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1. INTRODUCTION

Motivation

Motion control problems have received increased attention during the last few
years. One reason for this is the breakthrough of robots and other mechanical
manipulators in industrial automation. Robots are now being used in a wide
variety of applications, and the ever-increasing demand for improved

performance requires more and more sophisticated control strategies.

Improved performance normally implies both faster and more accurate motion.
With the traditional industrial robot construction, high speed and acceleration
require quite large and expensive servo motors. Therefore, the current trend in
robotics is towards smaller and lighter mechanical systems, whereby improved
speed and acceleration can be achieved with smaller and less expensive actuators.
These lightweight constructions have one major drawback, however. The robot
can no longer be considered as a rigid body, and mechanical resonance
phenomena appear. Accurate and fast robot motion thus requires that the
flexibles modes of the system are taken into account in the control design.
Improved performance also often requires that the presence of nonlinearities,
such as static friction, must be considered. Hence a linear model and design may

be inadequate, and we are faced with a much more complicated control problem.

There are a number of other areas where motion control problems of this type
also appear, for example in the design of large flexible space structures. The need
to consider flexible modes is in fact a control problem, which concerns the design

of any type of high performance mechanical servo system.

Background

Several authors have studied the control of flexible servo systems (based on
linear models and control algorithms) and nonlinear friction compensation in rigid
body servo systems. See for example [1], [4] and [14]. I believe, however, that
the combined effects of flexible modes and nonlinear friction in the system have

not yet been fully investigated.




Chapter 1 Introduction

This work started as a feasibility study of the control of flexible servo systems
using modern control theory, with robotic applications in mind. The intended
approach was to use linear state feedback control to provide active damping of
the resonant modes, and if necessary some sort of friction compensation scheme
to eliminate the nonlinear friction. Simulation experiments soon indicated that
nonlinear friction in combination with a high bandwidth linear control design
could give rise to limit cycle oscillations. The oscillations occur at zero speed, and
can not be explained as a slip-stick phenomenon. 1 believe that these oscillations

have not been observed and analysed before.

A prototype flexible servo system was built to verify the existence of such
oscillations. Having established that the problem existed in "real life”, the project
focused on exploring the mechanism behind these oscillations and how they could

be avoided.

Thesis outline

This thesis treats the problem of controlling the speed loop of a flexible servo
system. The thesis is organized as follows. A prototype flexible servo system is
presented in Chapter 2. Chapter 3 describes the mathematical model of the
system. A linear regulator design which provides active damping of the resonant
modes is presented in Chapter 4. This chapter also contains some simulations
with the linear regulator and a nonlinear servo model including static and
Coulomb friction. The simulations demonstrate the existence of limit cycle
oscillations if the closed loop bandwidth is chosen too high. Some theoretical
results obtained with the describing function method and a simplified nonlinear
friction model are given in Chapter 5. The existence of limit cycles, as well as
their amplitude and frequency, is predicted for the nominal design case. It is then
proved that an unstable regulator is a sufficient criterion for the existence of
limit cycles. In Chapter 6 we explore the bandwidth constraints imposed on the
linear control design by the appearance of limit cycles. It is shown that these
constraints can be relaxed by choosing a different sensor location. Some simple
friction compensation schemes are also investigated. Chapter 7 deals with the
implementation of the control algorithms and experimental verification of the
simulation results. Finally, the results are summarized in Chapter 8 with

conclusions and suggestions for further research.
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2. APROTOTYPE FLEXIBLE SERVO SYSTEM

Experimental arrangement

A laboratory flexible servo system has been built to enable experimental testing
and verification of theoretical results and simulations. The laboratory system is a
two-inertia system with an electric DC drive motor connected to an inertial load
by a weak shaft. A simple bearing arrangement was provided for the inertial load
by fitting a second DC motor to the other side of the weak shaft. The physical
dimensions of the system were chosen so that the resonance frequency of the
oscillatory modes would be reasonably low, while at the same time keeping the
system within "desk-top” size. This was accemplished by using a thin wire as the

weak shaft. A picture of the prototype system is shown in Figure 2.1 .

In order to keep the instrumentation simple we have studied the speed control
problem only. This means that no position transducers were needed. The drive
motor of the serve system was fitted with a DC tacho generator to enable speed
measurements on the drive motor shaft. By using the second DC motor as a

tacho generator it is also possible to measure the speed of the inertial load.

Fig. 2.1 The prototype flexible servo system. The DC drive motor and
tacho generator is te the right, and the inertial load is to the
lefi.

i1




Chapter 2 A Prototype Flexible Servo System

Input and output signals

Our main objective is to design a speed control system for the inertial load, while
taking the flexible modes of the system into account. The natural choice of
measured process output signal would therefore be the inertial load speed. In
most servo applications, however, the drive motor speed is the only available
signal. The drive motor speed is therefore used as the measured process output
in the control algorithm. The inertial load speed signal will be used primarily for

diagnostic purposes to check the control system performance.

The drive motor is equipped with an electronic amplifier with current feedback.
We will consider the input voltage to the drive amplifier as the input to the

flexible servo system.

12
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3. MATHEMATICAL MOD

3.1 LINEAR MODEL

Let the variables related to the drive motor have index 1 and the variables
related to the inertial load have index 2. The flexible servo system is modelled by

two shafts with moments of inertia J, and J2, coupled with an elastic spring. The

1
spring constant is denoted k, and the damping coefficient d. The effect of viscous
friction in bearings etc. is described by an individual damping on each shaft with

the damping coefficients d1 and d2’ See Figure 3.1 .

The drive motor is a permanent magnet DC motor with irconless rotor, driven by
an electronic amplifier with current feedback. The dynamics of the motor and the
amplifier are neglected. The motor is thus assumed to give a torque M
propotional to the input current 1. Because of the current feedback, the torque M

is also proportional to the input voltage u of the drive amplifier:

Torque balance for the two shafts yields

—
£.
|

k(92~61) - dyw, - d(wl—wz) + k k.-u

= -k(ez-el) - dyu, + d(wl—m

—
£
i

2)

By definition we also have

k
u M w1 NnNNN wz
DC motor |[— 11 —e-——| l— 12 5
1 —1] 2
. d

Fig. 3.1 Linear flexible servo model
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Chapter 3 Mathematical Model

where
w, = éngular velocity of shaft 1
w, = angular velocity of shaft 2
91 = position of shaft 1

8, = position of shaft 2

Introduce the state variables

1 1
X2 = wz
Xy = 8,78y

and the measured output signal

y =k ,'w

wl 71

where kw is the drive motor tachometer gain. The input signal, u, is the input

voltage to 1the drive amplifier.

Note that we only need the position difference as the third state since our control
objective is speed control of the servo. If position control is required a fourth
state must be added, e.g. x, = 0,. This gives the following speed loop state space

4 1
model of the flexible servo:

[-(d,+d) 4 k| [k k]
T4 I 14
d —(d2+d) -k
x(t) = - — 4 T x(t) + 0 u(t) (3.1)
2 2 2
-1 1 0 | o |

An alternative state space model for the case when we measure w, instead of wy

is easily formulated by replacing the output definition with

y(t) = [0 Kk, 0]x(t)

where kw is the gain of the tachometer on shaft 2.

