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Introduction

1.1 Background

Adaptive controllers are traditionally based on the principle of sepa-
ration of estimation and control. The design methods used are often
quite simplistic. Since the models obtained from the parameter es-
timation are uncertain it would be desirable to use robust design
methods in the adaptive controllers. This thesis is a step in this
direction.

There are many approaches to robust control: H,, (Francis (1987),
Doyle et al. (1989), Stoorvogel (1990)), parametric uncertainty

(Doyle et al. (1982), Weinmann (1991)) and quantitative feedback
theory (Horowitz (1963), D’Azzo and Houpis (1988)). Unfortunately
none of these methods are well matched to the uncertainty mea-
sures. In this thesis an adaptive controller based on a design method
developed by Lilja (1989) is investigated. This method which origi-
nates from Levy (1959) is based on a frequency domain approach. A
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Chapter 1 Introduction

number of points on the Nyquist curve of the system are estimated
and used in the controller design.

1.2 Estimation

A number of different methods can be used for estimating the fre-
quency response of a system. Non-parametric spectral methods, Zhu
(1990), Ljung (1987), Wellstead (1981), directly gives a frequency re-
sponse estimate. In closed loop these methods can, however, not be
used in the same way as for open loop identification. The reason for
this is twofold. First correlation between the input and noise acting
on the output, as in the feedback case, give biased estimates. Sec-
ondly the spectral methods disregard causality which in the worst
case results in identifying the inverse of the feedback controller Gus-
tavsson et al. (1977). In order to use spectral methods for process
estimation in a closed loop configuration, spectral measures must
be computed with respect to exogenous signals not correlated with
the system noise, Unbehauen et al. (1987), and so rather large and
continuous external excitation is required.

Based on parametric models the frequency response is trivially ob-
tained by evaluating the frequency response of the models. In the
parametric case different strategies are possible. To prevent from
undermodeling high order models may be estimated and applied to
-model reduction schemes Wahlberg (1987). The requirements on
excitation should be kept low in an adaptive controller and so over-
parameterized models are not well suited for the adaptive case. If
the process order is known, a full order model can be estimated us-
ing any appropriate estimation scheme, Ljung (1987), Goodwin e¢
al. (1984). Another possibility, that will be pursued in the thesis,
is that of estimating a low order model on band pass filtered data.
For high order plants the band pass filters must be rather narrow
in order to obtain a good model fit in the pass band of the filter. By
estimating one low order parametric model for each of the required

6




1.2 Estimation

points on the Nyquist curve an estimation scheme that is indepen-
dent of the true process order is obtained. Also it will not suffer
from the drawbacks of spectral methods encountered in closed loop
estimation. Further, only disturbances inside the pass bands of the
filters will influence the different estimated models and so distur-
bance rejection is automatically obtained. Using the frequency point
estimates a design method based on Lilja (1989) is used to obtain
a two-degree of freedom controller. The frequency response estima-
tion can be regarded as an extension of the work by Hégglund and
Astrém (1991), who use a method to track one point on the Nyquist
curve.

1.3 Proposed Scheme

The scheme proposed in this work has a structure similar to other
adaptive controller schemes, see Figure 1.1. The contents of the
building blocks are, however, different from that of many other adap-
tive controllers. The main building blocks are

e Time variable controller
e Process estimator

e Controller design block
e Filtering block

The building blocks that differ from the normal are described briefly
below.

Frequency Domain Least Squares Controller Design

The controller used has a two degree of freedom structure. The pa-
rameters of the controller are obtained by solving a least squares
problem in the frequency domain. The process is described by a dis-
crete set of points on the Nyquist curve of the process. The fitting is
made between a desired command signal response and the response
of the closed loop system at a discrete set of frequency points.




Chapter 1 Introduction
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Figure 1.1 Block diagram of the adaptive controller

Frequency Domain Process Model Estimator

In the controller design the process is represented only by a dis-
crete set of points on the Nyquist curve of the process. Therefore
it is not necessary to estimate a full order parameterized process
model. In this work the process estimation is split up into a bank
of frequency point estimators. The output of each frequency point
estimator is an estimate of a point on the Nyquist curve of the pro-
cess. Each point is obtained by estimating a low order parametric
process model. The data entering each frequency point estimator is
band pass filtered process inputs and outputs. The frequency point
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1.3 Proposed Scheme

is obtained by evaluating the low order process model at the corre-
sponding frequency. By using a bank of frequency point estimators
the estimation is decoupled at different frequency points.

Filtering

The data entering each frequency point estimator is band pass fil-
tered. By doing so good modeling is possible for a low order model
in the pass band of the filter. This is the case even for processes
of high order. The width of the pass band is governed by two con-
tradictory demands. First the filter should be sufficiently narrow
in order for the process model to be good at the center frequency.
This is important since the low order model is only evaluated at the
center frequency of the filter. Secondly the filter should be suffi-
ciently wide to have a response time that is not too long. With a
long filter response time the filtered data will be influenced by old
data that may no longer be valid due to more recent changes in the
process characteristics. Also it will take time before new incoming
data show up in the filtered data.

1.4 Summary

An adaptive scheme is proposed in this work that combines fre-
quency domain estimation with frequency domain controller design.
The obtained scheme is more robust to bad signal excitation and
process assumptions than many other schemes. The content is or-
ganized as follows. Chapter 2 gives the problem setup. In Chap-
ter 3 the frequency domain controller design is examined. Chapter
4 discusses the frequency point estimator. The complete adaptive
scheme is given in Chapter 5. The filtering problem is handled in
Chapter 6. In Chapter 7 design considerations are discussed. The
adaptive scheme is evaluated through simulation examples in Chap-
ter 8. Finally conclusions are given in Chapter 9.

The examples in Chapter 8 show that the overall adaptive scheme
behaves well. After approximately 30 samples the frequency point

9




Chapter 1 Introduction

estimates have negligible bias. By following the guidelines in Chap-
ter 7 for the choice of desired response a good controller design is
obtained. Therefore the closed loop system has a response closed to
the desired after a few transients of excitation.

10




Problem Setup

2.1 Preliminaries

A Frequency Domain Adaptive Controller (FDAC) is discussed in
this work. In this chapter the problem setup and some aspects
related to the FDAC will be presented. Details are given in the
chapters that follow.

2.2 Process and Process Representation

Only stable single input single output (SISO) systems are consid-
ered. The process is assumed to be time invariant and unknown or
slowly time varying. By this assumption the adaptive controller has
a reasonable chance of achieving parameter following. It is assumed
that there is a decoupling in time scales between the process state
dynamics and the rate of change of the process parameters. Vari-
ables that vary fast should in this context be considered as process

11




Chapter 2 Problem Setup

states. It is assumed that the process at each time instant can be
modeled by a pulse transfer function

B(z)
A(z)

Y()=G(2)U(z)+V(z) = U(z)+V(2) (2.1)

where U and Y are the Z-transform of the process input and output.
Unmodeled dynamics as well as disturbances acting on the system
are collected in V. V will not be studied further in the following
since it is not used in the controller design. The simulations in
chapter 8, however, indicate that the influence of V on the frequency
response estimates is small.

Define a frequency set

Q={w,..., 0 (2.2)

To use the FDAC this set will be chosen by the user. Both the con-
troller design and the process estimation will be made with respect
to the chosen Q. The frequencies @; can be chosen freely but has to
be lower than the Nyquist frequency. Indications on how to choose
these frequencies will, however, be given by the underlying design.
The number of frequencies M can be chosen freely as long as M is
larger than a lower limit. The lower limit is determined by the
number of parameters in the controller.

Based on the frequency set above define the set
Z = {21,...,2:) = {@F PP g, cQ (2.3)

in the z-plane where A is the sampling interval. This set of points
lies on the upper half of the unit circle in the z-plane when all w;
are lower than the Nyquist frequency.

In the controller design the process will be represented by a set of
points on the process Nyquist curve. The corresponding frequencies

12




2.2 Process and Process Representation

are given by the set 2. For the discrete set of points on the Nyquist
curve define
G = {G(21),...,G(2m)} zi€Z (2.4)

Because G is used as the process representation it is not necessary to
restrict to the rational transfer function description (2.3). Since both
the controller and the desired response will be linear, this restriction
is, however, natural.

2.3 Controller Structure

The controller, called an RST-controller, has a two degree of freedom
structure

R(z,t)U(2) = =S(2, )Y (2)+ T'(z,t) U.(2) (2.5)

where U and U, are the control and command signals. Further

R(z,t) = 2™ +r1(t)2"™ L+ .. .+ 1y, (2)
S(z,t) = so(t)2"™ +51(£)2™ 1 +... + 84 (2) (2.6)
T(z,t) = to()2™ + t1(8)2"" 7+ ..+ tn, (2)

For convenience of notation and readability the time argument is
dropped from this point.

2.4 Controller Design

A common design technique that uses the RST-controller structure
is the poles placement design. In this the closed loop is made equal
to a desired rational transfer function. This design involves the
solution of a Diophantine equation for the controller parameters, see
Astrém and Wittenmark (1990). The controller design considered
in this work is related to the pole placement design. The controller
parameters are, however, obtained in a quite different way.

13




Chapter 2 Problem Setup

The controller design uses frequency domain fitting that is presented
in Lilja (1989). In this the frequency response of the closed loop
system is fitted to a desired response. The fitting is made at the set
Z in the z-plane. The fitting is performed by solving a least squares
problem. Below the different parts are discussed.

Process

The process is in the design represented by (2.4). This represents a
limited amount of process information. Therefore the frequencies Q2
must be chosen properly to achieve a good design.

Controller

The controller is given by (2.5). The structure of the controller is
chosen by the user. There are no restrictions on the controller struc-
ture as for the pole placement design, i.e. with respect to the orders
of the polynomials of the controller. The chosen controller structure
must, however, be reasonable. This is further discussed in Chap-
ter 7. The method is well suited for design of low order controllers.

Closed Loop System

By applying the controller (2.5), the closed loop response to com-
mand signals becomes

(2.7)

This is in the design evaluated at Z.

Desired Response

The desired response of the closed loop system is given either as a
set

Gm = {Gn(z1),...,Gn(zuw)} 2zi€Z (2.8)

14




2.4 Controller Design

or as a desired pulse transfer function

B (2)

Gn(z) = e

(2.9)

When the desired response is given by (2.9) it is in the design only
evaluated at Z to obtain (2.8).

Loss Function

The frequency domain fitting is obtained by solving a least squares
problem in the frequency domain. With no weighting the used loss
function is given by

2Mm

J(O) =Y ler@n)® 2z €Z = {Z,27) (2.10)
k=1

where Z* denotes the complex conjugate set of Z. €, is the relative
closed loop model error defined by

G (Z) - Gn (Z)
Gcl (Z)

£r(2) = (2.11)

and ¢ represents a parametrization of the controller parameters.
The controller parameters are obtained by minimizing the loss func-
tion (2.10). The set G will be estimated in a frequency domain es-
timation scheme. By doing so and applying the estimates of G in
the controller design the FDAC is obtained. The parametrization is
chosen such that a least squares problem with an explicit solution is
obtained. It should be noted here that since the loss function has a
small constant number of terms, the design solution can not be ob-
tained by using recursive least squares. The obtained least squares
problem must therefore be solved for the controller parameters at
each sampling instant.

15




Chapter 2 Problem Setup

2.5 Process Estimator

To solve the resulting frequency domain least squares problem an
estimate of the process frequency response (2.4) has to be known. To
achieve this a bank of frequency point estimators is used. There is
one frequency point estimator for each element in 2. Each frequency
point estimator gives an estimate of the process frequency response
G(ei?") at the corresponding frequency ; € €.

Each frequency point estimator includes
e Band pass filters
e A low order parametric estimator

e Frequency response evaluation

These are described briefly below.

Band Pass Filter

A low order parametric process model is estimated for each point on
the Nyquist curve. To ensure that the model is fitted to the relevant
frequency range, data entering each estimator is band pass filtered
with a rather narrow band pass filter centered at the corresponding
frequency in .

Low Order Estimator

Since the estimator will use band pass filtered data, a low order
parametric process model can be used to model the process in the
corresponding filter pass band. Depending on properties of the pro-
cess, different model structures can be used. To estimate the param-
eters of the low order model, any recursive estimation algorithm can
in principle be used. Of the different algorithms that have been con-
sidered the normal recursive least squares method (RLS) has shown
the best properties.

16




2.5 Process Estimator

Frequency Response Evaluation

The estimate of the frequency response of the process is simply ob-

tained as R R i
G = {Gl(zl)...GM(zM)} 2j e 7

where Gj (2) is the current estimate of the low order process model
obtained from the band pass filtered data with center frequency w; €
Q.

17



Frequency Domain
Controller Design

3.1 Introduction

Most design methods rely on a process model on transfer function
or state space form. In this work the controller is instead obtained
by fitting transfer functions in the frequency domain. The process is
in the design represented by a discrete set of points on the Nyquist
curve of the process. At the same set of frequencies the closed loop
is determined for the chosen controller structure. By solving a least
squares problem in the frequency domain a fit is done to a desired
response. The controller parameters are obtained as the solution to
this least squares problem. Frequency domain fitting of this type
originates from Levy (1959). The formulation used here is based
on the work by Lilja (1989) where the technique is used for off-line
controller design.

18




3.1 Introduction

3.2 Preliminaries

Process

It’s assumed that the process is represented by G, a discrete set of
points on the process Nyquist curve defined by (2.4) or more shortly

G = {G(z)}j=1 % = e e 7, w; e
where Q and Z are defined by (2.2) and (2.3), respectively.

Controller

The RST-controller that is used in the design is given by (2.5)—(2.6).
There is, however, one new restriction imposed on the controller.
T (z) will be given by

T (z) = tgAs(2) (3.1)

The polynomial A,, which can be interpreted as an observer poly-
nomial, is specified by the user. Therefore T will be a fixed known
polynomial except for the gain ;. The number of controller para-
meters to be determined is

ng+ng+2 (3.2)
Introduce the notation

n. = (ng,ns,nr) = (ng,ns, n4,) (3.3)

for the polynomial degrees of the controller. When there are prespec-

ified factors in the controller the notation has to be slightly modified.

