LUND UNIVERSITY

An Expert System Interface for Idpac

Larsson, Jan Eric; Persson, Per

1987
Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Larsson, J. E., & Persson, P. (1987). An Expert System Interface for Idpac. [Licentiate Thesis, Department of

Automatic Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/2249ca27-5666-4843-911e-5f937ffcd6d2

CODEN: LUTFD2/(TFRT-3184)/1-65/(1987)

An Expert System Interface For Idpac

Jan Eric Larsson & Per Persson

Department of Automatic Control
Lund Institute of Technology
March 1987

Document name

Department of Automatic Control Licentiate Thesis

Lund Institute of Technology Date of issue
P.O. Box 118 January 1987
S-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT-3184)/1-65/(1987)
Author(s) Supervisor
Jan Eric Larsson Karl Johan Astrém

Per Persson Sponsoring organisation

Title and subtitle
An Expert System Interface for Idpac

Abstract

This thesis describes an expert system interface for system identification, using the interactive identification
program Idpac. The interface works as an intelligent help system, using the command spy strategy. It contains
a multitude of help system ideas. The concept of scripts is introduced as a data structure used to describe
the procedural part of the knowledge in the interface. Production rules are used to represent diagnostic
knowledge. The implementation of the system is described. A small knowledge base of scripts and rules has
been developed and an example run is shown. Finally, there is an outline of further developments.

Key words
Expert Systems, Help Systems, Man-Machine Interfaces, Scripts, System Identification

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 65

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

An Expert System Interface for Idpac

The Authors.

An Expert System Interface for Idpac

Jan Eric Larsson
Per Persson

Department of Automatic Control
Lund Institute of Technology
March 1987

Department of Automatic Control
Lund Institute of Technology

Box 118

5-221 00 LUND

Sweden

© 1987 by Jan Eric Larsson and Per Persson. All rights reserved.

Published in Lund 1987.

Printed in Sweden.

Contents
Prefaceo oo oo vii
1. Introduction Lo oL 1
Presentation of the Problem 1
Rationale for the Project 2
The Knowledge Based Command Spy 3
Literature and Other Projects 5
A Guide for the Reader L 5
2. Seriptso L Lo oL e e e e e e 7
The Need for Representing Sequences 7
Representing Sequences with Production Rules 8
A Data Structure for Sequences . . e e e e e e e e 8
The Script Language 9
The Script Matcher11
3. Implementation of the System 13
General Layout oL 13
The Transformations of a Command 15
The Command Parser, 17
The Script Matcher e 19
An Example of Script Expansion 20
Expansion of the Script Clauses21
YAPS e e e e e e e e C e e e e 23
Superscripts L L oL Lo 24
The Query Module. 25
The Database 26
The File Systemo 26
The User Interface27
The Idpac Interface e e e e e e .27
Utility Functionso 27
Lisp, Flavors and YAPS 28
4. The Knowledge Database 29
Building the Knowledge Database 29
System Identification o000 Lo . 30
A Script for System Identlﬁcatlon 30
TheRuleBase, . 32
A Session with the System 34
Experiences of the Knowledge Database Example 43
5. Further Developments 45
Different Designs of a Script Matcher 45
Integrating the Interface with a CACE Program 46
Additional Features in the Design47
6. Conclusions L. 50
7. References Y

vii

Preface

The idea of the command spy was born in 1983. The command spy was a sneaky little
program that hid behind the terminal and eavesdropped on you. The smart little guy figured
out what you were trying to do even before you knew it yourself. Every time you goofed up -
and deleted your most precious file or something like that, the command spy secretly laughed
at you. But, alas, he was too shy to ever say anything.

That’s why we decided to give the command spy a voice and turn him into an intelligent
help system. Actually, we did not plan to build a working system, but the famous composer
Franz Lisp let us use one of his cars, and off we went. We had some trouble with a couple of
hoodlums named Flavors and YAPS, but we managed to escape in the end, and the command
spy was finally implemented.

Of course we tested the command spy ourselves. This is what it told us. “How about a
vacation? The next sensible command is logout.”

This is a jointly authored thesis. Both of us have written and rewritten substantial
parts of every chapter and thus we are both responsible for every part whether produced in
compromise or in total agreement.

We would like to thank our supervisor Karl Johan Astrém who suggested the problem
and proposed using scripts. We are grateful to our colleagues Sven Erik Mattsson, Lars
Nielsen, and Karl-Erik Arzén for useful discussions.

The project is part of the Computer-Aided Control Engineering Project at the Depart-
ment of Automatic Control, Lund Institute of Technology, supported by STU, the National
Swedish Board for Technical Development, under contract No. 85-3042.

J.E.L.
P.P.

Introduction

Die Wels ist alles was der Fall ist.*

This thesis describes a help system based on expert system techniques. It works as an
interface to Idpac, an interactive program for system identification. The main features of the
help system are that it is non-invasive, that it keeps track of what the user has done and
that it has procedural and diagnostic knowledge about system identification. This is made
possible by using the expert system as an interface to Idpac and enables it to work as an
intelligent help system. This chapter formulates the problems and outlines a solution.

Presentation of the Problem

Knowledge based computer programs, expert systems, are rapidly being developed and will
probably be quite common in the near future. When the techniques used in these programs
grow more reliable and become better known, it will be obvious for a CAD program to use
them. Several problems must be solved in order to incorporate expert knowledge in a program
package.

e An inexperienced user often has a general idea of what he wants to do, but does not
know exactly how to do it. An intelligent help system should be able to guide such a
user from general ideas to specific commands. This is not taken care of by an ordinary
“list all available commands” help system. Therefore a goal related help facility should
be available.

e There will inevitably be times when users do things that the help system does not un-
derstand. This might e.g., be an experienced user taking short cuts or doing completely
new things. At these times the help system will not be able to work properly. Also,
sometimes a user does not wish to have any help. In such cases it should not be forced

The quotations in the chapter heads are the seven main statements of Ludwig Wittgenstein’s Tractatus
Logico-Philosophicus.

Chapter 1 Introduction 2

upon him. For these reasons the help system should be totally non-invasive, i.e., only
come into action on the user’s request. As long as one does not issue any help command,
one should not notice that the help system is there. One solution to this is the command
spy concept.

e = Idpac uses a flexible and powerful command dialog. This way of communication should
be kept when the expert system is added, instead of using a question and answer dialog.
To do this a flexible and easy-to-use front-end must be developed and interfaced to an
expert system framework. The front end should also be very close to the Idpac command
language.

e A large part of the knowledge of an expert interface for running Idpac concerns sequences.
The user’s basic actions will be to type sequences of commands. On a more abstract
level, the user will solve sequences of problems, where each problem will demand several
commands to be performed. Sequences may be represented using production rules to
implement a state machine, but this will become cumbersome when the number of states
grow. Therefore we have introduced the concept of scripts, as a data structure for
describing sequences.

e The help system needs not only procedural knowledge about Idpac, but also knowledge
of system identification in general. This is required for it to be able to diagnose problems,
estimate the validity of results and propose further tests. This function can be taken
care of by an ordinary production rule system.

e Part of the practical difficulties of running Idpac is keeping track of details, such as
remembering file names, what operations have been performed on what data, values
.of parameters, and so on. The help system should aid the user in this and keep the -
important detail information in a database. Data might be retrieved both through
special commands to the interface and by providing intelligent defaults for command
arguments.

¢ One important task for the help system is to transfer knowledge from the knowledge
‘database to the user. Several facilities for this must be provided. The production
system should give help to interpret results and suggest what to do next. The system
should prompt for parameters in commands and give thorough explanations of them in
the process. There should also be an on-line dictionary to explain the vocabulary of
system identification.

An intelligent help system has been designed according to these design goals. Its different
parts are a command parser with its command grammar, a command matcher with its script
database, containing both script data and production rules, a query module, a file system,
an on-line dictionary, and interfaces to the user and Idpac.

Rationale for the Project

In order for a solution involving expert system techniques to be applicable there is a number
of requirements that should be fulfilled, Brownston et al [1985] or Stefik et al [1982 a]. Before
we go on to present the solution given in the thesis, let us look through the checklist in order
to verify that the project is a reasonable undertaking.

Chapter 1 Introduction 3

‘e The problem area should be well known, and experts must be available. Process iden-
tification is a well known problem. Several people at our department have a thorough
experience of process identification and in using Idpac.

e The problem area should be easy to isolate from the rest of the world. System identifi-
cation is a well defined problem. There is a limited amount of input types, methods to
use and results one may want to reach.

e A problem to be solved with expert system techniques must not be to simple. The
problem of system identification is far from trivial. Many projects involving expert
systems have addressed very simple tasks, and it is important to move up over the
“embarassment level.”

e A project must be reasonably limited if a solution is to be at all possible. We believe that
this thesis shows that the project indeed is reasonable, but there is no way of knowing
this until the knowledge database is completely developed. But we feel sure that it will
be possible to find natural limits for the project within the area of system identification.

The program Idpac is in itself well fitted to be used with another program. Its command
language contains no complex features and allows no compounding of commands. This means
that the parsing problem is not very difficult. Idpac has a limited number of commands and
is only used for a few methods of system identification. Therefore it quite naturally gives a
limited context for the expertise.

The conclusion of this is that an expert system solution is possible.

The Knowledge Based Command Spy
To sum up the problems stated in the previous sections, let us formulate them in one simple

question. How does one combine a CAD program with an expert system while keeping the
good features of both? The solution proposed in this thesis is the command spy concept.

EXPERT IDPAC
INTERFACE

The expert system used as an interface to Idpac.

The expert system is used as an interface to the CAD program. It is either placed before
the command decoder of the CAD program or built into the outermost level of it. In our
implementation we choosed to have it run separately from Idpac. In this way a command
will be parsed both in the interface and in Idpac, but the alternative, i.e., to start digging

Chapter 1 Introduction 4

in the code of Idpac, a 37 000 line Fortran program, seemed to be much worse. The system
contains the following features.

o v

- PARSER L » MATCHER |» QUERY |

USER IDPAC
INTERFACE T ‘ T ¢ INTERFACE

-— DATABASE

Layout of the system.

The expert system interface reads the commands and passes them on to Idpac, keeping track
of what is happening, without asking any questions to the user. In fact, this whole process
goes on in secret, and the user does not even have to know that the help system is there.

The expert interface will only give help if the user asks for it. It may start a short
question and answer dialog with the user, but only if he initiates it. There is one single
moment when the expert interface comes into action on its own. This is when the user types
a command that does not match any of the scripts. The command spy will try to get back
into tracing the user following a few different strategies, but if these strategies fail the help
system prints the message “No match,” indicating that it can no longer give any help. The
user is still free to go on, without the help system. The whole idea of non-invasiveness is very
important for the design of an intelligent help system.

The command spy uses scripts in order to understand what the user is doing. Scripts
represent command sequences and events associated with them and each script describes
one of the methods that Idpac is normally used for. In this way the interface is able to use
procedural knowledge, reasoning about methods for achieving desired results, i.e., work as a
goal related help system. By matching a set of scripts against the actual command history,
the help system tries to guess what the user wants to do. From this it can give advice on how
to continue towards the assumed goal. The guessing without asking any questions is part of
the non-invasiveness philosophy. If the user wants to follow a script from the beginning, help
is available that tells him what command to start with. Because of this the guessing strategy
works very well, and there is no reason to tell the system explicitly what the user wants to
do.

The expert interface keeps track of a user state. This can currently be either “expert”
or “beginner,” but there could be several states if needed. The system starts in expert mode,
and stays in it until the user requests beginner mode. In the expert mode the system works
as described above, and is not allowed to take any actions on its own. This means that a lot
of diagnostic reasoning cannot be done, since the system lacks information. If the user needs
more active help, he may enter the beginner mode, which is usually done by the command
think. Help texts for every step taken are given automatically, and the rule system is allowed
to actively ask questions. This usually means that the expert interface starts a short question
and answer dialog in order to catch up with what has happened so far during the session.
After that, the user is in a dialog with the help system, with guidance for every step, a few

Chapter 1 Introduction 5

questions asked and some diagnoses given every now and then. The user always has the
opportunity of setting the user state as he wishes.

The command spy is transparent in the sense that it always lets the user fall back on
plain Idpac. This is important for the non-invasiveness. The intelligent help system contains
some features that make it easier to use Idpac. This includes a query mode for reading
parameters, Rimvall and Bomholt [1985], short forms of commands, a file system database, °
and an on-line dictionary. These facilities work independently of the script matching and the

user never loose them because of doing things that the command spy does not understand.. . -
The production rules can also be used to implement automatic documentation, by writing -

script based information commands to a text file.

Literature and Other Projects

Other works have been done in this and related areas. System identification is described
in Cox [1958], Eykhoff [1974, 1981], Fedorov [1972], Ljung and Séderstrém [1985], Astrom
and Eykhoff [1971] and Astrom [1980]. Idpac is built with the interaction module Intrac, a
framework that provides an interactive environment for numerical Fortran routines. Idpac
and Intrac were developed at the Department of Automatic Control, Lund Institute of Tech-
nology, Wieslander [1979 a, b, ¢, 1980] and Astrom [1983 a, b, 1985]. More about Idpac can
be found in Gustavsson and Nilsson [1979] and Gustavsson [1979].