2
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Chapter 3 Mathematical Model

Transfer functions

The state space model (3.1) has the transfer function

B,(s) kkk [J s%+(d_+d)s+k]
G, (s) = 21— = 12z 2 (3.2)
A(s) A(s)

3 2
A(s) = 1,15 +(J2(d1+d)+31(d2+d)]s +

+[k(J1+JZ)+d1d2+dd1+dd2]s+(d1+d2)k

The transfer function from u to y2 =k .w,.is

w2 2

_ Byls) _ k.k k o [ds+k]

A(s) A(s)

Gy (s) (3.3)

where A(s) is defined as in (3.2). If the linear damping coefficients d, d, and d,

are small, the servo system has two poorly damped oscillatory poles with a
natural frequency approximately given by

y  k(3+]

[A) =

5)
J1']2
and one slow pole on the negative real axis approximately given by

d1+d2
.11+J2

S = -

This pole corresponds to the rigid body dynamics. The steady state gain from u

to vy is
kikmkwl
G, (0) = —4——
1 d1+d2

Note that small linear damping coefficients gives a high steady state gain.

Parameter values

The parameters J 1’ km, ki’ kw 1 and sz were given by component data sheets and
circuit diagrams. The inertial load, J2, was calculated from its physical dimensions

(with the inertia of motor 2 included).
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Chapter 3 Mathematical Model

By performing a simple frequency response experiment it was found that the
damping d in the elastic spring could be neglected. The frequency response of the
transfer function Gz(s) from the input voltage u to vy = szwz was recorded in
the frequency interval 0.1 - 10 Hz. At higher frequencies the gain of the system
was so small that the output signal could not be distinguished from the

measurement noise. Gz(s) has a zero at

This zero has a significant influence on the frequency response only at
frequencies near or above the breakpoint wy = k/d. No influence from the zero
could be noticed in the measured frequency response. The high frequency
asymptote was found to have a slope of -60 dB per decade and a phase shift of
-270 degrees. This agrees well with the transfer function (3.3) if d is zero. The
damping d must therefore be so small that the breakpoint from the zero is well
above the frequency interval where |G2(iw)| is significantly greater than zero,

and hence d can be neglected.

When performing the frequency response experiments, it was found that the
phase curve was badly distorted by the presence of nonlinear (Coulomb) friction.
This depends on the discontinuous nature of the Coulomb friction, which causes
problems when the direction of rotation changes. To overcome this problem, a
bias was added to the sinusoidal input. The bias amplitude was selected larger
than the sinusoidal amplitude, so that zero crossings in the measured output
speed were avoided. With a constant direction of rotation, the Coulomb friction
can be regarded as a constant torque disturbance and it does not influence the

results of the frequency analysis.

The remaining parameters were determined by fixing shaft 1 and 2, respectively,
and studying the decay of an initial disturbance in the position of the free shaft.
With J 4 and J2 given, the spring constant k can be calculated from the resonance
frequency. Approximate estimates of d1 and d2 can be obtained from the decay of
the oscillations. These estimates of the viscous damping will be rather crude,
however, since the behaviour of the system differs from the linear model due to
the presence of static (Coulomb) friction. Improved estimates were obtained by
simulating a nonlinear model including static friction and comparing the
simulations with experimental data.

The following parameter values were obtained for the laboratory setup:

16




Chapter 3 Mathematical Mode}

k = 0.1 Nn/A
k., = 0.25 A/V

! 6, 2

J = 22-10 ~ kgm

1 6, 2
JZ = 150:-10 ~ kgm
k =2.4-107° Nm/rad
d = 0.0 Nm/rad/s
d, = 1.107° Nm/rad/s
d, =1-107 No/rad/s
k=01 V/rad/s
%2=Q1mes

With these parameter values we get the following linear state space model:

-0.45 0 109 1136
X = 0 -0.07 -16.0|-x(t) + | 0O [-u(t) (2.4)

-1 1 0 0
y = [0.1 0 0]-x(t)

The state space model (3.4) has the transfer function

2
113.6(s +0.07s+16

6, (s) = (s ) (3.5)
(s+0.1) (s7+0.45+125)

A singularity diagram with the corresponding poles and zeros is shown in Figure

3.2. The transfer function from u to the alternative output Y, = szwz is

1818 '
s} = 3.6
2( ) (s+0.1)(sz+0.4s+125) (3-6)

Note the different zero structure with two complex zeros in Gl(s) but no zero in

Gz(s). This will be important in the control design (see Chapter 4).

Simplified linear model

The A-matrix elements in eqn (3.1) and (3.4) corresponding to the linear damping
terms (element [1,1], [1,2], [2,1] and [2,2]) are very small. A simplified state space

model can be obtained by setting d = d 1= d2 = 0. This gives

17




Chapter 3 Mathematical Model

15. . : : . i,
x
10. i
5. T
o
=) 0.0
[»
-S. J
-10. + 1
x
-15. . ! . L . :
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Re
Fig. 3.2 Singularity diagram for the open loop system (x = poles,
o = zeros).
' k | 'km-kiT
0O 0 T 7
i 1
. -k
x(t) = |0 O T -x(t) + 0 |-u(t) (3.7)
2
-1 1 0] | O

y(t) = [k, 0 0 ]-x(t)

This simplified model can be used for approximate analytical calculations. The

corresponding transfer function is '
2

k;k ko [Js+k]

G =
(%) s (3,3,5%4k (1,+1,))

The resonant poles have moved to the imaginary axis, and the rigid body pole is

now at the origin.
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Chapter 3 Mathematical Model

3.2 NONLINEAR MODEL INCLUDING STATIC FRICTION

Friction forces in mechanical systems are normally considered to consist of three
parts: viscous friction, static friction, and Coulomb friction [2]. The viscous
friction is proportional to the speed and has already been included in the linear
model (3.1). The static friction is sometimes called "stiction", and it is assumed to
exist at zero speed only. If the net torque acting on a shaft is less than the
maximum static friction, the net torque will be balanced by the static friction.
Thus the total torque is zero and the shaft remains at rest. The Coulomb friction

is a constant braking force that depends only on the direction of rotation.

The combined effect of static friction and Coulomb friction is modelled with a

necnlinear friction torque M, acting on shaft i (i = 1,2). It is described by

—Fi-51gn(wi) ; (wi¢0)

Meo = § M, i (w;=0, |M,[<F,) (3.8)

—Fi-51gn(Mi) ; (wi=0, lMi|>Fi)

where Fi is the magnitude of the friction torque and Mi is the total torque acting
on shaft i (excluding the nonlinear friction) [1]. Note that the friction model (3.8)
is symmetric, i.e. the friction torque is the same in both directions of rotation.
The model can easily be modified to cover the unsymmetric case, but for
simplicity only the symmetric case is considered here. It is also assumed that the
magnitudes of the static friction and the Coulomb friction are equal, a
simplification that may be unrealistic. It is necessary for practical reasons,
however, since it is difficult to estimate the static friction torque. The torque

balance equations for the nonlinear model are

Gy
&
1

k(0,-0,) ~djw, —d(w;-w,) +k k.ou +H 5.0

[
£
I

= —k(92—61) —dzwz +d(w1—w2) +Hf2

and will be used in the nonlinear simulation model to investigate the effects of the

nonlinear friction terms on the performance of the closed loop system.

Parameter values

The magnitude of the Coulomb friction torque was estimated by measuring the
input voltage required to run the servo system in steady state at lowest possible
speed. At low speeds, the viscous friction torques can be neglected, and the input

signal is proportional to the sum of the Coulomb friction on shaft 1 and 2. Since

19




Chapter 3 Mathematical Model

the two DC motors on shaft 1 and 2 are identical, we assume that F1 = F2. The
estimated Coulomb friction torque values were:

-4
F1 = F2 = 510 ° Nm

These friction values were verified by simulating the initial value disturbance
experiments described earlier in the section on parameter values for the linear

model.

