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“Stufen

Wie jede Bliite welkt und jede Jugend

Dem Alter weicht, bliht jede Lebensstufe,
Bliht jede Weisheit auch und jede Tugend
Zu threr Zeit und darf nicht ewig dauern.

Es mufl das Herz bei jedem Lebensrufe
Bereit zum Abschied sein und Neubeginne,
Um sich in Tapferkeit und ohne Trauern

In andre, neue Bindungen zu geben.

Und jedem Anfang wohnt ein Zauber inne,
Der uns beschiitzt und der uns hilft, zu leben.

Wir sollen heiter Raum um Raum durchschreiten,
An keinem wie an einer Heimat hangen,

Der Weltgeist will nicht fesseln uns und engen,
Er will uns Stuf’ um Stufe heben, weiten.

Kaum sind wir heimisch einem Lebenskreise

Und traulich eingewohnt, so droht Erschlaffen,
Nur wer bereit zu Aufbruch ist und Reise,

Mag lahmender Gewohnung sich entraffen.

Es wird vielleicht auch noch die Todesstunde

Uns neuen Raumen jung entgegensenden,

Des Lebens Ruf an uns wird niemals enden ...
Wohlan denn, Herz, nimm Abschied und gesunde!”

Hermann Hesse*

* Das Glasperlenspiel, Suhrkamp Taschenbuch Verlag, Frankfurt am Main, 1972
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Preface

My interest in control of extreme values began in the autumn of 1990
as I was following a course on extremes in random processes given by
Professor Georg Lindgren at the Department of Mathematical Statistics
in Lund. The course was suggested to me by Professor Lars Nielsen
to give me a basis for our common interest in investigating prediction
methods for level crossings. After some time it was evident to me that
theoretical work about predictions in closed loop was not what a control
engineer primarily should work with. Why predict catastrophes, when
it is possible to control to avoid them. In fact, good control that avoids
level crossings, makes prediction of level crossings less interesting. The
closed loop system modes are then fast, and multi-step predictions will
rapidly converge to the mean of the process. However, due to practical
considerations, such as uncertainties in process models or actuator con-
straints, it is not always possible to control in a satisfactory way, and
in these cases supervision may be useful. This has been described for
the continuous time case in [Hansson and Nielsen, 1991]. In this thesis,
only control of level crossings and extreme values for the discrete time
case will be considered. The continuous time case has been described in
[Hansson, 1991a], [Hansson, 1991b] and [Hansson, 1992].

As is obvious from what is said above, the thesis is somewhat inter-
disciplinary and in the borderland of automatic control and mathematical
statistics. It is primarily written for a reader with knowledge of auto-
matic control at a graduate level, but I hope that the references will help
any other reader with some mathematical background to read it.
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Introduction

There are many control problems where the goal is not only to keep the
controlled signal near a certain reference value, but in addition to keep
it below a critical level—critical in the sense that if the signal crosses
the level, a failure in the system under control is caused. The distance
between the critical level and the reference value is normally not small,
since otherwise the failure rate will be intolerably high. However, there
may be other control-objectives that make it undesirable or impossible
to choose the distance large. An example of problems of this kind can be
found in [Borisson and Syding, 1976], where the power of an ore crusher -
should be kept as high as possible but not exceed a certain level. Another
example is moisture control of a paper machine, where it is desired to
keep the moisture content as high as possible without causing wet streaks.
Yet another example is power control of wind power plants, where the
supervisory system initiates emergency shutdown, if the generated power
exceeds 140% of rated power, [Mattsson, 1984]. Other examples can be
found in sensor-based robotics and force control, [Hansson and Nielsen,
1991], and control of non-linear plants, where the stability may be state-
space dependent, [Shinskey, 1967].

This type of problems has previously been solved approximately by
minimum variance control, [Astrém and Wittenmark, 1990, p. 203],
[Astrém, 1970, pp. 159-209], and [Borisson and Syding, 1976]—the in-
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Chapter 1 Introduction

tuitively best controller. The gain of the minimum variance controller
depends critically on the sampling period. Too small a sampling period
leads to large variations in the control signal, [Astr%im and Wittenmark,
1990, pp. 316-317]. This problem has been solved by introducing weight-
ing on the control signal—LQG-design. However, there has been no good
criteria on how to choose the weighting. The proposed controller can be
interpreted as a choice of optimal weightings in an LQG-problem, chosen
in such a way that they minimizes the mean number of upcrossings of the
critical level per unit time. The problem of level crossings in the context
of stochastic processes was already studied by Rice, [Rice, 1936].

In [Hansson, 1991a], [Hansson, 1991b] and [Hansson, 1992] the prob-
lem was solved in the continuous time case; here the discrete time case
is treated, which previously to some extent has been described in [Hans-
son, 1991c]. Only the case of a linear process controlled with a linear
controller will be treated. It is still an open question whether the best
controller for a linear processes is linear or not. This question is diffi-
cult to answer in the stochastic framework used here, since a Gaussian
stochastic process controlled by a non-linear controller will most likely
not have a closed loop that is Gaussian.

In Chapter 2 the problem of keeping a signal’s largest values below
a level given a certain reference value is related to the minimum variance
controller and to the controller that minimizes the so called upcrossing
probability. It is also made plausible that the upcrossing probability
criterion better captures the control-objectives in the problems described
above than does the minimum variance criterion.

In Chapter 3 the controller that minimizes the upcrossing probabi-
lity—the minimum risk controller— is determined. It is obtained by solv-
ing a one-parametric optimization problem over a set of LQG-problem
solutions. Thus the complexity is not significantly larger than for an ordi-
nary LQG-problem. It can be interpreted as choosing optimal weighting-
matrices in an LQG-problem, provided that the solutions to the LQG-
problems are unique.

In Chapter 4 the minimum risk controller found in Chapter 3 is
compared with the minimum variance controller for a first order process.
It is seen that the new controller causes a lower upcrossing probability
and smaller probability for the largest value of being above the dangerous
level. Further it is seen that the control signal is more well-behaved.

2




Both theory and experiments show that the minimum risk controller and
the minimum variance controller are approximately the same for large
values of the distance between the reference value and the critical level.
However, in an example it is seen that the minimum risk controller can
have up to about 10% better performance for moderate values of the
level, which is the interesting case for the examples described above.

Finally in Chapter 5 the results of the previous chapters are sum-
marized.




The Control Problem

The control problems described in Chapter 1 will be mathematically for-
malized in a stochastic framework. In Section 2.1 the control criterion is
defined; it is defined such that the controller should minimize the prob-
ability for the largest value of the controlled signal to be above a level
given a certain reference value. Two bounds for the criterion probability
are investigated in Section 2.2. One of them is minimized by minimum
variance control, the other one—tighter than the first one—is approxi-
mately minimized by minimizing the so called upcrossing probability. In
Section 2.3 the approximate control criterion to minimize the upcrossing
probability is further motivated and stated. The results are summarized
in Section 2.4.

2.1 Problem Formulation

Let the controlled signal, z, be a stationary Gaussian sequence with mean
m, = E{z(k)}
and with covariance

ro(7) = BE{(2(k + 7) — m.)(2(k) — m:)}




2.1 Problem Formulation

Denote the variance of z by o2, i.e. let 2 = r,(0). Consider a time-
invariant controller H, linear in both the measurement signal y and in
the constant reference value r. The problems mentioned in Chapter 1

are captured in the following criterion:

mf}nP {Orsri%xNz(k) > zo} (2.1)

subject to m, = r and to a stable closed loop system, where P{-} denotes
probability measure, and where zo > m, is the critical level. The reason
for constraining the minimization to m, = r is that it may be profitable
to not having m, — zy too large; e.g. in the paper machine example it was
desired to keep the moisture content as high as possible without causing
wet streaks. The time horizon IN and the distance m, — zy; have to be
chosen in such a way that the probability in (2.1) is small, otherwise the
failure rate will be too high. The larger N is, the larger m, — zp must be.
Without loss of generality it may be assumed that m, = r = 0, which
can be obtained with a change of coordinates. To simplify the notations
this will be assumed in the sequel.

2.2 Bounds for the Criterion Probability

To simplify the problem upper bounds for the probability in (2.1) will be
given. It will be shown that these bounds are tight, if NV and 2¢/0, are
large and the probability in (2.1) is small.

The problem of level crossings is a classical problem in stochastic
processes. Initial results were given in [Rice, 1936]. Good references to
crossing problems are [Cramér and Leadbetter, 1967] and [Leadbetter
et al., 1982]. The latter book also treats the problem of extreme values
in stochastic processes. The results developed in this section will make
extensive use of the results in these books.

THEOREM 2.1
If z(k) is a stationary random sequence, then

P {Orsr}%xNz(k) > zo} < Py(z0) < Pa(20) (2.2)




Chapter 2 The Control Problem

where

Py(20) = P{2(0) > 20} + Np(20)
Py(z9) = (N + 1)P {2(0) > 20}

and where
p(z0) =P {z(0) < zoNz(1) > 2z} (2.3)

Proof: The proof is easy:

0<k<N

N-1
P{ max z(k) > zo} =P {z(O) > 2 U (z(k) <zoNz(k+1) > zo)}

N-1
<P{z(0) >z} + Y P{z(k) < 20N z(k+1) > 2}
k=0

=P {z(0) > 20} + NP {2(0) < zp N z(1) > 20}
< (N 4+ 1)P{z(0) > z0}

d

Remark 1. For large values of NV and large values of 2o /0, the first term
in P; is negligible.
Remark 2. Note that P, is minimized by minimum variance control.

The quaintity g in (2.3) will be called the upcrossing probability,
and it is equal to the mean number of upcrossings in the interval [0, 1),
see e.g. [Cramér and Leadbetter, 1967, p. 281]. The bound P; is well
known in the context of continuous time extreme value analysis, see e.g.
[Leadbetter et al., 1982, Lemma 8.2.1], since there the bound P, is infi--
nite, and thus not usable for investigating the behavior of extreme values
as the time horizon and the critical level approaches infinity. However,
the bound P; is good enough for investigating this behavior in the dis-
crete time domain, but for the purposes in this work—focused on finite
time horizons and levels—it is interesting also to consider a tighter bound
such as P;.

It will now be shown that the bounds in Theorem 2.1 are tight.

THEOREM 2.2
If z(k) is a stationary Gaussian sequence and z(()

N)

is chosen such that

lim P, (ng )> ~

N—o00



2.2 Bounds for the Criterion Probability

then
‘ M () —p (2 ° M (M) - P 2V L
o ( 0M>(z(()N)1)( : ) < Jm ( OM)<Z(()N))( : ) =3

where M (z) = P {maxo<i<n 2(k) > z}.

Proof: The first inequality follows by Theorem 2.1. Further by Theorem
2.1 and since by [Leadbetter et al., 1982, Theorem 4.3.3]

Jim P (57) = 1
if and only if
lim 1-M (z(()N)> =L

N—ooo

it follows that

. M (ZSN)) - P, (Z(()N)) 1—e L _ L L
N m (=) ST T2
20
which concludes the proof. O

Related problems of convergence have been investigated for other ap-
proximations of extremal-probabilities, see e.g. [Leadbetter et al., 1982,
Chapter 4.6], but these approximations are not upper bounds as the ones
discussed here.

2.3 Approximation of the Problem Formulation

Now by theorems 2.1 and 2.2 it is obvious that the probability in (2.1)
can be approximately minimized for large values of N and zy/0, and for
small values of the probability in (2.1) by minimizing either the variance
or the upcrossing probability p. However, for moderate values of N and
29/0, the results of Theorem 2.1 still holds, and it is tempting to believe
that the upcrossing probability is a better criterion to minimize in this
case, which is the interesting one for the problems described in Chapter

7



Chapter 2 The Control Problem

1. Therefore the following approximation of the criterion (2.1) will be
considered from now on:

m}}n 1(z0) (2.4)

subject to a stable closed loop system. There may be some problems with
this approximation, since there are two ways of making p small—either
by keeping z well below zg or by keeping it well above zy. It is clear that
the probability in (2.1) will not be small, if p is made small by keeping
z well above z5. To exclude this possibility, the minimization of p will
also be restricted to o, < zg. The validity of the approximation of the
problem formulation will be investigated further in Chapter 4.

2.4 Summary

The control problems described in Chapter 1 have been mathematically
formalized in a stochastic framework. The control criterion has been
defined such that the controller should minimize the probability for the
largest value of the controlled signal to be above a level given a cer-
tain reference value. Two bounds for the criterion probability have been
investigated. One of them is minimized by minimum variance control,
the other one—tighter than the first one—is approximately minimized by
minimizing the so called upcrossing probability. It has been made plausi-
ble that minimizing the upcrossing probability is a better approximation
to the original problem than minimizing the variance.