For readings about expert systems in general see Brownston et al [1985], Harmon and
King [1985], Hayes-Roth, Waterman and Lenat [1983)], Stefik ef al [1982] and Waterman
[1986]. For interesting projects in expert systems, see Allen [1983], Forgy [1981], Nii and
Aiello [1979] and van Melle et al [1981]. For projects in design of control systems see James
et al [1985], Taylor et al [1984 a, b] and Birdwell et al [1984, 1985, 1986]. There are also more
closely related works, e.g., Gale and Pregibon, [1982, 1983], describing an expert interface
for a statistical program package, smaller than, but similar to Idpac, and Weiss et al [1982]
and Welin [1986], giving general overviews on expert interfaces.

Two more recent projects containing lots of ideas close to the project described in this
thesis are the Unix Consultant and the Knowledge Based Emacs. The Unix Consultant is
an intelligent help system for Unix. It reads questions in natural language and uses scripts
to tell the user how to perform different tasks, Wilensky et al [1986]. Knowledge Based
Emacs is an Al system built into an editor. This allows the user to work on a higher level of
programming than the ordinary Lisp or Ada level, Waters [1985 a, b]. The project described
in this thesis started with a master thesis by one of the authors, Larsson [1984], Larsson and
Astrom [1985 a]. A first system was developed during 1985. Readings on that system is found
in Larsson and Persson [1986 b]. The system described in this thesis is further documented
and the source code is given in Larsson and Persson [1987 b]. The full knowledge database
is described in Larsson and Persson [1987 c].

A Guide for the Reader

The first chapter of this thesis presents the problem of designing a knowledge-based help
system for Idpac and gives an outline of a solution. In chapter 2 the concept of scripts and
their use is described more closely. Chapter 3 is the most comprehensive chapter. It describes
the implementation of the help system in detail. Chapters 2 and 3 may be skipped during

Chapter 1 Introduction 6

a first reading. Chapter 4 contains an example knowledge database and describes a test
run using it. The reader mainly interested in system identification and the one who wants
to see an example of what the system can do should move directly to chapter 4 and later
return to chapter 2 and 3. Chapter 5 discusses possible extensions and details that was never
implemented.

Scripts

Was der Fall ist, die Tatsache, ist das Bestehen von Sachverhalten.

A large part of the knowledge needed in an expert interface for Idpac is concerned with
sequences. An Idpac session consists in the user solving a sequence of problems, each one
demanding a sequence of commands to be performed. The concept of scripts is used to
represent sequences. Scripts was originally used in natural language understanding, Schank
and Abelson [1977], Schank and Riesbeck [1981]. Scripts can be implemented in several ways,
notably with production rules or outright as Lisp lists. The latter solution was used in this
project and is described in detail in this chapter.

The Need for Representing Sequences

Running Idpac takes a lot of procedural knowledge. In a typical Idpac session the user solves
one sub-problem after the other. He might e.g., start by reading a data file and plot it to get
a feel for what has happened during the experiment that generated the signal. After this the
user probably tries to find out statistical properties of the data and pick out a few interesting
parts of the data series. He uses these parts to perform maximum likelihood estimations of
systems of increasing order. When he has reached what he thinks is a good model, he usually
performs a few validation tests, in order to verify the model obtained.

Each of these sub-problems is solved with a sequence of commands. The data validation
would e.g., involve the plot and stat commands to find out which parts of the data series
are interesting, the cut command to pick those parts out and, finally, the trend command
to remove biases from the chosen data sets.

If the expert interface is to be able to give help on the methods used in system identifi-
cation, it is obvious that it must have a flexible and powerful way of representing sequences.
There is of course also a need for making the data structure easy to use during implementa-
tion of the knowledge database. One would very much want to have a possibility to structure
the sequences hierarchically so that an implementor could type in sequences of sub-problem

7

Chapter 2 Scripts 8

solvers, i.e., a subroutine or “macro” facility.

Representing Sequences with Production Rules

One obvious solution is to use production rules, representing the sequences as state transi-’
tions. This is a very simple solution, utilizing the rule system that certainly will be present
anyway. A typical rule might look like this.
(rule state-transition-1
(state is wait for plot or trend)
(command is plot)
—=>
(remove 1)
(fact state is wait for trend)
(fact perform actions for plot))

This rule would take care of a plot command, if the system is in a certain state (wait
for plot or trend), changing the state of the system, updating the fact database and
triggering the actions that should be taken. Implementing the sequences in this way means
that one must have one rule for every possible transition. For all reasonable sizes of the
knowledge database this would mean hundreds if not thousands of rules, with a lot of intricate
interrelations. With this approach there is no obvious way to structure such a rulebase, and
also no easy way to implement a subroutine facility which automatically takes care of the
passing of parameters.

A Data Structure for Sequences

An alternative to using production rules is to define a new data structure and develop methods
for working on it. This is the solution chosen in our project. The data structure is called
_.script. This concept is thoroughly described in Schank and Riesbeck [1981], where it is used
in natural language analysis. The idea is simple and attractive. Schank’s program uses a
script that describes the different steps involved in visiting a restaurant, and matches it to
an actual conversation. In this way it can tell who is saying what and what has happened
in the meantime. E.g., the line “Could I have the bill, please?” would only be uttered by
a customer, and it indicates that the dinner has probably already been eaten. The scripts
could also tell you that the sentence is actually not a question, but a request for paying.

Natural language analysis is a complicated problem. An Idpac session may also be
described in a language, by stating a sequence of commands. We feel that the concept of
scripts is very well suited for the much simpler problems encountered in an expert interface.
So the choice was made to represent the command sequences as scripts. The implementation
is straight-forward and uses Lisp lists with different kinds of clauses. Let us look at an
example of a script.

((command conv (outfile DATA-T) (infile WORK))

(command plot (infile DATA-T))
(or
((command trend (outfile DATA) (infile DATA-T)))
((command cut (outfile DATA) (infile DATA-T))))

Chapter 2 Secripts 9

(command plot (infile DATA)))

Examples of the command and or clauses are seen. The script says that first one should use
conv to convert the data from ASCII to binary representation, then look at it with plot.
Then there is a choice between doing trend or cut, and after that one should plot the data
once again. The infile and outfile sub-clauses are used to give the data files names that
are internal to the script. Thus the script says that after the conv command the resulting
file, and not an other one, should be plotted.

The Script Language

The script data structure was defined as a language for describing command sequences. A
script consists of a series of clauses. Each clause either describes a command, sends facts to
a production rule system or affects the structure of the script. A formal description of the
script language in Extended Bacchus-Naur Form is given below, followed by an explanation
of the clauses.

SCRIPT ::= (SCRIPTCLAUSE [SCRIPTCLAUSE...])

SCRIPTCLAUSE ::= COMMAND | ASSIGN | KSCALL | SCRIPTMACRO]
REPETITION | REPETITION* | OR | ALL | EMPTY

COMMAND ::= (command COMMANDNAME [[OUTFILEDESCRIPTOR...] |
[INFILEDESCRIPTOR...] | [GLOBFILEDESCRIPTOR...] |
[PARAMETER...]...1)

COMMANDNAME 1:= <identifier>

OUTFILEDESCRIPTOR ::= (outfile <identifier>)

INFILEDESCRIPTOR ::= (infile <identifier>)

GLOBFILEDESCRIPTOR ::= (globfile <identifier>)

PARAMETER ::= (TYPE <identifier>)

TYPE ::= number | numlist | numlisti |
symbol | symlist | symlisti

ASSIGN - . .. ::= (assign NEWNAME OLDNAME)

NEWNAME 1:= <identifier>

OLDNAME 11= <identifier>

KSCALL 1:= (kscall FACTLIST)

FACTLIST ::= ([<identifier> | <Lisp list> | PARAMETERVALUE ...1])

PARAMETERVALUE ::= (parameter <identifier>)

SCRIPTMACRO = (scriptmacro MACRONAME INCLAUSE OUTCLAUSE)

MACRONAME = <identifier>

INCLAUSE = (in [<identifier>...])

OUTCLAUSE = (out [<identifier>...])

REPETITION = (repeat SCRIPT)

REPETITION* ::= (repeat* SCRIPT)

OR ::= (or SCRIPT [SCRIPT...J])

ALL ::= (all SCRIPT [SCRIPT...])

EMPTY HE

A script-macro is defined by the following grammar.

SCRIPTMACRODEF ::= (SCRIPTMACRONAME [MACROINCLAUSE] [MACROOUTCLAUSE]

Chapter 2 Scripts 10

[SCRIPTCLAUSE...])

SCRIPTMACRONAME = <identifier>
MACROINCLAUSE = (in <identifier>[<identifier>...]1)
MACROOUTCLAUSE ::= (out <identifier>[<identifier>...])

An internal name is the name of a variable'in a script. Examples of internal names are forms
in infile or outfile clauses. An external name is a name of a file or a value typed by the
user. Each internal name is associated an external name.

- The command clause describes a command that the script should match. The name of
the command and some of its parameters appear in sub-clauses of the command clause. The
names in any file or parameter clause are associated with the corresponding external filenames
and parameter values. If a file is declared infile, the internal name must have been used
earlier in the script. The actual external filename must match the old internal value in order
for the command to match. If the external filename is left out, it can be defaulted from the
script. A file declared outfile is a file that is created by the cornmand. Its name must be
given by the user or automatically created. A globfile corresponds to a file that contains
indata to the session, i.e., a filename that must be given. A sub-clause with any other kind
of parameter has the effect of catching the value of the corresponding actual parameter. In
this way parameter values can be transferred from the command via script matching to the
fact databases of the production systems.

The assign clause is used to associate a new name with an old one. This is useful in
the case of an alternative. An example might look like this.
(command plot (globfile DATA))
(or
((command trend (outfile NEW-FILE) (infile DATA)))
((assign NEW-FILE DATA)))
(command cut (outfile CUT-FILE) (infile NEW-FILE))

First, a new file is plotted. Then either trends are removed from it, which creates a new file,
or they are not. The second alternative means that the name NEW-FILE must be associated
. with DATA, otherwise the next plot command would not work. The assign clause has this
effect.

The kscall clause (kscall stands for Knowledge Source Call) contains facts which
should be added to the database of the production system of the script when the previous
command has been matched. This is used to fire rules in the production systems that are
associated with each of the scripts. The facts consist of Lisp lists and are added to the
YAPS database. A clause in a fact list that has the form (parameter <identifier>) is
substituted for the value associated with the identifier. This is used to transmit a parameter
value from a command to the rulebases.

Some pieces of scripts may be so useful and occur so frequently that one would like to
make subroutines of them. The scriptmacro clause calls such a macro. The in and out
sub-clauses are lists of the in and out parameters, respectively. When a scriptmacro clause
is reached in a script, a list of all defined script-macros is checked to see if there is one with
the correct name and correct number of in and out parameters. If so, the script-macro is
textually inserted in the script, i.e., a true macro-type call is used. The names of any files
created in script-macros bubble out to the surrounding level. There are no local variables in
the macros. A good programming practise when writing script-macros would be to mention
the names of all created files in the out parameter list and the names of all files used by the

Chapter 2 Scripls 11

macro, but not created by it, in the in parameter list.

Four different constructs are used to control the sequencing in the scripts. The keyword
repeat means that the script mentioned in the clause may be repeated one or more times,
repeat* means repetition zero or more times. The or clause lists several scripts of which
one must be chosen, and the all clause demands that all the listed scripts must be matched,
but not in any particular order.

There are, of course, several other control constructs that could have been implemented.
One would be a repetition with a countdown, i.e., with a specification of the maximum
number of iterations allowed. Another would be the some construct, matching one or more
commands. This construct is easily expressed as (repeat ((or ...))) though. So far it
has proven very easy to implement new script constructs. The only difficulty seems to be
to decide which ones that are really needed. Only a substantial experience of programming
with scripts will make it possible to decide this.

One of our findings is that it is inconvenient to demand that scripts can be parsed
with a one command lookahead only. Many scripts and script-macros start with the same
commands. For this reason the current implementation of the script matcher does not demand
the scripts to be parsed with a one-command lookahead. A more general parsing scheme is
easily implemented with pattern matching techniques. This does have a drawback though, it
Is inefficient. In a later implementation, a design alternative may be to use existing software
for parsing, e.g., programs like LEX, Lesk [1975], YACC, Johnson [1975], or other compiler-
compilers, Wirth [1976], Aho, Sehti, and Ullman [1986]. These programs are usually not
able to parse anything but one-step lookahead languages. In this case one would have to put
limits on the script programmer to write the correct kind of scripts. As these limits would
probably feel somewhat artificial, this talks for the solution presented here.

The Script Matcher

The syntax of the script language mirrors that the implementation was done in Lisp. We will
now give a closer description of the script matching device.