20




4. LINEAR CONTROL DESIGN

4.1 CONTINUOUS STATE FEEDBACK AND OBSERVER

The control design will be based on pole placement with state feedback. The

reasons for using the state space approach are as follows:

(1) We already have a state-space model of the system.

(2) The method is straight-forward and easy to understand.

(3) The absence of zeros in the transfer function from u to Vg (3.6) show
that pole placement is sufficient to obtain a well damped inertial load
speed step response, which is our main control cobjective. A state
feedback control law should be an appropriate method to achieve the

desired pole placement.

We can only measure one state, Wy, SO the other state values must be estimated.
Since the measured signal is distorted by ripple from the tacho generator, we
estimate the full state vector including w,- This means that the observer is also
used as a filter to decrease the influence of the noise on vy The observer in the
control algorithm produces an estimate of w, as a spin-cff result. This is valuable
since w, is the variable that we actually want to control, although in many

applications it cannot be measured.

In certain applications, integral action may be required to guarantee zero steady
state error. This can be done by augmenting the state space model with an extra
state corresponding to the integral term. For the sake of simplicity, integral action
in the controller will not be considered here. The theory of state feedback
control and observers is treated in most modern textbooks on control of linear

dynamic systems, e.g. [8].

State feedback design

The linear open loop system (3.4) has two poorly damped oscillatory modes with

the natural frequency

w = 11.2 rad/s
)

and one slow real pole at
s = -0.12

The system is controllable, and consequently the closed loop poles can be placed

21




Chapter 4 Linear Control Design

arbitrarily with state feedback. Introduce the control law
u=1ly ~-Lx ; L= (11 1, 13) (4.1)

where x is the estimated state vector. L is chosen to give the closed loop system
desired poles, and lr is chosen to give a steady state gain of 1 from the reference

value Y. to the process output.

The choice of desired poles can be made as follows. In order to achieve active
damping of the resonant modes we move the resonant poles to a well-damped
location (=0.7) while approximately keeping their natural frequency W - To
improve the system bandwidth the slow real pole is moved to the same distance
from the origin as the complex poles. The desired closed loop system thus has

the characteristic equation

(s+e )(52+2; =0

2
cl c1w015+wcl)

where we choose ¢« . = w , = 12 and g _, = 0.7.
cl cl cl

The pole placement philoscphy of keeping wy constant while changing ¢ can be
interpreted as introducing "electronic damping” in the system. By keeping w
constant the spring constant in the system is not modified, and hence the
regulator does not have to produce any '"reaction force" when the system is at

rest. This is demonstrated by a simple example.
EXAMPLE 4.1

Consider a second order system described by

Introduce a control law with proportional and derivative action:

u = —pr —Kdy

With an appropriate state space realisation, this control law can also be

interpreted as state feedback. The derivative gain K, will add to the damping

d
coefficient d, and thus provide active "electronic" damping of the resonant
modes. A contrel design with constant natural frequency implies that Kp=0.

This means that the control signal u will be zero in steady state. o

22




Chapter 4 Linear Control Design

Note that the pole placement may have to be modified in order to fulfil
specifications on step response (e.g. rise time, overshoot, etc.) or other
performance measures. The choice presented above should be considered as a

nominal design. With this design we get the following controller gains:

L = 10%(2.49 6.86 -19.2)

1 =0.95
r

The controller gains are very small. More reasonable gain values can be obtained
by scaling the state variables and transforming the state space model into a
realisation better suited for implementation. For further details see Chapter 7,

which treats implementation issues.

Observer design

The state vector estimate x is calculated with the observer

X = AX + Bu+ K(y-Ck) ;K= (k ky k)T (4.2)
where the observer gain vector K is chosen such that the reconstruction error

X =X - X

converges to zero at a desired rate. The process model (3.4) is observable, which
implies that the convergence rate can be chosen arbitrarily. Let us assume that

the characteristic equation for the reconstruction error is
2 2
+ + + =
(s aob)(s 2gobwobs wob) 0

The observer is normally designed so that its dynamics are faster than the closed
loop system. This implies that initial state estimate errors will decay faster than
the closed loop dynamics. Further design considerations include a trade-off
between ccnvergence rate and noise sensitivity. As a nominal design we place the
observer poles in the same pattern as the closed loop system, but at a distance
ow from the origin. The factor o is given the nominal value o = 1.5. This

implies that Sob = 0.7, Yob = %ob = 18, and the corresponding K vector is

T
K = (427 467 59.6]

The observer gain values are quite large. More reasonable values can be obtained

by proper scaling of the state variables. See Chapter 7 for further details.
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Chapter 4 Linear Control Design

Design based on simplified model

When the linear damping coefficients are small, the open loop poles and zeros are
very close to the imaginary axis (cf. Figure 3.2). Since the closed loop poles are
moved to a well damped location, we can neglect the open loop damping in the
control design. This means that the design is based on the simplified linear model
(3.7). The regulator gains obtained with this design are quite close to the values
given above. The closed loop poles of the full state space model (3.4) with a
regulator designed from the simplified model (3.7) are also very close to the

desired closed loop poles.

4.2 DIGITAL CONTROL DESIGN

The continuous state space model (3.4) was sampled with the sampling interval
h = 40 ms, corresponding to approximately four samples per rise time with a
closed loop natural frequency wcl=12 rad/s. A discrete time control law based on
state feedback and an observer which uses the latest measured output value can

be implemented as

x(k]k) = x(k|k-1) + K(y(k)-Cx(k|k-1))

u(k) =1y (k) - Lx (k| k) (4.3)
x(k+1]k) = ®x(k|k) + Tu(k)

where x(k|k-1) denotes the estimate of x{k) based on measurements available at
time k-1. For further details, see [18]. Select L to get desired closed loop poles, K
to get desired observer dynamics, and lr to give a steady state closed loop gain of
=x =12,

cl “cl
;Cl=0.7, wob=ozob=18 and gob=0.7) are transformed into corresponding discrete

one. The desired continuous closed loop and observer poles (with w

poles in the z-plane with the mapping

' sh
zZ = e

With this design the controller gains will be

L= 107%[1.68 3.75 -8.60); 1 =0.554

T
K = [8.186 8.155 1.C56]

The regulator gain values are different than in the continuous time case. This
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Fig. 4.1 Closed loop step response, linear model (wcl = 12).

depends on the comparatively slow sampling rate, which makes it necessary to
use sampled data theory in the control design. High frequency noise on the
measured process output signal normally requires the use of an analog prefilter
to avoid aliasing effects. The dynamics of this prefilter then have to be
considered in the control design. The analog prefilter has been omitted here for

simplicity.

4.3 SIMULATIONS

To evaluate the performance of the control design, the closed loop step response
was simulated with SIMNON [6], [7]. The reference step amplitude, y_ =1V
= 10 rad/s, was selected to keep the maximum torsion of the string within given
bounds. In the simulations with the full nonlinear servo model (cf. Section 3.2}, a
non-zero initial condition wl(O) = 1.0 rad/s was used to emulate small initial

start-up disturbances.

