness of a,,1 are both set to 20%, this is
inspired by the system identification where we found that a,,; varies
+20% in the length direction. Similar variations are expected in the
width direction. In the traditional controller the start value of the plate
thickness differs from 10.5, this is due to the rather slow integrator.

From the simulations we see that the impact of the hardness variations
is most significant for large plate hardnesses a,,;. For @1 = 2 x 10*
the effect of the variations are hardly noticeable, for @,; = 5x 10*
they have some effects on the plate thickness, and for @,; = 2x 10°
they have a major impact on the plate thickness. The settling time
and damping of new control is better than for the traditional control.
Again similar values of the control signal are used for the new and the
existing control.

Note that the new control is able to handle the asymmetric material
conditions while the traditional controller is not. Generally, it is for the
thin, and therefore hard, plates the most strict demands on the plate
thickness are present and the deviations shown for the traditional
controller will result in a rejection of the plate. Additional problems
with different length of the plate edges and the following problems
with the plate shape can also be expected.

More simulations to investigate the effects of variations of the mill
spring coefficient 2K and the roll stiffness EI could be done. The
variations of these parameters do not affect the symmetry of the rolling
process. Furthermore, the variations mostly affect the estimation of
the plate thickness and the responses of the new and existing control
systems will therefore be similar. It is therefore chosen not to show
the simulations of this case.

7.7 Summary

We have designed new controllers for the hydraulic positioning systems
and the rolling stand. The hydraulic systems are linearized using feed-
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Figure 7.8 Simulation of the existing control system with a desired thickness
of 10.5 mm. A step change of the mean value of the plate hardness a,,; is done
at ¢ = 0.5 and asymmetric hardness conditions are intreduced by a step change
of 7 at t = 1. Left plots, full: control signal for north servo valve x,., and
dashed: control signal for north servo valve x,,;. Right plots, full: the thickness
at the north edge v, and dashed: the thickness at the south edge v,,. The top
plots show a simulation for a soft plate and the lower plot a simulation for a
hard plate. The plots in the middle are for the value used for the design of the

eigenspace controller.
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Figure 7.9 Simulation of the new control system with a desired thickness of
10.5 mm. A step change of the mean value of the plate hardness a,,; is done
at ¢t = 0.5 and asymmetric hardness conditions are introduced by a step change
of T at ¢ = 1. Left plots, full: control signal for north servo valve x,., and
dashed: control signal for north servo valve x,,s. Right plots, full: the thickness
at the north edge v, and dashed: the thickness at the south edge v.,. The top
plots show a simulation for a soft plate and the lower plot a simulation for a
hard plate. The plots in the middle are for the value used for the design of the
eigenspace controller.
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7.7 Summary

back linearization and included in the model for the rolling stand. A
state feedback for the now linear system is designed using eigenspace
control. The main objective in connection with the eigenspace design
is to separate the response of the thicknesses at the two sides. The
dynamics of the new control system are chosen to obtain the same
magnitude of the control signals as used by the existing controller.
To ensure that the steady state gain of the system will be unity de-
spite the variations of the material parameters two integral states are
introduced in the controller.

The stability of the linear control system is investigated and it is found
that it will be stable for the expected parameter variations. The per-
formance of the new and existing control systems are compared using
simulations. It is found that the dynamic performance of the new con-
trol system is better than the one of the traditional control system.
The new control system is, furthermore, able to handle asymmetric
material conditions and differences in the thickness references for the
two sides, this is not the case with the existing control system.
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Conclusions

As stated in the introduction the main purposes of this report are
to develop a physical model for the hot rolling process, to find the
parameters of this model, and to design a controller for the thickness
control on the basis of the model. This has all been done and it is now
time for making the final conclusions.