The script matcher works by incrementally matching the incoming commands to the
database of scripts. In this process the scripts are internally changed. In order to explain
what happens, we will first have to look at a script as it is represented in the database.

' I

COMMAND SEQUENCE

FILE BINDINGS

YAPS DATABASE

The data structure of a script. .)

Chapter 2 Scripts 12

The three main parts of a script object are a command sequence, a file bindings list, and a
YAPS database. The command sequence is a Lisp list containing the script language data
structure. The file bindings list is an association list that keeps track of what internal names
are associated with what external filenames and parameter values. The YAPS database,
contains rules and facts for the production system included in the script object.

In the process of matching, the script matcher updates the command sequences, file
bindings and YAPS databases. If the first command of the command sequence does not match
the incoming one, the script does not match, and is put away for the time being. Otherwise,
the matching command is removed from the sequence, the file bindings are updated, facts
are fed to the production system and the command sequence is expanded until the next
command is found. The details of this are found in chapter 3.

The earlier version of the expert interface, Larsson and Persson [1986 b], saved the actual
command history and performed a complete matching of all previous commands over and
over again. The new script matcher works incrementally and is very fast. This is important,
since the command spy must be able to do its work within fractions of a second, if the user
is not to be disturbed.

In case that several scripts match simultaneously, each one is updated separately. All
the internal data are kept completely separate and no mixing problems appear until it is
time for the results to be presented on the screen. For this reason, all help is tagged with
the name of the script that generated it. After a few commands have been given, all but one
script will usually have been matched off. If the user wants to have the help of one script
only, the set script command tells the script matcher to do away with all other scripts.

When a script no longer matches, it is put in a suspended state. If later no scripts match
a command, the suspended scripts are tried again too see if they match. This takes care of
the case were the user follows a script for a while, then goes off to do something else, and
finally returns to the previous task. It also makes it possible to let any number of different
or alike scripts to be performed in parallel by the user. Taken to the extreme, this may be
very confusing, but still, the system can handle it.

There is also a number of commands that are always allowed. This may for example
be to plot a file or look at the values of Idpac parameters. If a command does not match
any script, a list is checked to see if it is a command that is always allowed. If so, it is
simply skipped in the script matching. A further development would be to associate one list
of allowed and one of forbidden commands with each script. But at this time there is only
one global list of commands that are always allowed.

Currently there is no way to allow that the user leaves out a command from a script.
This must be taken care of when writing the scripts. Several strategies that would allow a
“looser” matching could be devised, but since we do not know any good strategies, this has
been pushed into the future. Loose or macro pattern matching is discussed in Bobrow and
Winograd [1977], Hayes-Roth [1978] and Charniak et al [1980]. Such matching strategies
would most likely not allow an incremental scheme, and would thus not be very efficient. It
is always possible to take care of this kind of things, however, by writing the scripts so that
they will accept commands in many different orders. In general, facilities lacking in the script
matcher can usually be compensated for by writing more complicated scripts, and facilities
lacking in the script language can be taken care of by the production rule system.

Implementation of
the System

Das logische Bild der Tatsachen ist der Gedanke.

In order to explore what an expert system based help system really can do, there is no other
way than to design one and try it by test runs. Therefore the implementation is crucial to the
project and has formed a major part of it. An intelligent help system has been designed and

' .implemented. It contains all the central parts, as the command parser, script matcher, and

production rule system. In addition to this there are several utilities that must be present
if the program is to work as a realistic example. These are the query module, a file system
and interfaces to the user and Idpac. There are some limitations though. The interface
presently handles only a subset of all the Idpac commands, and there are some irregularities
in the syntax of some Idpac commands that are not fully supported. Also, the knowledge
database is far from complete. Apart from this, everything described in this chapter has,
unless explicitly stated, been implemented and tested.

General Layout

The expert interface is made up from several independent parts. Most of the parts work on
a common database.

13

Chapter 8 Implementation of the Sysiem 14

) v
|, PARSER | .| MATCHER |, QUERY e
IDPAC
USER
INTERFACE
INTERFACE - y
L v

COMMAND SUPER- FILE

<« | GRAMMAR SCRIPTS SYSTEM

Layout of the system.

The user interface reads a command from the user and transforms it into a Lisp list. It
provides all the input and output functions used by the other parts of the interface. In this
way, all of the system’s dependence on terminal types, graphics, etc., is collected in one place.

The command parser checks the commands for syntactical correctness and supplies de-
faults in the same way that the parser of Idpac does. In this process it transforms the
commands into a more convenient form. The parser accepts commands with arguments left
out, as the other routines will fill information in, by defaulting from scripts and asking the
user. This is a useful feature in itself, since short commands are desirable in the dialog, but
complete commands are more useful in documentation.

The script matcher incrementally keeps track of the script data structures and updates
them according to the incoming commands. The commands are transformed, and files may
be defaulted with the help of knowledge from the scripts.

Each script object contains a YAPS database. When a script is updated, facts may be
put in its database. This takes care of all information that is not directly available in the
scripts, e.g., the results of different commands, etc.

The system allows any number of different scripts to be followed in parallel. The super-
scripts are used to accomplish this. Each superscript contains the current state of a session
with one or several scripts. One of the superscripts is currently active and the others, if any,
are waiting in a suspended state. When a command does not match any script in the cur-
rent superscript, the system tries to find a new current superscript by testing the suspended
superscripts and also a superscript in the initial state.

The query module works through the command description and tries to fill in the re-
maining unknown entries by asking the user about them. In this way the user may give only
the command name, and then he will be prompted for all the arguments left out. The query
module also sends messages to the file system about created and deleted files.

The file system keeps track of all the files created and used during an Idpac session. It
does this by storing data about the files in a directed graph structure. This enables the file
system to show e.g., the ancestors or descendants of a file, i.e., the files used in the creation
of and the files created with the use of a specific file.

The database contains the command grammar used by the parser, the scripts and rules
used by the script matcher, the file tree of the file system and state variables for keeping

Chapter 3 Implementation of the System 15

track of the user state, internal tracing, and so on.

The Idpac interface handles the communication with Idpac. It transforms the commands
delivered by the query module into text strings which are read by Idpac. The expert interface
and Idpac reside in two different VMS processes. The Idpac interface sends the processed
commands to Idpac via a VMS mailbox. In this way no changes had to be done to the Idpac
program itself. The routines for interprocess communication are written in C.

The system is written in Franz Lisp, Foderaro and Sklower [1981], extended with Flavors,
Allen [1984], and YAPS, Allen [1983]. It consists of about 5000 lines of code and runs under
VMS on a VAX 11/780. The system is further documented and the source code is given in
Larsson and Persson [1987 b].

The rest of this chapter will describe how a command is treated by the help system and
give a thorough description of the different program parts.

The Transformations of a Command

One of the general design philosophies of the project has been to view the different actions
taken with a command as translations between different representations. A command passing
from the user through the parser, matcher and query to Idpac will go through a number of
different transformations. The transformations are all done with pattern matching Lisp
functions. We will now show an example of this process.

The Idpac command conv has the following grammar specification, taken from the User’s
Guide, Wieslander [1980].

conv dname < fnam [(C1...)] ncolx [tsamp]

The dname is the resulting binary data file, fnam the ASCII input file to be converted, C1. ..
a column number specification for fnam, ncolx the number of columns and tsamp the sample
interval of the output file.

Suppose that two scripts match the command sequence so far. One of them is a script for
maximum likelihood estimation and its name is ml-script. The other performs correlation
analysis and is named corana-script. Each script has a file bindings list that looks like
this.

(file-bindings (file—2 WRK) (file-1 WRK))

The file bindings list maps internal names to external. The internal names are names of
files and variables in the scripts. The external names are the corresponding names typed by
the user. In the maximum likelihood script, the names file-1 and file-2 signifies the real
world file WRK.

The maximum likelihood script has two alternative branches. This may have resulted
from an repeat, and, or or construct. Thus there are two internal names (file-1 and
file-2) associated with the external name WRK.

The user types the the very cryptic command co, which the user interface turns into the
Lisp expression

(co)

The parser recognizes the short form for conv and produces the following, somewhat longer,
command description. This is done with the help of a command grammar, where all the
clauses of a command are specified.
(conv
(outfile *unknown)

Chapter 38 Implementation of the System 16

<

(infile *unknown%)

(numlist ALL idpac-default)
(number *unknownx)

(number delta idpac-default))

The parser guarantees grammatical correctness for its results. The *unknown* signifies an
unknown value and the idpac-default tells the system that this value came from the parser’s
automatic defaulting. All clauses ending with idpac-default will be removed before the
command is read by Idpac. This simplifies the interface considerably. In this case the interface
does not have to supply a list of all columns in a file if the whole file is to be converted. Idpac’s
normal defaulting mechanism takes care of this. Thus, the column description may simply
be represented with ALL. The command description is passed to the script matcher, and after
going through it, the command looks like this.
(conv
(outfile (ml-script (file-3 *unknown*) (file-4 *unknownk))
(corana-script (file-5 *unknownx)))
<
(infile (ml-script (file-2 WRK) (file-1 WRK))
(corana-script (file-1 WRK)))

(numlist ALL idpac-default)

(number *unknown#)

(number delta idpac-default))

The infile and outfile clauses have been changed. They now contain one part for each

-script. Information about what internal name corresponds to what external name are found in
these parts. The maximum likelihood script has two alternatives, so there are two different
name mappings. The infile’s external name could be defaulted as it was found in the file
bindings lists. There is no information about the external name of the outfile, though, so it
remains *unknowns.

The query module now tries get rid of any remaining unknowns and ambiguities by
asking. The second last parameter is the column number for the resulting data file. It cannot
be defaulted by Idpac or by the scripts, so it must be asked for. After the user has been
asked for the unknown parameters the command description turns into the following.

(conv

(outfile (ml-script (file~3 DATA) (file-4 DATA))

(corana-script (file-5 DATA)))

<

(infile (ml-script (file-2 WRK) (file-1 WRK))
(corana-script (file-1 WRK)))

(numlist ALL idpac-default)

(number 1)

(number delta idpac-default))

After this everything is known, and the script objects may be updated. This will happen in
a second pass through the matcher. The first pass through the matcher does not change any
data in the scripts. The second pass is needed because the user may specify a file during the
query that is not consistent with the scripts. In this case it is wrong to update them. The file
system includes the newly created outfile in the directed graph structure, and the command
is put through a last pass, that turns it into this.

Chapter 3 Implementation of the System 17

(conv DATA < WRK 1)

In the Idpac interface this is turned into a character string and sent to Idpac.

The technique of using small pattern matching functions that translate Lisp expressions
from one representation to another is simple but very powerful. It is used throughout the
system. Output is sent to the user interface in Lisp list form and the actual printout is
-confined to that module. The production rules are entered without names and fed through: -
a filter in order to give them the appropriate names, etc. The strength of this technique is
that the transformations are easily and compactly defined in a grammar-like style.

The Command Parser

The first thing that happens with a command sent to the expert system interface is that it
is parsed for grammatical correctness. The parser does the same job as does the front end of
Idpac. The reason for not using the Idpac parsing was to avoid any “close encounters” with
the Fortran code of Idpac.

The parser actually does more than Idpac’s command decoder. It accepts short forms
of the commands, i.e., it allows one to abbreviate the command name as long as it does not
become ambiguous.

The parser works with a command grammar, defined in a “lispified” version of Extended
Bacchus-Naur Form. In this way it is a trivial matter to define a new command. The code
uses a pattern matcher to do the job. It could have been done with transition network
techniques, Winston and Horn [1981], or with a parser-generator such as YACC, but the
current implementation is so simple and straight-forward that it is doubtful whether anything
more complicated is justified.

One of the ideas behind the expert system interface is that the user should be able to -
leave out arguments in the commands, to be filled in by the system. In order to do this the
parser must be able to accept incomplete commands. The matcher and query modules will
take care of the arguments later on.

. The parser gets a list of tokens from the lexical analyser. These tokens are atoms or Lisp
lists. It compares the command tokens with the grammar specification of the command. If
the parser encounters a token in the command whose type does not match the type of the
clause in the corresponding position in the grammar, the parser has two alternatives. Either
a token has been left out, which is marked as *unknown*, or there is a default clause in the
grammar, in which case the value of the default clause will be used. The parser signals an
error if any symbols remain in the command when the specification is empty.

The result of the parsing is the grammar specification of the command in question, with
values associated to all items in the specification, either the actual values typed by the user,
idpac-default, or *unknownx.

Earlier the Idpac User’s Guide definition of the command conv was shown. The Lisp
grammar of the command conv, used in the expert interface is

(command conv

(outfile .d)

<

(infile .t)

(numlist (default ALL))
(number)

Chapter 8 Implementation of the System 18

(number (default delta)))

(strings ("the CONV command"

"The CONV command is used to convert an ASCII data file"
"to a file using the internal Idpac data representation.")
("floating point data outfile"

"The outfile will contain data in internal Idpac"
"representation, i.e. Fortran floating point.")