Regulator Design

The problem of minimizing the upcrossing probability will now be solved.
In the Section 3.1 the problem is reformulated as a one-parameter min-
imization over solutions to LQG-problems. Thus the complexity is not
significantly larger than for an ordinary LQG-problem. The solution
can be interpreted as a choice of optimal weighting-matrices in an LQG-
problem. The equations for solving the LQG-problems are given in Sec-
tion 3.2. In Section 3.3 the results of the previous sections are generalized
to more general process models. Finally in Section 3.4 the results are
summarized.

3.1 Solution

Let the stationary Gaussian sequence z be defined by

z(k +1) = Az(k) + Biu(k) + Byv(k)
y(k) = Crz(k) + De(k) (3.1)
z(k) = Coz(k)

where v and e are zero mean, Gaussian, white noise sequences with
EvvT = Ry, EeeT = R, and EveT = R;, = 0. The signal y is the

9




Chapter 3 Regulator Design

measured signal, and u is the control signal. The signal z is the signal
that is desirable to control. The reason for not having C; = Cj can be
motivated by the examples in Chapter 1, where e.g. in the ore crusher
example, the measured power y is not the desired signal to control, but
instead some filtered version z of it, due to the filtering behavior of the
thermal overload protection. More general process models than (3.1)
may be considered. The treatment of a more general process model will
be given later in Section 3.3 and in Appendix A. Introduce

(k+1)+ z(k)

(k+1)—z(k) (3:2)

——
= R
ol
N S’
1.
™ N

which are independent variables due to the stationarity of z. Let D be
the set of linear time-invariant stabilizing controllers of (3.1), and let D,
be the set of linear time-invariant stabilizing controllers of (3.1) for which

O 5 < VA (33)

holds, where o, is the variance of z. Note that the sets D and D, may
be empty. It will be seen that the minimization of p in (2.3) over D, can
be done by first minimizing

J =E{(1 - p)o® + pB?} (3.4)

for p € [0,1] over D, and then minimizing p over the solutions obtained
in the first minimization, i.e. over Vy N),, where

Vi = {(0a(H),05(H)) € RZIH €Dy}

V, = {(aa,aﬂ) c R?

UZSZO) a-a_>_03 0',320}

Dy = {H € DIH = argmin J(H, p), p € [0,1]}

and where o, and o3 are the variances of a and 3.
In the following lemma J is rewritten to fit the standard LQG-
problem formulation.

10




3.1 Solution

LEMMA 3.1
The loss function J in (3.4) can be written

J =J +E{vTBf ¥ CyByv}

where _
J =EB{zTQ1z + 22T Qou + uTQqu}, (3.5)

and where

Q1 =CFCy + ATCTCaA + (1 — 2p)(CTCyA + ATCT Cs)
Q12 = (AT + (1 - 2p)I)C C2 B, (3.6)
Q2 = B C§ CyB,

Proof: The result follows immediately from the definitions of z in (3.1),
and « and B in (3.2), and by noting that v is uncorrelated with = and u,
since u is a functional of y(k),y(k —1),..., and since Ry = 0. a

Remark. For p = 0.5 it follows that the controller that minimizes J =
E{z(k + 1)® + z(k)?}. This case thus corresponds to minimum variance
control of z.

Next it will be shown that all jointly minimal variances of a and
B can be obtained by minimizing J in (3.4) for p € [0,1]. A precise
definition of jointly minimal will first be given.

DEFINITION 3.1—Pareto Optimality
Let X denote an arbitrary nonempty set. Let f; : ¥ - Rt, 1<i<s
be s nonnegative functionals defined on X'. A point z° is said to be Pareto
optimal with respect to the vector-valued criterion f = (fi, fa, -+, fs) if
there does not exist z € X such that f;(z) < f;(z%) foralli, 1<i< s,
and fi(z) < fr(z°) for some k, 1<k <s. O
The concept of Pareto optimality is illuminated in Figure 3.1. The
set of achievable variances of o and [ is the set of points in the plane
that are above and to the right of or on the solid curve. The controller
corresponding to the variances at B is not Pareto optimal, since there ex-
ist e.g. controllers corresponding to strictly lower variance of 3 without
having larger variance of a—the controllers with variances on the line
connecting A with B. Moreover it is seen that the controller correspond-
ing to the variances at A is Pareto optimal, since by picking any other

11




Chapter 3 Regulator Design

4.2 T T T T 1

4.15

4.1

V(alpha)

4.05

3.95 : : ;
0 0.05 0.1 0.15 0.2 0.25 0.3

V(beta)
Figure 3.1 Illustration of Pareto optimality.

point, to the right of, above the curve, or on it, will either increase the
variance of o or the variance of 3. This reasoning holds for all points on
the curve, and thus they are all Pareto optimal. Equivalent definitions
of Pareto optimality can be found in [Leitmann, 1981, p. 292].

LEMMA 3.2
Suppose that (A, By) is stabilizable, and that (C1, A) is detectable. Then

the set Dp of Pareto optimal controllers with respect to (ai,ag) is a
subset of Dj.

Proof: Using the Youla parametrization, [Boyd and Barratt, 1991,

Chapter 7.4], it follows that all stabilizing controllers of (3.1) can be
parameterized by a stable transfer-function matrix (). Thus to minimize
J over D is equivalent to minimize J over ), where @) belongs to the
linear space of stable transfer-function matrices. Further it follows from
[Boyd and Barratt, 1991, Chapter 7.4] that the transfer-function matri-
ces from v and e to z are affine in Q). Since the variances of o and 3 are

12




3.1 Solution

convex in the transfer-function matrices, it follows that the variances are
convex in (). The result now follows by [Khargonekar and Rotea, 1991,
Theorem 1]. O

Remark 1. All controllers obtained by minimizing J for p € (0,1) are
Pareto optimal by [Leitmann, 1981, Lemma 17.1]. If the controllers ob-
tained for p = 0 and p = 1 are unique, then they are also Pareto optimal
by [Leitmann, 1981, Lemma 17.2].

Remark 2. Remark 1 and Definition 3.1 imply that V; can be parame-
terized by a scalar. This is not necessarily the case for Dj.

Remark 3. Remark 1 implies that if the controllers obtained by mini-
mizing J for p € [0,1] are unique, then a parameterization of Dp = Dy
by p is obtained, [Khargonekar and Rotea, 1991, p. 16].

The next lemma gives an expression for the upcrossing probability
p in (2.3) in terms of a double integral.

LEMMA 3.3
It holds that

p=P{z(0) <zoNz(l) > 2} = / qﬁ(y)/ ¢(z)dedy
0 @y
where ¢(z) = ﬁ exp(—22/2), &1 = (220 — 08Y)/0a, and z, = (220 +
08Y)/0u.
Proof: Since o and § are independent it holds that

p =P {|a - 2z| < B}
Tl o) (2o
le—2z0|<y T Oa/ 0p o3

from which the result follows by a change of variables. O

In the following lemma it will be shown that the upcrossing prob-
ability g in (2.3) has strictly positive partial derivatives with respect to
0o and og.

13




Chapter 3 Regulator Design

LEMMA 3.4
Let

V(r) = {(aa,aﬁ) € R*lo, <7, 0,>0, 038> 0}

where 7 > 0. Then the upcrossing probability p in (2.3) has strictly
positive partial derivatives with respect to both ¢, and og on V(r), if
and only if r < 2.

Proof: It holds that

o= [T o (Lotwn) + Lote) ) ay >0

Further let z; = (220 —08y) /0w, and z, = (220 +0Yy)/04. Using Lemma

3.3 gives
0 *° u
2 [ 00 (o0 - Z26(e))

84 (04

By completing the squares in the exponents and by a change of coordi-
nates it is possible to express the integral in terms of ®(z) = ffoo o(t)dt,

and o2 = (02, + 03)/4

O _ %o (—f> [\/'2?7(2@(77)—1)—217‘6"1’ (—%)]

oo  8mo? 2 0%

where 7 = 7€, £ = (0g/04)?, and v = z9/0, > 0. It is seen that
8¢ 0 if and only if

8oy
2 1 n°
28(n) 1> 1/ =L exp [ -1
(n) > 7T’yzexp( 2)

So if % > 0 on V(r), then the inequality above holds for all values of
n > 0, since v > 0, and since it must hold for all values of £ > 0. A
Taylor-expansion round 7 = 0 gives

2 2 7 2
\/;n>\/;72+0(77)

So for the inequality to hold for small values of 7, it must be that v > 1,
which is equivalent to r < z;.
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3.1 Solution

Now suppose that r < zp, which implies v > 1. Then

(2@(n) = 1)* 2 1 — exp (—3"—> - %2"4 P (_%>

>1—exp <—2—7§> - 2—(7—;-;—;-—?1)-52 exp (_§>

where the first inequality follows from [Abromowitzm and Stegun, 1968,
Formula 26.2.25] and the second one from v > 1. Further

To show 2~ > 0, it is now sufficient to show L > R for £ > 0, where

oy

—(

et () oo ((3-2)) 2552

Some calculations give

1 1
L>1+ ¢+ =62
2 +2£+8£
1 1 1
<1464 (=—-=)e¢
s +2€+<8 3#)5
From this it follows that L > R for £ > 0, so % > 0. O

Remark. The largest region V(r) in which both gT’i > 0 and 5‘%_‘% >0
is V(z0). So if the constraint o, < zg is not considered, then it may well
be that p is minimized by o, = cc.

It will now be shown how the minimization of p in (2.3) can be
rephrased to a minimization over a set of LQG-problem-solutions.

15




Chapter 8 Regulator Design

THEOREM 3.1
Suppose that (A, By) is stabilizable, and that (Cy, A) is detectable. Then

{HEDz

H = argmin ;L(O'a(H),O',@(H))} CDpND,

Proof: Assume that the minimum of 1 on D, is attained for some H ¢
DpND,. For all H ¢ DpND, there exist by Definition 3.1 H € D, such

that o;(H) < o;(H) for at lest one of i = a, 3. Since p is differentiable
and by Lemma 3.4 has strictly positive partial derivatives with respect to
0o and o5 on V(zp), it follows that (oo (H),05(H)) < p(oa(H),o5(H)).
This is a contradiction, and thus the minimum of y is attained on DpND,,
if it exists on D,. O

Remark 1. By Lemma 3.2 Dp C Dy, which implies
{(aa(H),aﬁ(H)) € V. \H = argmin p(oa(H),05(H))} C V5NV,

Thus the minimization of p can be done over Vy NV,. This is a one-
parametric optimization problem by Remark 2 of Lemma 3.2.

Remark 2. If for each p € [0,1] the minimizing H of J is unique, then
by Lemma 3.1 and Remark 3 of Lemma 3.2 the minimization of u can
be thought of as finding optimal weights in an LQG-problem.

3.2 LQG-equations

For short reference the equations for deriving the solution that minimizes
J in (3.5) in Lemma 3.1 when the controller H is allowed to have a direct-
term are given below. More stringent proofs of the results can be found
in Appendix A, which also covers a more general process model. The
transfer function from measurement to control is

H(q)=—-L,(gI - A+ B L, +KC,) 'K, - L, (3.7)
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3.2 LQG-equations

where L,, L, and K are given by

Ly =L-L,C,
L,=LK;
= (@2 + B SB1)™H(B{ 54+ Q1)
K,=K - B, L,
K = AK;
K; = PCY(DR,DT + ¢, PCT)!

where S and P are the solutions to the Riccati-equations, [Astrﬁm and
Wittenmark, 1990, Chapter 11.4], and [Gustafsson and Hagander, 1991],

ATSA - S — (ATSB:y + Q12)(Q2 + B SB1) ™ (QL, + Bf SA) + Q1 =0
APAT — P — (APCT + ByR1, DT)(DR, DT 4+ CLPCT) ™!

(C1PAT + DRL,BT) + B,R, BT =0

(3.8)

and where 1, Q2 and Q15 are given by (3.6) in Lemma 3.1. To calculate

04, Oy, 0o and og the following Lyapunov-equation for the closed loop
system should be solved, [Astrom, 1970, p. 49],

AXAT + B.RBT = X (3.9)
where
4 - (A—BlL B, L, )
° 0 A-KC
B — (Bz —BlLyD>
* \B, -KD
(o )
R =
0 R,
Then 0,, 08, 0, and o, are given by
05 =(C2 0)((4c+ D) X(Ac+I)" + B.RB)(C, 0)"
B=(Cr 0)((Ae~ DX (e~ 1" + BRED) (G, 0)
o2 =(C: 0)X(Cp 0) |
02=(-L L,)X(-L L,)" +L,DR,DTLT

17




Chapter 3 Regulator Design

Since A, is triangular, Equation (3.9) can be split up into three equations,
where one of the solutions is P in (3.8), which reduces the complexity of

the problem.