In this case _
R(z) = Rp(2)- R(2)
S(2) = 85(2)- 8(2)

where R, and S, are the prespecified parts of the controller. Includ-
ing the factor (z — 1)’ in R, introduces integrators in the controller.

(3.4)

19




Chapter 3 Frequency Domain Controller Design

The number of unknown controller parameters to be determined is
now
ng+ng+2 (3.5)

For this setup the following notation is used

nz = (ng,ng, nr) (3.6)

Desired Response of the Closed Loop System

When applying the controller (2.5) to the process model (2.1) the
closed loop response from command signal to process output is given
by (2.7). Our primary design objective is to make this response to
reference signals behave in a specified way. In the design the desired
response is represented by (2.8).

Controller Orders

Notice the similarity of this setup to that of the normal pole place-
ment design where

Y GT BT
U.~ R+GS  AR+BS

This closed loop transfer function is by polynomial identities made
identically equal to the desired response

The pole placement design requires that
degR > degA +degR, — 1 (3.7)

From (3.7) it is seen that this controller has to be at least of the same
order as the process provided the controller has integral action. The
method of frequency domain fitting encountered here has no such

20




3.2 Preliminaries

restrictions since it only makes an approximate fit. A low order
controller can be used for controlling a high order plant. To get
a good approximation for a given n. the design objectives must be
realistic, otherwise the design will not result in a closed loop system
close to the desired. For unrealistic demands the controller design
may result in an unstable closed loop system. Design considerations
are further discussed in Chapter 7.

3.3 Controller Design

In many designs the controller parameters are obtained by solv-
ing Diophantine or Riccati equations. Here a different methodology
is used. The controller design is formulated as an approximation
problem. A loss function formulated in the frequency domain is
minimized. The controller parameters are obtained as the solution
to a least squares problem which has an explicit solution.

Loss Function

The loss function used in the controller design should be chosen
so that it reflects the goodness of the fit to the desired response.
Since the frequency response of the process is only known at the
frequencies in €2 the loss function will be based on the fit only at
those frequencies.

Using the relative closed loop model error £,(z) defined by (2.11) a
natural choice of loss function is given by

N
J(3) =Y ler@n)® 2 €Z (3.8)
k=1

The set of approximation points Z should be chosen as to guarantee
a real valued set of controller parameters. Since €,(z) is a complex
quantity this is not necessarily true. A real ¢ is obtained by choos-
ing Z as a self conjugated set of approximation points. A normal
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Chapter 3 Frequency Domain Controller Design

complex least squares problem with an explicit solution is then ob-
tained.

By definition €, is a relative error. How does this reflect the result-
ing fit? To contribute equally to the loss function a larger deviation
is allowed for frequency response points far from the origin than for
frequency response points near the origin. This is easily seen by
looking closer at (2.11). The numerator of (2.11) represents the dis-
tance between the actual and the desired response. This is divided
by G.;, giving a larger contribution of &,(z;) for small values of G,
than for large values for a given deviation |G.; — G,|. In practice the
fitting will not be made at frequencies where G; is very small. Also
it is usually desired that G, has unit amplitude at low frequen-
cies. Therefore the loss function (3.8) can in most cases be used.
In specific cases where weighting is preferred, the loss function to
minimize is chosen as

N
Jo(D) =) |vrer(zn)l® 2z €Z (3.9)

k=1
where v}, is the weighting of £,(23).
Regression Model

Rewriting the expression (2.11) for &, gives

6r(e) = 1= Gn(@)Gua) = 1~ Fa)) 22— )5 (.10
where G (2)Ro(2)
m(2)Rp(z

FR (Z) = G(Z)AO(Z) (3 11)
FS(Z) — Gm(Z)Sp(Z)

Ay(2)

The transfer functions Fr and Fg will never be used to filter signals.
They will only be evaluated at Z in the design to obtain a set of
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3.3 Controller Design

complex values. Therefore causality and stability of Fr and Fs is
not an issue here. Notice also that Fr and Fg are known transfer
functions when the process response G is known.
Define the controller parameter vector ¢ by
_ (1 i T'np o Sng )T
19_[25 oo To‘] (3.12)

Also define the regression vector by

8(z) = (9r(2) 95(2)) (3.13)

where
or(z) = Fr(z) (2" 2 .. 1] (3.14)
¢S(Z)=Fs(z)(z”3 zns—l 1] (3.15)

The expression for €, then takes the form
e(z2) =1-¢(2)0 (3.16)

Notice that &, is linear, or rather affine, in the controller parametri-
zation .

The parameter #, acts as a proportional gain in the closed loop re-
sponse (2.7). Therefore the nominal value of this parameter will
never be zero. Problems of dividing by zero in (3.12) should there-
fore never occur. A simple test for this is otherwise easy to incorpo-
rate into the controller design.

The loss function (3.8) can be rewritten by using the linear in the
error regression model (3.16). Let ® denote the Hermitian conju-
gate of @ i.e. the complex conjugate transpose of ®. By making the
fit at the approximation points given by Z the loss function can be
written as

J(®) = EZE, = (y. - ®.8)" (y. — ©.0) (3.17)
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where

¢(21) 1 8,«(2’1)
D, = s WYe = , Ee = ,ZjEZ

¢(zn) 1 &r(zn)
(3.18)

This can be minimized by completing the squares. The explicit so-
lution is given by

d = (0fo,) toly, (3.19)

With the loss function (3.9) the explicit solution is instead given by
D = (HVe,) oV, (3.20)

where V = diag(|v1|% ..., |vn|?). It remains to specify the set Z that
ensures a real valued solution.

Complex LS Problem

To get a least squares problem that is not underdetermined, the
equation system must have at least np +ng+2 rows. Using only the
set Z as approximation points will not guarantee a real valued so-
lution. However, by choosing a self conjugated set of approximation
points on the unit circle the parameters to be determined, ¢, are
guaranteed to be real valued. Let the approximation set be given by

7. = (2,7 (3.21)

where * denotes pure comp_lex conjugation and Z is the set (2.3)
specified by the user. Since Z is a self conjugate set, the matrices in
(3.18) can be partitioned as follows

(I)M Ym EM
@, = . = B, = 3.22
[cb* ] v [m] [E ] (8.22)

M M
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where
¢(z1) 1 &r(21)
D, = : , Um =YW= | , By = :
¢ (2m) 1 Er(2m)
(3.23)

By using the approximation set (3.21) the matrices involved in the
explicit solution satisfy

o2, = 2Re(®E @)
q’f‘/’c = 2Re (P ¥u)

From this we have
9 = (((qu)C)*)_l(q)CWC)* = (q)qu)C)_lq)cwc = ¥
The solution is guaranteed to be real.

If the software used to implement the adaptive controller is able
to handle complex arithmetics, the formulation above can be used
in the controller design. Since this is normally not the case a real
valued formulation is called for.

Real Valued Formulation

In order to obtain a real least squares problem formulation notice
that premultiplying with a unitary matrix @, (@ ' = @), does not
change the 2-norm of a matrix. This is seen from

1/2

1QM|l; = 5(QM) = (Amas{ (RM)" QM)

= (Amax [ MEQEQMY)™? = (Amae{ MEM})"*

= 6(M) = ||M]|,
where & and A,,,, denotes respectively the maximum singular value
and maximum eigenvalue of a matrix. Therefore with a unitary
matrix

min [Ec|l, = min |QEc||,
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Also

~

D = arg min||QEe||, = arg min |tQE|,

for any non zero constant 2 so the solution is independent of k.
Using those two properties the complex least squares problem is
transformed into a real least squares problem. The obtained system
of equations is given by

@Y = y—E (3.24)

In this all elements are real. This is obtained by chosing

1 (Le I
- = 2
? ﬁ(IM —IM] and

Il

1
V2

The matrices in (3.24) are then given by

@ = kQD, = [Re@m] =

Imd,,

(Reg(z1) ) ( Regr(z1) Regs(z1) )

Reg(zy) Regr(zm) Reds(zy)
Im¢(z1) Im¢R(z1) Im¢s(21)

{ Im@(zy) ) Imor(zm) Im@g(zym) )
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’ReFR(zl)(z’;f* 1] ReFS(zl)[z’;S 1]‘
ReFR(zM)(:z;;R 1] ReFS(zM)(:zﬁS 1]
) ImFR(zl)(z’;R 1] ImFS(zl)[z';S 1]
\ImFR(zM)(.z&R 1] ImFS(zM)(.zﬁg o1
(3.25)
fWM\
Rey,, 0
Y = kQy, = [ImWM] = (3.26)
\ O 7

Notice that only approximation points belonging to Z appears in the
matrices above. Therefore it is in the controller design enough to
specify the set Z. The controller parameter vector is given by (3.19)
or (3.20) with @, and y,. replaced by ® and y. It is easily seen that
the number of equations are 2m in both the complex and the real
least squares formulation. A necessary condition for solvability is
therefore that the number of fitting frequencies satisfy

OM > np+ng+2 (3.27)
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Interpolating Solution

When @ is a square and nonsingular matrix we get a zero residual
solution. This is equivalent to an interpolating solution i.e. the fit
is exact at Z. One way to see this is by computing the residuals

Eres = E(&, G, Z) = l//—q)& = W—CD((I)T(I))_l(I)Tl// =
=y-00 o ToTy =y-y=0

When @ is non square i.e. the number of frequencies, M, is larger
than necessary, the fitting error will normally be different from zero
for all frequencies. This does not imply that the fit to the desired
frequency response curve is worse than for the interpolating solution
since it is the fit for all frequencies that determines the behavior
of the closed loop. Simulations has, however, indicated that the
frequency region in which € lies is far more important for the result
then is the number of frequency points M.

3.4 Example

Above it is stated that the closed loop specifications must be reason-
able. What is meant by this is that both process characteristics and
controller structure give restrictions on the obtainable performance.
To exemplify this consider a process described by

1

T = o

The sampled process has —180 degrees phase lag at w ~ 0.63 rad/s.
If a critical frequency larger than this is wanted in the loop gain,
the controller must give phase lead around this frequency. Let the
controller be specified by

ne = (1,2,2)

=z-1

&
e
N

[\
—
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3.4 Example

i.e. a second order controller with integral action. Let the desired
response be based on the dominant pole design described in Chapter
8. One choice of desired response is then given by

w2, (20m)°

¢ .
Gn(s) = &5 L73wms + 03, §3+2.43(2001)s% +2.47(20m)%s + (20,)3

The observer polynomial also has to be specified. Since it affects
the response to disturbances it should not be chosen too slow. Ifit is
chosen fast, the obtainable performance from reference value will be
reduced. The Bessel filter pole pattern is used also for the observer
polynomial. The observer is of same order as the 7T'-polynomial giv-
ing

Al(s) = 2+ 1.73(0.50,)s + (0.50,,)>

where the pole radius has been chosen to half that of the dominating
poles of the desired response. The second order observer dynamics
will then have approximately the same time constant as the desired
response which is of order 5. Normally the sampling interval should
be chosen with respect to the desired response. Since the desired
response will not vary to much, a fixed value 2 = 1 is used.

Let the desired bandwidth vary and study the closed loop response
when applying the designed controller. The frequencies of fitting
should in general be chosen with respect to the desired response.
The frequency set should, however, not include too high frequencies.
If this is the case an unstable controller often results. The reason for
this is that a large amount of phase lead is required by the controller
to fit at high frequencies. Here a fixed set is chosen, namely

Q={01 03 05}

In Figure 3.1 the step response and control signal of the obtained
closed loop systems are shown when chosing the pole radius w,,
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1.5

15 20 25 30 35 40

3 T
1 ;.l' _________
O 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Figure 3.1 Step responses and control signals, of the process (solid), of
the closed loop when w,, = 0.5 (dashed), w,, = 0.7 (dotted) and w,, = 0.8
(dash dotted)

to {0.5 0.7 0.8}. The behavior for @,, = 0.5 and 0.7 is good. For
@, = 0.8 there is ringing in the control signal because the controller
contains a pole on the negative real axis in the unit circle. If o,
is chosen larger than 0.85 the controller as well as the closed loop
system is unstable. By specifying the controller to have integral
action it is hard to get the required phase lead. Because of this the
desired response can not be specified much faster than the open loop
response for a second order controller with integral action.
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3.5 Summary

3.5 Summary

A controller design formulated as an approximation problem in the
frequency domain has been derived in this Chapter. The controller
parameters are obtained as the explicit solution to a least squares
problem. To perform the design the following quantities have to be
specified.

The desired response G,,.
The sampling interval A.
The approximation set €.
The controller structure n..

The observer polynomial A,.

In the design there are no restrictions in the choice of controller
orders. If, however, large phase advance is required for a high closed
loop bandwidth the obtainable closed loop bandwidth is limited when
using a low order controller. Since this is a fundamental property it
is not due to the particular design method considered here.
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Frequency Point
Estimation

4.1 Introduction

The frequency domain controller design is based on knowledge of a
set of points on the process frequency response curve. Therefore it
is not necessary to estimate a full order parametric process model.
There are different possible ways of obtaining the process estimate.
The perhaps most obvious is to perform spectral analysis using the
Fourier transform. This method does, however, in the normal case
give biased estimates in closed loop estimation. Also it requires
long data sets in order to get good estimates. In the adaptive case
we want to get a good model of the process in a fairly short period of
time. Also the used method should not require open loop estimation.
If the process order is known, another way would be to estimate a
full order parametric process model. This could then be evaluated
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4.1 Introduction

at the set of frequencies 2 to get the desired process representation
G. If the process is of high order, the corresponding model of high
order will require substantial excitation in order for convergence. A
good property of the estimator would be to require excitation only
in frequency regions of interest. This is not the case if a full order
process model is used on a high order plant. Taking these consider-
ations into account the following scheme naturally emerge. Let the
estimation be split up into a bank of estimators. Each of these es-
timators model the process in a narrow frequency band around the
frequencies in 2. Therefore the number of estimators is determined
by the frequency set 2 used in the controller design. A low order
parametric process model is used in each estimator. The data en-
tering each low order process model estimator is filtered by a band
pass filter centered at the corresponding frequency. The widths of
the band pass filters must be narrow enough in order for a low or-
der process model to be fitted and wide enough for the filter to have
reasonably short response time. A narrow filter has both a pulse
response with long duration and poles near the stability boundary.
Stability problems will easily occur because of numerical sensitivity
if an insensitive filter implementation is not used. An insensitive
filter implementation is obtained by for example splitting up the
filter into low order parts and implement it on cascade or parallel
form. The low order process models are estimated using recursive
least squares since this algorithm has shown good properties for the
estimation task.