(llll

"No comment.")

("indata file"

"The infile should contain data in ASCII format, to be"
“"converted to floating point.")
("columns to be converted"

"A list of the form (C1...), specifying what columns in"
“the infile that should be converted. If not given, this"
"will be defaulted to all columns.")
("number of columns"

"The total number of columns in the infile.")
("sample interval"

"The sample interval in seconds to be associated with the"
"data in the outfile. If not given, it will be defaulted to"
"the value of the variable DELTA."))

The first part of the definition is used by the parser. The outfile and infile clauses
contains information about the type of file. This may be either text file (.t) or data file
(.d). The second part consists of short and long help texts used by the Query module. All
commands and macros are treated equally and new ones are easily introduced. All that has
to be done is to enter a description such as the one given above.

Let us look at an example of how a command is treated. If the user types the command

conv 1

The resulting parsed command will be the list
(conv
(outfile *unknown*)
<
(infile *unknown)
(numlist ALL idpac-default)
(number 1)
{number DELTA idpac-default))
If the user types the command
conv < myfile 1
The result will be
(conv

(outfile *unknown%)
<

(infile myfile)

Chapter 3 Implementation of the System 19

(numlist ALL idpac-default)
(number 1)
(number DELTA idpac-default))

The Script Matcher

This module is the very heart of the expert interface. It works with the script data structure
defined in chapter 2.

4 B
L 1
£ W
r
COMMAND SEQUENCE | 1
FILE BINDINGS i
YAPS DATABASE i
i
. J
_ J

The structure of a script object.

A script object is composed of three major parts. The command-sequence is a Lisp list
containing lists of the actual commands and control directives, against which the incoming
commands are matched. The sub-lists are written in the script language presented in chapter
2. The file bindings is an association list containing pairs of internal and external names. The
internal names are the names of data files and parameters used internally in the script and
the external names are the corresponding actual data files and parameter values. The third
part is the YAPS database which contains facts and production rules. The kscall clause
is used to send a fact from the script object to the YAPS database. There is a mechanism
for transferring parameter values from the command, through the matching over to the fact
database. Script objects are implemented as instances of a script flavor, and they inherit a
YAPS database. In this way each script object has its own fact database and its own rules,
i.e., several production rule systems may run independently of each other.

The command-sequence instance variable in a script object contains a number of scripts,
expressed in the script language. When matching a command, the first thing to be checked
is whether the command name is equal to the name of the first command in one or more of
the scripts. The parameters are then matched.

A parameter of a command in the script declared as globfile, number, numlist, num—
listi, symbol, symlist, or symlistl matches any value in the actual command, provided
that the argument is of the indicated type. A number is a real or an integer number, a

Chapter 8 Implementation of the System 20

numlist is a list of numbers, a numlisti is a numlist of length one, a symbol is string
of alphanumeric characters beginning with an alphabetic character, a symlist is a list of
symbols, and a symlist1 is a symlist of length one. A file declared as globfile must be
associated with an already existing file and the name of that file supplied by the user. A
globfile only matches a parameter declared as infile in the actual command. The number,
numlist, numlist1, symbol, symlist, and symlist1 clauses pick up values from a command
to the script. These clauses may be left out when defining a script.

A parameter declared as outfile matches against any value of the corresponding out-
file in the command. This is used when the command creates a new file. If the user does
not supply values for files or parameters, the internal names will be bound to *unknown* and
the query module will ask the user for the values later.

A parameter declared as infile matches if it is found in the file bindings list and the
external name is equal to the internal name or *unknown*. Using an internal name as a
parameter in an infile clause requires that it has previously occurred in an outfile or
globfile clause. The infile declaration is used to get the intelligent default of the system.
The system assumes that the internal name in an infile clause already exists in the script.

The matching of a command is performed in two passes. In the first pass the script
is matched against the command and the result of this matching is a new version of the
command containing information from which unknown names can be deduced from the script.
If the first matching fails, nothing happens to the script object. It will keep on waiting for
a new command to match. After the first pass through the matcher the command is passed
to the query module where the user will be asked questions to resolve all ambiguities. When
the command is complete, i.e., no *unknown* symbols are present in the command and all
internal names are bound to one external name only, the script will be matched a second
time, this time against a complete command. The second matching changes the data in a
script object. It starts by doing the same things as the first matching. Then all scripts on
the command-sequence list which do not match will be removed. After that the scripts left
will be expanded until their first element once again is a command. During the expansion
all kscalls encountered will be put on the kscall list to be handled after the command have
been sent to Idpac. Note that these are the kscalls that come after the command that was
matched.

An Example of Script Expansion

The expansion of a script is best clearified by an example. Suppose the command-sequence
of a script object is
(
((command x1)
(kscall (A test call))
(repeat
((or
((command x2)
(command x3))
((command x4)))
(command x5))))

Chapter 3 Implementation of the System 21

Let us assume that this list of one script has just succeeded in the first and second matching
and should now be expanded. First the matching command x1 will be removed and the fact
(4 test call) will be put on the kscall list. This leaves
(
((repeat
((or
((command x2)
(command x3))
((command x4)))
(command x5))))
)

The repeat means that the script inside it must be used at least once. The command
sequence will now be expanded to
(
((or
((command x2)
(command x3))
((command x4)))
(command x5)
(repeat*
((or
((command x2)
(command x3))
((command x4)))
(command x5))))
)

The command sequence is finally transformed into two sequences, which makes it possible to
remove the or clause.
(

((command x2)
(command x3)
(command x5)
(repeat*

((or
((command x2)
(command x3))
((command x4)))
(command x5))))

((command x4)
(command x5)
(repeat*

((orx
((command x2)
(command x3))
((command x4)))
(command x5))))

Chapter 3 Implementation of the System 22

)

The original command-sequence contained one script. After the matching and expansion it
contains two scripts. These scripts match the commands x2 or x4.

Expansion of the Script Clauses

When a scriptmacro is encountered during the expansion, all occurences of the formal in -
and out parameters in the script-macro will be substituted by the actual variables and the
script-macro placed first in the script. After this the expansion continues.

An all clause is transformed into a list of scripts, each beginning with a parameter of
the all clause followed by a new all clause. Consider the following example, where (4), (B)
and (C) are scripts.

(

(all (a) (B) (€))
)

This is transformed to

(
(A
(all (B) (©)))

(B
(all (4) ©))N

(c
(all (4) (BY)
)

The scripts (4), (B) and (C) will be further expanded. With the same assumptions repeat*
is expanded according the following example.

(
(repeat* (4))
B
)
The expansion will give
(
(a
(repeat* (A4))
B)
(B)
)

When an assign clause is encountered the arguments of the clause are put in a pair on a
temporary list. Before the command is read by Idpac the new-names of the pairs on the
temporary list are associated with the external names of the the old names, and pairs of
internal names and external names are put first in the file bindings list.

A problem may arise when we have a command sequence list like

Chapter 8 Implementation of the System 23

(
((repeat* ((repeat* ((command x)))))
(command y))
)

The first expansion, according to the expansion rules of repeat*, gives.
(
((repeat* ((command x)))
(repeat* ((repeat* ((command x)))))
(command y))

((command y))
)

The next expansion would give
(
((command x)
(repeat* ((command x)))
(repeat* ((repeat* ((command x)))))
(command y))

((repeat* ((repeat* (command x))))
(command y))

((command y))
)

The second of these lists looks exactly like the original script, and should not be in the list.
To handle this case, the script expanding function keeps track of which scripts have been
expanded, and will not put a script in the command sequence list if it has been expanded
before. In this case the result of the expansion of the original script will be
(
((command x)

(repeat* ({command x)))

(repeat* ((repeat* ((command x)))))

(command y))

((command y))
)

Programming languages are often designed so that it should be possible to parse a program
with only one symbol lookahead. Writing scripts for Idpac is to specify a language for solving
problems with Idpac. Demanding that the script language must be parsed using only a one
symbol look ahead would complicate things for the knowledge engineer. The incremental
algorithm used puts no such restrictions on the scripts, but of course it may prove to be
inefficient,.

Chapter 8 Implementation of the System 24

YAPS

Each script object contains a YAPS database, where rules and facts are stored. The produc-
tion system shell YAPS, Allen [1983], is used to store facts about the current session. This
enables the expert interface to give diagnostics after certain commands, etc.
Facts in YAPS may be arbitrarily nested Lisp lists. An atom starting with a ‘-’ is a
variable and matches anything in an actual fact. A typical YAPS rule may look like this.
(defp Beer
(bar open)
(beer price is -cost)
(funds contain ~funds)
(- (too drunk))
test
(>= -funds -cost)
-->
(remove 3)
(fact has a beer)
(fact funds contain ~(- ~funds -cost)))

If the facts (bar open), (beer price is 1), and (funds contain 3) but not (too drunk)
are present in the fact database, the rule may be triggered. The variables -cost and -funds
are assoclated with the integer values in the facts and the condition after test is found to
be true. The third fact, (funds contain 3), is removed from and the facts (has a beer)
and (funds contain 2) are added to the database.

YAPS is a standard expert system shell. Its rule notation is simple and easy to use.
Examples of rules are found in chapter 4. A great advantage with YAPS is that it may be
run by Lisp function calls and not only from a special top-level. This makes it very easy to
integrate in a Lisp-based system.

Superscripts

All script objects, containing scripts able to match a command, are initially stored in a
superscript. This is essentially a list of script objects.

~
SUPERSGRIPT)

—

SCRIPT

Chapter 3 Implementation of the System 25

The structure of a superscript.

When the system is initialized an initial superscript containing all scripts that the knowledge
engineer has defined is created. This initial superscript is copied and stored in a list in the
database. It will be used when matching commands. The main use of superscripts is to allow
for several parallel tasks.

There may be several superscripts in the list of superscripts in use. The first is the
currently active and the one that the system first tries to match the command with. If
a command does not match the current superscript, the system tries to match with the
suspended superscripts. These are found in the tail of the list of superscripts in use. If one
of the suspended superscripts match, it is moved up to the front and used as the new current
superscript. The old current superscript gets suspended. If there is no suspended superscript
or none of the available ones match, the system tries with the original superscript. This
takes care of a fresh start. If the original superscript matches, it is used as the new current
superscript and the old one will be suspended. If it does not, the system gives the message
“No match” and remains in its present state. Some commands are allowed anywhere in a
script. This is checked immediately before giving the “No match” message.

This strategy enables the system to handle any number of sessions in parallel. It will

-switch to the appropriate context whenever a command or filename does not match the
current session. If a command matches neither the initial superscript nor any suspended one,
the system waits and tries to get back in action after every new command. This takes care
of the case where the user leaves the scripts and gives a few other commands before getting
back. The command given will always be read and processed by Idpac.

The Query Module

One task of the query module is to resolve the ambiguities that may arise when a command
is matched against one or more scripts and the user has left out arguments in it. The other
is to fill in values of arguments that the user left out when entering the command. It is of
_course very important that the query module works even when a command does not match
any of the scripts.

The ambiguities can be due to the fact that several scripts match because they all start
with the same command name, or that one script has branched into several scripts which all
start with the same command name but have different infiles as default.

The query module first looks at all infile descriptors in the command. If all external
names in the descriptor are equal nothing happens, but if there are different external names
in a descriptor the user will be asked for the file he wants the system to use. If the user
chooses one of the possible default files the query system will go through the command and
remove all impossible alternatives in the infile, outfile, globfile and parameter descriptors. If
not, the command does not match any script. Then the query system will look for another
ambiguous infile descriptor. The system iterates through the command until none are left.

The query module then goes through the entire command looking for the symbol *un-
known* in all outfile, globfile, and parameter descriptors. This means that the parameter has
been left out and cannot be defaulted from the scripts. The user will be asked for the file or
parameter. After this the command is complete.

At any time when the user is asked for a parameter he may ask for help on that particular
argument by typing a ‘?’. This will give him a short help text for the argument. The text

Chapter 3 Implementation of the System 26

may include hints on naming conventions, values of numerical arguments and so on.

Next, when the command is fully specified, the query module sends the command to the
matcher for the second matching. If the command still matches, the query module updates
the scripts, leaving them ready for a new command.

The query module is the last module the command passes through before it is sent

- to Idpac.via the lowlevel routines in the Idpac interface. Therefore the query module- also-

does the final bookkeeping. The file bindings in all matching scripts will be updated to the
new values, all assignments specified in assign clauses will be performed, and the internal
file database and the command history in the database will be updated. In some cases the
command is a “special” command. This means that it changes states both in Idpac and
in the interface. Examples of this are let, which changes an Intrac variable, and delet,
which deletes a file. In these cases special functions performing the appropriate actions will
be called. These functions are located in the data base. The function associated with the
let command updates a list of Intrac variables, and the function associated with the delet
command marks the file as deleted. Finally, the command will be sent to Idpac via the Idpac
interface module. After the command has been sent to Idpac the expert systems of all active
scripts will be started. This must not happen before the command has reached Idpac and
been processed, because the expert system may ask for information not available until the
command has been executed.