3.3 The General Case

The results of the previous section are now generalized to the more gen-

eral process model:

z(k + 1) = Az(k) + Biu(k) + Byv(k)
y(k) = Cy1z(k) + Dse(k) (3.11)
2(k) = Cyz(k) + Dyw(k)

where v, e and w are zero mean Gaussian white noise sequences with the
positive semidefinite covariance matrix

v Ry, Ris Ris
E € ( ’UT eT wT ) = Rfll; Rz R23
w R{3 R%; R3

The signal y is the measurement signal, and u is the control signal. The

18




3.8 The General Case

proofs of the results in this section can be found in Appendix A. Let

Q23 = B{ C] C2Bs
Q24 = (1 - ZP)BiFCzTDz
Q = (Q2 + B{ SBy)
L=Q ' (BfSA+Q%h)
L, = Q_—l(B;[SBz + Q23)

Lw - Q—1Q24
R, = C1PC{ + D, R, DT
Ky =PC{ R}’

K, = Ri2D{ R}"
K., = Ry DI R;*

K = AK; + B,K,
K,=K - B L,
L,=LK;+ L,K,+ L,K,
L,=L-L,C

where S and P are the solution to the Riccati-equation in (3.8), and
where @1, Q2, and Q13 are given by (3.6) in Lemma 3.1. The transfer
function H(q) for the optimal controller with direct-term that minimizes
J in (3.4) is then given by

H(q)=~Ly(¢gl — A+ B,L,+ KC,)" 'K, - L, (3.12)

Further let

M _<A——B1L B L, )
‘< 0 A-KC
B (Bz —BlLyD1>
" \By, -KD
R=<R1 R12>

RT, R,

19




Chapter 3 Regulator Design

The variances of a, (3, z and u are then given by

02 =(Cy 0)((Ac+ DX(Ae+ DT + B.RBT)(Cy 0)" +2D,Rs DY
02 =(Cy 0)((Ac— X (A.—I)T + B.RBT)(C, 0)" +2DyR3DY
o2=(Cy 0)X(Cy; 0)" + DyRsDY

02=(-L L,)X(-L L,)" +L,D;R,DFLT

(3.13)
where X is the solution to the Lyapunov equation in (3.9). Notice that
(3.9) is triangular also in the general case.

3.4 Summary

It has been shown that the minimization of the upcrossing probability
can be expressed as minimization over a set of LQG-problem solutions
parameterized by a scalar, regardless of the uniqueness of the solutions
to the LQG-problems. If the solutions to the LQG-problems are unique,
then the problem of minimizing the upcrossing probability can be thought
of as finding optimal weightings in an LQG-problem. Note that the
Lyapunov equation (3.9) is linear, and thus does not add any significant
complexity compared to an ordinary LQG-problem.

The algorithm for minimizing the upcrossing probability can be sum-
marized as: 1) solve the associated LQG-problems, and 2) minimize the
upcrossing probability over the variances obtained in the first step. It has
been seen that the computation of the variances is not more complicated
than solving a linear system of equations. Further the upcrossing prob-
ability can easily be obtained with some numerical integration routine.
The complexity of this latter problem does not depend on the size of the
process model. Thus the computations performed for each value of p is
not significantly larger than for an ordinary LQG-problem. Moreover by
adopting some numerical routine for minimizing the upcrossing probabil-
ity, it may not be necessary to solve that many LQG-problems. A good
choice of starting value for p is 0.5, which corresponds to the minimum
variance controller. In this sense the computational burden for obtaining
the minimum risk controller is not significantly larger than for the LQG
controller that corresponds to minimum variance control.
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Example

To evaluate the performance of the minimum risk controller obtained
by minimizing the upcrossing probability a first order process will be
investigated. In the Section 4.1 the process is defined. The set of LQG-
solutions is calculated analytically in Section 4.2. In the Section 4.3 the
minimum risk controller is computed and compared with the minimum
variance controller. It is seen that the new controller causes a lower
upcrossing probability and smaller probability for the largest value of
the signal of being above the critical level. Further it is seen that it has
a control signal that is more well-behaved. In the Section 4.4 the results
of the previous sections are summarized.

4.1 Process

Let the process be given by

z(k + 1) = z(k) + 0.04u(k) + 0.2v(k)
y(k) = (k) + 5e(k)
2(k) = z(k)
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Chapter 4 Ezample

where v and e ar zero mean Gaussian white noise sequences with Ev? =
Ri = 1,Ee? = Ry, = 1 and Eve = Ry, = 0. The signal y is the
measurement signal, and u is the control signal.

4.2 LQG-Controllers

The weighting-matrices in (3.6) are

Q1 = 4(1-p)
Q12 = 0.08(1 — p)

and the solutions to the Riccati-equations in (3.8) are

S =2y/p(1-p)

p_ 0.04 + v/4.0016
- 2

Some more tedious calculations will give the controller H(q) in (3.7) to

be
Soq

_7‘0(1—!—7'1

H(q) =

where

so = 2v/p(1 = p) + 2(1 — p))(0.04 + +/4.0016)
ro = 0.04(24/p(1 — p) + 1)(50.04 + v/4.0016)

ry = 2(1 - 2p)

It is interesting to note that for p = 0.5—minimum variance control by
the remark of Lemma 3.1—the controller is a proportional controller.

4.3 MR and MV Controllers

The minimum risk (MR) controller will now be compared with the min-
imum variance (MV) controller.
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Figure 4.1 The variances of z—Ileft, and u—right, as functions of p.

Variance and Upcrossing Probability

The variances of z and u have been calculated numerically for values of
p with a step of 0.01 in the range of 0.01 to 0.99. It is seen in Figure 4.1
that the variance of z does not depend so much on p as does the variance
of u.

The probability p has been calculated for m, = 0 and the values
20 = 2, 3 ,4 and 5 of the critical level. The result is seen in Figure 4.2.
The minimum value of the probability p is obtained for p greater than
0.5. The variance of the control signal is smaller the larger p is, and the
controller obtained for p = 0.5 is the MV controller by the remark of
Lemma 3.1. Thus the MR controller not only minimize the upcrossing
probability, but that it also has a control signal that is more well-behaved
than that of the MV controller.
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Figure 4.2 The probability p as function of p for zg = 2—top left, zg = 3—
top right, z9p = 4—bottom left, and zp = 5—Dbottom left.
Simulations

The controllers have also been compared by simulations. The same noise
sequences were used for both the MR controller and the MV controller
in all cases. Figure 4.3 shows plots of z and u as functions of time for
the MV controller and the MR controller for zg = 3. It is seen that that
the MR controller manages to keep the signal z below the critical level,
while the MV controller does not. Further it is seen that the variance
of u is smaller for the MR controller than for the MV controller. Note
that z is not white noise for the MV controller although vy is, since y is

correlated with e.
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=
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Figure 4.3 The signals z(t)—top, and u(t)—bottom, as function of time
for the optimal controller—solid line, and the minimum variance controller—
dashed line.

Robustness

To investigate the robustness against unmodeled non-linearities the pro-
cess-dynamics was changed to

z(k + 1) = 0.332%(k) + z(k) + 0.04u(k) + 0.2v(k)

Thus the process for which the controllers are designed can be thought
of as a linearization of the non-linear process round z(k) = 0. If v(k)
is zero, and if the minimum variance control strategy is applied, then
the nonlinear process is stable for initial values of z that are smaller
than approximately 3. Therefore it is interesting to compare the MR
controller designed for zy = 3 with the MV controller. Plots of y, z, and
u for the two different control strategies with the same noise sequences
are shown in figure 4.4 and 4.5. It is seen that the MV controller has
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measurement y
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Figure 4.4 The signals y(t), 2(t) and u(t) as functions of time for the
minimum risk controller, when controlling a non-linear process.

more difficulties to stabilize the process than the MR controller has.

Transfer Functions

The MR controller for zo = 3 (p = 0.92) is given by:

0.4901¢q
Hg=————
(9) = —~—"0802
and the MV controller is given by:
H(q) = —0.9802

It is interesting to note that the difference between the MV controller
and the MR controller is that the MR controller has a 3 times lower gain
for high frequences (¢ = —1) due to the MR controller being a first order
system while the MV controller being only a proportional controller. This
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Figure 4.5 The signals y(t), z(t) and u(t) as functions of time for the the
minimum variance controller, when controlling a non-linear process.

explains why the variance of the control signal is much smaller for the
MR controller. Some calculations give that

(¢ — 0.9608)z = 0.2v — 0.196e
for the MV controller and

[(q — 1)(g — 0.4804) + 0.0196]z = 0.2(g — 0.4804)v — 0.098e

for the MR controller. It is seen that the main difference in the closed
loop behavior between the MV controller and the MR controller is the
lower high frequency gain (¢ = —1) from e to z for the MR controller.
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Figure 4.6 The optimal values of p as function of zp—left, and (pmv —
Mopt )/ Kmv as function of zp—right, where pimy is the upcrossing probability
for the minimum variance controller and popt is the upcrossing probability
for the minimum risk controller.

Approximation-validity

The validity of the assumptions made in the approximation of the prob-
lem formulation in Section 2.3 will now be investigated further; one pos-
itive indication has already been seen in Figure 4.3. In Figure 4.6 it is
seen how the optimal value of p, and how the relative decrease of up-
crossing probability between the MV controller and the MR controller
decreases as zg increases. This indicates that the MR controller and the
MYV controller are approximately the same for large values of zg.

To investigate the behavior of the controllers for moderate values of
zo9, Monte Carlo simulations have been performed to estimate the proba-
bility P {maxo<r<n 2(k) > 20} in (2.1) for the MR controller—ﬁopt, and
for the MV controller—]smv. In Figure 4.7 these estimates of the proba-
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Figure 4.7 The left plot shows the bound P, for the minimum variance
controlle;—’—l—’, the bound P; for the minimum risk controller—"*’, Ppv—
'0’, and Popy —'x’, as functions of zg. The values of NV has been 10 for zp = 2,

100 for zg = 3 and 1000 for zp = 4. The right plot shows (va — Popt)/pmv
as function of zp.

bilities are compared with the bounds P; and P, of Theorem 2.1, where
for short reference

Py(z0) = P{z(0) > 20} + Np(0)
Py(z0) = (N +1)P {2(0) > 2z}

The bound Py, which by Remark 1 of Theorem 2.1 is approximately min-
imized by the MR controller, has been computed for the MR controller.
The bound P, which by Remark 2 of Theorem 2.1 is minimized by MV
control, has been computed for the MV controller. The values of N and
Zo has been chosen such that the bound P is about 0.1. The values are
(z0,N) = (2,10), (3,100) and (4,1000). The result is shown in Figure 4.7.
It is seen in the left plot that the bound P; is much lower than the bound
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P, and that the estimate Isopt is lower than estimate va. The latter
is seen more clearly in the right plot, where the relative decrease of the
probability of being above the critical level between the MV controller
and the MR controller— (va — Popt) / P,,,—is plotted versus zo. Thus
the MR controller is about 5% to 10% better than the minimum variance

controller for moderate values of the critical level in this example.

4.4 Summary

The theory developed in the previous chapters has been evaluated using
a first order process. In spite of the simplicity of the process many
interesting features of the new controller have been demonstrated.

It has been shown that the MR controller is a first order system
whereas the MV controller is only a proportional controller. The latter
has a higher high-frequency gain. The variance of z is slightly larger
but the variance of u is a lot smaller for the MR controller as compared
with the MV controller. Further it has been seen in simulations that
the probability for the largest value of z of being above the critical level
is smaller for the MR controller. It has also been seen that the new
controller is more robust against unmodeled non-linearities than the MV
controller. The simulations have also given insight into the consequences
of the approximations made to derive the new controller. When com-
paring the differences between the MR controller and the MV controller
for varying distances to the critical level, it has been seen that these are
larger for moderate values of the distance and smaller for larger values -
of the distance. For the examples in Chapter 1 the distance is typically
moderate, and thus it has been justified that the MR controller may well
be superior to the MV controller for this class of interesting problems.
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Conclusions

A new optimal stochastic control problem has been posed. The solution
minimizes the probability for a signal’s largest value to be above a level
given a certain reference value. There are many examples of control
problems for which this approach is appealing, i.e. problems for which
there exist a level such that a failure in the controlled system occurs
when the controlled signal is above the level.