8.1 What has been done?

The main effort has been spent on developing the model for the rolling
mill and identifying the parameters of this model. As stated in the
introduction, the modeling is a recursive procedure and after the first
iteration several changes of the model were necessary to obtain proper
results. Since there are many things to vary in the model and in the
way of doing the system identification, it is a complicated procedure
to find the right set-up. The model and the results of the system iden-
tification shown in the report are the result of one and a half years
work. Both the literature study to find the state of the art and the
controller design have taken half a year to complete each. It is there-
fore natural that we are able to conclude the most from the modeling
and identification part of the thesis.

The model developed is dynamical and multivariable, as stated in the
introduction. The model is found by dividing the hot rolling mill into
two subsystems:

e the hydraulic positioning systems;
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e the rolling stand.

and building physical models for how these systems work. The math-
ematical descriptions of the subsystems are found from these physical
models. The models for the positioning systems are nonlinear while the
model for the rolling stand is linear. Since it is not possible to mea-
sure the plate thickness and an additional signal is available when
implementing the controller, a thickness observer is built in addition
to the model to be used for the controller design. Because physical
modeling is used, the number of unknown parameters of the models
for the subsystems are kept at a minimum,

It was chosen to collect the data for the system identification during
normal operation of the rolling mill. Since it is not possible to mea-
sure the plate thickness during rolling, it was necessary to measure
the inputs when the plate was rolled and the output — the plate thick-
ness — after the rolling. A large number of data were necessary to
obtain proper measurements for the system identification and a device
for measuring and recording the thickness was therefore designed and
constructed by the author. The input measurements and the thickness
measurements have been joined by formulating and solving an opti-
mization problem. It is believed that these collected data are unique
and have made it possible to obtain a good model.

The parameters of the two submodels for the rolling mill are found us-
ing the collected data. Using nonlinear system identification a set of
constant nominal parameters are found for the hydraulic positioning
systems, where good agreement between model and data is obtained.
Due to the time variant nature of the mill stand, there is poor agree-
ment between model and data when time invariant methods are used
for the system identification. The parameter values obtained can be
seen as a mean value for that pass and they are well correlated with a
theoretically found plate hardness. Using a time varying value of the
parameter found using recursive system identification good agreement
between model and data were obtained. Since the time variations are
included in the extra signal available for the observer, good agreement
between model and data is obtained in this case.

Analyzing the models for the rolling mill, it is found that the dynam-
ics of the mill stand are considerably faster than the dynamics of the
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hydraulic positioning systems. This means that it will be hard to com-
pensate for the fast variations of the plate thickness using the hy-
draulic positioning systems. Using methods suitable for handling non-
linear and multivariable systems a controller for the thickness control
is found. The controller is designed to use the same control effort as
the existing equipment on the rolling mill at The Danish Steel Works.
Using computer simulations it is found that the new controller is able
to handle the asymmetric case and yields a more accurate thickness
control compared to the existing control system. The new control strat-
egy is furthermore found to be stable for the relevant parameter vari-
ations. The performance is also acceptable for the different material
characteristics of the steel plate found in the system identification.

Seen in the light of my work the existing control system performs quite
well. The existing observer is able to predict the thickness quite accu-
rately and the controller appears well tuned. Since it has been found
that the rolling stand is considerably faster than the hydraulic systems
the static models for the rolling stand also works well. If a controller
yielding a faster response of the hydraulic systems was introduced, dy-
namic models of the rolling stand could be used to do a better design.
The main disadvantage of the existing system is therefore that it is
not able to handle the asymmetric case.

One should recognize, that besides the development of mathematical
models and controllers, additional knowledge and understanding of
the hot rolling process have been gained in connection with this work.
We were, for instance, surprised by the impact of the parameter vari-
ations on the plate thickness. The main factor was the temperature
variations induced by inhomogeneous cooling by the roller tables used
for transporting the plates. These variation are too fast to be han-
dled by the thickness control and therefore additional precautions are
necessary to remove these disturbances.