The Database

The database contains all essential data in the system and functions to operate on it. The
superscripts are placed in a list in the database. The database provides methods for matching
a command against the scripts in a superscript. The script macros are placed in the data
base together with functions to operate on them. When needed, the scripts make calls to the
data base to get the code of the script-macros for the expansion of the scripts.

The command grammar is an instance variable in the database and is accessed from the
parser. The list of allowed commands, i.e., a list of commands which are always permitted,
is another instance variable. If a command does not match any script, the matcher checks if
the command name is in the allowed commands list. Functions for updating the file system
are also placed in the data base. Some state variables for monitoring the system behaviour
(e.g., printing CPU and garbage collection times) and for changing it (e.g., starting to print
traces) are also located there.

A number of commands are declared as internal. They affect the interface and are never
sent to Idpac. They may perform things like listing the file database, exit into the Lisp
system, dump the file system on disk, and so on. A list of these commands and the functions
that handle them are also found in the data base.

Some commands are declared “special.” A list of these and the functions which are
called when such a command is encountered by the system are also located in the database.

The File System

The file system is a database which keeps track of the files in the system, and the relations
between them.

Chapter 8 Implementation of the System 27

A file in the file system is represented as an instance of a file flavor. Its instance variables
are type, parents, children and command. The type tells which kind of file it is. There are
two possibilities, data or text file. Most Idpac commands operate on files and usually take
an infile, performs some operations on it and generates an outfile. The files generated from
- a certaln file are called the children of that file, and the files from which a certain file is
generated are called its parents. The instance variables children and parents are lists of the
children and parents of a file. The instance variable command tells by which command the
file was created.

The file system has methods for adding and deleting parents and children from a file
object. The actual creation of files and managing of the file system is handled by functions
in the database.

It is possible to ask the file system for all ancestors or descendants of a file, and get a
graphical representation of the dependencies on the screen.

Files can be deleted with Idpac commands, either explicitly (with delet) or implicitly
by overwriting them with a command giving an outfile with the same name as an already
existing file. When this happens the database is updated so that the deleted file will be
marked as deleted. This is necessary because other files may depend on a deleted file. When
a file is asked for its ancestors or descendants, deleted files may appear in the tree of the
relatives of a file, marked as deleted, and not accessable on the disk.

The User Interface

The user interface contains all functions needed for the communication with the user. All
input and output goes through this module. In this way all terminal dependent information
is kept in one place. Among other things, the user interface supplies methods for menu
handling and reading expressions with a type check. Currently only VT100 and VISUAL
terminals are supported.

The Idpac Interface

The Idpac interface is a small module which converts a list to a character string and sends it
to Idpac. The actual communication is carried out by two small routines written in C. These
are linked into the Lisp system.

When Idpac is run with the expert system interface, it resides in one VAX/VMS process
and the expert system interface in another. These two processes communicate via VAX/VMS
mailboxes. When the expert system interface is started, a C function creates a mailbox for
the communication with Idpac. After this, Idpac is started from a command procedure where
its input is assigned to the mailbox. In this way no changes at all had to be made in Idpac’s
source code.

The Idpac Interface module uses the VAX/VMS system services SYS$QI0 and SYS$QIOW
for putting messages in the mailbox. The routine SYS$QIO puts a message in a mailbox, and
continues the execution of the sending program immediately. The routine SYS$QIOW also puts
a message in a mailbox but suspends the execution of the sending program until the message
has been read.

When Idpac is run interactively and a command is typed, Idpac reads and executes the
command, the result is displayed and a prompt appear on the screen. When Idpac is run with

Chapter 38 Implementation of the System 28

the interface the user should see the same thing. In order to get this behaviour, the command
is sent to Idpac via a mailbox with the routine SYS$QIO0. Immediately afterwards an empty
command (a space) is sent with the routine SYS$QIOW. This makes the sending process wait
for the prompt until Idpac has executed the command (and the empty command, which takes
almost no time). If the command had been sent using the routine SYS$QIOW only, control

.- - had been returned to the interface before the execution of the command had been finished.

With these routines a Lisp interface to any program can easily be obtained. For readings
on VMS system routines, see Digital Equipment Corporation [1984].

Utility Functions

The system also has an on-line dictionary, containing information about concepts mentioned
in the help texts, commands and scripts. In this way all help may use the vocabulary of system
identification, and the user will learn about the subject while utilizing the help system.

The behaviour of the interface may be changed by setting different switches. The switches
affect tracing outputs for debugging purpose, statistics of the run-time behaviour of the Lisp
system and the amount of help the user will get. These switches are controlled with a menu
system. This menu can also be used to change between the expert and beginner modes.

Lisp, Flavors and YAPS

The system has been implemented in Franz Lisp, Foderaro and Sklower [1981], on a VAX
11/780. The object oriented framework Flavors, Allen [1984], and the production system
shell YAPS, Allen [1983], was used on top of the Lisp.

All modules have been implemented as instances of flavors. The object oriented approach
helps to enforce programming discipline. Dynamic creation has, however, only been used in
two cases, in the scripts and in the file system. The inheritance mechanism has only been
used in the script objects, to inherit the YAPS database.

-+ The Flavors system is used on top of the Lisp system and this has some drawbacks. The
Flavor system uses the global Lisp name space for the methods of the instances. This means
that all methods will be coded into functions, with very long and peculiar names. There
are also some bugs in the Flavors system. If we were to reprogram the system, we would
probably not use the Flavors system.

YAPS uses a global rule discrimination network common to all database instances. This
also is a clear violation of the object oriented philosophy. The expert interface sometimes
demands copies to be made of YAPS databases. In order to accomplish this, YAPS had to
be rewritten so that each database has its own discrimination network. The copy operation
gets very complicated and time consuming anyway, as one must copy the entire network.

The Knowledge Database

Der Gedanke ist der sinnvolle Satz.

In this chapter an example of a small knowledge database for system identification will be
presented. The knowledge database consists of three parts. The scripts contain procedural
knowledge, i.e., knowledge of what commands to use, and their order. The rule base contains
diagnostic knowledge about identification, signal analysis, etc. The command grammar is
used by the parser and contains information about the commands and macros.

Building the Knowledge Database

~ When building a knowledge database, the knowledge engineer writes scripts and rules. Some
experiences of the building of knowledge databases have been gained from examples con-
structed during the project.

Some rules are useful in all scripts. This might e.g., be rules for generating output,
automatic documentation, etc. Therefore a list of global rules was introduced. These rules
are added to all scripts at startup time.

Another problem is to make the help texts produced by the rule system appear at the
right moment. A script is often made up of parts, were each part may be skipped, ie., or
clauses with empty alternatives. If there is a help text in the beginning of each of these
parts, all texts will mix in the output when the script matcher reaches the first alternative.
This is due to the fact that the script expansion algorithm “sees through” all the empty
alternatives. Therefore one must write the help texts so that they will not produce rubbish
when concatenated. Another way of solving the problem is to have only one help text, placed
before the first part that may be left out.

The problem mentioned above also led to another observation. The lesser the number
of alternatives encountered in a script, the better the help system works. The help texts get
shorter and the possible next commands are also fewer. Thus it seems to be a good design
philosophy to try and avoid alternatives, i.e., or and all constructs, whenever possible.

29

Chapter 4 The Knowledge Database 30

Allowing few commands in a script will also have the effect of quickly reducing the number
of different scripts that will match a certain command history.

System Identification

Idpac is capable of doing most things in system identification and signal analysis. Idpac’s
capabilities are described in Wieslander, [1979 ¢, 1980], Gustavsson and Nilsson [1979], Gus-
tavsson [1979], and Astrom [1980]. In the following example Idpac is used for identifying the
parameters of a process model, given the input and output signals of the process.

One way of doing process identification will now be described. It is assumed that the
measured data is available as ASCII text files. These files are first converted to Idpac’s
standard binary format. The files are plotted to see if the signals are reasonable. To get
enough information from the process for a successful identification the input signal must
excite the dynamics of the system sufficiently.

After that, the datafiles are cut in two parts, one part for the actual parameter estimation
and one for cross validation. A natural choice is to cut the signals in two halves, but if the
system is affected by some unknown disturbance it may be wise to cut out pieces of the
signals which are not affected by it.

The coherence between the input and output signals is computed to get an indication of
the frequency range where the identified model will be trustworthy. A rule of thumb is that
if a deterministic model with one input and one output is desired, the coherence between the
signals must be greater than 0.8 to get a meaningful model.

After this, parameters of models of different orders are estimated and the residuals
examined. A successful identification should give “white” residuals, i.e., residuals with zero
autocorrelation except for 7 = 0.

It can also be useful to calculate the crosscorrelation between the residuals and the input.
A successful identification should give zero crosscorrelation for positive lags. The presence of
feedback in the experiment is seen from correlation at negative lags.

1t is also recommended to compute the transfer functions of the estimated models and

. plot them in a Bode diagram. When the curves coincide well in regions with high coherence, it
is a sign that the order of the transfer function is sufficiently high. Repeating the calculation
of the transfer functions with random samples of the estimated distribution of the parameters
gives an indication of the spread in the estimation.

When the parameter estimation is finished the second data set is used for cross validation.
The residuals of the second data set are computed using the models estimated with the first
data set. The model which gives the smallest loss function is chosen to be the correct
one. Maximum likelihood estimation with Idpac is described in Astrém [1980]. A general
description of system identification is found in Eykhoff [1974, 1981] and in Astrdm and
Eykhoff [1971].

A Script for System Identification

This method of estimating parameters can be expressed in the following way using the script
language. The script is written in the system’s normal Lisp format. The text following a *;’
on a line is a comment and ignored.

Chapter

4 The Knowledge Database 31

(setg ML

*(

; Convert ASCII files to binary files.

(command conv (outfile IF) (globfile IA))
(command conv (outfile OF) (globfile 0A))

; Look at the signals.
(command plot (infile IF) (infile OF))
; Cut out the first half of the signals and remove trends.

(command cut (outfile IC) (infile IF) (number NC1) (number NR1))
(command trend (outfile ICT) (infile IC) (number T1))

(kscall (fact (parameter ICT) cut-trend (parameter IF NC1 NR1 T1i)))
(command cut (outfile 0C) (infile OF) (number NC2) (number NR2))
(command trend (outfile OCT) (infile 0C) (number T2))

(kscall (fact (parameter OCT) cut-trend (parameter OF NC2 NR2 T2)))

; Compute the coherence between input-signal and output-signal.
(command coh (outfile CF) (infile ICT) (infile 0OCT))

; Estimate models of different orders, compute and look at
; the residuals and look at the computed transfer functions.

(repeat
((kscall (suggest mlid identification))

; Perform the estimation.
(command mlid (outfile SYS) (infile ICT) (infile OCT) (number NS))
(kscall
(fact (parameter SYS) < (parameter ICT OCT) order (parameter NS)))

; Look at the residuals.

(command
residu (outfile R1) (infile SYS) (infile ICT) (infile 0CT))

; If you want, look at the Bode plot of the transfer function.

(or

O

((command sptrf (outfile Fi) (infile SYS))
(command bode (infile F1))))))

Chapter 4 The Knowledge Database 32

; Cut out the second half of the signals and remove trends

(kscall (suggest use for cross validation (parameter IF)))

(command cut (outfile IXC) (infile IF) (number NXC1) (number NXR1))
(command trend (outfile IXT) (infile IXC) (number TX1))

(kscall (suggest use for cross validation (parameter OF)))

(command cut (outfile 0XC) (infile OF) (number NXC2) (number NXR2))
(command trend (outfile OXT) (infile OXT) (number TX2))

; Compute the loss function (= sum of the squares of the residuals)
; for the models.

(repeat
((kscall (suggest cross validation))

; A globfile is necessary in the residu command because
; different system files will be given, and only the last
; model identified can be defaulted from the script.

(command residu
(outfile RX) (globfile SX) (infile IXT) (infile 0XT))

; Multiply the signal with itself.
 (command vecop (outfile SS) (infile RX) (infile RX))

; Among other things the stat command displays
; the sum of the signal.

(command stat (outfile SS))
(ks-call (ask loss function (parameter SX)))))
(command stop)))

The Rule Base

In this example certain conventions have been used for the syntax of the rules in order to
structure them.

Facts beginning with suggest are used to fire rules which print messages to the user
telling him about the alternatives available. These facts are entered with a kscall clause.

A kscall clause which puts facts beginning with ask in the database will fire rules which
asks the user. The questions may concern the result of a command (e.g., “What is the value
of the loss function?” after an identification) or the user’s interpretation of a certain situation
(e.g., “Are there any outliers present?”).

A fact beginning with fact indicates that this is a fact about the session, e.g., a fact
about a file, or a fact about what the user has done. These facts may fire demon rules, e.g.,
a rule which finds the model representing the minimum loss function.