It has been seen that this control problem is closely related both to
the problem of minimizing the variance of the signal—minimum variance
control—and to the problem of minimizing the upcrossing probability.
The latter relation is novel, whereas the former relation has been known
for a long time, but the motivation given here is believed to be new.
It has been made plausible that the upcrossing probability is a better
criterion to minimize than the minimum variance criterion.

The problem of minimizing the upcrossing probability over the set
of stabilizing linear time-invariant controllers has been rephrased to a
minimization over LQG-problem solutions parameterized by a scalar, and
thus the complexity is not significantly larger than for an ordinary LQG-
problem. If the solutions to the LQG-problems are unique, then the
problem of minimizing the upcrossing probability can be thought of as
finding optimal weighting-matrices in an LQG-problem. The key to the
new method is the reformulation using the independent variables o and
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making it possible to quantify by Lemma 3.3 the upcrossing probability
in terms of the variances of o and 3.

The new controller has been compared with the minimum variance
controller for a first order process. It has been seen that the new con-
troller causes a lower upcrossing intensity and a smaller probability for
the largest value of the controlled signal to be above the dangerous level.
Further it has been seen that the control signal is more well-behaved.

Both theory and simulations have shown that the minimum risk con-
troller and the minimum variance controller are approximately the same
for large values of the dangerous level. However, in the example it has
been seen that the minimum risk controller can have up to about 10%
better performance for moderate values of the critical level, which is the
interesting case for the examples in Chapter 1. This makes it possible to
choose the reference value closer to the critical level when using the min-
imum risk controller, than when using the minimum variance controller.
This will in many cases increase the profit.

Thus the new controller has many advantages as compared with the
minimum variance controller—a smaller probability of being above the
dangerous level, a control-signal that is more well-behaved, and an inter-
pretation as weighting-optimal LQG. The only drawback is the slightly
larger computational burden.

This concludes the work of proving the raison d’étre of the mini-
mum risk controller and demonstrating its advantages as compared to
the minimum variance controller for a large class of control problems.
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More General Process
Model

Let the stationary Gaussian sequence z be defined by a process model
more general than (3.1):

z(k+ 1) = Az(k) + Biu(k) + Byv(k)
y(k) = C1z(k) + Dye(k) (A.1)
z(k) = Coa(k) + Dow(k)

where v, e and w are zero mean Gaussian white noise sequences with the
positive semidefinite covariance matrix

v Rl R12 R13
E € (’UT eT ’U)T) = Rflrz Rz R23
w RY, RL R;

The signal y is the measurement signal, and u is the control signal. The
following lemma is a generalization of Lemma 3.1.
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Appendiz A More General Process Model

LEMMA A.l
The loss function J in (3.4) can be written

J = J+E{vTQsv + 20T Qsuw + wTQ4'w}
where
J =E{zTQiz + 22T Qrou + v Qau + 2uT Qu3v 4+ 2uT Qaew}, (A.2)
and where @1, Q12 and Q)2 are as in (3.6) in Lemma 3.1 and where
Q23 = BIcTC,B,
Q24 = (1 — 2p)B{ C3 D,

Qs = B; Cy C3B, (A.3)
Qs34 = (1 — 2p)BICI D,
Qs = 2D] Dy

Proof: The result follows immediately by using the definitions of z in
(A.1), and of o and S in (3.2) and by noting that v(k) and w(k) are
uncorrelated with z(k), and that u(k) is uncorrelated with w(k+1). O

Remark. For p = 0.5 it follows that J = E{z(k 4+ 1)® + z(k)?}. This
case thus corresponds to minimum variance control of z.

The problem of minimizing J in (A.2) is not a standard LQG-
problem, therefor the following lemma is needed.

LEMMA A.2 _
If @ is invertible, then the loss-function J-in (A.2) can be written

J=J+E{T(S -~ LIQL,)v — 20T LY QLyw — wTLIQ L, w}
where
J=E{(u+ Lz + Lyv + Lyw)TQ(u+ Lz 4+ Lyv + L,w)}

where S is the solution to the Riccati-equation in (3.8), and where
Q = (Q2 + B{ SBy)
L=Q7'(BYSA+QR,)

Q H(BESBy + Qas)

Qa4

L,
Ly,

[l
Qi
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Proof: The result follows by a generalization of [Astrém and Witten-
mark, 1990, Theorem 11.2] to Q12 # 0, see e.g. [Gustafsson and Hagan-
der, 1991 p. 3], by completing the squares in J, and by noting that v
and w are uncorrelated with z. O

To obtain the optimal controller that minimizes J, estimates of z(k),
v(k), and w(k) based on observations of y up to time k are needed. The
ones for £ and v can be found in [Astrém and Wittenmark, 1990, Eq.
(11.49), p. 352]. The following lemma gives the estimate of w.

LEMMA A.3
If R, is invertible, then the estimate

w(klk) = E{w (k)| D}

of w(k), where )}, is the o-algebra generated by all past observations of
y up to time k, is given by

b (k|k) = Ry3 DY Ry (k)
where
R, = C,PCY + DR, DT
§(k) = y(k) — C1&(k|k — 1)
2(klk — 1) = E{z(k)|Ve-1}
and where P is the solution to the Riccati-equation in (3.8).

Proof: Since )}, is the same o-algebra as the one generated by all past

observations of y up to time k—1 and by g(k), since §(k) is independent of -

YVi—1 by [Astrém, 1970, Theorem 3.2, p. 219], and since E{w(k)j(k)T} =
E{w(k)(D1e(k))T}, it follows by [Astrom, 1970, Th. 3.2 and Th. 3.3,
pp. 219-220] that

W (k|k) = E{w(k)| V-1, 7(k)}
= E{w(k)|Ve-1} + E{w(k)|g(k)}}
= E{w(k)|g(k)}

= B{w(k)j(k)"} [B{GR)I(k)TH ™ (k) - B{g(k)})
= Ry, DT R (k)

37




Appendiz A More General Process Model

LEMMA A4
If Q and R, are invertible, then the optimal controller that minimizes J
in (3.4) is given by

u(k) = —Li(k|k) — Lyi(k|k) — Ly (k|k)

where #(k|k) and ©(k|k) are given by [Astrém and Wittenmark, 1990,
Eq. (11.49)] and @(k|k) is given by Lemma A.3.

Proof: The result follows by lemmas A.1 and A.2 and by the separation
principle, see e.g. [Astrom, 1970, p. 282]. O

THEOREM A.1l
If Q and R, are invertible, then the transfer function H(q) for the optimal
controller that minimizes J in (3.4) is given by

H(q) = —Lo(q] — A+ BiL, + KC) 'K, — Ly (A.4)
where
Ly=L—-L,C,
L,=LK;+ L,K,+ L K,
K,=K — B, L,
K = AK; + By K,
Ky = PCTR;*

K, = Ri»D{ R}"
K = Rys DI R

and where P is the solution to the Riccati-equation in (3.8).

Proof: The proofis straight forward calculations making use of lemmas -
A.3 and A.4 and the equations in [Astrém and Wittenmark, 1990, The-
orem 11.6]. O

LEMMA A.5

The closed loop system behavior for the optimal controller is governed
by
Z(k +1) = A.z(k)+ B.v(k)
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where Z(k) = (2T (k) zT(k))T, v(k) = (vT(k) eT(k))T, and where

A-B L BiL,
Ac:( 1 1 >

0 A— KOy
B (Bz —BlLyD1>
" \B, -KD;

Proof: The proof is straight forward calculations making use of lemmas
A.3 and A.4 and the equations in [Astrém and Wittenmark, 1990, The-
orem 11.6]. O

THEOREM A.2
The variances of «, 8, z and u are given by

0% =(Cy 0)((Ac+ D)X (A +I)T + B.RBY)(Cy 0)" +2D,R3Df
05 =(Cy 0)((4c — X (A.— DT + B.RBT)(C; 0)" +2D,R,DT
o2=(Cy 0)X(C; 0)" + DyRsDT

ol=(-L L,)X(-L L,)" +L,D;R,DTLT

(A.5)
where X is the solution to the Lyapunov equation in (3.9), and where R

is given by
Ry Ry
R:@ﬂ R>
12 2

Proof: The result follows from Lemma A.5 and [Astrém, 1970, p. 49].
O

Remark. Due to the triangularity of A. it is possible to split up (3.9)
into three equations, where one of the solutions is P in (3.8), which
reduces the complexity of the problem.
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“Stufen

Wie jede Blite welkt und jede Jugend

Dem Alter weicht, bliht jede Lebensstufe,
Bliht jede Weisheit auch und jede Tugend
Zu threr Zeit und darf nicht ewig dauern.

Es muf das Herz bei jedem Lebensrufe
Bereit zum Abschied sein und Neubeginne,
Um sich in Tapferkeit und ohne Trauern

In andre, neue Bindungen zu geben.

Und jedem Anfang wohnt ein Zauber inne,
Der uns beschiitzt und der uns hilft, zu leben.

Wir sollen heiter Raum um Raum durchschreiten,
An keinem wie an einer Heimat hdangen,

Der Weltgeist will nicht fesseln uns und engen,
Er will uns Stuf’ um Stufe heben, weiten.

Kaum sind wir heimisch einem Lebenskreise

Und traulich eingewohnt, so droht Erschlaffen,
Nur wer bereit zu Aufbruch ist und Reise,

Mag ldhmender Gewéhnung sich entraffen.

E's wird vielleicht auch noch die Todesstunde

Uns neuen Raumen jung entgegensenden,

Des Lebens Ruf an uns wird niemals enden ...
Wohlan denn, Herz, nimm Abschied und gesunde!”

Hermann Hesse*

* Das Glasperlenspiel, Suhrkamp Taschenbuch Verlag, Frankfurt am Main, 1972
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Preface

My interest in control of extreme values began in the autumn of 1990
as I was following a course on extremes in random processes given by
Professor Georg Lindgren at the Department of Mathematical Statistics
in Lund. The course was suggested to me by Professor Lars Nielsen
to give me a basis for our common interest in investigating prediction
methods for level crossings. After some time it was evident to me that
theoretical work about predictions in closed loop was not what a control
engineer primarily should work with. Why predict catastrophes, when
it is possible to control to avoid them. In fact, good control that avoids
level crossings, makes prediction of level crossings less interesting. The
closed loop system modes are then fast, and multi-step predictions will
rapidly converge to the mean of the process. However, due to practical
considerations, such as uncertainties in process models or actuator con-
straints, it is not always possible to control in a satisfactory way, and
in these cases supervision may be useful. This has been described for
the continuous time case in [Hansson and Nielsen, 1991]. In this thesis,
only control of level crossings and extreme values for the discrete time
case will be considered. The continuous time case has been described in
[Hansson, 1991a], [Hansson, 1991b] and [Hansson, 1992a).

As is obvious from what is said above, the thesis is somewhat inter-
disciplinary and in the borderland of automatic control and mathematical
statistics. It is primarily written for a reader with knowledge of auto-
matic control at a graduate level, but I hope that the references will help
any other reader with some mathematical background to read it.

ix




Preface

Acknowledgements

This work has been carried out at the Department of Automatic Con-
trol, Lund Institute of Technology, Sweden. I would like to thank all
my colleagues at the department. It is a great pleasure to work in the
creative, friendly and highly stimulating atmosphere which they are all
contributing to.

I am very happy to thank Professor Karl Johan Astrém, and Dr.
Per Hagander for their encouraging support and guidance, and for their
valuable comments and suggestions, which have improved my work con-
siderably. Professor Astrém’s great enthusiasm for my work moderated
by his sincere interest in controllers well adapted to industrial control
problems has been most encouraging, and served as a very good exam-
ple on a serious attitude towards scientific research in an applied field.
Dr. Hagander not only has the invaluable ability to find most, I hope, er-
rors in a manuscript, but also a persistent will to understand and discuss
problems, which is very helpful when trying to write for the uninitiated
reader. I am also very grateful to Professor Bjorn Wittenmark for his
comments and criticism on the first version of my manuscript. I wish
to express my gratitude to M.Sc. Bo Bernhardsson for suggested im-
provements and stimulating discussions. He has been a valuable source
of inspiration. I am also indebted to Professor Georg Lindgren for stimu-
lating discussions, and for his interesting lectures on extremes in random
processes. I would like to thank Professor Lars Nielsen for suggesting
the topic of investigating prediction of catastrophes, for having had time
to discuss related topics, and for making me aware of the research on
extreme values at the Department of Mathematical Statistics. I am also
grateful to L.Sc. Ola Dahl and M.Sc. Klas Nilsson for interesting discus-
sions about applications in robotics.