One major problem in connection with the system identification of the
model for the rolling stand is the lack of excitation in the input signals.
This is the price paid for using data collected during normal operation.
To obtain data with a better excitation additional experiments are nec-
essary. This needs careful planning and will induce additional costs,
but will yield an additional verification of the model.
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8.2 Future work

In my opinion there are two main directions of further work:

¢ improving the model for the rolling stand;

¢ using the results in practice.

The physical model used, only covers a few main features of the rolling
stand and many improvements of the model are therefore possible. For
instance, introduction of a more advanced model for the material, in-
cluding models of the friction in the rolling mill, identifying the asym-
metric material characteristics, and getting data with better dynamic
and asymmetric excitation would all result in an improvement of the
model. Better models for the noise and disturbance characteristics of
the rolling stand would also be a helpful tool in improving the perfor-
mance of the control system.

As suggested in the system identification in Chapter 6, inclusion of
an extra spring in the physical model will also yield a possible im-
provement of the results. Furthermore, explicit handling of the time
variations in the modeling, system identification and controller design
would also be a good idea.

The responses of the plate thickness at the north and south sides of
the rolling mill are separated by the controller design. Besides the
handling of the asymmetric material conditions this can also be used
for controlling the plate shape in the length direction. This is due to
the fact that the length of the plate edges is dependent of the thickness
reduction at the edges. One one way of implementing the straightness
control is to measure the plate straightness using a camera and then
using this measurement for finding the references for the thicknesses
at the edges.

As mentioned in the introduction it is not straight forward to imple-
ment the controller. Much additional work is needed to do this. An
other way of using the model isto use it for optimizing the adjustment
of the existing control system. This can for instance be done by using
the methods described in [Abildgaard, 1991]. Additional improvements
can be done by removing the high frequency disturbances induced by
the cooling of the roller tables. This can be done by implementing a
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different control strategy for the roller tables.
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A: cross sectional area of roll pack

A;p: area of common piston corresponding to pi

Ajy: area of common piston corresponding to p

Ajz: area of common piston corresponding to f,,/As4

Ay: area of grease piston

A, B., C., D,.: state space matrices for model for rolling stand
Acn, Ben, C.p, Dy extended model for rolling stand

Ay, B, C., D.;: closed loop system for new thickness control
A;,, Bg,, Cs,: matrices used in stability analysis

Ag,, Bs,, Cs,: matrices used in stability analysis

Cy(p): transfer function for existing thickness controller

C,(p): transfer function for existing position controller

D,: matrix for static observer used for estimating y,

D,p: observer for estimating states of extended model

E: Youngs modulus for steel

F: matrix used for calculating f.

G (p): transfer function for hydraulic systems controlled by C,
Gi(p) = Toelrots

I: second moment of area for the work roll

K (f,w): mill spring coefficient

K(f,w): estimate of K

L: state feedback matrix for new thickness controller




P;: supply il pressure for hydraulic systems

@: weighting matrix for states in eigenspace design

Q1(¢): flow into left side of oil cylinder

Q2 (2): flow into right side of oil cylinder

R: weighting matrix for control signal in eigenspace design
T(t): plate temperature

I'y,...,Tg: matrices found in the modeling of the rolling stand
&: matrix used for calculating v, and v,

B1, Ba: solution of equation for finding ¢; and ¢

J: unit pulse

Om(t): variable describing variations of EI and K during pass
0p(t): variable describing variations of a,,; during pass

&(x): function used in state transform to obtain u

£(t): prediction error for model for rolling stand

£,(2): prediction error for model for north hydraulic system
gs(t): prediction error for model for south hydraulic system
n: scaling factor for P; to find ps

Yy (J,1) entry of T;

Gqc (p): transfer function relating g, to z

G, (p): transfer function relating v, to 2

@,: undamped natural frequency for Gvc

]E(t) = %(fn(t) - fs(t))

ieg: steady state gain for Gvc

Oe(t) = 3 Ve, (2) = ve, ()

2() = Hlealt) - 2(0))

2t(x,t): approximate solution for u

k: time constant for feedback linearized hydraulic systems
A1, Ao eigenvalues for finite eigenvectors