Chapter 4 The Knowledge Database 33

The words suggest, ask, and fact are only words in the rules. They have no special
meaning to the production system when they appear in the if-side of a rule. The rule base
which handles the ml-script is given here.

; Rule trigged when entering the estimation part of the script.

((suggest mlid identification)

-2

(patom "Either do ML identification using the command MLID or")
(patom "start the cross validation using the command CUT.™"))

; Rule trigged when entering the cross validation part of the script.

((suggest use for cross validation -F)
(fact -CT cut-trend -F -C1 -Ri -Ti)

-——>
(mapc
’patom
‘("The first half you CUT and TRENDed from " ,-F " was " ,-CT
" the first record " ,-C1 " the number of records " ,-R1
" and removed trends of order " -Ti))
(terpr))

; Each time the loss function of a new system is computed, the
; minimum system with current minimum loss function is printed.

((suggest cross validation)
(minimum -SYS -IF -OF -ORDER -L0SS)
-—>
(mapc
’patom
‘("The system of least loss function is " ,-SYS
" estimated with oxder" ,~ORDER)))

; There is no way of getting information from Idpac
; to the expert system, so the user must be asked.

((ask loss function -SYS)
-—=>
(let
((ans))
(patom "What is the value of the loss function?")
(setq ans (read))
(<~ self ’fact ‘(fact ,-SYS loss—function ,ans))))

; Rules for finding the system which represents the minimum
; loss function.

Chapter 4 The Knowledge Datlabase

((fact -SYS < -IF -OF order -ORDER)

(fact -SYS loss~function -L0SS)

(" (minimum - -IF -OF - -))

—_

(fact minimum -SYS -IF -0F -ORDER -L0SS))

((fact -SYS < -IF -OF order -ORDER)

(fact —SYS loss—-function -L0OSS)

(minimum - -IF -OF —-ORDERX -L0SSX)

test

(< -L0SS -LOSSX)

—>

(remove 3)

(fact minimum -SYS -IF -OF -ORDER -L0OSS))

34

This example is a short extract a larger knowledge database, which has been developed in
the project, Larsson and Persson [1987 c].

A Session with the System

To give a feel of what the system can do, here is an example run, using the script and rule
-base given previously in this chapter. The ‘ML:’ appearing before the help texts marks that

the help comes from the ML-script. All text following a

ignored.

Initially the user is assumed to have the two text files in.t and out.t, containing the
input signal and output signal of the system.

$ IDPAC
Dated 21-0KT-1986 11:37

IDPAC V7A

Copyright (c) Department of Automatic Control
Lund Institute of Technology, Lund, SWEDEN 1986

All Rights Reserved

on a line is a comment and is

>conv in < in 1 " Convert the in signal to a binary file.
>conv out < out 1 " Convert the out signal.

>7 " What should I do next?

ML: plot "' The system answers.

>plot in / out

Chapter 4

plot in / out

The Knowledge Database

35

50

100 150

200

i

>think
ML: cut
>cut inc <
ML: trend
>tr

trend .

outfile? > inct
trend inct < inc ...
order of trend polynomial? >

ML: cut
>cut outc

cut outc < out
first record? > 1

number of records? > 100

>trend outct < outc O

ML: trend
ML: coh
>coh

coh ... < inct outct ..
outfile? > ch
coh ch < inct outct .

50 100

150

Enter beginner mode.
Cut the first 100 datapeints of in.

Short form of command.
The file inc is defaulted.

Only the polynomial order is missing.
" A question from the expert system.

Cut the first 100 datapoints of out.

Remove trends of the 0’th order. (Bias)

Compute the coherence —- the user does
not know the arguments of the command.
inct and outct are defaulted.

200

Chapter 4 The Knowledge Database

number of lags? > 7 " The user needs more help.
The number of lags for the computation, a good choice
is 10 to 15 % of the number of datapoints.

number of lags? > 15

BODE(p) ch

36

Either do ML identification using the command MLID or
start the cross validation using the command CUT.
ML: mlid
>mlid " Estimate the parameters.
mlid ... < inct outct ..
outfile? > si
model order? > 1

CONVERGENCE (DV/V< 1.8E-06) " Printout from Idpac.
ok ok kKoK o ok ok Ak ko o

Al -0.907205 +- 1.553992E-02
Bi 0.127194 +- 1.117196E-02
Cci -0.828527 +- b5.851866E-02
LAMBDA 0.328813 +- 2.325061E-02

LOSS FUNCTION 5.40591

Chapter 4 The Knowledge Dalabase

AIC 67.3347

ML: residu

>residu ri1 " Other parameters defaulted from

" the script.

VARIANCE OF THE RESIDUALS: 0.107989

NUMBER OF CHANGES OF SIGN

OF THE RESIDUALS: 45
5 PERCENT TOLERANCE LIMITS: 39 59
TEST OF INDEPENDENCE OF THE RESIDUALS 0.5 |

E(RES(T)*RES(T+TAU)) FOR: O<TAU< 11

TEST QUANTITY: 4.87828
DEGREES OF FREEDOM: 10

TEST OF NORMALITY

TEST QUANTITY: 8.10044 /ﬁ\\

DEGREES OF FREEDOM: 17 ° \\// " \
0 ' 4
ML: mlid, sptrf, cut " Several alternatives are possible.
>sptrf " Compute the frequency response.

sptrf ... <sl .../ ...
frequency response outfile? > fi
sptrf f1 < st .../ ...
numerator polynomial type? > b
sptrf £f1 <si1 b/ ...
denominator polynomial type?” > a

ML: bode

>bode f1

Chapter § The Knowledge Database

bode f1

-50 |

-100

-150

Either do ML identification using the command MLID or

start the cross validation using the command CUT.

The first half you CUT and TRENDed from in was inc,

the first record i, the number of records 100

and removed trends of order O.

ML: mlid, cut " Either estimation or cross validation.
>mlid s2 2

CONVERGENCE (DV/V< 1.8E-06) ' Printout from Idpac.
AokRok Rk K kR ARk AOR Kk R R kR

At -0.199583 +- 0.294728
A2 -0.624053 +- 0.278128
B1 6.78807TE-02 +- 7.090448E-02
B2 0.151931 +- 6.384738E-02
C1 -1.944228E-02 +- 0.269345
c2 -0.716464 +- 0.207658
LAMBDA 0.322308 +- 2.279064E-02

LOSS FUNCTION 5.19413
AIC 69.3384

Chapter 4 The Knowledge Database

ML: residu
>residu r2

VARIANCE OF THE RESIDUALS: 0.103665

NUMBER OF CHANGES OF SIGN

OF THE RESIDUALS: 51
5 PERCENT TOLERANCE LIMITS: 39 69
TEST OF INDEPENDENCE OF THE RESIDUALS 0.5 4

E(RES(T)*RES(T+TAU)) FOR: O<TAU< 11

TEST QUANTITY: 2.55587
DEGREES OF FREEDOM: 10

TEST OF NORMALITY

TEST QUANTITY: 21.0387 //“‘\

X 0
DEGREES OF FREEDOM: 17 |

Either do ML identification using the command MLID or
start the cross validation using the command CUT.

The first half you CUT and TRENDed from in was inc,
the first record 1, the number of records 100

and removed trends of order 0.

ML: mlid, sptrf, cut

>mlid s3 3

MAXIMUM NUMBER OF ITERATIONS REACHED " Printout from Idpac.
ekododokokok ok kb ok ok ok ok dokokok ook ok ok ok ok okokok ok

A1 -0.362876
A2 -0.539601
A3 8.183430E-02
B1 4.421177E-02
B2 8.038352E-02
B3 7.452730E-02
Ci -0.230977
Cc2 -0.696315

c3 0.146590

Chapter 4 The Knowledge Database

LAMBDA 0.317761

LOSS FUNCTION

AIC

ML: residu

>residu r3

VARIANCE OF THE RESIDUALS:

NUMBER OF CHANGES OF SIGN
OF THE RESIDUALS: 51

5 PERCENT TOLERANCE LIMITS:
TEST OF INDEPENDENCE OF THE RESIDUALS

E(RES(T)*RES(T+TAU)) FOR: O<TAU<

TEST QUANTITY: 2.19629
DEGREES OF FREEDOM: 10

TEST OF NORMALITY

TEST QUANTITY: 15.9003
DEGREES OF FREEDOM: 17

5.04860

72.4964

0.100594

39

ML: mlid, sptrf, cut

>sptrf £3 < st b/ a

ML: bode

>bode £3 f1

11

2.246908E-02

40

Chapter 4 The Knowledge Database 41

bode f3 fl

! 1T
*_ T

-400

0.01 0.1 1

Either do ML identification using the command MLID or
start the cross validation using the command CUT.
The first half you CUT and TRENDed from in was inc,
the first record 1, the number of records 100
and removed trends of order O.
ML: mlid, cut
>cut " Start cross validationm,
" cut second half of in.
cut ... < in ...
outfile? > inx
cut inx < in
first record? > 100
number of records? > 100
ML: trend " Remove trends.
>trend
trend ... < inx ...
outfile? > inxt
trend polynomial order? > 0
The first half you CUT and TREKDed from out was outc,
the first record 1, the number of records 100
and removed trends of order O.
ML: cut " Cut second half of out.

Chapler 4 The Knowledge Database

>cut outx < out 100 100
ML: trend

>trend outxt O

ML: residu

>residu " Compute residuals of the second half.
residu ... < ... inxt outxt
outfile? >rxi
residu rxl < ... inxt outxt
system file?> si
ML: vecop
>vecop " Square the residuals.
vecop ... < rxl ... rxil

outfile? > v
operator? > *

ML: stat
>stat " Compute the square sum.
SUM = 16.8306751 " L=
MEAN = 0.168306753
VARIANCE = 8.684720099E-02
ST.DEV. = 0.294698477
MINIMUM = 4.636161748E-07 AT ROW 22
MAXIMUM = 2.38813901 AT ROW 1
LENGTH = 100
What is the value of the loss function? > 16.83 " E.s. question

The system with least loss function is si
estimated with order 1.

ML: residu, stop

>residu rx2 s2

ML: vecop
>vecop Vv *
ML: stat
>stat
SUM = 16.5365925 "o
MEAN = 0.165365934
VARIANCE = 9.021462500E-02
ST.DEV. = 0.300357491
MINIMUM = 4.303435344E-05 AT ROW 22
MAXIMUM = 2.38813901 AT ROW 1
LENGTH = 100
What is the value of the loss function? > 16.54 " E.s. question

The system with least loss function is s2,

Chapter 4 The Knowledge Database 43

estimated with order 2.
ML: residu, stop
>residu rx3 s3

ML: vecop
>vecop VvV *
ML: stat
>stat
SUM = 16.9050331 "L
MEAN = 0.169050336
VARIANCE = 0.104850508
ST.DEV. = 0.323806286
MINIMUM = 6.266986929E-06 AT ROW 98
MAXIMUM = 2.38813901 AT ROW i
LENGTH = 100
What is the value of the loss function? > 16.90 ' E.s. question

The system with least loss function is s2,
estimated with order 2.

ML: residu, stop

>stop

Experiences of the Knowledge Database Example

It is a major undertaking to write a reasonably large and complete knowledge database, even
for a single task like maximum likelihood identification. For this reason we decided that the
development of a full knowledge database was to be left out of the project. But, as a database
is needed anyway in order for the expert interface to run, at least a small database had to
be built.

A version of a maximum likelihood script has been developed. It is primarily intended
for demonstration purposes. The script is about 200 lines long and the associated rule base
contains some 60 rules. It is only concerned with system identification using the maximum
likelihood algorithm and knows nothing about least squares estimation, correlation analysis,
etc. Also, it does not fully cover maximum likelihood estimation. But we believe it to show
that it is indeed possible to build a realistic knowledge database for use in an expert interface.

For this thesis a smaller version of the ML-script was developed. It contains all interesting
features of the larger script. The main difference is that neither does the smaller version allow
as many different ways of doing things, nor does it collect facts about the session or cares
for if anything goes wrong. But as the larger script does not really give any extra insight in
how the expert interface works, we decided not to present it here. A detailed description of
the larger database is found in Larsson and Persson [1987 c].

During the development of these examples we have gained some experience of knowledge
engineering. Probably the greatest problem is to find and talk to experts. Either one does
not find any expert that is good enough, or the expert does not have any time for the effort

Chapter 4 The Knowledge Database 44

needed. We have not made any serious attempts to interview experts in the project. As our
efforts have had a limit, our own expertise has been enough.

It soon became apparent that it takes quite some time to build even a small database.
Rules interact with each other and the output may sometimes look messy. The output from
the expert system can be very hard to predict just by looking at the scripts and rules. This
forces the expert and the knowledge engineer to run through the scripts many times under
different conditions during development, and change the scripts, rules and their order. This
is one reason why the process of writing scripts and rules is very time consuming,

Further Developments

Der Satz ist eine Wahrheitsfunktion der Elementarsitze.
(Der Elementarsatz ist eine Wahrheitsfunktion seiner selbst.)