I would like to thank L.Sc. Kjell Gustafsson for providing good LQG-
routines in Matlab, and M.Sc. Leif Andersson for providing excellent
TEXmacros, which have made the type-setting much smoother than it
otherwise would have been.

Finally, I would like to thank my parents for their encouragement
and support.

Lund, November 1991
Anders Hansson




Preface to second Edition

Preface to second Edition

The major changes in the second edition are in chapters 1 and 2. In
Chapter 1 the relation of my work to the extensively studied deterministic
case is described, and in Chapter 2 the relation of the mean time between
failures criterion to the upcrossing probability criterion is discussed.

I would like to thank my opponent Professor Torsten Soderstrom
for his constructive opposition, which has greatly inspired the revision of
this second edition.

Lund, February 1992
Anders Hansson







Table of Contents

1. Introduction . . . . . . . . . . . e e e 1
2. The Control Problem . . . . . . . . . 5
2.1 Problem Formulation . . . . . . . . . . . . . 5
2.2 Bounds for the Criterion Probablhty 6

2.3 Approximation of the Problem Formulation . . . . . . . 9

2.4 Summary . . . . . . . . . . . . o ... .10
3. Regulator Design . . . . . . . . . . . .. T b |
3.1 Solution . . . . . . . . . . . . . . .. . & |
3.2 LQG-equations . . . . . . . . . . ... e .19
3.3 The General Case . . . . . . . . . . .. . 20
3.4 Summary . . . . . . . . . .0 ... C e e e 22
4. Example . . . . . . . . . .00 0. .
4.1 Process . . e e e e e e e 7
4.2 LQG- Controllers e e e e e e e e Coe e o .. 2D
4.3 MU and MV Controllers . . . . . . . . . .. . . . . 26
4.4 Summary . . . . . . . . e e e e - &
5. Conclusions . . . . . . . . . . . . ... . 7
References . . . . . . . . . . .. . . .. . . . .. . 36
A. More General Process Model . . . . . . . . 1

xiii







Introduction

There are many control problems where the goal is not only to keep
the controlled signal near a specified reference value, but in addition to
keep it below a critical level. The word critical is used in the sense of
a severe failure, which may imply that the process has to be repaired
and restarted. The distance between the critical level and the reference
value is normally not too small. Otherwise the failure rate will be intol-
erably high. However, there may be other control-objectives that make
it undesirable or impossible to choose the distance large. An example
of problems of this kind can be found in [Borisson and Syding, 1976},
where the power of an ore crusher should be kept as high as possible but
not exceed a certain level, in order that the overload protection does not
cause shutdown. Another example is moisture control of a paper ma-
chine, where it is desired to keep the moisture content as high as possible
without causing wet streaks. Yet another example is control of wind
power plants, where the supervisory system initiates emergency shut-
down, if the generated power exceeds 140% of rated power, [Mattsson,
1984]. Other examples can be found in sensor-based robotics and force
control, [Hansson and Nielsen, 1991], and control of non-linear plants,
where the stability may be state dependent, [Shinskey, 1967].

In a deterministic framework this type of problems could be solved

1




Chapter 1 Introduction

by minimizing

max||2]]oo

where z is the controlled signal and d is a disturbance acting on z. Prob-
lems of this type have been studied extensively. Assuming bounded en-
ergy on the disturbance gives the well-known Hj-controller, [Vidyasagar,
1986]. Other types of disturbances have also been considered. In
[Vidyasagar, 1986] and [Dahleh and Pearson, 1987] the disturbance has
bounded supremum norm, and in [Liu and Zakian, 1990] it has bounded
increments.

Common to the deterministic criteria is the design for worst case
disturbances, which may seem somewhat too conservative. The classical
way to overcome this is to consider a stochastic formulation, where the
natural criterion is to minimize

p {OEI}CELSXNZ(]C) > zo}

where zy is the distance to the critical level. This type of problems
has previously been solved approximately by minimum variance control,
[Astrém, 1970, pp. 159-209], [Astrom and Wittenmark, 1990, p. 203],
and [Borisson and Syding, 1976]—the intuitively best controller. The
gain of the minimum variance controller depends critically on the sam-
pling period. Too small a sampling period leads to large variations in
the control signal, [Astrdm and Wittenmark, 1990, pp. 316-317]. This
problem has been solved by introducing weighting on the control signal—
LQG-design. However, there has been no good criteria for choosing the
weighting.

It should be noted that the solution to the deterministic problem
with bounded disturbance energy, i.e. the Hy-controller, and the solution
to the minimum variance problem are the same. Thus the deterministic
problem, with disturbances having bounded energy, will also suffer from
the drawbacks of the minimum variance controller. Another way to ex-
press this, is that the minimum variance controller is just as conservative
as the controller designed for worst case disturbances.

The proposed controller is less conservative than the minimum vari-
ance controller. It can be interpreted as a choice of optimal weightings
in an LQG-problem, chosen in such a way that they minimize the mean

2




number of upcrossings of the critical level per unit time—the upcross-
ing probability. This controller will also be an approximate solution to
the stochastic problem above, however obtained by considering a tighter
bound for the criterion probability than the one which corresponds to
the minimum variance controller

The limiting distributions of the maxima for independent and iden-
tically distributed random variables were discussed already in [Tippet,
1925], [Fréchet, 1927], and [Fisher and Tippet, 1928]. The results were
generalized to dependent variables by [Watson, 1954], [Berman, 1964],
[Loynes, 1965], and [Leadbetter, 1974]. A good book in the topic is
[Leadbetter et al., 1982]. However, the idea of approximating distribu-
tions of extrema with upcrossing probabilities originates from continuous
time extreme value analysis. In that context, the problem of upcrossings
was first studied in [Rice, 1936]—Rice’s private notes. His results were
only briefly mentioned in his own publications—a sentence in [Rice, 1939]
and a footnote in [Rice, 1944 1945, Section 3.8]. Rice’s celebrated for-
mula for the mean number of upcrossings of a level z; per unit time
by a stationary Gaussian process, with zero mean value and covariance
function r(7), is given by

=50 (5m)

The origin of Rice’s Formula is well described in [Rainal, 1988]. In dis-
crete time the corresponding formula is less explicit

p="P{z(0) <zoNz(1l)> 2}

[Cramér and Leadbetter, 1967]. This will make the analysis somewhat
harder than in continuous time.

In [Hansson, 1991a], [Hansson, 1991b] and [Hansson, 1992a] the
problem was solved in the continuous time case; here the discrete time
case is treated, which previously to some extent has been described in
[Hansson, 1992b]. Only the case of a linear process controlled with a
linear controller will be treated, since then, if the disturbances acting on
the process are Gaussian, the closed loop system will also be Gaussian.
It is very likely that a nonlinear controller will do better. However, the
analysis will then be much harder, since the signals are not Gaussian.




Chapter 1 Introduction

In Chapter 2 the problem of keeping a signal’s largest values below
a level given a certain reference value is related to the minimum variance
controller and to the controller that minimizes the so called upcrossing
probability. It is also made plausible that the upcrossing probability cri-
terion captures the control-objectives better than the minimum variance
criterion.

In Chapter 3 the controller that minimizes the upcrossing probabi-
lity—the minimum upcrossing controller— is determined. It is obtained
by solving a one-parametric optimization problem over a set of LQG-
problem solutions. The complexity is thus only one order of magnitude
larger than for an ordinary LQG-problem. It can be interpreted as choos-
ing optimal weighting-matrices in an LQG-problem, provided that the
solutions to the LQG-problems are unique.

In Chapter 4 the minimum upcrossing controller found in Chap-
ter 3 is compared with the minimum variance controller for a first order
process. It is seen that the new controller causes a lower upcrossing prob-
ability and smaller probability for the largest value of being above the
dangerous level. Further it is seen that the control signal is more well-
behaved. Both theory and simulations show that the minimum upcross-
ing controller and the minimum variance controller are approximately
the same for large values of the distance between the reference value and
the critical level. However, in an example it is seen that the minimum
upcrossing controller can have up to about 10% better performance for
moderate values of the level. This is the interesting case for the examples
described above.

Finally, in Chapter 5 the results of the previous chapters are sum-
marized.




The Control Problem

The control problems described in Chapter 1 will be mathematically for-
malized in a stochastic framework. In Section 2.1 the control criterion is
defined; it is defined such that the controller should minimize the prob-
ability for the largest value of the controlled signal to be above a level
given a certain reference value. Two bounds for the criterion probability
are investigated in Section 2.2. One of them is minimized by minimum
variance control, the other one—tighter than the first one—is approxi-
mately minimized by minimizing the so called upcrossing probability. In
Section 2.3 the approximate control criterion to minimize the upcrossing
probability is further motivated and stated. The results are summarized
in Section 2.4.

2.1 Problem Formulation

Let the controlled signal, z, be a stationary Gaussian sequence with mean
m, = E{z(k)}
and with covariance function

ro(7) = E{(2(k + 7) — m.)(2(k) — m.)}




Chapter 2 The Control Problem

Denote the variance of z by o2, i.e. let 02 = r,(0). Consider a time-
invariant controller H, linear in both the measurement signal y and in
the constant reference value . The problems mentioned in Chapter 1
are captured in the following problem:

mf}nP {OISI}CaSXNz(k) > zo} (2.1)

subject to m, = r and to a stable closed loop system, where P{-} denotes
probability measure, and where zg > m, is the critical level. The reason
for constraining the minimization to m, = 7 is that it may be profitable
to not having m, — z¢ too large; e.g. in the paper machine example it was
desired to keep the moisture content as high as possible without causing
wet streaks. The time horizon N and the distance m, — zp have to be
chosen in such a way that the probability in (2.1) is small, otherwise the
failure rate will be too high. The larger N is, the larger m, — zo must be.
Without loss of generality it may be assumed that m, = r = 0, which
can be obtained with a change of coordinates. To simplify the notations
this will be assumed in the sequel.

2.2 Bounds for the Criterion Probability

To simplify the problem upper bounds for the probability in (2.1) will be
given. It will be shown that these bounds are tight, if V and zo/0, are
Jarge and the probability in (2.1) is small. The tighter bound is obtained
by considering level crossings.

The problem of level crossings is a classical problem in stochastic
processes. Initial results were given in [Rice, 1936]. Good references to
crossing problems are [Cramér and Leadbetter, 1967] and [Leadbetter
et al., 1982]. The latter book also treats the problem of extreme values
in stochastic processes. The results developed in this section will make
extensive use of the results in these books.

THEOREM 2.1
If z(k) is a stationary random sequence, then

p {OIS%%XNz(k) > zo} < Pi(z0) < Py(z0) (2.2)




2.2 Bounds for the Criterion Probability

where

Py(20) = P{2(0) > 20} + Np(20)
Py(z0) = (N + 1)P {2(0) > 20}

and where
p(z0) = P{z(0) < zo N z(1) > 20} (2.3)

Proof: The proof is easy:

0<k<N

P{ max z(k) > zo} =P {z(O) > 2o U (z(k) <zoNz(k+1) > zo)}

N-1
< P{z(0) > z} + Z P{z(k) <zoNz(k+1)> 2}

=P {z(0) > 20} + NP {2(0) < zoNz(1) > 2}
< (N +1)P{z(0) > 2z}

O

Remark 1. For large values of NV and large values of zg /0, the first term
in P, is negligible.
Remark 2. Note that P, is minimized by minimum variance control.

The quaintity g in (2.3) will be called the upcrossing probability,
and it is equal to the mean number of upcrossings in the interval [0,1),
see e.g. [Cramér and Leadbetter, 1967, p. 281]. The bound P; is well
known in the context of continuous time extreme value analysis, see e.g.
[Leadbetter et al., 1982, Lemma 8.2.1], since there the bound P is infi-
nite, and thus not usable for investigating the behavior of extreme values
as the time horizon and the critical level approaches infinity. However,
the bound P, is good enough for investigating this behavior in the dis-
crete time domain, but for the purposes in this work—focused on finite
time horizons and levels—it is interesting also to consider a tighter bound
such as P;.

It will now be shown that the bounds in Theorem 2.1 are tight.