4.2 Process Estimator

In the controller design the process is represented by (2.4). This
is just a discrete set of complex values that are points lying on the
process Nyquist curve. The process has to be well modeled only
in neighborhoods of the frequencies in 2. This property is used to
choose the estimator structure. The estimator is split up into a bank
of frequency point estimators. Each of these models the process in
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a narrow frequency band around one of the frequencies in Q. The
estimation of each element in G is therefore normally separated
from the estimation of the other elements. To make this feasible,
the data entering each estimator is band pass filtered. Each of the
frequency point estimators will therefore use

e Band pass filtered data
e A low order parametric process model

e The recursive least squares algorithm for the parameter esti-
mation

e Frequency response evaluation to obtain G(zj)

Band Pass Filtering

The filtering problem is treated in Chapter 6. Here only some re-
marks are made. The data entering each frequency point estimator
is band pass filtered according to

Yi(2) = Hf(2)Y (2)
Up(2) = Hy(2)U(2)

using some filter Hy. The same filter is used for filtering the pro-
cess input and output thereby keeping the process transfer function
properties in the filtered signals. At frequencies outside the filter
pass band there will be nearly no information in the filtered signals.
It is then clear that the filtered data is well suited for obtaining a
process model in the pass band of the filter Hy.

Low Order Models

To obtain an estimate of the frequency response at a particular fre-
quency ®; € €2 a low order parametric process model is estimated
around this frequency using the band pass filtered process inputs
and outputs. This low order model should be given a structure that
is depending on the characteristics of the process around ;. Differ-
ent structures can therefore be used for the same process at different
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4.2 Process Estimator

frequencies. Some examples of possible structures are

blz + bz b —d blz

3

D) » 25
z Z+a 22 +a12+as

Since the process in many cases is unknown it may seem unrealistic
to require the model structure to depend on the characteristics of
the process. In many cases it is, however, enough with quite few
parameters. To decide on the necessary model complexity different
aspects should be considered. The width of the band pass filter is
important since it dictates the frequency region to which the model is
fitted. More parameters are normally needed for wider pass bands.
At high frequencies the process has sometimes large phase lag. This
might be handled by introducing a number of delays in the model at
high frequencies. The choice of model structure is further discussed
in Chapter 7.

Low Order Estimator

To be able to estimate the parameters of the low order models each
one is written on regression form in the usual way, see for instance
Ljung (1987).

ye(t) = 97 ()6

where for instance the model structure

b

Z2+a

(2) -

To estimate the parameters of this regression model the RLS-algo-
rithm is used. The outcome of each estimator is a transfer function

give
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An estimate of the frequency response of the process at ®; is from
this model easily obtained as

G(zj) = G(e™™) = Gj(z)) 2j € Z

Here éj is the low order parametric model estimated around the
frequency w; € (0.

Estimation Schemes

To estimate the parameters of the low order models in principle any
recursive identification method can be used. A main concern is to
obtain a robust adaptive controller partly by choosing a robust es-
timation scheme. For this, different schemes have been evaluated
during the work. Especially directional forgetting schemes like those
by Héagglund (1983) and Kulhavy and Karny (1984) seemed promis-
ing. Directional forgetting schemes are intuitively interesting since
they discount old information only in directions of new incoming
information. In this way old information is not lost in directions
that are seldom spanned by the regressors. In directions that are
frequently spanned by the regressors the new incoming informa-
tion replaces the old and the stored process information is basically
the most recent in all directions. Unfortunately both the scheme
by Karny and Hégglund have undesirable properties for estimation
on narrow banded signals. The scheme by Karny have a tendency
of giving biased estimates with noticeable variance even for rather
good excitation. In the scheme by Hégglund the P-matrix converges
to a diagonal matrix a-I. The limiting case corresponds to a gradient
estimation scheme which has approximately the same properties as
the scheme by Karny in the estimation application considered. Fur-
ther, all of the eigenvalues of the P-matrix have to approach the
value a before the convergence to a - I occurs. For narrow banded
signals only certain directions will be spanned frequently by the
regressors. Some eigenvalues will then quickly approach zero and
so identifiability is nearly lost in those directions until all eigen-
values approach a. Since the eigenvalues corresponding to seldomly
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4.2 Process Estimator

spanned regressor directions decrease slowly, this will in many cases
take considerable time.

The normal recursive least squares scheme has, however, shown
good properties when the number of estimated parameters is small.
Therefore this scheme is used in the low order estimators. When
the data is not enough exciting covariance windup occurs for this
scheme. This should be taken care of by monitoring the amount
of excitation and switching of the estimation when the excitation is
poor.

4.3 Weighted Least Squares with Exponential
Forgetting

The process is assumed to satisfy
y(t) = 9T (£)6°(2) +en(?) (4.1)

i.e. it can be modeled by a time varying regression model corrupted
by noise. The noise is assumed to be a sequence of independent
random variables.

In the weighted least squares problem the following loss function is
minimized with respect to 6.

¢

URDS a0 =0T M0 = (¥ ~@0)" V(Y - 06) (42

where
y(1) pT(1)
Y(t) = : ,D(t) = : (4.3)

y(¥) o (t)

and the measurement variance matrix
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(w(t,1) 0 ... 0 )
0 .ot
Vo(t) = _ (4.4)
: .. 0
. 0 . 0 o))

Here w(t,i) should equal the measurement variance at time i given
the current time ¢. For a time invariant plant w(¢,7) is independent
of ¢t. The explicit solution is given by

~ -1
6 = (d)TVajlcb] oTV:ly (4.5)

The formulation above covers different types of least squares schem-
es. By the specific choice

o) = (1) v (4.6)

where v(i) = (i, i), we get the least squares problem with exponen-
tial forgetting and measurement noise weighting. The ordinary LS
problem and LS with exponential forgetting are special cases given
by

v(t)=1,4A=1 : ordinary LS

v(t) =1 : LS with exponential forgetting
Let the P-matrix be defined by

P = (@TOVa o)) (4.7)

For the choice (4.6) the recursive updating formula for the inverse
P-matrix become

_1\-1
) ] 1 1, 1 T
=P(t-1)" -(1-A)P(E-1)"+—0()p" ()

v(t)
(4.8)

r———
A
VS
~ A )
I
-
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4.3 Weighted Least Squares with Exponential Forgetting

In this the first term represents old information, the second term dis-
counted information and the third term new incoming information.
It is seen that information is forgotten in all directions. A should
therefore not be chosen too small. For a constant parameter process
A = 1 should be used since all incoming information describes the
process properly. In the low order estimators the ordinary recursive
least squares with exponential forgetting will be used. The familiar
algorithm is given here for easy reference

ALGORITHM 4.1—Recursive Least Squares
b(t) = 6(t—1)+K(2) (y(t) - " (1Bt - 1))

) __ Pt-De®)
K(t) = P(t)o(t) = A+oT)P(t-1)p(t)

P(t) = (I -K(t)p" (1)) P(t-1)/A =

i P(t — 1)p())p"(OP(t — 1) 1
- (P(t"”‘ 79T OP(E- o) )I

4.4 Example

To obtain a well working adaptive system it is necessary that the
frequency point estimates are good. If not, the controller design
may result in a poor controller. The estimate of G will be good if the
structure of the low order models is chosen properly. Simulations
have indicated that a two parameter model is seldom sufficient since
the low order model has to give a good fit in the whole filter pass
band. With too many parameters the narrow band signals are not
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-1 -08 -06 -04 02 0 0.2 04 0.6 0.8

Figure 4.1 Time evolution of the frequency response estimates for the
three parameter case. 0 < ¢ < 30 (dotted) , 30 < ¢ < 500 (solid)

sufficiently exciting. Three parameter models have, however, shown
good properties. To exemplify this consider the process

Let the frequency points corresponding to © = {0.1 0.5 0.7} rad/s
be estimated in closed loop using a constant gain controller and the
sampling interval A~ = 1 sec. The band pass filters proposed in
Chapter 6 are used to filter the data. The parameters of the filters
are the same as for the examples in Chapter 8 i.e. fourth order filters
with pulse response duration of approximately 50 samples are used.
Using the same three parameter model structure

bljZ
22 +ayjz + agj

for all frequencies, a 500 sec simulation were carried out using a
PRBS command signal. The time evolution of the frequency point
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Figure 4.2 Time evolution of the frequency response estimates for the
two parameter case. 0 < ¢ < 30 (dotted) , 30 < ¢ < 500 (solid)

estimates are shown in Figure 4.1 where the estimation has been
performed in closed loop using a constant gain controller. The be-
havior for the first 30 samples are shown with a dotted line and the
following with a solid. After 30 samples, corresponding to a single
command signal step in the simulation, the estimates are good with
nearly no bias. Notice that there are nearly no bias or variance
in the estimates for larger t. By instead using the two parameter
model structure

Gi(2) = 27220

Z+aij

the behavior in Figure 4.2 is obtained. The estimates have notice-
able bias and variance. The models are not able to capture the pro-
cess behavior accurately in the filter pass bands. If the controller
design does not require very accurate process estimates, i.e. the con-
troller design is robust to estimation errors, a two parameter model
may be used. This typically corresponds to low closed loop demands.
For high closed loop demands accurate estimates are often required.
In this case models with three parameters or more should be used.

41




Chapter 4 Frequency Point Estimation

4.5 Summary

By using band pass filtered data low order parametric models can be
fitted around the frequencies in 2. An estimate of G is obtained by
evaluating the frequency response of the models at the correspond-
ing frequencies. To use the estimators the following quantities have
to be specified.

e The structure of the low order models G;(z)
e The initial parameter values éj(O)

¢ The initial P-matrices P;(0)

e The forgetting factor A

How to choose these will be discussed in Chapter 7.
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The Complete
Adaptive Scheme

5.1 Introduction

Many adaptive schemes are based on design methods originally in-
tended for off-line controller design, see for instance Astrom and Wit-
tenmark (1989). This is true also for the frequency domain controller
design encountered in Chapter 3. In Lilja (1989), the method is used
in different ways to do controller design off-line. The focus is on ob-
taining low order controllers for higher order processes. A process
model then has to be known prior to the design. To obtain an adap-
tive scheme based on this design method, the frequency point esti-
mator discussed in Chapter 4 is used. From this a process model is
obtained on-line. Based on the process model the frequency domain
controller design can be applied on-line.
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5.2 The Complete System

A picture of the complete adaptive scheme is shown in Figure 1.1.
The building blocks are

e Band pass filter bank
e Frequency point estimator
e Frequency domain controller design

e Time varying controller

The scheme is similar in structure to many other adaptive schemes.
A controller design method intended for off-line design is applied.
To do this the necessary information about the process is supplied
by an estimator. New here is the focusing on frequency domain
description. Since the estimated frequency points are obtained from
low order parametric process models some time domain concepts are
used also in this scheme. The reason for not using spectral or other
similar frequency domain methods for the process estimation is the
demand on obtaining a good process model in a fairly short period
of time.

Band Pass Filters

All process data are band pass filtered before entering the estimator.
For each frequency in € a specific band pass filter is used. Each
filter should have the pass band center frequency equivalent to one
of the frequencies in 2, see Chapter 6 for details. By using band
pass filtered signals low order models can be used in the frequency
point estimation.

Frequency Point Estimator

The frequency point estimation is split up into a number of estima-
tors. Each of these estimates a low order parametric model using
band pass filtered data. The frequency point estimates are obtained
by evaluating the frequency response of the low order models at the
corresponding frequency, see Chapter 4.

44




5.2 The Complete System

Frequency Domain Controller Design

The controller design is formulated as an approximation problem in
the frequency domain. A fit between the closed loop frequency re-
sponse and a desired response is obtained by formulating the design
as a least squares problem, see Chapter 3. The controller parame-
ters are obtained as the explicit solution to this least squares prob-
lem. In order for the resulting controller to be good the frequency
point estimates must be good. Also the desired response must be
chosen properly, see Chapters 7 and 8.

Controller

The controller will normally be of low order since the controller de-
sign is primarily intended for low order controllers. It should also
have integral action since in a practical situation this is required
to obtain zero steady state error in the presence of low frequency
disturbances. The obtainable closed loop bandwidth will then be re-
duced because of the extra phase lag introduced in the loop transfer
due to the controller integrator.

Excitation Monitoring

The data entering the estimators are band pass filtered. Distur-
bances outside the filter pass band will be filtered out in the es-
timator data. This suggests that the signal to noise ratio for the
estimator data is good if the the command signal give enough exci-
tation. If, however, the only system excitation comes from noise, this
is not the case. To avoid such situations a safety net that monitors
the amount of excitation should be used to get better performance.
What measures can then be used to model the amount of excitation
or rather the lack of excitation? It seems obvious that if the com-
mand signal is constant over a period of time it does not give much
excitation. Since the response to an earlier command change may
still be in progress, enough excitation for improving the estimates
may still be present in the filtered data. Therefore the command
signal alone is not easily used to monitor the amount of excitation.
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If, however, the process output is close to the command signal for
a period of time there is very little excitation. This is because the
process output then has frequency content only at very low frequen-
cies. A good detection measure for lack of excitation would therefore
be to have near zero control error. Since disturbances give rise to
non zero control error the steady state output variance should be
taken into account when using such a measure. Also it will only
detect near total lack of excitation. There should exist some method
that detects lack of excitation in different frequency regions. This
implies either computing the spectrum of the interesting signals or
using band pass filtering to get the frequency components of the in-
teresting signals.