All the things described earlier in this thesis have been implemented, as described in chapter
3. But of course there are several ideas that remain to be investigated and tested. Some of
these ideas will be described in this chapter.

Different Designs of a Script Matcher

The script matcher is a central part of the expert interface. It is the piece of code that takes
care of matching incoming commands against the script database, and updating the scripts
in the process. Several different ways of implementing this device were suggested during the
project.

One way of building a script matcher is to define a language for scripts and the operations
needed, and then to write one or several Lisp functions for every operation. This was the
solution actually used in the project and it is described in chapter 3.

Expert system shells such as YAPS have a rather advanced pattern matcher built in.
This facility might be used for matching and transforming scripts. In this way the script
language is still there, but the script matcher is implemented by production rules instead of
Lisp functions.

The simplest and most straight-forward way of implementing a script matcher is to
use production rules to keep track of the user by state variables in the fact database of
the rule system. In this way the implementation becomes very simple. But the script lan-
guage would be lost and the scripts only implicitly stated in the rules describing the state
transitions. - Loops and alternatives would be easily described, but more complicated and
computer language-type constructs, e.g., parameterized script macros, are hard to deal with.
The knowledge engineer would have to take care of such things himself by using global state
variables and similar tricks.

45

Chapter § Further Developments 46

A fourth solution would be to describe the scripts as an explicitly stated language and
then transform it into a rule driven state transition machine. In this way one would be able
to use the script language when writing scripts and still get a very simple implementation of
the script matcher. The trouble with this solution is of course to develop the script-to-rules
compiler. Most of the difficulties that will bother the knowledge engineer in the simple,
“nothing but rules” solution would have to be taken care of in the automatic translation of
scripts to rules.

In conclusion, the solution used in the project is working properly and the code is easily
understood and quite small, only a few pages. For this reason the alternatives seem to be
either insufficient or unnecessarily complicated.

Integrating the Interface with a CACE Program

During the entire project there has been a focus on ideas and general facilities for help systems
and we have tried to avoid Idpac specific things as far as possible. This means, among other
things, that most of the ideas in the system would work with other types of communication
as well as with the Idpac command dialog.

The most important alternative is probably a windows and mouse communication, as
used in e.g., the Macintosh. Once the mouse-clicks have been translated to a stream of
commands, the same expert interface would work fine. The commands to the computer
produced by a window and mouse system are of course simpler than commands to Idpac,
as they probably have no or few arguments, but this makes the task simpler for the expert
interface. The help system would have to know about windows and mouse-clicks instead of
commands and the output routines are also easily adapted to a window system.

The Idpac language is somewhat old-fashioned and has several shortcomings. Some
commands have a syntax different from the usual one and there is quite a lot of special cases,
some of which have the typical look of “programming tricks.” Part of an explanation is that
Idpac has been rebuilt and added to in several steps. It would be much easier to build an
expert interface for Idpac if some changes were made in Idpac itself.

Many commands have their own special syntax, e.g., the plot command. Altogether,
there is a lot of special cases to take care of when writing a parser for Idpac. A better
command language would have a simple syntax with no exceptions, even at the expense of
the user having to type a little more. The facilities of the help system would greatly ease the
user’s work anyway. So a first thing to do about the Idpac language would be to throw out
all special tricks and exceptions.

A command language should have a simple and uniform syntax, making it easy both to
learn and to write parsers for. The mere fact that it is possible to define a grammar for a
language does not mean that it is very good in the above respects. So the next thing to do
would be do redesign the command syntax in a more uniform way.

Idpac is designed as a stand-alone program with a top level that is only useful for
communication with a user at a terminal. There are no facilities that enable another program
to get values of parameters, results, or error messages from Idpac. The only way that the
expert interface can get such data is either to analyse the resulting data files or to ask the
user. Neither of these alternatives are really satisfying. Currently, the expert interface cannot
even find out if Idpac has had an error without asking the user. If a user specifies a column
number in a file as being 10000 say, the interface just sees an integer and accepts it, but Idpac

Chapter § Further Developments 47

will not. It is very difficult to make sure that the interface will never send anything that
would cause an error in Idpac. Therefore the help system must have the possibility to check
for errors in Idpac. This could be done by supplying functions in Idpac whereby values could
be sent to another program, making it easy to transfer results to the expert interface. This
would have the beneficial effect of heavily reducing the number of questions asked by the
help system. Most questions concern results of different operations, and these could instead
be read into the expert interface automatically.

Idpac is built around Intrac, a communication module which handles numeric subroutines
interactively, Wieslander and Elmqvist [1978]. Intrac can decode and handle commands typed
by a user. Intrac has routines for input, output, and file handling, it has a subroutine facility
and some other programming constructs, e.g., loops, goto statements, and if statements. In
expressive power Intrac can be compared with Basic.

The best way of making Idpac suited for connection to other programs is probably to
redesign it in the following way. There should be a kernel of numerical routines, written in
Fortran or C, with well defined data structures and calling conventions. On top of this there
would be a small command decoder. The command language of this parser would be very
simple and low level, with no possibilities of defaults, etc. It might be e.g., a stack-oriented
language, Astrém and Schénthal [1982]. On this, a top level with command parsing could
then be built. A possible choice for this top level would be a Lisp system, where all the
interactive facilities of Lisp could be used in a CAD package. Of course the expert interface
could be used as the top level program if it was to be included in the new Idpac, eliminating
the need for duplicating the parsing and the use of inter-process communication via VMS
mailboxes. This project would be a major effort in itself, and it would be the logical step to
take after the design of a help system as described in this thesis.

When the expert interface is to be built into a CACE program, there may be reasons
for implementing it in some other language than Lisp, e.g., Fortran, C, or Pascal. We believe
that once it is known what features should be available, implementing an expert interface in
C, say, is no problem. It will not be very easy to make big changes in the code, and the size
of it will grow considerably. However, if the CACE program would use Lisp as its interactive
. user interface the incorporation of an expert interface would be very straight-forward. At the
present stage the expert interface is far from finished and it would be a big mistake to leave
the Lisp environment.

Additional Features in the Design

The expert interface is a result of a limited project of largely experimental programming.
A full fledged implementation of a system for production use is far beyond the scope of our
efforts. By necessity a few things have been left out from the actual implementation. These
details have a certain interest, though, and will therefore be given a short description.
The Idpac command language has a few unusual and somewhat archaic constructs. In
_order to enable aggregation of several data signals, a data file may contain several columns,
Le., filenames is indexed with cardinal numbers, as a way of denoting different signals. In
more modern programs concepts like this is missing. Certainly there is a need for some
mechanism of data aggregation, but we very strongly feel that the concept of columns is not
the solution. Taking care of columns in the command parsing proved to be complicated and
the decision was made to skip it altogether. The expert system encourages the user to keep

Chapter 5 Further Developments 48

his data in different files. The few commands that demand data to reside in certain columns
where replaced with suitable macros with separate files as arguments.

The command parser of the expert system allows for short forms of the commands, as
long as they are not ambiguous. A natural extension would be a general support of short
forms, for filenames and parameters. In the case of filenames, the implementation might
give some practical difficulties, since the system must use operating system calls to fetch
information about the files in the current directory, etc. Since the implementation of this
kind of facility is only a technical matter, we have left it out. Still, it is important to realize
that an intelligent help system should have functions like this, making the use of it both more
efficient and easy.

During the startup of the system, a part of the code reads the script database and
performs a rough check for syntactical correctness. These functions could, with no large
effort, be substantially developed. Presently, script clauses are checked for their type word
and parameter clauses only. There is no consistency checking of the production rules. A
full fledged script and rule verifier would in addition contain a more complete check of the
syntax of each type of script clause, a simple semantic check of the use of internal file names,
a consistency check of the production rules and a semantic check of the use of facts, both in
the scripts and rules. For example, a filename should not be used in a kscall before the file
has been created with a command.

The scripts and rules are currently entered in almost the same form as they have inter-
nally in the Lisp system. The syntax is very Lisp-like, and probably takes some time to get
used to. An expert interface should have facilities for reading and printing the knowledge
database in a more easily readable form, in order to make life easier for the knowledge en-
gineer not so familiar with Lisp. The current scripts and rules are not that difficult to read
though, so we did not bother to do anything about it.

The user of Idpac has to make up a lot of new filenames. In order to avoid confusion,
these names must be well chosen. Automatic creation of file names would be a nice facility. In
order to make this name giving more intelligent, information about name giving conventions
could be kept in the scripts. In this way the system could suggest names depending not just
on what command that created the file, but also on where in the identification procedure the
file was created. But it is not clear whether this strategy would suffice to enable really good
naming conventions. Not being a crucial part of an intelligent help system, such a facility
was not implemented.

The documentation of sessions with Idpac is very important. The rule system of the
expert interface can take care of this. Currently, rules that write a text string to a file are
available in all scripts. When designing a script the knowledge engineer could use these rules
to implement automatic documentation. This would involve putting facts about all important
and successful sub-goals in the fact database, and using this information to produce a short
description of the session, what has been and what has not been done, the reasons for trusting
or distrusting certain results, and so on. The documentation of a session depends heavily
on the structure of that session and general strategies tend to be rather simple-minded.
Therefore we believe that automatic documentation should be done with the production rule
system. This has, however, not been implemented.

In order to help the knowledge engineer to get new ideas for scripts, the expert interface
should keep traces of all runs and also collect statistics of commands, scripts, and common
errors. This would help to pinpoint deficiencies in both the interface and Idpac and give
feedback for changes in the programs. It would also provide input for the design of new

Chapter 5 Further Developments 49

command languages and program packages. We decided that the gathering of statistics was
not very central to the project, and also of a rather trivial nature to implement. Thus it is
not currently done in the system.

Something that is often very useful to have, but also very hard to implement is the
possibility to undo different operations. When running the expert interface the user will
certainly sometimes want to retract a command and back up the script matcher. Some cases
of this may be handled simply by keeping a copy of the previous states, but there is currently
no support for this in the system. Once again, we decided that this was not very central to
showing how an expert interface should work.

The system currently supports two different user states, the very quiet expert state and
the more verbose beginner state. There may be a need for one or more additional modes
or settings. Experience will show this. A simple adaptive scheme for changing these modes
might also be successful. A user making many errors in expert mode might be put into the
safer beginner mode automatically. A strategy like this must allow a user to work outside of
the scripts though, as he very well may be an expert doing things not in the scripts. In this
case the command histories provide excellent material for new scripts. There is nothing of
this kind in the current system.

One could think of even more advanced forms of adaptivity, e.g., the system learning
new scripts on-line from an expert and automatic correction of errors, both syntactical errors
and maybe also errors detected via script matching. The expert interface could throw in a
few commands that it thought that the user forgot, etc. An interesting idea is the notion
of “buggy scripts.” This means that the knowledge engineer enters erroneous scripts into
the database. They would be descriptions of common errors and of methods from the grey
zone between correct and wrong. Thus the system would be able to give better diagnosis
when the user errs. But this kind of things are difficult to outline, and even more difficult to
implement.

A philosophy of design has been that the important thing is to show the user information,
not to help him type it. Many advices are of the type “Now perform a plot command.” and it
would of course not be very difficult to supply defaults, so that the system would take a single
carriage return as accepting the advice and issuing, in the case above, the plot command.
Currently the system does not do very much of this kind, but it is surely straight-forward to
implement if one decides to do so.

Conclusions

Die allgemeine Form der Wahrheitsfunktion ist: [il é N (E)]

Dies ist die allgemeine Form des Satzes.

This thesis describes an intelligent help system for Idpac. The general idea of building a help
system based on expert system techniques and including it in a CAD program is presented
and a solution is given. This solution includes the development of scripts, a data type for
describing sequences, and a description of the implementation of the expert interface. An
- example of a knowledge database and an actual session with the system is also shown. -

First, the idea of an intelligent help system is presented. An outline of how to combine an
expert system and a CAD program is given and the demands of an intelligent user interface
are stated.

The need for handling sequences is stated and a data type for doing this, scripts, is
introduced. The concept of scripts is then given a close description and several examples of
scripts are shown.

A large part of the ideas presented in this thesis has been implemented in an experimental
system. This implementation is discussed and the different parts of the program are described
in detail.

The knowledge database and its contents are described and an example of a script and
production rules is shown. An example of a session with the system is also given.

There is a discussion of extensions to and further developments of the system. Some
shortcomings of Idpac are listed and an alternative way of design of a future system is
outlined.

The main conclusion of the project is that it is indeed possible to use an expert system
and still retain a command style dialog. A second conclusion is that not all knowledge in
a database for system identification using Idpac need be implemented by production rules.
Scripts are a better way to represent sequences, particularly in problems where both methods
and goals are well known. A good rule is to use as much as possible of the structure of the
problem in the solution. The use of scripts supported by rules in a forward chaining strategy
will probably reduce the overall size of the knowledge data bases considerably.