THEOREM 2.2
If z(k) is a stationary Gaussian sequence with covariance function satis-
fying

lim 7,(T)lnT=0

T—00




Chapter 2 The Control Problem

(N)

and if z; ’ is chosen such that

lim P, (ng)) =L

N-— o0

then
M S\ _ p z(N)) M A9 _ p, (z(N)) I
Y ( OM)(Z(()N)1>( : Sy ( OM)(Z(()N)) : <5

where M (z) = P {maxo<r<n 2(k) > z}.
Proof: The first inequality follows by Theorem 2.1. Further by Theorem
2.1 and since by [Leadbetter et al., 1982, Theorem 4.3.3]

dim Py (2§") =1
if and only if .
im 1-M (z(()N)) =e L

N-— oo

it follows that

N N
i M(Z(() )>—P2(Z(() )) ‘1_e—L_Ll<L
m = < —
N-—o0 M (Z(SN)> 1—e L 2
which concludes the proof. O

(

Remark. Let ny be the number of upcrossings of zON) by the time nor-
malized process (), t = k/N,k=1,2,... defined by {n(k/N) = z(k).
Then it can be shown, under the conditions above, that ny converges in
distribution to a Poisson process with intensity L on (0, 1], [Leadbetter
et al., 1982, Theorem 5.2.1]. From this it follows that the number of
upcrossings of a sufficiently large fixed 29 by z will be approximately a
Poisson process with intensity L/N ~ P{z(0) > zo} = u(zo).

Related problems of convergence have been investigated for other ap-
proximations of extremal-probabilities, see e.g. [Leadbetter et al., 1982,
Chapter 4.6], but these approximations are not upper bounds as the ones
discussed here.

8




2.3 Approzimation of the Problem Formulation

2.3 Approximation of the Problem Formulation

Now by theorems 2.1 and 2.2 it is obvious that the probability in (2.1)
can be approximately minimized for large values of N and zy/0, and for
small values of the probability in (2.1) by minimizing either the variance
or the upcrossing probability pu. However, for moderate values of N and
z9/0, the results of Theorem 2.1 still hold, and it is tempting to believe
that the upcrossing probability is a better criterion to minimize in this
case, which is the interesting one for the problems described in Chapter
1. Therefore the following approximation of the criterion (2.1) will be
considered from now on:

m]}n ©(20) (2.4)

subject to a stable closed loop system. There may be some problems with
this approximation, since there are two ways of making p small—either
by keeping z well below zg or by keeping it well above zg. It is clear that
the probability in (2.1) will not be small, if 4 is made small by keeping
z well above zg. To exclude this possibility, the minimization of p will
also be restricted to o, < 2. The validity of the approximation of the
problem formulation will be investigated further in Chapter 4.

It is interesting to note that the approximate criterion could also
have been obtained by approximating another interesting criterion. Let
T be the time interval between two consecutive upcrossings of 2y by z.
Then the mean time between failures (MTBF) defined as E{T'} would
be an interesting quantity to maximize. By the remark of Theorem 2.2

it holds
1 1

E{T} =~ R~
T Pem) > ) ™ i)
Thus MTBF is approximately maximized by minimizing either the vari-
ance of z or the upcrossing probability p. It is however difficult to get a
feeling for which approximation is the best to minimize with the MTBEF-
criterion.




Chapter 2 The Control Problem

2.4 Summary

The control problems described in Chapter 1 have been mathematically
formalized in a stochastic framework. The control criterion has been
defined such that the controller should minimize the probability for the
largest value of the controlled signal to be above a level given a cer-
tain reference value. Two bounds for the criterion probability have been
investigated. One of them is minimized by minimum variance control,
the other one—tighter than the first one—is approximately minimized by
minimizing the so called upcrossing probability. It has been made plausi-
ble that minimizing the upcrossing probability is a better approximation
to the original problem than minimizing the variance. One drawback
with the criterion in (2.1) is the time horizon N, which seams strange
when minimizing over time-invariant controllers. This can be overcome
by considering the mean time between failures criterion. It is however
more difficult to get a feeling for which approximation is the best to
minimize with this criterion.

10




Regulator Design

The problem of minimizing the upcrossing probability will now be solved.
In the Section 3.1 the problem is reformulated as a one-parameter min-
imization over solutions to LQG-problems. Thus the complexity is not
significantly larger than for an ordinary LQG-problem. The solution
can be interpreted as a choice of optimal weighting-matrices in an LQG-
problem. The equations for solving the LQG-problems are given in Sec-
tion 3.2. In Section 3.3 the results of the previous sections are generalized
to more general process models. Finally in Section 3.4 the results are
summarized.

3.1 Solution

Let the stationary Gaussian sequence z be defined by

z(k + 1) = Az(k) + Biu(k) + Bov(k)
y(k) = Crz(k) + De(k) (3.1)
z(k) = Coz(k)

where v and e are zero mean, Gaussian, white noise sequences with
EvvT = Ry, EeeT = R, and EveT = Rys = 0. The signal y is the

11




Chapter 8 Regulator Design

measured signal, and u is the control signal. The signal z is the signal
that is desirable to control. The reason for not having C; = Cy can be
motivated by the examples in Chapter 1, where e.g. in the ore crusher
example, the measured power y is not the desired signal to control, but
instead some filtered version z of it, due to the filtering behavior of the
thermal overload protection. More general process models than (3.1)
may be considered. The treatment of a more general process model will
be given later in Section 3.3 and in Appendix A. Introduce

{a(k) = z(k +1) + z(k) (32)

Blk) = 2(k+1) - z(k)

which are independent variables due to the stationarity of z. Let D be
the set of linear time-invariant stabilizing controllers of (3.1), and let D,
be the set of linear time-invariant stabilizing controllers of (3.1) for which

o, < 2o (3.3)

holds, where o2 is the variance of z. Note that the sets D and D, may
be empty. It will be seen that the minimization of p in (2.3) over D, can
be done by first minimizing

J=E{(1-p)a®+pB%} (34)

for p € [0,1] over D, and then minimizing p over the solutions obtained
in the first minimization, i.e. over Yy NV,, where

Vs = {(eallD), 0p(H1)) € B*|H € D; }

Y, = {(aa,aﬁ) € R?

0, < zg, 0 > 0, aﬂZO}

Dy = {H = D]H — argmin J(H, p), p € [0,1]}

and where o2 and 0’% are the variances of a and .
In the following lemma J is rewritten to fit the standard LQG-
problem formulation.

12




3.1 Solution

LEMMA 3.1
The loss function J in (3.4) can be written

J = J +E {vTBf C] CyByv}

where

J=E {a:TQlaz + 22TQou + uTQzu} : (3.5)

and where

Q1 =C3Cy+ATCTCrA+ (1 - 2p) (CFC2A + ATCT Cy)
Qi2 = (AT + (1 = 2p)I) C5 C2 B, (3.6)
Q2 = B{ C; C2B,

Proof: The result follows immediately from the definitions of z in (3.1),
and « and 8 in (3.2), and by noting that v is uncorrelated with z and w,
since u is a functional of y(k),y(k —1),..., and since Ry = 0. O

Remark. For p = 0.5 it follows that J = E {z(k +1)® + z(k)2}. This
case thus corresponds to minimum variance control of z.

Next it will be shown that all jointly minimal variances of a and
B can be obtained by minimizing J in (3.4) for p € [0,1]. A precise
definition of jointly minimal due to Pareto, [Pareto, 1896], will first be
given.

DEFINITION 3.1—Pareto Optimality
Let X denote an arbitrary nonempty set. Let f; : ¥ — RT, 1<i<s
be s nonnegative functionals defined on X. A point z° is said to be Pareto
optimal with respect to the vector-valued criterion f = (fy, f2, -+, fs) if
there does not exist z € X such that f;(z) < f;(z°) foralli, 1<i< s,
and fr(z) < fr(z°) for some k, 1<k <s. O
The concept of Pareto optimality is illuminated in Figure 3.1. The
set of achievable variances of a and 3 is the set of points in the plane
that are above and to the right of or on the solid curve. The controller
corresponding to the variances at B is not Pareto optimal, since there ex-
ist e.g. controllers corresponding to strictly lower variance of 8 without
having larger variance of a—the controllers with variances on the line
connecting A with B. Moreover it is seen that the controller correspond-
ing to the variances at A is Pareto optimal, since by picking any other

13




Chapter 3 Regulator Design
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Figure 3.1 Illustration of Pareto optimality.

point, to the right of, above the curve, or on it, will either increase the
variance of o or the variance of 3. This reasoning holds for all points on
the curve, and thus they are all Pareto optimal. Equivalent definitions
of Pareto optimality can be found in [Leitmann, 1981, p. 292].

LEMMA 3.2

Suppose that (A4, By) is stabilizable, and that (Cq, A) is detectable. Then
the set Dp of Pareto optimal controllers with respect to (ai,ag) is a
subset of Dj.

Proof: Using the Youla parametrization, [Boyd and Barratt, 1991,

Chapter 7.4], it follows that all stabilizing controllers of (3.1) can be
parameterized by a stable transfer-function matrix ). Thus to minimize
J over D is equivalent to minimize J over @), where () belongs to the
linear space of stable transfer-function matrices. Further it follows from
[Boyd and Barratt, 1991, Chapter 7.4] that the transfer-function matri-
ces from v and e to z are affine in (). Since the variances of a and 3 are

14




3.1 Solution

convex in the transfer-function matrices, it follows that the variances are
convex in Q. The result now follows by [Khargonekar and Rotea, 1991,
Theorem 1]. O

Remark 1. All controllers obtained by minimizing J for p € (0,1) are
Pareto optimal by [Leitmann, 1981, Lemma 17.1]. If the controllers ob-
tained for p = 0 and p = 1 are unique, then they are also Pareto optimal
by [Leitmann, 1981, Lemma 17.2].

Remark 2. Remark 1 and Definition 3.1 imply that V; can be parame-
terized by a scalar. This is not necessarily the case for D;.

Remark 3. Remark 1 implies that if the controllers obtained by mini-
mizing J for p € [0,1] are unique, then a parameterization of Dp = Dy
by p is obtained, [Khargonekar and Rotea, 1991, p. 16].

The next lemma gives an expression for the upcrossing probability
g in (2.3) in terms of a double integral.

LEMMA 3.3
It holds that

p=PEO) S 20020 > k= [ o) [ plediedy

where ¢(z) = # exp(—z2/2), z; = (220 — 05Y)/0w, and z, = (220 +
0sY)/0a.
Proof: Since a and 3 are independent it holds that

b =P {Ja— 22| < )
o o225 (3)
le—2z0|<y T Oa/ 0p 0p

from which the result follows by a change of variables. O

In the following lemma it will be shown that the upcrossing prob-
ability g in (2.3) has strictly positive partial derivatives with respect to
0q and og.

15




Chapter 3 Regulator Design

LEMMA 3.4
Let
V(r) = {(aa,aﬂ) € R?lo, < T, 00 >0, 0 > 0}

where # > 0. Then the upcrossing probability px in (2.3) has strictly
positive partial derivatives with respect to both o, and o on V(r), if
and only if r < 2.

Proof: It holds that

= [0t (Lot + Lotw ) dy >0

Further let z; = (220 —03Yy) /04, and z,, = (220 +05Y)/0a. Using Lemma
3.3 gives

(9[.L > Iy Ly

= = il _Zu d

o [ 00 (20 - 220 ) dy
By completing the squares in the exponents and by a change of coordi-
nates it is possible to express the integral in terms of ®(z) = [*_ ¢(t)dt,

and 02 = (02 + 03)/4

;{T‘: = 2% exp <—1;-) [\/ﬁy (2®(n) — 1) — 22 exp <_372f>]

8mwo? ¥

where n = /€, £ = (0p/04)?, and v = z9/o, > 0. It is seen that
%% 0 if and only if

8oy
2 7 ub
2B(n) —1> 4/ = — /

So if ;T‘i > 0 on V(r), then the inequality above holds for all values of
n > 0, since v > 0, and since it must hold for all values of £ > 0. A
Taylor-expansion round 1 = 0 gives

2 2 7 9
V2> 25 +ou

So for the inequality to hold for small values of 5, it must be that vy > 1,
which is equivalent to r < z.

16




3.1 Solution

Now suppose that » < zp, which implies ¥ > 1. Then

a0 =12 1 exp (-2 ) - 20ty (1)

s 32
>1—exp <—%§—> - 2(7;—7:23)—{2 exp (——g)

where the first inequality follows from [Abromowitz and Stegun, 1968,
Formula 26.2.25] and the second one from v > 1. Further

(i (1)) < 2eemnice
Op

To show === > 0, it is now sufficient to show L > R for £ > 0, where

oy

_ 3
L =exp <2
2 £ 1 2 2(mr —3) .,
R —;feXP <—2> + exp (('2‘ - ;) E) + Tf
Some calculations give

1
L21+—£+%£2

2
1 1 1
<l4=b4 (==&
B < +2£+<8 37T)£
From this it follows that L > R for £ > 0, so%‘;— > 0. O

Remark. The largest region V(r) in which both ;T“ > 0 and -% >0

is V(20). So if the constraint o, < zp is not considered, then it may well
be that p is minimized by o, = oc.