Linear model

A simulation of the step response with the linear servo model and the nominal

continuous control design (cf. Section 4.1) is shown in Figure 4.1. Note that the
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Fig. 4.2 Closed loop step response, nonlinear model (wcl = 12).

drive motor speed vy exhibits a significant overshoot, whereas the step response
of Yo is well damped just as we wish. This depends on the zeros in the open loop

transfer functions G1 and G2 from the input u to Yy and Yo respectively (cf. eqn

(3.5) and (3.6)), and on the fact that the state feedback control law only moves
the poles of the system. Thus the closed loop system has the same zeros as the

open loop system. G, has two complex zeros which cause the large overshoot in

1

the Yy step response, whereas G, has no zeros and thus Yo has a well damped

2
closed loop step response in agreement with the desired behaviour.

Nonlinear model. Limit cycle oscillations

The closed loop step response was also simulated with the nonlinear servo model
including Coulomb friction (cf. Chapter 3), and the result is shown in Figure 4.2.
A limit cycle oscillation is clearly visible when the reference value is zero. This
is a nonlinear effect, which cannot be explained with linear models. By simulating
the closed loop system with the Coulomb friction on either shaft 1 or shaft 2 set
to zero, it was found experimentally that the limit cycle oscillations are caused by
the nonlinear friction in the drive motor. The oscillations appear only when the
speed reference is zero. This can be explained by the discontinuity in the

Coulomb friction at zero speed. At non-zero speed values, the Coulomb friction
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Fig. 4.3 Closed loop step response, nonlinear model with digital control
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can be regarded as a constant load disturbance. Hence it does not affect the

stability of the system as long as the direction of rotation does not change.

Digital control

The closed loop step response with the digital controller described in Section 4.2
and the nonlinear servo model is shown in Figure 4.3. There is no significant
difference in transient response, and the limit cycle oscillation has approximately
the same amplitude and frequency as in the simulation with a continuous

controller (Figure 4.2).

Reduced bandwidth eliminates limit cycles

The limit cycle oscillation can be eliminated by reducing the specified closed loop
bandwidth, i.e. by reducing W This is shown in Figure 4.4, where we have
simulated a control design with Wy ey = 8. The conclusion is that the limit
cycle oscillations caused by the Coulomb friction in the drive motor impose a limit
on the achievable closed loop bandwidth. This is a serious constraint, which

motivates further studies of the limit cycle phenomenon.
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5. NONLINEAR ANALYSIS

5.1 THE DESCRIBING FUNCTION METHOD

The describing function method [2] is an approximate method for the analysis of
periodic oscillations in nonlinear systems. In its standard version it requires that
the system can be decomposed into one linear and one nonlinear subsystem as
shown in Figure 5.1. It is assumed that the input to the nonlinearity is a sinusoid
with amplitude C. The nonlinearity is replaced by an amplitude dependent gain,

YN(C), which is called the describing function of the nonlinearity. To be more

precise, the describing function is defined as the complex ratio of the fundamental

component of the output from the nonlinearity to the sinusoidal input.

A stability criterion

A fundamental problem is to investigate whether a periodic oscillation, or limit
cycle, can exist in the closed loop system. This can be determined with a stability

criterion analogous to the classical Nyquist criterion for linear systems:

Assume a sinusoidal input to the nonlinearity (NL) with amplitude C.
If the Nyquist curve G(jw) of the linear subsystem (L) encircles the
point —1/YN(C), the amplitude C of the oscillation will increase. If G(jw)

does not encircle —1/YN(C), then C will decrease.
The stability criterion is based on the following major assumptions [2], [9], [15]:

(1) The system is autonomous, i.e. unforced and time invariant.

(2) The nonlinearity (NL) is frequency independent.

NL L

Fig. 5.1 Block diagram for basic nonlinear system decomposed into
linear (L) and nonlinear (NL) subsystem.
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Linear subsystem (L)
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Fig. 5.2 Servo system with speed control divided into linear and
nonlinear subsystem.

(3) The linear subsystem (L) is stable and has low-pass character. This implies
that the higher harmonics at the output from the nonlinearity are filtered so
that the input to the nonlinearity is approximately sinusoidal.

(4) The nonlinearity (NL) does not introduce any subharmonic oscillations, i.e.
its output does not contain any components with frequencies lower than the

frequency of the sinusoidal input.

Assumption (4) is difficult to verify. It depends on the properties of the

nonlinearity in combination with the linear subsystem.

Application to the flexible servo system

The closed loop flexible servo system can be decomposed according to Figure 5.1
by neglecting the friction on shaft 2 and approximating the Coulomb friction on
shaft 1 with an ideal relay function. To make the system autonomous, we let the
speed reference Y. be zero. The decomposed system is shown in Figure 5.2.
With the torque on shaft 1 as the input u, and the Coulomb friction torque Mf
regarded as an external input, the open loop servo system can be described by

the state space equation
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X = Ax + B(Mf+u)

(5.1)

Y Cx

where A and C are defined by equation (3.1) and
T
5= |4 o o
1

Let the regulator have the structure described in Chapter 4 (cf. equations (4.1)

and (4.2)):

»
il

Ax + Bu + K(y-Cx)
(5.2)

o1
i

lr‘yr— Lx

With v, = 0, the linear subsystem (L) is described by the state space equation

X A -BL |[x B
) o= ot Mf
X KC A-BL-KCjlx 0
(5.3)
y = (C0)|x
X
Let us assume that the nonlinear friction l\/‘[f is modelled by
F w<0
Mf= (5.4)
~-F w>0

where F is the magnitude of the Coulemb friction torque (cf. equation (3.8)). This
nonlinearity fulfills assumption (3) for the stability criterion, and the describing

function for the nonlinear subsystem (cf. Figure 5.1) is

1 nc

Y (C) T EF
will move along the negative real axis as C varies. The Nyquist curve for the

linear subsystem (5.3) with nominal control design, i.e. w , = 12, is shown in

cl
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Fig. 5.3 Nyquist curve for the linear subsystem (5.3) with wy = 12,

Figure 5.3. It intersects the negative real axis approximately at G(jw) = -500. The
oscillation amplitude C is given by

i - 1 = E = =il:_ﬂib_’)-
G(jo) = - Wo ST 7 ¢ 7

With F = 5~10—4 Nm the amplitude is C = 0.3 Volt. The oscillation frequency «w can

be calculated from the condition .

arg G(jw) = ~180°
which in our case gives w = 15.8 rad/s or f ~ 2.5 Hz.

Note that the describing function method is based on an approximation, and
consequently does not always give correct results. In this case, however, the
method predicts a limit cycle with amplitude and frequency in good agreement
with the simulation results. Thus we can state with scme confidence that a very
simple friction model (5.4) in combination with the describing function method is
enough to provide a theoretical explanation of the observed limit cycles. The
absence of limit cycles with the lower bandwidth design (wcl = 8) is explained by
the corresponding Nyquist curve (see Figure 5.4), which never intersects the

negative real axis and thus by the describing function stability criterion the
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Fig. 5.4 Nyquist curve for the linear subsystem (5.3) with wy = 8.

system is stable.

Tsypkin's method

There are also exact methods to analyze oscillations in relay systems, for example
Tsypkin's method [2], [16]. In this method a specific waveform is assumed at the
output of the nonlinearity. The output signal from the nonlinearity is expressed
as a Fourier series, and the output of the linear subsystem is calculated by
summing the outputs corresponding to each term in the Fourier series. The
satisfaction of certain switching conditions then gives the oscillation frequency.
With the relay friction model (5.4), Tsypkin's method gives an oscillation
frequency w = 16.3 rad/s in the nominal design case. This is close to the

approximate value (15.8 rad/s) obtained with the describing function method.