From the construction of the frequency point estimator we have al-
ready access to band pass filtered data. Since this data represents
both the frequency content in an interesting frequency band and is
also the data used in the estimator it is particularly good for moni-
toring the current amount of excitation as seen from the estimator
around a specific frequency. Also a good property with using this
is that the excitation can be checked separately in the different fre-
quency point estimators.

5.3 Summary

In the previous chapters the frequency domain controller design and
the frequency point estimators have been discussed. The filtering
problem and guidelines for choosing the different parts of the adap-
tive controller is discussed in Chapters 6 and 7. In Chapter 8 the
complete system is evaluated through a number of examples.
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6.1 Introduction

Using the pure form of many adaptive schemes without taking the
filtering question into account will result in an overall behavior that
is very much dependent on the nature of the exogenous signals act-
ing on the system. However, with carefully selected filtering, exci-
tational robustness can be achieved both with respect to command
signals, disturbances, and also to some degree to unmodeled process
dynamics. For the process estimator this is understood from the fact
that a model will be fitted primarily to the frequency regions that
are excited. Therefore data entering the estimator should contain
energy only in frequency bands where a good model description is
important and possible to achieve.

Disturbances acting on the system should be taken care of sepa-
rately in all of the blocks of the adaptive controller. In the estimator
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this is done by filtering the data entering the estimator to suppress
disturbances and focus on the frequency interval in which a good
model of the process is desired. In the controller, which is not using
the estimator filtered data but instead the sampled process output
and command signal, disturbances are taken care of by using the
internal model principle when determining the controller structure.

Unmodeled dynamics, which in many cases is primarily concen-
trated to higher frequencies, is handled in the estimator in the same
way as disturbances i.e. by filtering. One of the tasks of the con-
troller is to give a closed loop system that is insensitive to process
parameter uncertainties. Unmodeled dynamics is therefore in the
controller design taken care of by using a robust design, meaning
that both design method and design objective are carefully chosen.

6.2 Filter Design Methods

Below some of the general filter design techniques encountered in
the literature is shortly summerized, see for instance Oppenheim
and Schafer (1989). It’s assumed that the filter specifications are
given in discrete time as an amplitude frequency response or am-
plitude tolerance scheme with level restrictions for pass bands and
stop bands that has to be met. Two well known filter types are
recognized. The finite impulse response (FIR) filter defined by

and the infinite impulse response (IIR) filter which has the form of
a rational pulse transfer function
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The FIR filters have advantages like general linear phase solutions
and ability to fit to rather arbitrary frequency responses. However, a
large number of parameters is required when fitting to sharp filters
with narrow transition bands between stop bands and pass bands.
Also closed form solution do not in general exist. This is not a large
disadvantage because of the existing computational power of today.

The IIR filter offers in some cases closed form discrete time solutions
and in other, which may also be closed form, relies on continuous
time IIR filter design in which much theory is available. Algorithmic
solutions obtained by the use of computer programs are also in some
cases required for the IIR filter designs. For standard frequency
selective filters like low pass, high pass and band pass filters this
is, however, not necessary. For the IIR filter design the procedure
below can be used.

A prototype continuous time (low pass, lp) filter is chosen first.
The discrete time specifications are transformed, depending on the
method, into specifications on the continuous time filter, which is
then determined through the use of continuous time filter design.
From this point two somewhat different approaches can be used

I Perform algebraic frequency transformations on the designed
(Ip) filter in order to obtain a continuous time frequency selec-
tive filter of the desired type

Gr(s) = Gp(s')

§'=y(s)

The discrete time filter is obtained using the impulse invari-
ance method or bilinear transformation described below, or some
other method.

II  Transform the continuous time (Ip) filter into a discrete time
(Ip) filter by the use of the methods described below giving

H;,(2)
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Obtain the desired frequency selective filter by the use of dis-
crete time algebraic frequency transformations giving

Hi(@) = Hp)|,_.,

Two of the methods for transforming between continuous and dis-
crete time filters are described next.

Impulse Invariance Design

Given a continuous time filter G.r(s) meeting the specifications,
make a partial fraction expansion

The discrete time filter is now simply obtained as

o
z —esih

Hf(Z) = hz
Jj=1

where A is the sampling interval. An advantage of the method is
its simplicity and that the filter is given directly on parallel form,
which is a good filter implementation form. Also the frequency scale
is transformed linearly making the starting point conversion from
discrete time to continuous time response easy. For complex poles
each pole pair gives a second order transfer function with real coef-
ficients to implement. A large disadvantage with the method is the
aliasing effect introduced in the transformation. This makes the
method suitable only for band limited continuous time filters, which
has a negligible gain above the Nyquist frequency.

The term impulse invariance steams from the fact that the impulse
response of G,y is

n
hep(t) = ) aje
j=1
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while the pulse response of Hy is
i k
he(kh) = B> a; (e5i%)" k>0
j=1

The impulse response of the continuous time filter equals, at the
sampling instants, the pulse response of the impulse invariant filter
except for the gain A which is due to the gain 1/h of the sampling
process.

Bilinear Transformation Design

The bilinear transformation is performed, if the precautions given
below are taken into account, simply by substituting the Laplace s
in the transfer function of the designed continuous time filter with

S,_gz—l
T hz+1

The bilinear transformation has the disadvantage of distorting the
continuous time frequency scale in the transformation to discrete
time. Therefore the important frequency points of the discrete time
frequency specifications must be prewarped according to

2 wqh

h 2

prior to designing the continuous time filter. These transformed
frequency points for pass bands, stop bands etc., are to be used in
the filter design, thereby ensuring that when applying the bilinear
transformation to obtain the final filter, the frequency points of in-
terest will be warped into desired places on the frequency scale. In
this method the s-plane imaginary axis is mapped onto the unit cir-
cle in the z-plane and thereby ensuring that a stable discrete time
filter is obtained from a stable continuous time filter.
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6.3 Filtering and Robustness

To work well in practice all controller designs should be robust to
disturbances, noise, and unmodeled dynamics. For nonadaptive de-
signs only unmodeled dynamics can destroy the stability, distur-
bances will only be more or less attenuated. In the adaptive case also
disturbances, noise, and lack of command signal excitation can cre-
ate instability if precautions are not taken to prevent it. Since many
factors can destroy the behavior of an adaptive controller, it should
be designed so that each separate block of the controller is designed
to cope with those problems, see also Wittenmark (1988). Therefore
a robust estimator as well as a robust controller design should be
used. One important part of this is filtering which is mostly asso-
ciated with the estimator. The controller design is made robust by
proper choice of design method, controller structure, and closed loop
specifications. It is important to note that specifications that are
hard to meet easily leads to a sensitive solution even if a good design
method is used. An implication of this is that adaptive controllers
need to be fed with some amount of proper information in order to
work well. They can not be based on a pure black box approach if
the behavior is expected to be satisfactory. It would of course be
possible for the controller to make experiments on the process and
based on the results decide on a proper desired response, compare
for example with the relay feedback autotuner in Astrém and Hig-
glund (1984). This would, however, be more of a startup procedure
than a part of the adaptive scheme following it, see Lundh (1991).

In the adaptive controller the estimator must deliver a process model
that is accurate in some frequency band determined implicitly by the
desired response and explicitly by the corresponding loop transfer
function. This loop transfer function is in the two-degree of free-
dom controller case possible to get exactly only by solving the de-
sign equation, which requires a process model. Therefore frequency
regions of interest is in many cases determined from the desired
response even if the loop transfer function would be more appropri-
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ate to use. Physical insight of the process and disturbances acting
on the system is used to select proper design method, closed loop
specifications and controller structure. Because the process model
is often simplified, the frequency region over which we want a good
process model must be specified. The effect of filtering in adaptive
controllers is discussed for instance in Wittenmark (1988).

Disturbances

Assume that the process can be described by

y(t) = G(Q)u(t) +v(¢) +d(¢F)

where the disturbances acting on the system are separated into one
stochastic term v(¢) and one piecewise deterministic term d(¢). The
stochastic term can often be modeled by

v(t) = H(z)e(t)

where e(t) is a sequence of uncorrelated random variables with zero
mean.

Piecewise Deterministic Disturbances

Piecewise deterministic disturbances can be generated by

* -1
() = Hy@)b(0) = 34550 = 42408,

where the reciprocal polynomials are defined as
A*(g7') = ¢"A(g7") , n = degA(q)

and J; is a sequence of pulses with unknown amplitude and distri-
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bution in time. Some examples of generating filters are

Step disturbance : Hy(q) = %
. hq
Ramp disturbance H;(q) = G-12
o sin(wh)q
Sinusoidal disturbance : Hy(q)

T2 2cos(wh)g+1

To reduce the effect of d(¢) to a finite length effect in the data en-
tering the estimator, data are filtered by

Hy(q) = Az(a™) (6.1)

To see that the desired property is obtained note that filtering d(%)
gives
H¢(q)d(¢) = ¢~ %By(q™")5s(?)

which has a finite impulse response with length given by d; and the
order of By(q) to each occurring disturbance pulse. As is seen by
the examples this response time is in most cases fairly short when
this type of filter is used. For low frequency piecewise deterministic
disturbances the filter A;(q) will, however, have high pass character,
accentuating high frequency disturbances in the data which can for
instance originate from the stochastic noise term v(¢). To prevent
this, the filter should be modified in order to filter out high frequency
disturbances. This can be done by using the filter

o~ 48

where a Af(q) gives low pass filtering. For disturbance pulses to
have a limited time effect on the filtered data, As(q) should have
fast dynamics since the finite impulse response of (6.1) will then
pass through a fast dynamic system resulting in short response time.
Perhaps of more importance for the choice of upper cut off frequency

54




6.3 Filtering and Robustness

is the fact that choosing it too high will result in the estimator trying
to make a model fit at too high frequencies. Taking this into account,
A should include factors that breaks down the frequency response
at a lower frequency. Since steplike load disturbances are often
present in control systems, A;(q) should in general also include the
factor (g — 1) giving high pass character to the filter H; for low
frequencies. All taken together the filter H; will in most cases be of
ordinary band pass filter type possibly including a notch at known
disturbance frequencies.

Based on these considerations a rule of thumb is to choose the pass
band lower frequency ws; at least one decade below and the pass
band upper frequency ws, 2-10 times the desired bandwidth of the
closed loop system.

Stochastic Disturbances

The standard least squares method will give unbiased estimates
only if the disturbance acting on the system correspond to an un-
correlated equation error sequence when the process is described on
regression form. This is satisfied if the process can be described by

Bl
Y= 4T A

where e is an uncorrelated noise sequence. In the case of colored
noise the extended least squares, recursive maximum likelihood or
instrumental variable methods may be used to get an unbiased esti-
mate of the process parameters when a parameterized process model
is used.

Anti Aliasing Filters

In digital control systems high frequency signals are folded into low
frequency signals due to the aliasing effect, if this is not prevented
by the use of anti-aliasing filters. The resulting low frequency sig-
nals can be considered as low frequency disturbances which will give
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undesirable control actions due to those virtual disturbances. In or-
der to prevent this the analog signals are filtered by an anti-aliasing
filter before sampling. The anti-aliasing filter can in most cases be
approximated by a time delay which if it is significant must be taken
into account both in the estimator by the choice of process model, and
in the design, by the choice of specifications which should be based
on this process model. As a rule of thumb the anti-aliasing filter can
be neglected in the design if the desired closed loop bandwidth lies
at least one decade below the bandwidth of the anti-aliasing filter,
see for instance Wittenmark and Gustafsson (1991).

Anti Reset Windup

Physical limitations on sensors and actuators makes the closed loop
system become nonlinear whenever the signals goes beyond those
limitations. When the controller has integral action a frequently
occurring situation is that of reset windup in which the integral
part is permitted to grow despite the fact that the actuator signal
is limited. This results in unwanted overshoot in the response. To
overcome this problem anti reset windup which is a kind of control
signal filtering should be used, see Astrom and Wittenmark (1990)
or Rundqwist (1991). Consider the standard form RST-controller

Ru = -Sy +Tu, (6.2)
Now let the control signal limitation be described by
u; = f(u)

where u; is the limited control signal entering the system and £ is
for example described by the saturation function

f(u) = min(umax, max(Umin, 1))
Anti reset windup is now obtained by using the controller scheme

Agru = (Agr — R)u; — Sy + Tu,

u; = f(u) (63)
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where u; is the control signal used and A,, is a stable polynomial
which can be seen as an observer polynomial for the controller. It
should be noted that this scheme is only intended to cope with non-
linearities such as saturation. If the function f is nonlinear over the
whole working space, local feedback around the actuator should be
considered either by the use of a good model for the nonlinearity or
if possible by feedback from the actual actuator signal entering the
system. In this case and when the actuator includes dynamics of its
own it should be included in the process model prior to controller
design. Another possibility in the case of static nonlinearity is to
include an inverse of the nonlinearity in the signal path in order to
linearize the overall loop transfer. It is easily seen that the scheme
(6.3) equals (6.2) as long as the control signal is not saturated when
the only type of actuator nonlinearity is of saturation type.