It will now be shown how the minimization of y in (2.3) can be
rephrased to a minimization over a set of LQG-problem-solutions. Figure
3.2 illuminates the proof of the following theorem.

17
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Figure 3.2 The solid line is Vj, and the dashed line is 0, = 2o for 29 =
1.05.

THEOREM 3.1
Suppose that (A, B;) is stabilizable, and that (C1, A) is detectable. Then

{H €D,|H = argmin p (0a(H),05(H)) } C Dp N D,

and

H = argmin y(aa(H),Jg(H))} CVY;nYy,

{GalH),0p(tD) €V

Proof: Assume that the minimum of x on D, is attained for some H ¢
DpND,. For all H & DpND, there exist by Definition 3.1 H € D, such
that o;(H) < 0;(H) for at lest one of ¢ = «, 8. Since p is differentiable
and by Lemma 3.4 has strictly positive partial derivatives with respect to
0o and g on V(zp), it follows that p(oq(H),05(H)) < p(oa(H),05(H)).

18




3.1 Solution

This is a contradiction, and thus the minimum of y is attained on DpND,,
if it exists on D,. Further Dp C Dy by Lemma 3.2, which concludes the

proof. O
Remark 1. Note that the minimization of u can be done over V;yNYV,.

This is a one-parametric optimization problem by Remark 2 of Lemma
3.2.
Remark 2. If for each p € [0,1] the minimizing H of J is unique, then

by Lemma 3.1 and Remark 3 of Lemma 3.2 the minimization of p can
be thought of as finding optimal weights in an LQG-problem.

3.2 LQG-equations

For short reference the equations for deriving the solution that minimizes
J in (3.5) in Lemma 3.1 when the controller H is allowed to have a direct-
term are given below. More stringent proofs of the results can be found
in Appendix A, which also covers a more general process model. The
transfer function from measurement to control is

H(q) = —La(qg] — A+ B,L,+ KC1) 'K, — L, (3.7)

where L,, L, and K are given by

L,=1L-L,C,
L,=LK;
-1
L= (Q:+BfSB;)  (B{SA+QL)
Ky - K - BlLy
K = AK;

K¢ = PCT (DR,D” + C,PCT) ™

where S and P are the solutions to the Riccati-equations, [Astrom and
Wittenmark, 1990, Chapter 11.4], and [Gustafsson and Hagander, 1991],

ATSA — S — (ATSB; + Q12)(Q2 + B{ SB1) "1 (Qf; + B{ SA) + Q1 =0

APAT — P — APCY(DR,DT + ¢y PCT ) *CLPAT + ByRyBY =0
(3.8)
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Chapter 3 Regulator Design

and where Q1, Q2 and Q12 are given by (3.6) in Lemma 3.1. To calculate

0z, Ou, 0 and og the following Lyapunov-equation for the closed loop
system should be solved, [Astrém, 1970, p. 49],

AXAT + B.RBT = X (3.9)
where

4 __(A—BlL B L, )

° 0 A-KC

B (Bz —BlLyD>
B, —KD
R, 0

(5 )
0 Ry

Then o4, 04, 0, and o, are given by

o2 =(Cy 0)((A4e+ DX A+ DT +B.RBT)(C, 0)"

o2 =(Co 0)((4c -~ )X (Ac— )T+ B.RBT) (Cy 0)" (310
o2=(C, 0)X(Cy 0)"

0= (-L L,)X(-L L,) + L,DR,DTLY

Since A. is block-triangular, Equation (3.9) can be split up into three
equations, one of which has P in (3.8) as its solution. This reduces the
complexity of the problem.

3.3 The General Case

The results of the previous section are now generalized to the more gen-
eral process model:

m(k + 1) = Az(k) + Blu(k) + Byv(k)
(k) +D2w( )

20




3.8 The General Case

where v, e and w are zero mean Gaussian white noise sequences with the
positive semidefinite covariance matrix

v R, Riy Rz
E e | (vT e wl)} =|RE, Ry, Ry
w Rf; R]; Rs

The signal y is the measurement signal, and u is the control signal. The
proofs of the results in this section can be found in Appendix A. Let

Q23 = B{ C§ C2By

Q24 = (1 — 2p)BL CT D,
Q = (Q2 + B SBy)
L=Q " (BfSA+ QL)

L,=Q7" (BlTSBz + Q23)

Ly, =0Q7'Qa
R, = C, PC{ + DR, DT
Ky = PC{ R}*

K, = Ri;D{ R}
Ky = Rys DI R}
K — AKf —|— B2KU

K,=K - B L,
Ly=LK;+ LK, + L,K,
Ly=1L—L,C,

where S is the solution to the Riccati-equation in (3.8), P is the solution

to the Riccati-equation in (A.4), and where @1, @2, and Q15 are given by
(3.6) in Lemma 3.1. The transfer function H(q) for the optimal controller
with direct-term that minimizes J in (3.4) is then given by

H(q)=-L.(¢g/ - A+B,L,+KC,)™ 'K, - L, (3.12)
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Further let

M _(A—BlL B, L, )
T 0 A-KC;
B <B2 —BlLyD1>
" \By, -KD

R, R
- (5 )
R12 R2

The variances of «, 3, z and u are then given by

o2 =(Cy 0)((Ae+DX(Ac+ )T+ B.RBT) (C; 0)" +2DyR3DY
0% =(Cy 0)((Ac—I)X(Ac—I)" + B.RBT)(C> 0)" +2DyR3D]
o2=(Cy 0)X(C; 0)" 4 DyRyDY

02 =(-L Ly)X(-L L) +L,DiRDILT

(3.13)
where X is the solution to the Lyapunov equation in (3.9). Notice that
(3.9) is block-triangular also in the general case.

3.4 Summary

It has been shown that the minimization of the upcrossing probability
can be expressed as minimization over a set of LQG-problem solutions
parameterized by a scalar, regardless of the uniqueness of the solutions
to the LQG-problems. If the solutions to the LQG-problems are unique,
then the problem of minimizing the upcrossing probability can be thought
of as finding optimal weightings in an LQG-problem. Note that the
Lyapunov equation (3.9) is linear, and thus does not add any significant
complexity compared to an ordinary LQG-problem.

The algorithm for minimizing the upcrossing probability can be sum-
marized as: 1) solve the associated LQG-problems, and 2) minimize the
upcrossing probability over the variances obtained in the first step. It
must be stressed that if o, > zp, then no solution exist. In order to ob-
tain a solution, the distance between the reference value and the critical
level zg must be increased.
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3.4 Summary

It has been seen that the computation of the variances is not more
complicated than solving a linear system of equations. Further the up-
crossing probability can easily be obtained with some numerical integra-
tion routine. The complexity of this latter problem does not depend on
the size of the process model. Thus the computations performed for each
value of p is not significantly larger than for an ordinary LQG-problem.
Moreover by adopting some numerical routine for minimizing the up-
crossing probability, it may not be necessary to solve that many LQG-
problems. A good choice of starting value for p is 0.5, which corresponds
to the minimum variance controller. In this sense the computational bur-
den for obtaining the minimum risk controller is not significantly larger
than for the LQG controller that corresponds to minimum variance con-
trol.
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Example

To evaluate the performance of the minimum upcrossing controller ob-
tained by minimizing the upcrossing probability a first order process
will be investigated. In the Section 4.1 the process is defined. The set of
LQG-solutions is calculated analytically in Section 4.2. In the Section 4.3
the minimum upcrossing controller is computed and compared with the
minimum variance controller. It is seen that the new controller causes a
lower upcrossing probability and smaller probability for the largest value
of the signal of being above the critical level. Further it is seen that it
has a control signal that is more well-behaved. In the Section 4.4 the
results of the previous sections are summarized.

4.1 Process

Let the process be given by

z(k+ 1) = z(k) + 0.04u(k) + 0.2v(k)
(k) = (k) + 5e(k)
z(k) = (k)

I
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4.1 Process

where v and e ar zero mean Gaussian white noise sequences with Ev? =
Ry, =1, Ee? = Ry = 1 and Eve = Rj3 = 0. The signal y is the
measurement signal, and u is the control signal. This process can be
obtained approximately by fast sampling of a continuous time integrator
process.

4.2 LQG-Controllers

The weighting-matrices in (3.6) are

Q1 =4(1 - p)
Q12 = 0.08(1 — p)
Q2 = 0.0016

and the solutions to the Riccati-equations in (3.8) are

S =2v/p(1 - p)
0.04 + +/4.0016
2

P =

Some more tedious calculations will give the controller H(q) in (3.7) to

be
Soq

H(q) = ——2%
(9) m———

where

5= (2v/p(1—p) +2(1 - 7)) (0.04+ V4.0016)

ro = 0.04 (2¢/p(1 = p) + 1) (50.04 + v4.0016)
r1 = 2(1 — 2p)

It is interesting to note that for p = 0.5—minimum variance control by
the remark of Lemma 3.1—the controller is a proportional controller.
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Figure 4.1 The variances of z—Ileft, and u—right, as functions of p.

4.3 MU and MYV Controllers

The minimum upcrossing (MU) controller will now be compared with
the minimum variance (MV) controller.

Variance and Upcrossing Probability

The variances of z and u have been calculated numerically for values of
p with a step of 0.01 in the range of 0.01 to 0.99. It is seen in Figure 4.1
that the variance of z does not depend so much on p as does the variance
of u.

The probability p has been calculated according to Lemma 3.3 for
m, = 0 and the values zo = 2, 3 ,4 and 5 of the critical level. The result
is seen in Figure 4.2. The minimum value of the probability u is obtained
for p greater than 0.5. The variance of the control signal is smaller the
larger p is, and the controller obtained for p = 0.5 is the MV controller
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Figure 4.2 The probability x as function of p for zg = 2—top left, zg = 3—
top right, zg = 4—Dbottom left, and 2o = 5—bottom right.

by the remark of Lemma 3.1. Thus the MU controller not only minimize
the upcrossing probability, but it also has a control signal that is more
well-behaved than that of the MV controller.

Simulations

The controllers have also been compared by simulations. The same noise
sequences were used for both the MU controller and the MV controller
in all cases. Figure 4.3 shows plots of z and u as functions of time for
the MV controller and the MU controller for zg = 3. It is seen that that
the MU controller manages to keep the signal z below the critical level,
while the MV controller does not. Further it is seen that the variance
of u is smaller for the MU controller than for the MV controller. Note
that z is not white noise for the MV controller although y is, since y is
correlated with e.
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time
Figure 4.3 The signals z(t)—top, and u(t)—bottom, as function of time

for the optimal controller—solid line, and the minimum variance controller—
dashed line.

Robustness

To investigate the robustness against unmodeled non-linearities the pro-
cess-dynamics was changed to

z(k 4+ 1) = 0.332%(k) + z(k) + 0.04u(k) + 0.2v(k)

Thus the process for which the controllers are designed can be thought
of as a linearization of the non-linear process round z(k) = 0. If v(k)
is zero, and if the minimum variance control strategy is applied, then
the nonlinear process is stable for initial values of # that are smaller
than approximately 3. Therefore it is interesting to compare the MU
controller designed for zo = 3 with the MV controller. Plots of y, z, and
u for the two different control strategies with the same noise sequences
are shown in figure 4.4 and 4.5. It is seen that the MV controller has
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Figure 4.4 The signals y(t), z(t) and u(t) as functions of time for the
minimum risk controller, when controlling a non-linear process.

more difficulties to stabilize the process than the MU controller has.

Transfer Functions

The MU controller for z; = 3 (p = 0.92) is given by:

0.4901q
H(g) = ————
(9) = = 0.4801
and the MV controller is given by:
H(g) = —0.9802

It is interesting to note that the difference between the MV controller
and the MU controller is that the MU controller has a 3 times lower gain
for high frequences (¢ = —1) due to the MU controller being a first order
system while the MV controller being only a proportional controller. This
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Figure 4.5 The signals y(t), z(t) and u(t) as functions of time for the the
minimum variance controller, when controlling a non-linear process.

explains why the variance of the control signal is much smaller for the
MU controller. Some calculations give that

(g — 0.9608)z = 0.2v — 0.196e
for the MV controller and

[(g — 1)(q — 0.4804) + 0.0196)z = 0.2(q — 0.4804)v — 0.098¢

for the MU controller. It is seen that the main difference in the closed
loop behavior between the MV controller and the MU controller is the
lower high frequency gain (¢ = —1) from e to z for the MU controller.
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Figure 4.6 The optimal values of p as function of zop—left, and (#mv —
Mopt )/ Hmv as function of zg—right, where pimy is the upcrossing probability
for the minimum variance controller and popt is the upcrossing probability
for the minimum risk controller.