Ar: desired finite eigenvalues for the new thickness control
M. distance from edge for output thicknesses

M1, Ho: vectors used to obtain the desired finite eigenvectors
U3, U4 vectors used to obtain the desired infinite eigenvectors
V1, Vg: finite closed loop eigenvectors for rolling stand
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V3,...,Vg: infinite closed loop eigenvectors for rolling stand
Wn: undamped natural frequency for Gy,

ET: mean value of EI during a pass

Gt (p): transfer function relating 7, to z

Gy, (p): transfer function relating g, to z

Gy, (p): transfer function relating 7, to z

K: mean value of K during a pass

Pg: oil supply pressure transformed to grease side
@,: undamped natural frequency for G,,

@1 mean value of a,,1 during a pass

f(2) = 3(£a(8) + £5(9))

Fe(®) = 3(Foul®) + fe, ()

Zg: steady state gain for G,,

7(t): reference value for U in traditional control

U(2) = 3(valt) +vs(t))

Te(t) = 3(ve, (£) + ve, (2))

Te(£): estimate of T

U-1(t) = 3(v-1a(£) + v-14(t))

2(t) = 3(2a(t) + 25(t))

z.(t): reference for z in traditional thickness control
#1(x), ¢2(x): eigenfunctions obtained in series expansion of u
p: mass density of steel

o scalar control weight in eigenspace design

@: correction for roll crown
qﬁ(t) — Z{_(fvw) am(2)
K (fw) am()+E(f.0)

@(t): variation of vy relative to vy_g
&1(2), ..., £3(2): variables of model for hydraulic systems

Eny (), ..., Eny(2): regressors for identification of hydraulic sys-
tems

’; i times partial derivation with respect to x
a(t): position of plate when rolled

a.(t): estimate of a(t)

an(t): plate hardness used in traditional modeling




apn1: parameter for flow through servo valve for north system
Qa2 parameter for oil compressibility of north system

anns: parameter for leak flow for north system

aps1: parameter for flow through servo valve for south system
apnso: parameter for oil compressibility for south system

anss: parameter for leak flow for south system

am1(?): plate hardness

amz2(t): plate damping

ama(t): parameter for v, in py

¢: roll crown

F@) =10 0]

fe(®) = [fo @) fe (D]

fn(t): rolling force at north side

fs(2): rolling force at south side

fz(t): regressor in recursive identification of am1

fe. (2): north rolling force found using model for the rolling stand
fe.(2): south rolling force found using model for the rolling stand
i(t): integral states in extended model for rolling stand

k: sample number

kp(rs, T): plate hardness

[: width of work roll

l1,...,lg: elements of L

m: number of inputs and outputs of extended rolling stand model
n: number of states in extended model for rolling stand

o(2): roll eccentricity and ovalness

0.(t): estimate of o

Ofe;»Ofe,: Parameters of observer

p: differential operator %

pi(t): pressure at left side of oil cylinder

pa2(t): pressure at right side of oil cylinder

pa(x,t): pressure distribution across plate width

De,(p): characteristic polynominal for G,

Pey(p): characteristic polynominal for G,
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q: forward shift operator

a@®) = [a1(8) @01

q1(%), g2(¢): normal coordinates in series expansion for &
2:(t) = [¢a(t) ga(8)]”

qe(?) = [9es(t) qeal®)]”
qc,(t), qe,(t): normal coordinates found using model for rolling
stand

gc,: 1nitial conditions for g,

Qe (t), qe,(t): estimates of g., and g,, found using observer

r@®) = [ra(®) @]

rqa(x,t): reduction across plate width

r() = [r, @) @

rn(t): reference for plate thickness at north edge

rs(¢): reference for plate thickness at south edge

r;, (¢): input for feedback linearization of north hydraulic system
r;, (¢): input for feedback linearization of south hydraulic system
re: reduction