6.4 Narrow Band Pass Filters

In the adaptive scheme considered here the process data is to be
filtered by a set of rather narrow band pass filters. When using
the filter design methods discussed previously in this chapter the
obtained filters will satisfy the amplitude response demands. These
methods will, however, lead to filters having poles clustered closely
together near the point e’®o* on the unit circle where @y is the cen-
ter frequency of the pass band. As the pass band get narrower the
poles gets closer to the stability boundary. There are two specific
problems associated with this type of pole configurations. Firstly
the poles lie close to the stability boundary giving small safety mar-
gin for stability. Due to numerical sensitivity, filter instability may
occur if the accuracy of the filter coefficients is not high enough.
In the design methods above it is difficult to setup filter specifica-
tions achieving filter poles lying some guaranteed distance from the
stability boundary which would be desirable from a stability point
of view. Often some of the poles will lie very close to the stability
boundary while others are placed on a less critical distance from the
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unit circle. Secondly the clustering of the poles gives filter proper-
ties that are similar to those of a filter with a high order multiple
pole. The characteristic polynomial of a high order multiple pole
configuration is very sensitive to coefficient errors. To see this take
for instance

p(8) = (s—s1)" =s"+a1s" 1+... +a,

By disturbing the last coefficient a, with £ the disturbed poles sat-
isfy
(s—s1)" =€

The poles are therefore given by

arg(e) +2km
_ 1/n } _
sp=s1+|el™" Ve n , k=0,...,n-1
All poles are evenly spread on a circle with the radius |8|1/ " cen-

tered at s;. With for instance € = 1071 and n = 10 all poles are
moved a distance (10710)1/10 = 0.1 from s;. The large sensitivity to
coefficient errors is obvious. Nearly the same behavior is therefore
expected for the coefficients of narrow band pass filters resulting in
filter realization problems. This sensitivity is especially dangerous
with respect to stability since the poles lie so close to the stability
boundary. Using the design methods above it is therefore essential
that an insensitive filter realization is used in order to avoid filter
instability since the pole configuration can in general not be mon-
itored directly. To achieve a less sensitive pole configuration using
those methods the easiest but not always accurate way is to specify
a less narrow pass band. To prevent from these problems and also to
get a simple filter design formula a different filter design technique
is presented. The main concern is to get a simple discrete time band
pass filter with explicit knowledge of pole configuration in order to
get a filter that is not sensitive with respect to realization. To do
this let the each pass band filter have the following structure
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Hfj(z)=H}j(z)-H?j(z)-...-HZ"(z) (6.4)
where
(1-rj)(z+1)(z—-1)

H.(2) =
5 2% —2r;jcos @z + 17

(6.5)

Here j is the filter index of the filter with pass band center frequency
wj. The filter which is of order 2m; consists of a number of second
order prototype band pass filters (6.5). The parameters of the pro-
totype filters are determined as follows. Choose for the band pass
filter with center frequency w;

ro<rj<1 (6'6)
1 1—1 .
Gii = @it (g = )AL s E=Lemy 67

where
g =~ 1 (2 08)

6.8
(Dj = Cl)jh ( )

A®; is the maximum phase difference between the filter poles in the
z-plane. By instead specifying the opening angle between the filter
poles Ag; defined by

AD;
Ao;: = J .
we get instead
+1 :
Qji = (I)j+(mJ2+ —Z)A(pj , 1 = 1,...,mj (6.10)

This choice of parameters makes the filter poles lie evenly spread
with equal distance to the nearest pole and with equal distance from
the stability boundary given by 1 — r;, i.e. on a circle sector, see
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Figure 6.1 Pole-zero configuration of a fourth order band pass filter of
the proposed type.

Figure 6.1. The reason for the structure of the proposed filter is to
overcome the problems associated with band pass filters as discussed
above. The obtained band pass filters should therefore be quite in-
sensitive to coefficient roundoff errors. The risk of filter instability
is also reduced since nominally all poles lie on equal distance from
the stability border. What is paid for this insensitivity and design
simplicity is an irregular amplitude response if the filter is chosen
too wide. Also the pass band of the filter is not explicitly given by
the design. The resulting pass band of this type of filter is depend-
ing on the steepness of the filter i.e. the number of prototype filters
used, m;, as well as of r and A®. Even though the filter has been
designed to be insensitive, the filter realization should also have
that property in order to get a well working system. An insensitive
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realization of the prototype filters is given by

. 1-7;
x(t+h) = ["f cos ¢ji —rjsin ‘”ﬁ] x() " [‘(“% ] u(t)
rj sin ®ji T;jCO8Qj; 0

yji(t) = ( r?sin2¢;; (r’cos2¢;; —1) ] x(¢) + ( (1-rj) ) uj;

The proposed filters are only suitable for rather narrow pass bands.
A wider pass band would be achieved by chosing (@;)max — (@i)min
larger. This will result in an amplitude response of the pass band
with local minimas and maximas. For wider pass bands the normal
design methods have good properties and should be used instead.
In the examples in Chapter 8 fourth order filters with

rj =0.9

/3
A(DJ —2'1—8—6 rad

(6.11)

will be used. The resulting filters have pulse responses with approx-
imately 50 samples duration for all frequencies in €.

Information Delay

A general property of dynamical systems is that the energy of the
input signal is delayed in the output signal. For narrow band pass
filters the situation is very similar to that of passing narrow band
signals through an arbitrary transfer function. The reason for this
is that all frequencies except those inside the pass band are filtered
out. The behavior of the filter can therefore be studied by using an
input signal that includes only pass band frequencies.

In the context of double sided amplitude modulated signals, see Op-
penheim and Schafer (1989) and Parks and Burrus (1987)

u(t) = s(t) - cos(w,t)
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the information signal s(¢) satisfy
IS(w)| =0, |o—-w,] >Aw

When passing u(¢) through an arbitrary transfer function H with
¢ (w) = arg H(w) the output signal approximately satisfy

y(t) = |H(wo)| - s(t — Tg(@0)) - cos(@o(t — 7p(@0))) (6.12)
where p
Tg(@,) = —-———Z(;)O) and  7p(wo) = —q)gl:")

74 and 7, are denoted the group delay time and phase delay time re-
spectively. The information signal s(¢) or equivalently the envelope
of the total signal is though approximately delayed a time 74 in the
output signal. This holds also for the pass band frequencies of an
arbitrary input signal to a band pass filter. The maximum pulse re-
sponse of a band pass filter therefore occurs at approximately ¢ = 7.
To verify this look at the pulse response of H; = Hy and Hy = H ]%

Then
yi(t) = Hr(q)o(t)
y2(t) = He(q)yi(?)

where 6(¢) is a pulse at ¢ = 0. Since y;(¢) is a narrow band signal
(6.12) apply directly to y2 when y; is considered as the input signal.
Therefore the envelope of y, should be delayed 74 relative to that of
y1. This can be verified in Figure 6.2 where a tenth order filter with
center frequency @, = 1 rad/s and 74 = 40 sec has been used. The
maximum response of y; is delayed less than 7, relative to the input
pulse but the result apply approximately also to the pulse response
of H fe

The conclusion is that input energy to the band pass filters will
be delayed approximately 75. By increasing the filter order 7, is
increased since the phase roll-off is then steeper at the center fre-
quency ®,. The data entering the estimators should not be delayed
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Figure 6.2 Top: y;, impulse response of Hy. Bottom : (y2), y1 filtered
with H; or equivalently impulse response of H ,%

too long since it will then take longer time to get good estimates.
The filter order should therefore not be too high. In most cases a
fourth order filter is adequate. For the parameter choice of (6.11)
T4 =~ 20 sec.

Another important filter property is the response time or the mem-
ory length 7, of the filter which can for instance be defined as

|H(q)o(t)| <€, t> 7,

This is closely related to the solution time of the filter step response.
The memory length of the filters should not be too long since the
process data will then affect the regressor variables of the estimator
for an unreasonably long period of time. 7, is a function of the filter
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order and the filter parameter r. This is seen as follows. Each factor
(6.5) gives rise to a pulse response term of the form

Ar¥ sin(kh + @)

Since no multiple poles exist the pulse response decay as r* for any
filter order. The memory length can therefore be monitored directly
by the choice of r. By not choosing r too close to 1 the filter poles are
placed the distance (1 —r) from the stability boundary and the pulse
response is guaranteed to decay as r*. For a higher order filter the
gains and coupling of the different pulse response terms will give
rise to the information delay 7, discussed above. Because of this a
longer response time 7, is obtained for a higher order filter despite
the fact that all terms in the pulse response decay as r*. By choosing
A@ = 0 the filter poles lie very close to a multiple pole configuration.
The multiple pole configuration gives rise to pulse response terms

cop® +c1kp® + ...+ cmj_lkmf_lpk

which decay slower than p*. This behavior is captured by 7, since
the multiple pole configuration has the steepest phase slope and so
the largest 7, is obtained for the multiple poles case.

6.5 Conclusions

In this chapter the necessity of using filtering in adaptive control has
been discussed. Normally it is sufficient to use a band pass filter that
covers the frequency range where a good process model is needed.
In the FDAC rather narrow band pass filters are used in order to
allow estimation of a number of low order parametric models. For
this a new type of band pass filters have been suggested. The new
band pass filter design has been constructed to give easily calculated
filters that are robust to coefficient errors and have a reduced risk
of filter instability.
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Design
Considerations

7.1 Introduction

As many other adaptive schemes the FDAC naturally separates into
two parts, estimation and controller design. In the estimator low
order models, fitting frequencies €2, band pass filters and certain
estimator parameters have to be chosen. In the controller design the
controller structure n., the observer polynomial A, and the desired
response G, has to be determined. The following sections discuss
how to choose the various design parameters.
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7.2 Frequency Point Estimator

Low Order Model Structure G,(z)

The number of parameters in the low order models should be small.
At least two parameters is, however, required to estimate a complex
frequency response point. With too many parameters, the band pass
filtered data is not sufficiently exciting for the estimation purpose.
This is to give good estimates of the process frequency response at
the center frequency of the band pass filters. Also the required
amount of computation is significantly increased as the number of
parameters increases.

Since the band pass filters should not be chosen too narrow, the fil-
tered data contains frequency information in some frequency band.
The low order models must be able to make a proper fit in this
frequency band. This means that both levels and slopes of the
amplitude and phase curve is to be appropriately modeled. A con-
clusion made from simulations is that two parameters are seldom
enough. Often biased estimates of G with a noticeable variance are
obtained with two parameter models. The reason is under-modeling
even though the modeled frequency band is narrow. The estimates
will drift according to the most recent data entering the estimators.
However, simulations have shown that three parameters are nor-
mally enough. A model structure that has shown good properties
18
blkZ
22+ a2+ agy

Gi(z) = 27

A proper choice of the sampling delay d; can be obtained from the
process step response. Since d; represents pure time delays it can
be taken as the approximate time delay of the process, i.e. the
number of samples at which the process step response is nearly
zero. In most cases the same model structure can be used for all
the fitting frequencies, i.e. all d;, are chosen equal. By chosing d;, in
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this manner the slope of the process phase curve is to some extent
captured by the factor 2=% in the model. It is then easier for the
estimated parameters to model the remaining amplitude and phase
characteristics in the desired frequency band. A proper choice of d,,
is important predominately at higher frequencies where the process
may have large phase lag.

Number of Fitting Frequencies M

A necessary condition for solvability in the controller design is that
the number of fitting frequencies M satisfies

nR+nS+2
2

M 2

When this lower bound is an integer and M is chosen minimal, an
interpolating design is obtained. The fitting between the desired re-
sponse and the closed loop response is then exact at the fitting fre-
quencies provided the true process model G is used in the controller
design. With a large M the fitting will in general not be exact at any
frequency in €, instead the fitting errors will be evenly spread. Nor-
mally it is sufficient to choose M close to minimal. A definitely more
important design choice is the positioning of the fitting frequencies.
As long as Q is chosen in a proper frequency region the choice of M is
of minor importance. If also the desired response is reasonable it is
enough with quite few fitting frequencies in order to obtain a good
design. An important reason for not choosing M large is also the
implied computational increase in the frequency domain estimator.
Since little is gained by chosing M large it is not a disadvantage to
choose m small.

Choice of Fitting Frequencies {2

If G, (2) is chosen so that a good fit is possible over a large fre-
quency band, the choice of € is not crucial. Since it is often hard
to obtain a good fit over a large frequency band and especially at
high frequencies, the choice of € is not arbitrary. Especially too
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high frequencies in 2 may result in a poor design. This is because
at high frequencies the process may have considerably larger phase
lag than the desired loop gain. The feedback must then give large
phase advance implying a high order or unstable controller. Using
a frequency dependent weighting in the loss function may reduce
this problem. However, if higher frequencies can only be allowed
by nearly neglecting them in the loss function, they can as well be
totally disregarded.

To be good from all viewpoints the choice of © should take desired
response, loop transfer, process dynamics, sampling interval, and
controller structure into account. Normally it is, however, enough
to make a choice with respect to the process characteristics. The
highest frequency can often be chosen as the frequency at which the
process has —180 degrees phase lag. The remaining frequencies can
be logarithmically evenly spread over approximately one decade. If
the behavior is not good with this choice it can be wise to decrease
the highest frequency.

From a stability point of view it is important to have good knowledge
of the loop transfer around its critical frequency w,. If a pure unit
feedback configuration is used the loop transfer is easily obtained
as Go(z) = G¢i(2)(1 = G¢i(2))7L. In this case the critical frequency
of G, equals the frequency at which G has —180 degrees phase
lag. Therefore if G,; is close to G, the loop gain critical frequency
@, will be close to the frequency where G,, has —180 degrees phase
lag.

By using a two degree of freedom controller this relation is in general
no longer true. In this case

Gcl (Z)

T
% - Gcl(z)

Go(z) = (7.1)

Since S(z) is not known in advance, an exact value of the loop trans-
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fer critical frequency can not be obtained without performing a con-
troller design to obtain S(z). When the controller design gives a
good fit between G, and G, a good approximation is

- Gn(2)
Go(2) = 55 (7.2)
g_% — Gn(2)

Assuming that T'/S is close to 1 at w,, a simple estimate of @, is
obtained from above as

arg(Gn (€'?M) = —180°

Too get a better off-line estimate of @, a controller design can be
made based on a priori knowledge or the process frequency response.
This can be obtained from a nominal model or by performing a fre-
quency response test. S is then obtained from the controller design
and (7.2) can be evaluated to obtain an estimate of @,. Since it in-
volves off-line model building this approach is not very attractive.

An on-line refinement of @, can be obtained during the use of the
adaptive controller by computing &, from (7.2). If @ does not con-
tain elements close to @,, the estimate of @, may be included in
Q. Since the band pass filters have considerable response time it
is, however, not wise to use a frequently changing estimate of w,
in Q. New frequency estimates should be included in the controller
design only after the estimates have become good. How long this
takes depend on the exciting signals and on the filter response time.