5.2 A SUFFICIENT CONDITION FOR INSTABILITY

An interesting observation is that the presence of limit cycles seems to be related
to the stability of the controller. The controller obtained with nominal design
(wcl
stable controller. This is not just a coincidence. It will be shown that an unstable

= 12) is unstable, whereas the reduced bandwidth design (wcl = 8) gives a
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controller is in fact a sufficient condition for limit cycles to appear according to
the describing function criterion. For this purpose we will first prove the

following lemma.
LEMMA 5.1

Consider a system with a rational transfer function G{s). Assume that the
system is strictly proper, asymptotically stable and that the steady state gain
G(0) is finite and positive. Also assume that G(s) has no zeros on the
imaginary axis. Then the Nyquist curve G(jw) must intersect the negative
real axis if G(s) is non minimum-phase, i.e. if G(s) has zeros in the right

half plane.

Proof:
Let the process transfer function be

B(s)

G(s) = A(s)

By assumption, the denominator A{s) is stable i.e. it has all its zeros in the

left half plane. Factor the numerator polynomial B(s) as

B = B182

where B, has all its zeros in the right half plane and B, has all its zeros in
the left half plane. Rewrite the transfer function G(s) as

o

w
- % |

= Gl.Gz

*
BlBZ
A
where the zeros of Bf are the zeros of B, reflected in the imaginary axis.
Notice that G, (jw) is an all-pass filter with™ unity gain. If G(s) has zeros in

the right half plane, then deg(B 1) > 0 and the high frequency phase shift of
G,(jw) is
1

arg(Gl(jw)) = -n.m + €

where n = deg(B ) and ¢ — 0 as w — oco. The remaining part of the transfer
function, G,, is mmlmum phase and asymptotically stable. It is also strictly
proper since deg(B,) = deg(Bl) Consequently, for high frequencies the
phase shift of GZ(Jw)lls

. m
arg(gZ(]w)) = -m'i + 5

where m = deg(A)-deg(B) and & — 0 as w — oco. Thus we can conclude that
if G(s) is non minimum-phase, then
lim

-3
< =
S0 - 2

arg(G(jw)) = ¢ = -(2n+m).

NIR
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o2
NS
v

Fig. 5.5 Block diagram of a linear system with a process GO(s) and a
regulator Gr(s) in the feedback loop.

In the absence of zeros on the imaginary axis, ¢{w) = arg(G(jw)) is a
continuous function of w. We know that ¢(0) = 0, since G(s) is assumed to
have a positive steady state gain, and that the asymptotic phase shift is
L < -3rn/2. Then there must exist a finite frequency W, such that

(p(wo) = -7
and hence G(jw) intersects the negative real axis at w = W, a
Remark:

The lemma can be extended to cover some transfer functions with
non-rational elements, for example a pure time delay. In that case the
assumptions can be relaxed to the rational part being a proper transfer
function, since the non minimum-phase element has an infinite phase shift
when w — co. The assumption G(0) > 0 can then also be omitted. o

Application to the flexible servo system

The linear part of the closed loop flexible servo system (cf. Figure 5.2) has the
structure shown in Figure 5.5, with one process and one controller block. The
process transfer function Go(s) from the torque on shaft 1 to y, can be

calculated from (5.1):

B (s) 4544(52+0.07s+16)

o}

= C(sI—A)_lB =

A (s) (s+0.1) (s2+0.4s+125)

G (s) = (5.5)

This transfer function is similar to (3.5). The only difference is in the steady
state gain, since here we consider the torque on shaft 1 as the input signal. With
zero speed reference, the controller transfer function Gr(s) can be calculated
from (5.2):
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= L(sI-—A+BL+KC)—1K (5.6)

The closed loop transfer function is

BOAI“
G =

A A+B B
or or

(5.7)

o

Note that the controller poles appear as zeros in the closed loop system. The
numerator and denominator of the closed loop system G have the following

polynomial degrees:

i
o

deg(Q)

deg(Bo)+deg(Ar)

deg(Ao)+deg(Ar)

n

deg (P)

]
o]

Hence the closed loop system is strictly proper. The closed loop poles are always
asymptotically stable (for any sensible control design!), and the two complex zeros
of Bo(s) are in the left half plane. The physical properties of the system imply
that the closed loop steady state gain is positive, since a positive torque input will
yield a positive speed output. Now consider the case of an unstable controller.
The transfer function G(s) then has at least one zero, but no poles, in the right
half plane. From Lemma 5.1 we can conclude that the Nyquist curve of the closed
loop linear subsystem must intersect the negative real axis. Assuming that the
‘nonlinear friction can be modelled by an ideal relay function (5.4), the describing
function stability criterion in combination with Lemma 5.1 says that an unstable
controller will always give rise to limit cycle oscillations. This is a sufficient but
not necessary condition, since the Nyquist curv.ev may intersect the negative real
axis even with a stable controller. We must also keep in mind that the describing

function method is based on an approximaticn (cf. Section 5.1 above).

Numerical calculations show that the closed loop natural frequency stability limit

for the regulator is W,y = 9.9 rad/s. Figure 5.6 shows the deformation of the

1

Nyquist curve as w_, approaches and exceeds the stability limit. Note that the

cl

Nyquist curve does not intersect the negative real axis when w is below the

stability limit.
In addition to the relation between regulater instability and the appearance of limit
cycle oscillations, there are also other difficulties in having an unstable regulator.

See for example [10, pp. 350-351] and the discussion in Section 7.1.




A)
200.
100.
g 0.00
-100. }
-200.
-100. 0.00 100. 200. 300.
Re
C)
200.
100. }
g 0.00 \_/
-100.
-200.
-100. 0.00 100, 200. 300.
Re

Fig. 5.6 Nyquist curve for the linear subsystem (5.3) with varying w

A) 0 =9, B) @ =98, D) w_=10.

5.3 A SUFFICIENT STABILITY CONDITION

=95, €) w

Im

Im

Chapter 5 Nonlinear Analysis

B)
200.
100. (/
0.00 <
-100. }
-200.
-100. 0.00 100. 200. 300.
Re
D)
200.
100.
0.00
-100.
-200.
-100. 0.00 100. 200. 300.
Re

l!

A special case of the Circle Criterion [17] can be used to prove asymptotic

stability for the closed loop nonlinear system. However, this approach requires

stronger assumptions about the nature of the nonlinear friction.

LEMMA 5.2

Consider a nonlinear system described by the equations

x(t)
y(t)
u(t)

Ax(t) + Bu(t)
Cx(t)
-&(t,y(t))

(5.8)

where A, B and C are matrices with the dimensions (nxn), (nx1), and {1xn),

respectively. Let all eigenvalues of A have negative real parts, and the

linear subsystem described by (A, B, C) be controllable and observable. It is

further assumed that the nonlinear function ®(t,) is continuous and satisfies
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¢(t,0) =0, v t>0

(5.9)

oP(t,0) >0, Vo €R, Vv t20
Then a sufficient condition for the solution x(t) = O to be globally
asymptotically stable is that the transfer function

-1

G(s) = C(sI-A) "B
satisfies the inequality

Re[G(jw)] > 0, v w€ER (5.10)

Proof (outline):

This lemma is a special case of the Circle Criterion [17]. The proof is based
on Lyapunov's direct method and the Kalman-Yacubovitch Lemma, using a
Lyapunov function of the form V(x) = x'Px. For further details, see [17,
Section 5.5]. o

Remarks:

(i) Note that Lemma 5.2 can be applied to time-varying nonlinearities. It is
important that the nonlinear function ®{t,0) is continuous, however, since
Lyapunov's direct method requires that the Lyapunov function V(x) is
continuously differentiable. If this is not the case, the problem becomes
much more involved.