Approximation-validity

The validity of the assumptions made in the approximation of the prob-
lem formulation in Section 2.3 will now be investigated further; one pos-
itive indication has already been seen in Figure 4.3. In Figure 4.6 it is
seen how the optimal value of p, and how the relative decrease of up-
crossing probability between the MV controller and the MU controller
decreases as zp increases. This indicates that the MU controller and the
MYV controller are approximately the same for large values of zg.

To investigate the behavior of the controllers for moderate values of

zo, Monte Carlo simulations have been performed to estimate the proba-
bility P {maxo<r<n 2(k) > 2o} in (2.1) for the MU controller—F,;, and

A

for the MV controller—P,,,. The estimated values all have 90 % confi-
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Figure 4.7 The left plot shows the bound P, for the minimum variance
controller—'+’, the bound P; for the minimum risk controller—"*?, va-——
’0’, and Popt —'x’, as functions of zg. The values of N has been 10 for z9 = 2,
100 for zg = 3 and 1000 for zg = 4. The right plot shows (va — Aopt)/fjmv
as function of zp.

dence intervals that are smaller than plus minus 2.2 % (z0 = 2), 9.5 %
(z0 = 3), and 17 % (20 = 4) of the estimated values. These intervals
have been computed as in [Waerden, 1969, p. 33]. In Figure 4.7 these
estimates of the probabilities are compared with the bounds P; and P,
of Theorem 2.1, where for short reference

s
—~~
™

(]
S
|

=P {2(0) > 20} + Np(20)
= (N +1)P{2(0) > 20}

N
—_
N

o
N—r’
I

The bound P;, which by Remark 1 of Theorem 2.1 is approximately min-
imized by the MU controller, has been computed for the MU controller.
The bound Ps, which by Remark 2 of Theorem 2.1 is minimized by MV
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4.8 MU and MV Controllers

control, has been computed for the MV controller. The values of N and
2o has been chosen such that the bound P, is about 0.1. The values are
(20, N) = (2,10), (3,100) and (4,1000). The result is shown in Figure 4.7.
It is seen in the left plot that the bound P is much lower than the bound
P, and that the estimate Popt is lower than estimate va The latter
is seen more clearly in the right plot, where the relative decrease of the
probability of being above the critical level between the MV controller
and the MU controller— (va — Opt) / P —is plotted versus z5. Thus
the MU controller is about 5% to 10% better than the minimum variance
controller for moderate values of the critical level in this example.

4.4 Summary

The theory developed in the previous chapters has been evaluated using
a first order process. In spite of the simplicity of the process many
interesting features of the new controller have been demonstrated.

It has been shown that the MU controller is a first order system
whereas the MV controller is only a proportional controller. The latter
has a higher high-frequency gain. The variance of z is slightly larger
but the variance of u is a lot smaller for the MU controller as compared
with the MV controller. Further it has been seen in simulations that
the probability for the largest value of z of being above the critical level
is smaller for the MU controller. It has also been seen that the new
controller is more robust against unmodeled non-linearities than the MV
controller. The simulations have also given insight into the consequences
of the approximations made to derive the new controller. When com-
paring the differences between the MU controller and the MV controller
for varying distances to the critical level, it has been seen that these are
larger for moderate values of the distance and smaller for larger values
of the distance. For the examples in Chapter 1 the distance is typically
moderate, and thus it has been justified that the MU controller may well
be superior to the MV controller for this class of interesting problems.
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Conclusions

A new optimal stochastic control problem has been posed. The solution
minimizes the probability for a signal’s largest value to be above a level
given a certain reference value. There are many examples of control
problems for which this approach is appealing, i.e. problems for which
there exist a level such that a failure in the controlled system occurs when
the controlled signal is above the level. One important class of such
problems is processes equipped with supervision, where upcrossings of
alarm levels may initiate emergency shutdown causing loss in production.

It has been seen that this control problem is closely related both to
the problem of minimizing the variance of the signal—minimum variance
control—and to the problem of minimizing the upcrossing probability.
The latter relation is novel, whereas the former relation has been known
for a long time, but the motivations given here are believed to be new.
It has been made plausible that the upcrossing probability is a better
criterion to minimize than the minimum variance criterion.

The problem of minimizing the upcrossing probability over the set
of stabilizing linear time-invariant controllers has been rephrased to a
minimization over LQG-problem solutions parameterized by a scalar, and
thus the complexity is only one order of magnitude larger than for an
ordinary LQG-problem. If the solutions to the LQG-problems are unique,
then the problem of minimizing the upcrossing probability can be thought
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of as finding optimal weighting-matrices in an LQG-problem. The key
to the new method is the reformulation using the independent variables
o and B making it possible to quantify by Lemma 3.3 the upcrossing
probability in terms of the variances of o and .

The new controller has been compared with the minimum variance
controller for a first order process. It has been seen that the new con-
troller causes a lower upcrossing intensity and a smaller probability for
the largest value of the controlled signal to be above the dangerous level.
Further it has been seen that the control signal is more well-behaved.

Both theory and simulations have shown that the minimum risk con-
troller and the minimum variance controller are approximately the same
for large values of the dangerous level. However, in the example it has
been seen that the minimum risk controller can have up to about 10%
better performance for moderate values of the critical level, which is the
interesting case for the examples in Chapter 1. This makes it possible to
choose the reference value closer to the critical level when using the min-
imum risk controller, than when using the minimum variance controller.
This will in many cases increase the profit.

Thus the new controller has many advantages as compared with the
minimum variance controller—a smaller probability of being above the
dangerous level, a control-signal that is more well-behaved, and an inter-
pretation as weighting-optimal LQG. The only drawback is the slightly
larger computational burden.

This concludes the work of proving the raison d’étre of the mini-
mum risk controller and demonstrating its advantages as compared to
the minimum variance controller for a large class of control problems.
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More General Process
Model

Let the stationary Gaussian sequence z be defined by a process model
more general than (3.1):

z(k + 1) = Az(k) + Biu(k) + Bav(k)
y(k) = C1z(k) + D1e(k) (A.1)
2(k) = Cpz(k) + Daw(k)

where v, e and w are zero mean Gaussian white noise sequences with the
positive semidefinite covariance matrix

v Ry R Rys
E e ( ’UT €T w T ) = R{z Rz R2 3

The signal y is the measurement signal, and u is the control signal. The
following lemma is a generalization of Lemma 3.1.
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Appendiz A More General Process Model

LEMMA Al
The loss function J in (3.4) can be written

J=J+E {UTng + 20T Qaqw + wTQ4w}
where
J=E {iETle + 22T Q10u + vT Qou + 2uT Qozv + 2uTQ24w} , (A.2)
and where Q;, @12 and @2 are as in (3.6) in Lemma 3.1 and where
Q23 = B{ C§ C2Bs
Q24 = (1 — 2,0)191T02TDz

Qs = BICIC,B, (A.3)
Qsa = (1 - QP)BzTCéFDz
Q. =2DI'D,

Proof: The result follows immediately by using the definitions of z in
(A.1), and of @ and B in (3.2) and by noting that v(k) and w(k) are
uncorrelated with z(k), and that u(k) is uncorrelated with w(k+1). O

Remark. For p = 0.5 it follows that J = E{z(k + 1) + z(k)*}. This
case thus corresponds to minimum variance control of z.

The problem of minimizing J in (A.2) is not a standard LQG-
problem, therefor the following lemma is needed.

LEMMA A.2 )
If Q is invertible, then the loss-function J in (A.2) can be written

J=J+E{T(S - LTQL,)v - 20" LT QLyw — wTLEQL,w}

where
J=E{(u+ Lz + Lyv + Lyw)TQ(u + Lz + Lyv + Lyw)}
where S is the solution to the Riccati-equation in (3.8), and where
Q = (Q2 + B SBy)
L=Q " (B{ SA+ Q)
L, =Q " (B SBz + Q2s3)

Q7 Qa4
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Proof: The result follows by a generalization of [Astrom and Witten-
mark, 1990, Theorem 11.2] to Q12 # 0, see e.g. [Gustafsson and Hagan-
der, 1991, p. 3], by completing the squares in J, and by noting that v
and w are uncorrelated with z. O

To obtain the optimal controller that minimizes J, estimates of z(k),
v(k), and w(k) based on observations of y up to time k are needed. The
ones for « and v can be found in [Astrom and Wittenmark, 1990, Eq.
(11.49), p. 352]. The following lemma gives the estimate of w.

LEMMA A.3
If R, is invertible, then the estimate
w(k|k) = E{w(k)|Vx}
of w(k), where )}, is the o-algebra generated by all past observations of
y up to time k, is given by
(k|k) = Ras Dy Ry (k)
where
R, = C,PCT + DRy DY
y(k) = y(k) — Cr(k|k - 1)
#(klk — 1) = B{a(k) [V}
and where P is the solution to the Riccati-equation
APAT — P — (APCT + ByRy3,DT) (DR, DT 4+ C,PCT) ™"

(CyPAT + DRT,BY) + ByR,BY =0 A4)
1 1222 28122 —

Proof: Since Yy is the same o-algebra as the one generated by all past
observations of y up to time k—1 and by §(k), since §(k) is independent of
Vi_1 by [Astrom, 1970, Theorem 3.2, p. 219], and since E{w(k)§(k)T} =
E{w(k)(Dye(k))T}, it follows by [Astrém, 1970, Th. 3.2 and Th. 3.3,
pp. 219-220] that
w(k|k) = B{w(k)|Vk-1,5(k)}
= B{w(k)|Ve-1} + E{w(k)|7(k)}}
= E{w(k)|y(k)}
~ ~ ~ -1, ~
= E {w(k)5(k)"} [E{g(k)g(k)"}] ~ (9(k) — E{g(k)})
= Ry3 Dy R,V j(k)
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Appendiz A More General Process Model

(]

LEMMA A4
If Q and R, are invertible, then the optimal controller that minimizes J
in (3.4) is given by

w(k) = —Lé(k|k) — Lyi(k|k) — Ly (k|k)

where #(k|k) and ©(k|k) are given by [Astrom and Wittenmark, 1990,
Eq. (11.49)] and w(k|k) is given by Lemma A.3.

Proof: The result follows by lemmas A.1 and A.2 and by the separation
principle, see e.g. [Astrom, 1970, p. 282]. O

THEOREM A.1l
If Q and R, are invertible, then the transfer function H(q) for the optimal
controller that minimizes J in (3.4) is given by

H(q)= —Lo(q] — A+ BiL, + KC:)"'K, — L, (A.5)

where

L,=L-L,C
Ly=LKj+ L K, + LyK,
Ky =K — B, L,

K = AK; + B, K,
K; = PCIR}!

K, = Ri2D{ R
Ky = Ry3 DY R}

and where P is the solution to the Riccati-equation in (A.4).

Proof: The proof is straight forward calculations making use of lemmas
A.3 and A.4 and the equations in [Astrdm and Wittenmark, 1990, The-
orem 11.6]. O

LEMMA A.5
The closed loop system behavior for the optimal controller is governed

by
Z(k +1)= A.z(k) + B.v(k)
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where Z(k) = (2T (k) zT(k))T, v(k) = (vT(k) eT(k))T, and where

A—-B;L B, L,
(P )

0 A— KC,
B (Bz —BlLyD1>
" \B, -KD

Proof: The proofis straight forward calculations making use of lemmas
A.3 and A.4 and the equations in [Astrém and Wittenmark, 1990, The-
orem 11.6]. O

THEOREM A.2
The variances of «, (3, z and u are given by

o2 =(Cy 0)((A +DT+BJaf)u5 0)T + 2D, Rs DY
o2 =(C; 0)(( Ac - T+ B.RBT)(Cy 0)" +2DyR3 DY
02=(Cy 0)X(Cy w+ﬂmw§

02=(-L L)X (-L L) +LyDiRDILY

(A.6)
where X is the solution to the Lyapunov equation in (3.9), and where R

is given by
Ry R
= (RT R >
12 2

Proof: The result follows from Lemma A.5 and [Astrém, 1970, p. 49].
J

Remark. Due to the block-triangularity of A, it is possible to split up
(3.9) into three equations, one of which has P as its solution. This reduces
the complexity of the problem.
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