Band Pass Filters Hy

The choice of pass band width is a tradeoff between response time
and model fitting. A narrow filter gives signals that are nearly
sinusoidal, representing the frequency response at the interesting
frequency. The pulse response of the filter will then have long du-
ration. New incoming data will therefore influence the filtered data
for a long period of time. Also it will take time before new incoming
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Figure 7.1 Typical band pass filter pulse response when h=1 sec and
the center frequency 1 rad/s.

data shows up in the filtered data. These properties apply also to
disturbance corrupted data. The requirement of not letting distur-
bances influence the filtered data for too long is therefore achieved
by not chosing the filter too narrow. This gives a lower bound on the
width of the pass band.

An upper bound is obtained by requiring a proper model fit in the
whole filter pass band. With a filter that is too wide the low order
model will not be able to fit properly to the data. In the examples in
Chapter 8 fourth order filters with a response time of approximately
50 samples are used. Figure 7.1 shows a typical pulse response of
such a filter. The sampling interval is 1 sec and the band pass center
frequency 1 rad/s . For a fourth order filter this is typically achieved
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by chosing the filter parameter r = 0.9 in (6.5).

Signal Conditioning

A square wave signal has Fourier coefficients that are inversely pro-
portional to the frequency

cr(wy) ~ @i’

Assume that the command signal is a square wave or PRBS sig-
nal. Further assume that the band pass filters have constant pass
band width and unit gain at the center frequency. Since the iden-
tification is done in closed loop neither the process input nor the
process output will equal the command signal. However, by looking
at the filtered data it is seen that the average amplitude is almost
inversely proportional to the corresponding filter center frequency.
The filtered data power will therefore decrease with increased fre-
quency w; € €. To get the same convergence rates for all frequency
response estimates it is necessary to use equivalent initial condi-
tions for the different estimators. This is done either by using data
scaling or by choosing different initial values for the P-matrices. The
following lemma give some insight

LEMMA 7.1
Let a parametric model be estimated using the recursive least squar-
es scheme with exponential forgetting. Using scaled data

y(t) = ky(t) , @(t) = ko(2)
in the estimation and
P(0) = Py

as the initial value of the P-matrix is equivalent to using the un-
scaled data

y(&) . o(f)
and
P(0) = k*P,
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for the initial value of the P-matrix
Proof* Let the P-matrix be defined by

P(t,@,P(0)) = (A'P(0) '+ @TD®)! , D =diag(A*%,...,1)
Then the following holds
P(t,k®,Py) = E2P(t, @, k2 Py)

When scaling the data with a factor & the parameters are updated
according to

AB(t) = B(t) - 6(t — 1) = P(t,k®, Po)@(t)(3(2) — T (1)0(¢ — 1)) =
= P(t,®, K2Po) o (t)(y(t) — 9T (£)0(t — 1))

which, if the same initial value 6(0) is used in the two setups, is
exactly the updating that would be obtained by using the unscaled
data and the initial value P(0) = 22P;. The two different estimates
will then be identical for all times. O

From the lemma it is easily concluded that when estimating 6 in
the regression model

yr=@T0 , yp=Hpy , r=Hrp , P(0) =Py
the estimate 6(t, ¥, @, H, Py) satisfies
é(t, ky,kq),Hf,Po) = é(t, Y, (p,ka,P()) = é(t, Yy, ¢,Hf, k2P0)

The first two alternatives can be used to obtain the same average
amplitude in all the filtered data and so the same initial P-matrix
can be used for all frequencies. However, the most straightforward
alternative is the last one that only involves scaling of the initial
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P-matrix. If the scaling factor is chosen proportional to the square
of the filter center frequency 1i.e.

P;(0) = 03Py , w; €D

for some Py, similar convergence speeds will be obtained in the dif-
ferent frequency point estimators. Another solution to the problem
would be to use signal normalization. This will, however, cause
start up problems giving large weight to initial, low amplitude fil-
tered data. This could be solved by not using signal normalization
until the filtered data has reached a certain amplitude.

Forgetting Factor A

Ideally only information accurately describing the process should
be used in the estimator. For a time varying process therefore old
information should be forgotten since it may no longer be valid. The
value of A determines how fast old regressor information is forgotten.
If data is regarded as forgotten when its contribution to the loss
function is reduced by a factor of 10 or more, a rule of thumb for the

memory window N is
2

N =~ ()
For a disturbance free process with constant parameters the opti-
mal choice is A = 1 since all regressor information is accurately
describing the process dynamics. When the process is time vary-
ing or when data are corrupted by for instance load disturbances 4
should be less than 1. Temporary bad data are then forgotten after

a period of time.
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7.3 Controller Design

Process Characteristics

Since only points on the process frequency response curve are esti-
mated, high order processes are allowed. The obtainable closed loop
speed will, however, be limited if large phase advance is required
for a high closed loop bandwidth. This will be reflected in the choice
of G,,.

The process is assumed to be properly modeled by (2.1). Since the es-
timator can not follow abrupt changes in the process model the pro-
cess dynamics should be constant or slowly time varying. It is then
possible to estimate G properly. This is vital since a poor estimate
of G may result in a bad controller. Since closed loop estimation
is used, only processes allowing for proper modeling in this situa-
tion should be considered. A poorly damped process may be hard
to estimate in closed loop if the oscillatory modes are suppressed by
the controller. This will show up as slow convergence in the process
estimates. In order to achieve good performance in this case the es-
timation should be performed in near open loop for a period of time
to be able to capture the resonant characteristics.

Sampling Interval

Process dynamics, desired command signal response and desired dis-
turbance rejection properties are factors that give restrictions on the
choice of sampling interval. The restriction requiring the smallest
sampling interval should then be used. Normally G, will require
the smallest sampling interval, see Astrom and Wittenmark (1990)
for details.
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Controller

The frequency domain controller design is intended for low order
controller design. The order of the controller n. should in general
be chosen between 2 and 4. There is, however, no restrictions in the
choice of n..

In a practical situation the controller should always have integral
action to achieve zero steady state error in the presence of low fre-
quency disturbances. Therefore R, (3.4) should include the factor
(z—1). In order not to introduce unnecessary delays in the controller
S and 7T should normally have the same degree as R. It is also im-
portant not to reduce the degree of S in order to achieve a good fit
in the controller design. The reason is that S is used to give phase
advance in the required frequency regions. With degS < degR the
obtainable phase advance will be reduced.

Response to Disturbances

Assume that the process can be described by a rational pulse trans-
fer function. Using a two degree of freedom RST-controller the gen-
eral closed loop response is given by

Yy 1 BT , . BE ),
[U]“AR+BS<[AT] C+[—BS] :

+ [ ij ] Vo + [ :iz ] Vm> (7.3)

where V;, V,, V,, are load disturbance, output disturbance, and
measurement noise respectively acting on the system. From this it
is seen that constant load and output disturbances are removed by
using a controller with integral action. If a rational process model
is known (7.3) can be used to evaluate the design with respect to
different types of disturbances. Since a rational process model is
normally not known (7.3) can only be evaluated at (2.
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Desired Response G, (2)

A natural requirement on G,,(2) is that it has a well behaved contin-
uous time counterpart. The desired response is therefore naturally
specified as a continuous time transfer function Gy, (s). Gn(2) is
then obtained by sampling G¢,(s). To be able to specify the desired
response it is normally instructive to look at the step response of
the open loop process. From this one can conclude the existence of
for instance real or fictitious time delays, non-minimum phase prop-
erties, resonant modes, slow modes etc. Since the controller will
normally be of low order and include an integrator, it can only give
limited phase advance. Therefore the critical frequency of the pro-
cess is of importance in the design. A desired loop gain with phase
considerably larger than —180 degrees at this frequency can not be
obtained. The critical frequency point can for instance be obtained
by a relay feedback experiment, see Astrom and Hiagglund (1984)
or for a thorough analysis Holmberg (1991).

Closed Loop Model Structure To get a good fit between G, and
G, (2.7) in the controller design it is preferable if the structure of
G, is close to that of G,;. For this, a priori knowledge of the process
order can be used to choose the structure of G,.

To see this for a process

B
GZZ

look at the relative closed loop model error (2.11) used in the con-
troller design

Gcl "'Gm _ Gcl/Ao—Gm/Ao

Er = =
Gcl Gcl/Ao

The frequency domain fitting can according to the last equality be
alternatively formulated as fitting

Gcl _ Bto to —
A, AR+BS A,  AA,

(7.4)
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In general degB = degA—1 for a process without time delay. Assum-
ing no time delay in G¢,(s), degB,, = degA,, — 1. With the normal
choice degA, = degR, the transfer functions in (7.4) are given equal
orders by choosing

degA,, = degA

Assuming two dominant poles, this can be used in a dominant pole
design, see for instance Astréom and Higglund (1988), to select the
number of fast poles as degA¢(s) — 2. For a higher order process of
unknown order, the number of fast poles in a dominant pole design
can normally be chosen to 2 or 3. The dominant pole design is further
discussed below.

Sampling Delays Using a causal controller it is not possible to
achieve a closed loop system with a shorter time delay than that of
the process. True time delays in the process should therefore be kept
in the desired response G¢,(s). Assuming a process with a known
time delay 74, the desired response is naturally chosen as

S

G5 (5) = Gl

) e—ST d

where G¢ (s) is the desired response that would be chosen if the time
delay of the process had been zero. k gives decreased bandwidth if
chosen less than unity. This may be necessary since a harder design
problem is obtained when time delays are introduced. The parame-
ter k2 can be used as a tuning parameter.

If the process does not have a pure time delay but large relative
degree or non minimum phase zeros, its step response resembles
that of a process with a time delay 7,. By using a controller of
sufficiently high order the closed loop may be given an arbitrary re-
sponse. When using a controller that is, compared to the process, of
low order, the situation is different. 74 then acts as a limit on the
obtainable closed loop response speed. The desired response G§,(s)
should then either be of high relative degree or include a time delay
Tm-
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The choice of high relative degree in G¢, (s) corresponds to a desired
step response with near zero response for small t. The desired re-
sponse will then resemble that of the process. A difficulty with this
approach is to choose the desired high order dynamics. The domi-
nant pole configuration may help in this task.

A more straight forward and easier approach is to include a time
delay in G¢,(s). An approximate time delay 7, obtained from the
process step response can be used to choose this time delay 7nm.
With no direct term or time delay in G(s), G(z) will in general be
of relative degree 1. The first sample of the step response will then
always be zero. This applies also to Gn(z). Therefore a reasonable
choice of 7, is
Tm = T d — h

where h is the sampling interval and 74 is the time with near zero
response in the process step response. If the discrete time step re-
sponse of the process is used, 7, can be chosen as

Tm = (fld—l)h

where 7y is the number of samples with near zero response. A
combination of the two approaches above may of course also be used
in which 7,, < ¥4 — h is chosen and the relative degree of Gy, (s)
becomes a tuning parameter to achieve good fitting in the controller
design.

Pole Configurations A number of different pole configurations
will be used in the following. To get simple expressions for the de-
sired closed loop pole configurations, some notations are needed.
Introduce

Butt(n, @m, o) (7.5)

for the modified Butterworth polynomial of order n with roots lying
on the distance w,, from the origin. The roots are evenly spread on
a circular arc with half the opening angle «, see Figure 7.2. The
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Figure 7.2 The pole pattern of the modified Butterworth polynomial

reason for not using the original Butterworth polynomial is that for
high orders it includes poorly damped roots. Also introduce

Bess(n, wpy,) (7.6)

for the Bessel polynomial of order n with roots on the approximate
radius @,, from the origin. More precisely, the product of the roots
equals tw?”,. Approximately the roots lie on a circular arc with the
circle origin in the right half plane. The Bessel polynomials have
linear phase for low frequencies. They also equal the denominator of
order n in a Pade-approximation of a time delay. A transfer function

_ K
"~ Bess(n, o)

G(s)

has a smooth step response with negligible overshoot, see Figure
7.3. If a well damped step response is desired the Bessel polynomial
can be used for the pole locations.
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1.2

Amplitude

Time (secs)

Figure 7.3 Step response for A(s)=Bess(5,1)

Also introduce the notation

@ = (0_90, ®_180, ®—270) (7.7)

for the frequencies at which the sampled process has —90, —180 and
—270 degrees phase lag respectively.

Dominant Pole Design Satisfying G,,(z) should not require too
large controller gains. Normally this is achieved by not speeding up
or slowing down the open loop process poles too much in the closed
loop system. It is, however, also wise to choose the poles of G, (2)
not too far away from the pole pattern obtained by pure proportional
feedback since the controller will then not have to drastically change
the loop gain to satisfy the demands. This pole pattern will be called
the natural pole configuration since it is achieved by the simplest
of controllers. The natural pole configuration for different feedback
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gain is simply obtained from the root locus. Assuming a process

Q(s)  bos™+...+bn
P(s)  s"+ais"l+...+ay

G(s) =

The root locus is given by
P(s)+KQ(s) =0

m poles will go to the zeros of Q(s) as K — oo. The remaining n—m
poles will go to infinity in directions given by

2
T g 74

. , k=1,...,n—m
n—m n—-m

arg(s — so) =

where s, is the center of the pole asymptotes. It is interesting to note
that some of the poles will move far into the left half plane while the
dominating dynamics will be determined by two or three poles that
move toward the stability boundary. The natural pole configuration
therefore normally consists of a complex conjugated pole pair and the
remaining poles in a Butterworth like pole pattern further into the
left half plane. To exemplify this, consider the root locus obtained
by proportional feedback of

1

@)= Grap

This is shown in Figure 7.4 for 2 € [0,5]. The root locus clearly
follows the suggested paths. By keeping this structure in the pole
pattern of G¢,(s) the controller will be focused on placing the domi-
nating pole pair as desired. In many cases a natural choice of char-
acteristic polynomial is for instance

Butt(2, wp, o) - Butt(n — 2, kon, )

Here 2 > 1, a and w,, are half the opening angle and the pole
radius of the desired dominating pole pair. Astrom and Higglund
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Figure 7.4 Natural pole configuration given by the root locus.