50

Chapter 6 Conclusions 51

Some experience have been gained with the system. The current knowledge database
is to small to be of any use for an expert. For a non-expert it may be useful. Even the
expert might find it nice to use the system though. It is quite clear that it is very convenient
not to be bothered with all the details of running Idpac, as remembering file names, trivial
next-commands, etc. This alone is a sufficient reason for having an intelligent help system. It
- must be pointed out, however, that the current system is easily fooled and in no way failsafe.
A third conclusion is that an intelligent help system such as the one described in this thesis
is clearly useful for all, except maybe for expert users.

References

Wovon man nicht sprechen kann, daritber mufl man schweigen.

ABo, A. V., SETHI, R and J. D. UrLLMaN (1986): Compilers, Principles, Techniques and
Tools, Addison-Wesley, Reading, Massachusetts.

AKAIKE, H. (1972): “Use of an Information Theoretic Quantity for Statistical Model
Identification,” Proceedings of the 5th Hawaii International Conference on System Science,
Honolulu, Hawaii.

ALLEN, E. M. (1983): “YAPS: Yet Another Production System,” Technical report,

TR~1146, Department of Computer Science, University of Maryland, Baltimore County,
Maryland.

ALLeN, E. M., R. H. Trige and R. J. Woop (1984): “The Maryland Artificial
Intelligence Group Franz Lisp Environment,” Technical report, TR-1226, Department of
Computer Science, University of Maryland, Baltimore County, Maryland.

BIRDWELL, J. D et al(1984): Issues in the Design of a Computer-Aided System and Control
Analysis and Design Environment, ORNL/TM-9038, Oak Ridge National Laboratory,
Oak Ridge, Tennessee.

BIRDWELL, J. D et al (1985): “CASCADE: Experiments in the Development of Knowl-
edge-Based Computer-Aided Systems and Control Analysis and Design Environments,”
Proceedings of the 2nd IEEE Control Systems Society Symposium on Computer-Aided
Control System Design, Santa Barbara, California.

BirpwEeLL, J. D.,J. R. B. CockeTTand J. R. GABRIEL (1986): “Domains of Artificial
Intelligence Relevant to Systems,” Proceedings of the 1986 American Control Conference,
Seattle, Washington.

BoBrow, D. G. and T. WINOGRAD (1977): “An Overview -of KRL, a Knowledge
Representation Language,” Cognitive Science, 1, No. 1, 3.

52

Chapter 7 References 53

BroOwNsTON, L. et al (1985): Programming Expert Systems in OPS5: An Introduction to
Rule-Based programming., Addison-Wesley, Reading, Massachusetts.

CHARNIAK, E., C. K. RIESBECK and D. V. McDERMOTT (1980): Artificial Intelligence
Programming, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

CrocksiN, W, F. and C. S. MELLIsH (1981): Programming in Prolog, Springer-Verlag,
Berlin.

Cox, D. R. (1958): Planning of Experiments, John Wiley & Sons, New York.

DIGITAL EQUIPMENT CORPORATION (1984): Introduction to VAX/VMS System Routines,
VAX/VMS Version 4.0, Digital Equipment Corporation, Maynard, Massachusetts.

Evknorr, P. (1974): System Identification, Parameter and State Estimation, John Wiley
& Sons, London.

Evkuorr, P. (1981): Trends and Progress in System Identification, Pergamon Press,
Oxford.

FEDOROV, V. V. (1972): Theory of Optimal Experiments, Academic Press, New York.

FobEraro, J. K. and K. L. SkLowER (1981): The Franz Lisp Manual, University of
California, Berkely, Berkely, California.

Foray, C. L. (1981): “OPS5 User’s Manual,” Technical report CMU-CS-81-135, Carnegie
Mellon University, Pittsburgh, Pennsylvania.

GALE, W. A. and D. PREGIBON (1982): “An Expert System for Regression Analysis,”
Proceedings of the 14th Symposium on the Interface, Troy, New York, July 5-7, Springer
Verlag, New York, pp. 110-117.

GALE, W. A. and D. PrEGIBON (1983): “Building an Expert Interface,” Bell Telephone
Laboratories, Murray Hill, New Jersey.

-GusTavssoN, . I. and A. B. NiLssoN (1979): “(")vningar for Idpac,” Technical report,
TFRT-7169, Department of Automatic Control, Lund Institute of Technology, Lund.

GusTavsson, I.(1979): “Néagra macros for Idpac,” Technical report, TFRT-7170, Depart-
ment of Automatic Control, Lund Institute of Technology, Lund.

HarMON, P. and D. KiNG (1985): Expert Systems, Artificial Intelligence in Business, John
Wiley & Sons, New York.

Haves-RorH, F. (1978): “The Role of Partial and Best Matches in Knowledge Systems,”
in D. A. Waterman and F. Hayes-Roth (Eds.): Pattern-Directed Inference Systems,
Academic Press, New York.

Hayes-RoTH, F., D. WATERMAN and D. LENAT (1983): Building Expert Systems,
Addison-Wesley, Reading, Massachusetts.

JaMmEes, J. R., J. H. TavyLor and D. K. FREDERICK (1985): “An Expert System
Architecture for Coping with Complexity in Computer-Aided Control Engineering,”
Preprints of the 3rd IFAC/IFIP International Symposium, The Technical University of
Denmark, Lyngby, Copenhagen, pp. 47-52.

Chapter 7 References 54

JoHNsoN, S. C. (1975): “Yacc—Yet Another Compiler Compiler,” Computing Center
Technical Report No. 25, Bell Telephone Laboratories, Murray Hill, New Jersey.

LarssoN, J. E. (1984): An Expert System Interface for Idpac, Master thesis, TPRT-5310,
Department of Automatic Control, Lund Institute of Technology, Lund.

Larsson, J. E. and K. J. AsTROM (1985 a): “An Expert System Interface for Idpac,” -
Proceedings of the 2nd IEEE Control Systems Society Symposium on Computer-Aided
Control System Design, Santa Barbara, California.

LarssoN, J. E. and K. J. AsTROM (1985 b): “An Expert Interface for Idpac—Paper
Presented at Santa Barbara ’85,” Technical report, TFRT-7308, Department of Automatic
Control, Lund Institute of Technology, Lund.

LarssoN, J. E. and P. PERssoN (1986 a): “Ett expertsystemsnitt for Idpac, (An Expert
System Interface for Idpac),” SAIS ’86, The Swedish AI Society’s Annual Workshop,
Linképing, April 24-25, 1986.

LarssoN, J. E. and P. PERssoN (1986 b): “Knowledge Representation by Scripts in
an Expert Interface,” Proceedings of the 1986 American Control Conference, Seattle,
Washington.

LarssoN, J. E. and P. PERssoN (1986 c): “Knowledge Representation by Scripts in
an Expert Interface—Paper Presented in Seattle 1986,” Technical report, TFRT-7332,
Department of Automatic Control, Lund Institute of Technology, Lund.

LarssoN, J. E.and P. PERsSON (1987 a): An Expert Interface for Idpac, Licentiate thesis,
TFRT-3184, Department of Automatic Control, Lund Institute of Technology, Lund.

LarssoN, J. E. and P. PERssON (1987 b): “An Expert Interface for Idpac—Reference
-~ Manual,” Technical report, TFRT-7341, Department of Automatic Control, Lund Institute -
of Technology, Lund.

LarssoN, J. E. and P. PERSSON (1987 ¢): “A Small Script and Rule Knowledge Database
for System Identification,” Technical report, TFRT-7342, Department of Automatic

-« -+Control, Lund Institute of Technology, Lund.

‘LeEsk, M. E. (1975): “Lex—A Lexical Analyzer Generator,” Computing Center Technical
Report No. 39, Bell Telephone Laboratories, Murray Hill, New Jersey.

LiuNG, L. and T. SODERSTROM (1983): Theory and Practice of Recursive Identification,
MIT Press, Cambridge, Massachusetts.

Ni, H. P. and N. AieLro (1979): “AGE: A Knowledge-Based Program for Building
Knowledge-Based Programs,” Proceedings of the 6th International Joint Conference on
Artificial Intelligence, William Kaufmann Inc., Los Altos, California, pp. 645-655.

RimmvaLr, M. and L. BomuoLT (1985): “A Flexible Man-Machine Interface for CACSD
Applications,” Preprints of the 3rd IFAC/IFIP International Symposium, The Technical
University of Denmark, Lyngby, Copenhagen, pp. 98-103.

ScHANK, R. C. and R. P. ABELSON (1977): Scripts, Plans, Goals and Understanding,
Lawrence Erlbaum Associates, Hillsdale, New Jersey.

SCHANK, R. C. and C. K. RIESBECK (1981): Inside Computer Understanding, Lawrence
Erlbaum Associates, Hillsdale, New Jersey.

Chapter 7 References 55

STEFIK, M. et al (1982): The Organization of Expert Systems—A Prescriptive Tutorial,
Palo Alto Research Centers, Palo Alto, California.

TavrLor, J. H. and D. K. FREDERICK (1984): “An Expert System Architecture for
-Computer-Aided Control Engineering,” IEEE Proceedings, 72, 1795-1805.

TavyrLor, J. H., D. K. FrREDERICK and J. R. JAMEs (1984): “An Expert System
Scenario for Computer-Aided Control Engineering,” Proceedings of the 1984 American
Control Conference, San Diego, California, pp. 120-128.

VAN MELLE, W. et al (1981): “The EMYCIN Manual,” Technical report HPP-81-16,
Computer Science Department, Stanford University, Palo Alto, California.

WATERMAN, D. A. (1986): A Guide to Expert Systems, Addison-Wesley, Reading,
Massachusetts.

WATERS, R. C. (1985 a): “KBEmacs: A Step Toward the Programmer’s Apprentice,”
Technical Report 753, MIT Artificial Intelligence Laboratory, Cambridge, Massachusetts.

WateRs, R. C. (1985 b): “The Programmer’s Apprentice: A Session with KBEmacs,” IEEE
Transactions on Software Engineering SE-11 No. 11, November 1985, 1296-1320.

WEIss, S. et al (1982): “Building Expert Systems for Controlling Complex Programs,”
Proceedings of the National Conference on Artificial Intelligence, William Kaufmann Inc.,
Los Altos, California, pp. 322-326.

WELIN, C. W. and R. SKAGERWALL (1986): “Design of an Expert System and
Man-Machine Interface for Operation and Maintenance of AXE Telephone Exchanges,”
Proceedings of the IEEE 1986 International Ziirich Seminar on Digital Communications,
Zirich, 11-13 March, Verlag der Fachvereine an den Schweizerischen Hochschulen und
Techniken, Zurich.

WIESLANDER, J. and H. ErmqvisT (1978): “INTRAC a communication module for
interactive programs. Language manual.,” TFRT-3149, Department of Automatic Control,
Lund Institute of Technology, Lund.

WIESLANDER, J. (1979 a): Interaction in Computer-Aided Analysis and Design of Control
Systems, Doctorial Dissertation, TFRT-1019, Department of Automatic Control, Lund
Institute of Technology, Lund.

WIESLANDER, J. (1979 b): “Design Principles for Computer-Aided Design Software,”
Preprints of the IFAC Symposium on CAD of Control Systems, Zurich.

WIESLANDER, J. (1979 ¢): “Idpac User’s Guide,” TFRT-7605, Department of Automatic
Control, Lund Institute of Technology, Lund.

WIESLANDER, J. (1980): “Idpac Commands—User’s Guide,” TFRT-3157, Department of
Automatic Control, Lund Institute of Technology, Lund.

WILENSKY, R. et al (1986): “UC—A Progress Report,” Report No. UCB/CSD 87/303,
- Computer Science Division (EECS), University of California, Berkely, California.

WinsToN, P. H. and B. K. P. Horn (1981): Lisp, Addison-Wesley, Reading, Mas-
sachusetts.

Chapter 7 References 56

WIRTH, N. (1976): Algorithms + Data Structures = Programs, Prentice-Hall, Englewood
Cliffs, New Jersey.

WITTGENSTEIN, L. (1922): Tractatus Logico-Philosophicus, Routledge & Kegan Paul Ltd.,
London.

AsTrOM, K. J. and P. EYKHOFF (1971): “System Identification—A Survey,” Automatica -
7, 123-162.

AsTrOM, K. J.(1980): “Maximum Likelihood and Prediction Error Methods,” Automatica
16, 551-574.

AsTrROM, K. Jand T. SCHONTHAL (1982): “PCALC—A Polynomial Calculator—A User’s
Manual,” Department of Automatic Control, Lund Institute of Technology, Lund.

AsTrOM, K. J. (1983 a): “Computer-Aided Modeling, Analysis and Design of Control
Systems—A Perspective,” IEEE Control Systems Magazine, No. 2, May 1983, 4-16.

AsTrOM, K. J. (1983 b): “Modeling and Simulation Techniques,” Agard Lecture Series,
No. 128.

AsTrOM, K. J. (1985): “Computer-Aided Tools for Control System Design,” in
Jamshidi, M. and C. J. Herget (Eds.): Computer-Aided Control Systems Engineering,
North-Holland, Amsterdam.