(ii) This stability criterion is quite conservative. There are many systems
where the linear subsystem (A, B, C) does not satisfy (5.10), but where
the closed loop nonlinear system (5.8) is stable. One example can be
found in Section 6.2 (see Figure 6.3). o

The simple relay friction model (5.4} does not satisfy the conditions in Lemma

5.2, since it does not have a defined value at the origin. It may be argued,

however, that instantaneous action is not possible in nature. Therefore, it

would be reasonable to replace (5.4) with a continuous function which
approximates an ideal relay function, for example a high gain with saturation.

This nonlinearity satisfies (5.9), and it can approximate the ideal relay

characteristic to any desired accuracy by selecting a sufficiently high gain.

Furthermore, the only requirement on the nonlinearity in Lemma 5.2 is that it

satisfies (5.9). Hence Lemma 5.2 in fact covers a whole class of nonlinear

functions, and it can be used to prove stability even if the exact friction model

is unknown or time-varying.

Application to the flexible servo system

To apply Lemma 5.2 to the flexible servo case, we must first verify that the

linear subsystem (5.3) satisfies the conditions in the Lemma. With a reduced
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Fig. 5.7 Singularity diagram for the linear subsystem (5.3) with reduced
bandwidth design (wcl = 8). x = poles, o = zeros.

bandwidth design (wcl = 8), the linear subsystem is stable, controllable and
observable. Figure 5.4 indicates that the linear subsystem also satisfies
condition (5.10). Due to the limited resclution of the computer plot, this must
be verified with a more detailed examination. Figure 5.7 shows the poles and
zeros of the linear subsystem. Note that two zeros are very close to the
imaginary axis. They are the zeros of the process, cf. (5.5) and (5.7). Figure
5.8 shows the Bode plot of the linear subsystem (5.3) with w, =8 rad/s. It
can be seen in Figure 5.7 that all singularities correspond to resonance
frequencies less than 10 rad/s. Thus the Bode plot in Figure 5.8 shows all
relevant parts of the phase curve, and it is clear that the phase shift is less
than -90° for all frequencies. This is confirmed by an analysis of the sequence

of poles and zeros projected on the imaginary axis in Figure 5.7.

We must also confirm that (5.10) is satisfied as w — oo. This can be done by a

formal series expansion of G(s) at s = oo:
G(s) = — + —= + ... (5.11)

Neglecting higher order terms, we get
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Bode plot for the linear subsystem (5.3) with reduced bandwidth
design (mcl = 8).
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Thus (5.10) will be satisfied as w — oo only if g, < 0. Let the transfer function

G(s) be parameterized as

b .
G(s) = — D (5.12)

n n-1
s +a,s + .. +a
i n

The series expansion (5.11) then gives

gy

€2

by

by-a;by

and (5.10) will be satisfied as w — oo only if

alb1 > b

2 (5.13)

In the reduced bandwidth design case (wcl = 8), a numerical calculation of the

transfer function for the linear subsystem (5.3) shows that (5.13) is satisfied.
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- Thus, if we accept the additional assumptions about the nonlinear friction
stated above, the conditions in Lemma 5.2 are satisfied. Hence the closed loop
nonlinear system has a globally and asymptotically stable solution x(t) = 0. This
agrees with the result from the describing function analysis in Section 5.1 and

the simulations in Chapter 4.
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6. ELIMINATION OF LIMIT CYCLES

6.1 REGULATOR STABILITY CRITERIA

As we have shown in Chapter 5, an unstable regulator is a sufficient condition
for the existence of limit cycle oscillations in the flexible servo system. An
analytical investigation of how different process and design parameters influence
the regulator stability is therefore of great interest, since it may provide valuable

clues for avoiding limit cycle oscillations.

Characteristic equation

The regulator designed in Chapter 4 has the following characteristic equation:

A_(s) = det(sI-A+BL+KC) = O (6.1)

The polynomial Ar(s) will be a third order polynomial in s, since the process
model is a third order system. Hence

3 2
Ar(s) = s +a,;s"+a,sta, (6.2)

Let us assume a control design is made as in Chapter 4. All closed loop poles are
placed at a distance w from the origin and the complex poles have a relative
damping . The observer poles are placed in the same pattern but at a distance

oaw from the origin (o > 1).

The coefficients a, in Ar(s) will be very complicated functions of the process
parameters (Jl’ I, dy, dy, k, etc.) and the control design parameters (w, &, «).
Closed form expressions can be obtained by using the simplified linear model (3.7)
in the control design. The errors introduced in the regulator poles by this
simplification are quite small. This is shown in Table 6.1, where the regulator
poles corresponding to the nominal design (w=12, ¥=0.7, o=1.5) based on the
complete model are shown together with those corresponding to a design based

on the simplified model.

Straightforward but tedious calculations, performed with the symbolic
manipulation program MACSYMA [13], give the following expressions for the
coefficients of the regulator characteristic polynomial Ar(s) based on the

simplified servo model:
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complete model simplified model
9.03 + 14.16i 9.35 + 13.93i
9.03 - 14.16i 9.35 - 13.93i
-89.5 + 0.0001 -90.7 + 0.000i

Table 6.1: Regulator poles calculated with complete and simplified servo
model. Design parameters: w=12, £=0.7, o=1.5 .

a, = w(2z+1) (a+1) (6.3a)
1 363, .2 4(, 22 3 2 3, 2
a, = —TE-{—Jlsz « +J, ok {40: g7+ (20 +do +2a )t~ (o +o +c:)]
1%k
2
—1112k2w2[4a§2+(2a2+4a+2)g+(a2+a+1)]+k3(12+11)} (6.3b)
1 25 2 3 3, 2
ay = ;E;'{J1jzw ro (ort1) (25+1) -3, I ke [Ae (o) 5 (5+1) 4o Ha +at ]
2

20 (art) (25+1) (3,+1,) } (6.3c)

Introducing the dimensionless quantity

W = (6.4)

the expressions for a, and az can be rewritten as polynomials in w:

I,k

a, = —;——-{—a3w3 +[4a2§2+(2a3+4o:2+2a)g—(a3+a2+o:)]w2
J
2

J
—[4a§2+(2a2+4a+2)§+(oz2+oz+1)]w +[1+f] } (6.5a)

J . kw
12 {az(a+1)(2;+1)w2 —[4a(a+1)g(§+1)+a3+a2+a+1]w

12

+(a+1)(2§+1)[1+;§] } (6.5b)
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Stability criteria

The stability criteria for Ar(s) are

a,,a~.,a, > 0
1’72’73 (6.6)

a132 > a3

To evaluate the stability criterion a3, > ag, introduce the quantity e defined by

e = a,a,-a, (6.7)

Insert a,, a, and a, from (6.3) into (6.7). Simple but cumbersome calculations

(again performed with MACSYMA) using (6.4) give the result

J1w3 2
e = 7, [COW +01W+02] (6.8)
where
cq = o (o+1) (25+1)

c, = [8&2(a+1)§3+4(a4+4d3+4a2+m);2+4(a4+2a3+a)§+a4+a3+a2+a]

ey = - [Ba(er1) g7+ (@ 43074304 1) %42 (20743024304 2) g ar(at1) )

Let us now investigate the stability conditions using (6.5) and (6.8). The
coefficient a, is always strictly positive, and does not affect the regulator
stability. The sign of a, and e, on the other hand, will be negative when w is
large. By calculating and plotting az(w), 33(w) and e(w) for a particular choice of
design variables (g, o), we can get a more detailed picture of the set of w values
for which the regulator is stable. Figure 6.1 shows the normalized and

dimensionless coefficients

2
J
azn(w) = ?{z—-az(w)
&
a3n(w) = -_ﬁm-aS(w) (6.9)
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Fig. 6.1 Normalized coefficients of the regulator characteristic
polynomial. Nominal design case. Solid line = a_, (w), dashed
. - 2n
line = a3n(w) and dotted line = en(w).