(1988) treats the dominant pole design using PID controllers. In
Persson (1992) the dominant pole design is used to optimize the
closed loop disturbance rejection using low order controllers. Here
only the structure of the dominant pole design is used to choose a
proper structure of G¢, (s).

Bandwidth In the controller design, desired responses of different
orders may be considered to achieve a certain closed loop bandwidth
@p. With a desired response

Gr(s) = At (5)

the bandwidth is determined primarily by the slowest dynamics.
When all poles have approximately the same magnitude i.e. the
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same distance to the origin in the s-plane, the bandwidth is in gen-
eral depending on both the pole magnitudes and the order of A¢,(s).
When changing the order of A¢ (s) the pole magnitudes should be
changed accordingly not to alter the bandwidth. For specific cases,
like the Butterworth filter, the bandwidth is independent of the fil-
ter order. It is determined solely by the filter break frequency or
equivalently by the pole magnitudes.

Consider for example a multiple real pole configuration

an

G (s) = (s+a)”

for which the bandwidth is a good measure of the step response
speed. The bandwidth is given by

wp = aV2YUn — 1 (7.8)

For a specific bandwidth, a is depending on the order n. To evaluate
the controller design for different orders (7.8) can be used for this
particular choice of G§,. When expressions like (7.8) can not be
obtained, the bandwidth w; is achieved by choosing

] . 1
G¢ = G(s—) , |G(iw)] = —=
(s) = G(s5) 1G] =
where G°(s) has the correct order and pole pattern but not the cor-
rect bandwidth.

For systems without time delays, the bandwidth is a good measure
of the response speed. Including a time delay does not affect the fre-
quency response amplitude of a system. The bandwidth is therefore
not affected by time delays. The response speed is, however, very
much depending on time delays. Therefore, for systems with a time
delay, the bandwidth is no longer a good measure of the response
speed. It is instead a measure of the speed of the transient part of
the response.
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Phase Properties To obtain a closed loop system with a behavior
close to the desired it is not sufficient that the fitting is good at €.
Instead the fitting between G, and G,, must be good over a wider
frequency range. To achieve this the structure of G,, should resem-
ble that of G,;. If not, good fitting requires €2 to contain frequencies
covering the whole of this frequency range. This contradicts the
rules for choosing €2. Since € will not contain high frequencies,
good fitting at high frequencies can be achieved by taking the struc-
ture of G,; into account.

Consider a unit feedback system

__Go(2)
Gil@) = 176G, @)
where G,(2) is the loop transfer function. At high frequencies where
G, 1s small . ’
G (") =~ G, (e'h) (7.9)
For a two degree of freedom controller

_T(z) Go(?)
Gal?) = 5 T+ Ga (@)

Normally degT = degS. To give phase advance near the critical
frequency of the loop transfer, the roots of S will normally lie not
far from the the point 1 in the right half of the unit circle. Since also
the roots of T (A,) normally lie in this region, 7'/S will approach a
constant near the Nyquist frequency. Therefore (7.9) holds approx-
imately also for the two degree of freedom case at high frequencies.

To get a good fit at high frequencies the phase characteristics of
G¢,(s) should according to (7.9) be close to that of the process since
the low order feedback can only give limited phase advance. With a
process of high relative degree G, will have large phase lag at high
frequencies. To give a good fit at high frequencies G¢,(s) should
have similar phase characteristics. This is in accordance with the
discussion on closed loop model structure.
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Observer Dynamics A,(z)

To get a good fit in the controller design A, can not be chosen arbi-
trarily. In fact, A, and A,, play a very similar role in the frequency
domain fitting. This is seen in (7.4) where the transfer function to
be fitted is given as
B
AyAm

Since A,, has to be chosen properly this obviously apply also to A,.
The interesting observation here is that for high demands a tradeoff
has to be made between desired dynamics A,, and observer dynamics
A,. The demands are regarded as high when they, for the controller
structure in question, require near the maximum phase lead obtain-
able with a stable controller. This normally corresponds to chosing
the dynamics A,A,, as fast as possible.

A rule of thumb in the pole placement design is that the observer dy-
namics is chosen at least as fast as the dynamics of A,,. The reason
is that the disturbance rejection, which is influenced by the observer
dynamics, should not be too slow. In the frequency domain fitting
the observer dynamics will not be totally cancelled in the command
signal response, as is the case in the pole placement design. It will
therefore also have at least a small influence on the command signal
response. The observer dynamics should therefore not be chosen too
slow. A rule of thumb is to choose the dynamics of A, approximately
as fast as that of A,,. To do this it should be kept in mind that the
observer dynamics is normally of lower order than the desired dy-
namics. Assuming a process of higher order than the controller a
normal choice is

degA, = ng < degA,, = n,, ~degA =n
If, as is customary, the same pole pattern is used for both A, and

A,, normally smaller pole magnitudes should be used in A,. To see
this take for instance AS = (s+a,)"® and AS, = (s+an)". A number
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of cascaded first order systems

1
(1+sT)"

has a time time constant that is approximately n-T. To get approx-
imately the same time constant for the dynamics of A, and A,, we
get
ap ~ r ‘Am < A
nm

Since a tradeoff between A, and A,, only occurs for high demands,
A, can be chosen faster when the desired response is not so demand-
ing. For high demands the desired response can be chosen faster by

slowing down the observer dynamics.

Too High Demands

For too high demands still resulting in a stable closed loop system,
the closed loop system will typically have at least one pole near the
point —1 in the z-plane. The controller will then have correspond-
ing poles at approximately the same positions. Controller poles of
this type causes a "ringing” control signal and should therefore be
avoided. A different formulation of this effect is that closed loop
poles are not moved far from open loop poles lying in this region.
The reason for this is that in this region, the process has low gain.
To explain this, notice that for any process pulse transfer function

H_] 1(z — 25)

Ge) = H_] 1(2 = pj)

we have

dGg e
dz() Zz—zj_zp —Dj

j=1
Looking at a point z = zg where G(z) is small and where no z; or
p; are close to zg we have

aG

1 1
dz #7)

lzr — 2| |2r — pj

< (m+n)-max(

) 1GGr)
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Therefore G(2) is almost constant in a neighborhood around z3 since
|G(zr)| is small.

Now let the controller have a pole at zg at which the process has
low gain. Also let no other poles or zeros of the controller or the
process lie close to zg. We then have

Gp(2) ~ €,e'%? , |z —2zg| < €
. Gg(zr) _ age'’

Gr(z) = G—z2n) " (z—zg) |z —2zgr| < €

Now find the point
2. = 2p +€e'?

that is a pole of the closed loop system. For the controller we have

We see that Gg(z.) can be given any phase by proper choice of ¢.
Also the gain will decrease with increasing €. The closed loop will
have a pole at z, when

Gp(ZC)GR(ZC) = -1

This is satisfied when

al
1= [Gr(zo)|-|Gr(zo)l ~ &y °E

m+2km = arg Gp(z;) + arg Gr(z.) ~ @p + f — ¢

The closed loop pole is therefore approximately given by z, = zg +

ee'? where ,

Q= Qp+ Qr+7+2kn
The interesting to note here is that £ will in fact be quite small as
long as a% is not too large. The conclusion is that when, due to
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increased demands on the closed loop response, controller poles are
moved out of the unit circle at a point where the process has low
gain, the closed loop will become unstable or lie very close to the
stability boundary. This effect can be expected to be most noticeable
for processes with large pole excess that is sampled fast since the
gain is then very small around the point —1.

74 Conclusions

A number of quantities has to be specified in order to use the FDAC.
Below a list that can be followed step by step summerizes the choice
of design parameters.

1) Process characteristics

e Determine w_ig9 from a relay feedback experiment or from
a priori knowledge of the plant.

e Determine a true or fictive time delay 7, from the step re-
sponse of the process.

2) Controller structure n.

e Use a controller of order 2 to 4 with integral action. If
the closed loop demands can not be fulfilled a controller of
higher order may be necessary in some cases.

e Normally choose degS = degT = degR not to introduce
extra time delays in the controller.

3) Approximation frequencies

e In most cases M can be chosen close to minimal. The num-
ber of fitting frequencies must satisfy

ng+ng+2

M 2
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Often the highest fitting frequency can be chosen as the fre-
quency where the process has —180 degrees phase lag. The
remaining frequencies in £ can be logarithmically evenly
spread over approximately one decade.

4) Desired response G, (2)

The desired response is naturally specified as a continuous
time transfer function G¢ (s). For a process without time
delays choose a bandwidth not far above w_1g5y where the
process has —180 degrees phase lag. If delays are introduce
in G¢,(s) the bandwidth may be increased.

If the process order is known a priori a natural choice to
achieve good fit in the controller design is

degA; = degA°

If the desired response is chosen according to the domi-
nant pole design the number of fast poles can be chosen as
degA°(s) — 2. It the process order is not known 2 or 3 fast
poles can in most cases be used for a higher order process.
True time delays in the process should be kept in the de-
sired response Gy, (s). Also for processes with high relative
degree a desired response with a time delay can be used.
In this case the fictitious time delay can be obtained from
the process step response.

To obtain good fitting at higher frequencies choose a desired
response with phase properties close to that of the process.
High demands will give rise to controller poles close to the
stability boundary. This will in many cases give rise to large
control signal variance. The desired closed loop bandwidth
should be chosen so that this is avoided.
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5) Observer polynomial A,(z)

Normally choose the observer polynomial A, such that the
corresponding time constant of A, and A,, are approxi-
mately the same. By slowing down the observer dynamics
a faster response to command signals can be obtained.

6) Sampling interval

Normally choose the sampling interval A with respect to
the desired closed loop response. One rule of thumb for the
choice of A is

wh ~02-0.6

where @ in most cases can be taken as the desired closed
loop bandwidth. In some cases good disturbance rejection
requires shorter sampling interval.

7) Low order model structure G;(z)

Use low order process models with at least three parame-
ters. A good model structure is given by

bljz
22+ a2+ ag;

Gi(z) = 27%

d; can be chosen as the number of samples with near zero
response in the process step response

d; = int(74/h)

8) Filtering

90

Choose band pass filters with appropriate response time to
obtain a good model fit. Fourth order filters with r = 0.9
and Ap; = 2- 555 rad can in most cases be used. This gives
a response time of approximately 50 samples i.e. the pulse
response of the filters are small after 50 samples.




7.4 Conclusions

9) Estimator

With a linear time invariant process use 4 = 1 in the esti-
mators. For time varying processes use a smaller 4 in the
interval [0.98,1].

Let the initial values of the P-matrices be proportional to
the squares of the fitting frequencies i.e.

Pj(O) N(l)}z , wj €}
to obtain signal conditioning. An alternative is to let the

peak response of the band pass filters be proportional to
their corresponding center frequencies.
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Introduction

The frequency domain controller design is intended for controllers
of relatively low order. To be practically usable the controller should
have integral action. By including integral action the amount of
phase lead achievable by the controller is limited. Therefore in or-
der to obtain a good design the desired response of the closed loop
system must be chosen with some care. For a process of high order
the closed loop response can not be made much faster than that of
the open loop. Therefore knowledge of the open loop step response
is important for deciding how to choose the desired closed loop re-
sponse. The fitting frequencies €2 should also be chosen with respect
to the process behavior. The critical frequency at which the process
has —180 degrees phase lag can in many cases be taken as the high-
est frequency in ©. This frequency can for instance be obtained by
a relay feedback experiment on the process, see Astréom and Hig-
glund (1984). Below a number of examples are used to examine the
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properties of the FDAC.

In all the examples below the process dynamics are chosen such
that ~ = 1 is a reasonable choice of sampling interval. Therefore
the choice of sampling interval will not be further discussed below.
It should only be commented here that in general A should be cho-
sen with respect to both the process dynamics and the desired closed
loop dynamics. Since the desired closed loop dynamics is normally
faster it will in most cases determine the the sampling interval. Also
the ability to control out disturbances give restrictions on the choice
of sampling interval. See Astrom and Wittenmark (1990) for a more
detailed discussion on the choice of sampling interval.

Example 1 - Fifth Order System

Consider the fifth order process described by

1

Gls) = (s+1)°

A look at the process step response reveals that the output is nearly
zero at the first two samples. The structure of the low order models
used in the frequency point estimators can then be chosen as

blkz
22+ aqp2 +agy

Gp(2) = 272

The phase cross over frequencies (7.7) are @ =~ (0.29,0.63,1.1). The
controller will be of low order with integral action. By requiring a
stable controller the obtainable phase advance is limited. Therefore
the highest frequency in €2 is chosen only slightly above w_159. For a
second order controller 2 = {0.1 0.3 0.7} is used while for a third
order controller the choice is 2 = {0.1 03 0.5 0.7}). From a
stability point of view it would be desirable to choose £ with respect
to the loop transfer. For a pure unit feedback configuration this is
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easy. However, for a two degree of freedom controller, knowledge of
the controller parameters is required. Since those are not known a
priori the choice of € is based on the desired closed loop response,
the controller structure and the a priori knowledge of the process.
The chosen G¢, (s) should not require too much of the controller since
it is of low order. For a high order closed loop system it can be
expected harder to get a good fit if the order of G¢, (s) is chosen too
low. By taking this into account and by using the dominant pole
configuration in this example, the desired pole polynomial is chosen
as

A7 (s) = Bess(2,®y,) - Bess(3,3wy,)

B¢,(s) is chosen as a constant giving unit steady state gain. The
observer polynomial is chosen as AS(s) = Bess(ng, ®,) with @, = wp,
if not specified differently. As discussed earlier degA,(z) = degR(z)
in order not to introduce extra phase lag in G;(z). In some figures
below the nominal design is evaluated. This is obtained by using
the true value of G in the controller design. By using this constant
gain nominal controller the nominal closed loop system is obtained.