81, Sg: scaling factors used in the stability analysis

s¢(t): forward slip relating roll and plate speed

¢ time

u(x,t) = tva(x,t) - e(x)32(2)

ve(t) = [ve,(£) ve, ()]

vg(x, t): plate thickness across plate width

0et) = [Ve, () ve, ()]

Um(2): plate thickness at the center

v, (t): plate thickness at north edge

Up(t): speed of plate when rolled

v-(t): rotational speed of work roll

vs(t): plate thickness at south edge

v-1,(¢): ingoing plate thickness at north edge

v_15(t): ingoing plate thickness at south edge

Ue, (£): center thickness found using model for the rolling stand
U, (t): north thickness found using model for the rolling stand




Uc,(t): south thickness found using model for the rolling stand
vg-1(x,t): ingoing thickness across plate width

Ue, (£): plate thickness at the center found using observer

Ue, (2): plate thickness at the north edge found using observer
ve,(2): plate thickness at south edge found using observer

w: plate width

x: independent variable in width direction

X1, ..., x3: positions for measurement of plate thickness vy
xo(t) = [%on () 20s(D)]”

%, (t): position of servo valve glider of north hydraulic system
%y (£): control signal for north hydraulic system

xyrs(t): control signal for south hydraulic system

xvr(t) = [xvrn(t) Xyrs (t) ]T

xys(2): position of servo valve glider of south hydraulic system
ye(t): states of the model for the rolling stand

¥e(t): estimate of y, found using observer

¥n(2): output used in the identification of north system

¥s(¢): output used in the identification of south system

y2(¢): output in recursive identification of apy

2() = [za(8) z(@®)]

z): output of linear model for hydraulic systems

2i(t) = [z, (&) 21,(5)]"

zg(x,t): roll position across plate width

zp,(¢): position of north common piston found using hydraulic
model

zp,(t): position of south common piston found using hydraulic
model

z,(¢): position of north common piston

zs(t): position of south common piston

2z;: maximal value of position of common piston
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B

Physical constants

Below the physical constants of the PDE are found. The numerical
values are used for the system identification, the controller design and
the simulations.

K

The mill spring coefficient K is a nonlinear function of the rolling
force f and the plate width w. The nonlinear characteristics of K
are dominating below a certain force level, over the force level K is
constant. Since we mostly work with forces in the linear area we can
approximate the mill deflection using a linear term K and an offset zx

£(t)

£(®)
K(f,w)

~zg(w) +

Since we only have data for the widths w = 2.15 m and w = 3.15 m
we can reduce the necessary figures to the ones shown in Table B.1.
When using the mill spring curve zg is added to the roll position and
K is used as a constant mill spring coefficient.

The above K and zx give the total deflection of the entire rolling mill
when using the mean value of the force f as input. In the physical
model for the rolling stand, half the deflection of the rolling mill is
used with the forces f, and f; as inputs. Therefore 2K and 2zx are
used in this case.
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w=215m w=3156m
K | 2.02x10° N/m | 2.05% 10° N/m
zg | 0570103 m | 0.525%x 103 m

Table B.1

p

The work and backup rolls are made from steel coated cast iron. To
maintain simplicity we here assume that they are made from solid
steel, this has shown to work well in practice. The mass density p for
steel is

p = 1.85x10% kg/m®
see [Fenner, 1989].

A
The total area of the roll pack A is given by

A=7(r +rl) = 2.33m?

where ry, is the radius of the work roll with a value of 0.425 m and r,
is the radius of the backup roll with a value of 0.750 m

E

Youngs modulus E for steel is:
E = 2.07x 10" N/m?®
see [Fenner, 1989].

I

When calculating the second moment of area I for the bending of the
roll pack it is normally only necessary to include the second moment
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Chapter B. Physical constants

of area for the work roll, see [Roberts, 1983]. Using [Fenner, 1989] we
find that I for a member with circular cross section is
7(2ry,)*

— -2 4
o4 =256x10"" m

I =

where ry, is the radius of the work roll which has a value of 0.425 m.

152