12

en(w) = ; w3-e(w)

1

with nominal design parameters (5 =10.7, «=15, J = 22-10-6 kgm2 and

1
12 = 150-10_6 kgmz). The normalized coefficients are plotted because they are of
the same order of magnitude and thus the sign shifts are more easily observed in

the plot.

Bandwidth limit

It can be seen in Figure 6.1 that the stability limit in this case is determined by

the condition en(w) > 0. The stable w interval is

0.590 < w < 6.05

6

With J, = 150-10 kgm2 and k = 2.410°> Nm/rad, the upper natural frequency

limit corresponding to Woax™ 6.05 can be calculated from (6.4):

= w = 9.84 rad/s
max
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This is a good approximation of the true natural frequency limit. Numerical
calculation of the regulator poles for different w values using the complete servo
model show that the stability limit is W o 9.90 rad/s. It also agrees well with
the results in Chapter 4 and 5, where it was found that a design with w=12 gives
an unstable regulator and limit cycle oscillations appear, whereas w=8 gives a

stable 'regulator and no limit cycles (cf. Figure 4.2 and 4.4).

If the performance specifications should require a certain minimum closed loop
natural frequency w, the corresponding maximum allowable inertial load 12 (or,
alternatively, the minimum spring constant k] can be calculated from the w
stability limit and (6.4). The influence of the control design on the achievable
bandwidth can be investigated by plotting the normalized coefficients (6.9) for
different ¢ and « values. By increasing the relative damping & of the closed loop
system, the achievable bandwidth with respect to regulator stability is increased.

A fast observer (increased «), on the other hand, has the opposite effect.

Note that the sign of a, and ag (cf. eqn 6.5) depends not only on w, but also on
the inertia ratio J2/J 1 With reasonable inertia ratios this dependance is small,
however, since .12/.}1 only appears in the constant (w-independent) term. A

numerical example will illustrate this point:
EXAMPLE 6.1

Let ﬁz(w) denote approximate a, values obtained from (6.5a) with a constant
inertia ratio J /J1 and varying w. With nominal parameters (£=0.7, o=1.5,

J =22-10_6 kgm™ and J =150-10_6 kgmz) the equation

1 2

has one real solution, w = 6.62 (cf. Figure 6.1). Using (6.4) with w = 12 and
k = 2.4107 Nm/rad, this solution corresponds to J, = 110.410°° kgmz.

An exact evaluation of a2 shows that

-6
2 110-10 => a,

111~10_6 => a

J

6.05

n

J

5 -28.45

Hence the solution to 52(w) = 0 with the assumption that .12/.T1 is constant
can be used with good accuracy to predict the J2 value for which a,
changes sign. w]
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Conclusions

[t has been shown that the stability of the regulator depends on the dimensionless
quantity w. For large w values, the regulator will be unstable and limit cycles will
appear. By the definition of w, we see that regulator instability can be caused by
a too large closed loop natural frequency (w) or inertial load (12), or a too weak
coupling between the drive motor and the load (small k). Since w is a quadratic
function of w, we may conclude that decreasing w is a more efficient way to
stabilize the regulator than modification of J2 or k. Furthermore, w is a control
design parameter and as such it may be the only parameter at our disposal to
manipulate w. The requirement that the regulator should be stable thus imposes

constraints on the achievable bandwidth.

Although an unstable regulator is a sufficient condition for the appearance of
limit cycles, we have no proof that by stabilizing the regulator we will eliminate
the limit cycles. In all cases that have been tested so far, however, limit cycle
appearance has coincided with an unstable regulator. It is therefore conjectured

that regulator instability is also a necessary condition for limit cycles to appear.

6.2 NON-COLOCATED SPEED SENSOR

An interesting observation is that the limit cycles can be eliminated by using a
non-colocated speed sensor, i.e. measuring the speed of the inertial load instead
of the drive motor speed. This is demonstrated in Figure 6.2, which shows the
closed loop step response with nominal control design (w=12, £=0.7, o=1.5), and

with Y, = k as input to the regulator. As we have seen in Chapter 4, this

W
w2 2
control design will result in limit cycle oscillations if wy is measured (cf. Figure

4.2).

Describing function analysis

The absence of limit cycles when Wy is measured can be explained with the
describing function method. Decompose the system into one linear and one
nonlinear subsystem in a fashion similar to Figure 5.2. The servo model can in
this case be written as

x = Ax + B(Mg+u)

vy = c.x (6.10)

y2=Cx
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Fig. 6.2 Closed loop step response with nonlinear model. Non-colocated
speed sensor (y2 measured) and nominal control design (w=12,
£=0.7, «=1.5).

where A is defined as in (3.1) and

With zero speed reference, the regulator equations are

X = Ax + Bu + K(yz—Czﬁ)
(6.11)
u = -Lx
The linear subsystem will be described by the state space equation
X A -BL x B
; = N + Hf
p 4 KC2 A-BL—KC2 X 0
(6.12)

y =[C10]x

X
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Fig. 6.3 Nyquist curve for linear subsystem (y2 measured). Nominal
control design (w=12, §=0.7, o=1.5).

The output of the linear subsystem is vy = kwlul’ since the nonlinearity
corresponds to the Coulomb friction on shaft 1. The Nyquist curve for the linear
subsystem never intersects the negative real axis (see Figure 6.3). Therefore, by
the describing function stability criterion described in Chapter 5, we have a stable

system and no limit cycles.

Regulator stability

Just as in the colocated speed sensor case (cf. Section 5.2}, it can be shown that
an unstable regulator will give rise to limit cycles. The linear subsystem can now
be described with a block diagram according to Figure 6.4. (Cf. Figure 5.2 and
5.5). With

B
6,(s) = ¢, (s1-A)"'B = 1)
A (5)

B
G, (s) = C,(s1-A)'B = )
A (5)
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Fig. 6.4 Block diagram for linear subsystem with non-colocated speed
sensor.

-1
G.(s) = L(sI-A+BI+KC,)) 'K = ——

the transfer function for the closed loop linear subsystem is

B.A
_ 1'r
" AA +BB
or r 2

G

Note that also in this case the regulator poles appear as zeros in the closed loop
transfer function. By applying the same type of arguments that we used in Lemma
5.1, it is easy to prove that an unstable régulator will cause the closed loop
Nyquist curve G{iw) to intersect the negative real axis. Hence, by the describing
function stability criterion, limit cycles will appear whenever the regulator goes

unstable.