Second Order Controller - Base Line Case

First a second order controller with integral action is considered
using

ne = (2,2,2)

R,=(z-1), S, =1

i.e. the controller has the form
(z = 1)(z+r1)u(t) = —(s02® + 512 +52)y(£) + to(22 + @012 + @o2) Uc (2)

The set of feasible values of the desired closed loop speed, @,,, can
be obtained by evaluating the nominal design for different values
of w,,. In this setup w, € [0.3,0.6] give reasonable designs. For
higher values of w,, the obtained controller will be unstable in order
to give enough phase advance. As explained earlier this will result
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Figure 8.1 Behavior of the adaptive system using a second order con-
troller and w,, = 0.5. Command signal and process output (top) and
control signal (bottom) for the base line case in Ex 1.

in an unstable closed loop system if the process gain is very small
at the unstable controller poles. Therefore unstable controllers can
normally not be allowed.

The behavior of the adaptive system for w,, = 0.5 is shown in Fig-
ure 8.1. The command signal is a pseudo random binary sequence,
(PRBS). All parameters of the low order models have initial values
equal to zero. To get a good estimate of G before closing the adaptive
loop, a constant gain controller is used up to ¢ = 80. At ¢ = 80 the
adaptive loop is closed. At ¢ = 400 a unit load disturbance is ap-
plied at the process input. The behavior is closed to the desired. The
time evolution of the frequency point estimates is shown in Figure
8.2. For ¢ > 80 the estimates are very good so the adaptive system
should perform in accordance with the nominal design. To show the
initial behavior of the estimators, the first 15 samples of G are dot-
ted. In Figure 8.3 the time evolution of the controller parameters
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Figure 8.2 Time evolution of the frequency point estimates in Ex 1.
The dashed curve is the true Nyquist curve of the process. The estimates

are dotted for ¢ < 15.
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Figure 8.3 Controller parameter evolution in Ex 1. The dashed lines
show the nominal values of the controller parameters.
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Figure 8.4 Behavior in a noisy situation (Ex 1).

are shown together with their nominal values. The violent behavior
for t < 20 is due to the zero initial conditions of the low order model
parameters. Even though small in this case the consequence of the
load disturbance is seen as a temporary biasing of the controller pa-
rameters.

The behavior of the adaptive system in a noisy situation is depicted
in Figure 8.4. A normal distributed zero mean noise with standard
deviation o = 0.05 is acting on the system output. As can be ex-
pected the frequency point estimates are slightly disturbed by the
noise. However, the behavior of the overall system is good.

Slower Observer Dynamics

In Section 7.3 the close connection between A,(z) and A,,(2) in the
controller design was discussed. By using slower observer dynamics
the command following can be made faster i.e. @,, can be increased
further before obtaining an unstable controller. To show this the

97




Chapter 8 Examples

14F :

12

T
1

0 5 10 15 20 25 30 35 40 45 50

Figure 8.5 Nominal behavior with @,, = 0.6 and slower observer dy-
namics @, = 0.3 (solid) and base line design (dashed) where w,, = ®, =
0.5in Ex 1.

observer dynamics is now chosen as
Bess(ng,0.5 - @)

Notice that the speed of both this and the previous observer dynam-
ics is always proportional to the command following speed ().
Since w,, can be increased, the observer dynamics does not have to
be slowed down by as much as a factor of 2 compared to the previ-
ous case. However, @, can not be increased enough to compensate
for the relative speed reduction of the observer polynomial. In this
case a reasonable design is obtained for @, € [0.4,0.7]. The choice
@, = 0.6 gives the nominal design shown in Figure 8.5. Notice
that the obtained system is faster but the load disturbance rejec-
tion slower. The behavior of the adaptive system is shown in Figure
8.6 where the adaptive loop is closed at ¢ = 80.
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Figure 8.6 Behavior with slower observer dynamics when w,, = 0.6 in Ex 1.

Variable Process Gain

To study the behavior for a time varying process the process gain is
increased linearly with time by a factor of two in the time interval
[200, 250]. Figure 8.7 shows the behavior when A = 0.98 and w,, =
0.5 is used. Since the estimators can not follow too fast changes in
the process dynamics the behavior deteriorates slightly during and
for a while after the change in the process dynamics. However, the
behavior approaches the desired after some time. Figure 8.8 shows
that the frequency response estimates follows the change in process
dynamics.

Third Order Controller

By increasing the controller order to three the obtainable speed is
increased. For this the slower observer dynamics is used and

n. = (3,3,3)
Ry=(z-1), S, =1
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Figure 8.7 Behavior with gain increase by a factor of two in the time
interval [200, 250] when w,, = 0.5

2 2.5

Figure 8.8 Time evolution of the frequency point estimates in Ex 1. The
dashed curves are the true Nyquist curves before and after the change
in process dynamics. The estimates are dotted for ¢ < 15.
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Figure 8.9 Nominal behavior with w,, = 0.65 and a third order con-
troller (solid) and the base line design (dashed) where w,, = 0.5 in Ex
1.

The command following speed can now be chosen in the region w,, €
[0.4,0.8]. The behavior of the nominal design with w,, = 0.65 is
shown in Figure 8.9 where it is compared with the base line design.
Notice that the command following is faster but the disturbance
rejection of the same order as for the base line case. This is because
the slower observer dynamics is used in the design. The behavior of
the adaptive system is shown in Figure 8.10. Rather large control
signals are applied at the command signal steps to speed up the
closed loop system. Finally the behavior of the adaptive system is
shown for moderate demands on the closed loop system in Figure
8.11 when w,, = 0.4. In this case Al(s) = Bess(ng,5w,,) is used.
As can be expected the control signal is much smoother.
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Behavior with a third order controller when w,,

Figure 8.10
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Figure 8.11 Behavior with a third order controller when w,,
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Comparison with a Self Tuning Regulator
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Figure 8.12 Behavior of the STR when w,, = 0.3.

Comparison with a Self Tuning Regulator

In practical situations parametric models give only approximate de-
scriptions of the plants. What is a good model depends on the in-
tended use of the model. From a control point of view it’s the mod-
eling of the process around the loop transfer critical frequency that
1s most important. This implies that the model order selection in a
practical situation may be considered a design parameter and not
a fixed quantity. By applying this point of view to an indirect STR
scheme a comparison with the FDAC on equal terms can be made.
Specifying a second order controller with integral action implies that
a second order process model is used in the STR. For a fair compari-
son the estimator data is filtered with a fourth order band pass filter
with pass band [0.05 1] rad/s. Further

A7 (s) = Ai(s) = Bess(2, wn)

In Figures 8.12 and 8.13 the behavior of the STR scheme is shown
for w,, = 0.3 and 0.5 respectively. In the simulations the initial
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Figure 8.13 Behavior of the STR when w,, = 0.5. Compare Figure 8.1.

parameter values are chosen close to the final and therefore only
minor transients occurs initially. The figures show that the STR
scheme is less robust to choice of controller order. Consequently,
the closed loop can be made faster when using the FDAC without
obtaining a deteriorated behavior, compare Figure 8.1.

Example 2 - Non-Minimum Phase Process

Consider the process
1-2s
) = T

Introducing non-minimum phase zeros gives increased high frequen-
cy gain and at the same time increased phase lag. A harder design
problem is then obtained since demands on amplitude and phase
margins are more difficult to meet without decreasing the desired
closed loop bandwidth. The non-minimum phase properties will also
show up in the closed loop system since it is not possible to cancel
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Figure 8.14 Behavior of the adaptive system when w,, = 0.6 for the
non-minimum phase process in Ex 2.

non-minimum phase zeros in the closed loop response.

The non-minimum phase zero is not known in the design. In the
desired response G¢, it is taken care of by including an approximate
time delay 7, = 3 sec obtained from the process step response.
The high frequency amplitude roll-off of the process is decreased
by introducing a non-minimum phase zero. Compared to a process
without the non-minimum phase zero it is natural to decrease the
relative degree of G¢, to obtain a good fit in the controller design at
high frequencies. By again using the dominant pole structure the
desired closed loop poles are chosen to

A7, (s) = Bess(2,wn,) - Bess(2,3w:,)

With a second order controller, w,, = 0.6 gives a good design when
AS(s) = Bess(2,0.5m,,) is chosen. This corresponds to a closed loop
system with approximately the same response speed as the open
loop process. The behavior of the adaptive system is shown in Figure
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0.5 o "

Figure 8.15 Nyquist curve of the closed loop at t=500 (solid) and of
the desired response (dashed) in Ex 2.

8.14. In Figure 8.15 the desired and the obtained closed loop Nyquist
curves at £ = 500 is shown. The fitting is good considering that
the non-minimum phase zero is not known in the design and that
the used T polynomial differs slightly from that obtained from the
controller design. The used T polynomial is given by

where S and T are obtained from the controller design. This gives
exact unit steady state gain when a controller with integral action
is used despite the fact the closed loop fit at @ = 0 is not exact. The
low order models are chosen as

blkZ
22+ a1z +agp

Gy(z) = 27°

where the non-minimum phase properties are approximated with a
time delay obtained from the process step response. In the design
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Q@ = {005 0.15 0.3 0.4} is used. An inspection shows that the
frequency point estimates have a bias of approximately 1 percent
which is quite small. The closed loop system therefore behaves as
can be predicted from the nominal design.

Example 3 - Process with a Time Delay

The process
1 —bs

G(s) = me

has a time delay that is considerable compared to the other dynamics
of the process. This time delay is kept in the desired response. For
this process a good fit is obtained by choosing real closed loop poles.
Since the process, excluding the time delay, is of second order

A% (s) = (s +om)?

is chosen. With A = Bess(ng,0.50,,), ®, = 0.65 give a good design
for a second order controller. With a third order controller w,, = 1
can be chosen. The behavior of the adaptive system for the third
order controller is shown in Figure 8.16. The response is close to
that of the open loop system. From the process step response it is
seen that the low order models can be chosen as

blkz
22+ a2z +ag

Gy, (Z) =28

This is used in the frequency point estimators with € = {0.05 0.15
0.3 0.45}. The obtained frequency point estimates have very little
bias.
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Figure 8.16 Behavior of the adaptive system when w,, = 1 for the
process with time delay in Ex 3.

Example 4 - Process with Integrator and Time De-
lay

Let the process be described by

_ 1 —2s
Gls) = s(s?+s+ l)e

Since both the process and the controller have integrators the loop
transfer will have —180 degrees phase at low frequencies. To ob-
tain a fast closed loop system the feedback must give phase advance
around the crossover frequency of the loop transfer. Since the pro-
cess has a time delay this is included in the desired response. The
desired characteristic polynomial is chosen as

Af = Bess(2,w,,) - Bess(3,40y,)

B¢, is chosen as a constant giving unit steady state gain. The ob-
server polynomial is chosen as AS = Bess(ng,®n). By taking the
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Figure 8.17 Behavior of the adaptive system for a third order controller
when w,, = 0.7 in Ex 4.

time delay into account the low order models are chosen as

blkZ
22+ a2 +ag

G = 273

where the fitting frequencies are chosen as € = {0.2 0.3 0.5 0.7}.
For a second order controller @,, = 0.4 give a good design while for
a third order controller w,, = 0.7 can be used. In Figure 8.17 the
behavior of the adaptive system is shown when w,, = 0.7 for a third
order controller. The fitting to the desired response is good as can
be seen in Figure 8.18 where the desired and the obtained closed
loop system at £ = 500 is shown.
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Figure 8.18 Nyquist curves of the desired (dashed) and obtained closed
loop system at t=500 (solid) when w,, = 0.7 in Ex 4.
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Conclusions

Most adaptive controllers are based on time domain concepts. In
this thesis a different approach has been used. The goal has been to
derive a frequency domain based adaptive control scheme. In this
both the process estimation and the controller design are formulated
in the frequency domain. Low order parametric process models are
used to estimate points on the Nyquist curve of the process. The
controller design is formulated as an approximation problem in the
frequency domain and the controller parameters are obtained as the
explicit solution to a least squares problem. By using this approach
the adaptive scheme can be applied to processes of arbitrary order
and without knowledge of the actual process order. Furthermore,
low order controllers can be used to control high order processes.
The main advantages with the scheme are

e The estimation is concentrated to the frequencies used in the de-
sign. Disturbances with frequency content differing from those
frequencies will therefore to a large degree be filtered out.

e Demands on excitation is not increased with process order since
only points on the process Nyquist curve are estimated.
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e Low order controllers can be used to control high order pro-
cesses.

e The process order does not have to be known in the design.

The examples in Chapter 8 show that the adaptive system behaves
well for various types of processes when proper choices of closed
loop specifications are used. Further, a comparison with the STR
example shows that the FDAC is more robust with respect to choice
of controller order.

Comparison

In the FDAC the quantities that has to be supplied by the user is
similar to those of an indirect STR scheme. A comparison gives

FDAC STR
ngr, Ns na, np
Gn G

A, A,

h h

Hy, Hy

0

Here the model orders n4 and np of the STR are considered as design
parameters that do not have to equal the unknown true process
order. The design variables are similar except for €2 in the FDAC.
However, €2 is related to Hy in the STR scheme since both determine
the frequency region of interest. The comparison between STR and
FDAC in Example 1 shows that the FDAC is at least in some cases
more robust than the STR scheme. The reason for this is that the
FDAC does not rely on a specific process model order.
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Future Research

In order to obtain a well working adaptive system a number of quan-
tities have to be specified. Since this may be time consuming it
would be preferable if this task, that is currently left to the user,
could be automated. A future research topic is to develop methods
that automatically chooses proper parameters for the adaptive con-
troller. This can, for instance, be performed in an initial phase where
the controller extracts information about the process and from this
decides on proper choices of parameters, see Lundh (1991). With a
time varying process a continuous updating of the design parame-
ters should be considered. The desired response will then depend
on the process characteristics.

In the controller design it is import to choose the desired closed
loop bandwidth properly in order to obtain a stable controller. This
is a property common to many design methods. Since, if possible,
stable controllers should be used, an important research topic is to
investigate conditions for obtaining stable controllers. The allowable
closed loop bandwidth could in this context be regarded as an output
parameter to be determined instead of input parameter as is the case
in many design methods. The desired controller properties could
then be regarded as new input parameters.

To obtain estimators that are more robust to disturbances and lack
of excitation, further research can be devoted to safety nets for the
estimation and if necessary, to derive modifications to the estimation
scheme.
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