Stability criteria

It is interesting to note that in this case the regulator does not go unstable when
the closed loop bandwith is increased. The regulator has the characteristic

equation

Ar(s) = det(sI-A+BL+KC,) = 0

2)

Using the same notation as in Section 6.1,

-3 2
Ar(s) = sT+a,sTHa sta,
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the regulator stability can be investigated with the criterion (6.6). With the

dimensionless quantity (cf. 6.4)

a, = w(2g+1) (ot1)

[rlaee? ez rterrzrrant)) - [1073)

[
]
t_.l?i"

2

J
a, = %g{w[4a(a+1)§(§+1)+a3+a2+a+1] - (a+1)(2§+1)[1+j%]}

and

= w3[8a(a+1)g3+4(a3+3a2+3a+1)g2+2(2a3+3a2+3a+2)g+a(a+1)]

Both a1

the signs of a, and as. These coefficients are linear functions in w, and they will

be negative for small w values. Figure 6.5 shows the normalized coefficients

and e are strictly positive, so the regulator stability will depend only on

J2 J2
azn(w) = —E-az(w) : a3n(w) = m-a3(w)
calculated with nominal design parameters (5=0.7, o=1.5, Ji=22-10-6 kgm2 and
.12=15C)-1Cl—6 kgmz). The stable w interval is
Wwow ~ 1.9

min
which corresponds to (cf. eqn 6.4) w,>55 rad/s.
We now have the interesting result that with a non-colocated speed sensor there
“exists a lower bandwidth limit below which the regulator is unstable. There is no
upper limit, however. This agrees with the nominal design, Wy = 12 rad/s, which

produces a stable regulator. The corresponding Nyquist curve (cf. Figure 6.3)

does not intersect the negative real axis, and no limit cycles appear in this case.
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Fig. 6.5 Normalized coefficients of the regulator characteristic
polynomial with non-colocated speed sensor and nominal design.
Solid line = a2n(w), dashed line = a3n(w).

Conclusions

No limit cycles appear in the nominal design case with a non-colocated speed
sensor. This can be explained with the describing function methed. We have
shown that an unstable regulator is a sufficient condition for the existence of
limit cycles. With a non-colocated sensor, the regulator goes unstable for low
bandwidths instead of high. No limit cycles have been observed with stable
regulators. Our conjecture that regulator instablility is a sufficient and necessary

condition for the appearance of limit cycles is supported by these observations.

The conclusion is that a non-colocated speed sensor may be one way to achieve
higher bandwidths without the appearance of limit cycles. Consequently this
sensor arrangement should be preferred in cases where fast servo response is
required. One could of course also consider using two speed sensors, one for
each speed signal. Unfortunately, in many practical applications this is not feasible

since it is often difficult to measure the inertial load speed.
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Fig. 6.6 Block diagram of servo system with friction compensation.

6.3 FRICTION COMPENSATION

One attractive way to eliminate the limit cycle problem is to "linearize" the
system by introducing an additional nonlinearity into the system, thereby
cancelling the influence of the existing nonlinearity. This approach has been
reported succesful in several similar applications, e.g. [1], [4], [12]. It is done by
adding an extra term, corresponding to the estimated Coulomb friction torque, to
the control signal. See Figure 6.6. The problem is that the exact nonlinear
function describing the Coulomb friction is unknown, and if it were known it
would probably be difficult to implement. A simple ideal relay friction model has
been used succesfully to predict and analyse the limit cycle phenomenon. If the
friction compensation is implemented as a relay function, the discontinuity at zero
speed may cause problems such as chattering, however. Hopefully, a modified
relay function in the friction compensation will be sufficient to eliminate the limit

cycles.

Two alternative approximations of an ideal relay function have been tested, a high

gain with saturation and a relay with deadzone. The high gain model is
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Fig. 6.7 Friction compensation (high gain with saturation). Nominal
control design (wcl=12, t=0.7, o=1.5).

F~m1/e ; |w1|<e
M, = (6.13)
F-sign(wl) ; |w1|25

where F is the estimated friction torque on shaft 1, and € is a small number
defining the linear range of the friction model. The relay with deadzone is

modelled as

0 ; |w1|<e
M, = (6.14)
F-sign(ul) ; |w1|25

In this case € is the width of the deadzone. The measured speed signal,
vy = kw 4Wy» may be distorted by measurement noise and ripple from the tacho
signal. Therefore the estimated speed signal from the observer in the linear

regulator is used as input to the friction compensation.

Figures 6.7 and 6.8 illustrate the effect of friction compensation using the models
(6.13) and (6.14), respectively. In both cases the estimated friction torque is
F = 5-10—4 Nm (the same value as in the nonlinear servo model, i.e. the "true"

value), and the parameter e is 0.001. As can be seen in the figures, the limit
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Fig. 6.8 Friction compensation (relay with deadzone). Nominal control
design (wcl=12, £=0.7, a=1.5).

cycles in the output virtually disappear regardless of which method we use to
approximate the ideal relay function. If e is chosen too large or F has an
incorrect value, the performance of the friction compensation will be degraded

and the limit cycles will reappear, typically with a reduced amplitude.

Digital friction compensation

The discrete time linear control algorithm (4.3) can be augmented with a discrete
time friction compensation term calculated from either (6.13) or (6.14). It is a
nontrivial task to simulate the digital friction compensation, however. The default
integration routine in SIMNON is Hamming's modified predictor corrector method
(HAMPC) [6]. This method was used first, but it was found that the results
depended critically on maximum step size and the error bound. When the
classical fourth order Runge Kutta method with variable step size (RK) was used,
the maximum step size and error bound did not have any significant influence on
the results. The RK algorithm was therefore used in this particular case. Figure
6.9 shows a the effect of a nonlinear friction compensation based on (6.13) in the
discrete time case. The limit cycle amplitude is reduced to an almost negligible

level.
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saturation). Nominal control design corresponding to w, =12,
t=0.7, o«=1.5, and a sampling interval h=40 ms. Integration
algorithm: RK with default maximum step size and error bound
(ERROR=0.001).




7. EXPERIMENTAL RESULTS

7.1 IMPLEMENTATION OF THE LINEAR CONTROL LAW

Originally it was intended to implement the digital control law described in
Section 4.2. After some experimentation, it was found that the required sampling
rate was difficult to achieve with the available equipment. Furthermore, the
theoretical analysis of the limit cycle phenomenon is based on a continuous time
model and regulator (cf. Chapter 5 and 6). It was therefore decided to verify the
theoretical results and simulations by implementing the continuous time control

law, described by (4.1) and (4.2), with analog hardware.

Amplitude scaling

Before designing the circuits, the linear state space control law must be
transformed into a form suited for analog implementation. With nominal
parameter values and control design (cf. Chapter 3 and 4) we have the following

state feedback and observer egquations:

Ax + Bu + K{y-Cx)

x=
' (7.1)
u = lryr - Lx
where
-0.45 0 109 1136 427
A= 0 -0.07 -16.0 B = 0 K = |467
-1 1 0 c 59.6

c= (0.1 0 0]

L

107%(2.49 6.86 -19.2] 1= 0.95

The A matrix is badly conditioned in itself, and the combination of very large
gains {in the B and K matrices) with very small gains (in the L matrix) is also bad
from a numerical point of view. In an analeg implementation, it is desirable to
have all gains within the range 0.1 - 100 if possible. We must also make sure that

all signals (e.g. state variables, inputs, outputs etc.) stay within the normal
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operating range of the operational amplifiers. With a *15 V power supply,
restricting the signal levels to the interval 10 V provides an adequate safety
margin (20-30%) to saturation.

This can be achieved with amplithde scaling of the state variables. During normal

operation, the states are assumed have the following maximum values:

|x1| < 100 rad/s
|x2| < 100 rad/s
|x3| < 5 rad

Amplitude scaling of the state vector x can be expressed as a coordinate
transformation z = Tx where T is a diagonal matrix and z is the new (scaled)

state vector. Let the maximum X, value correspond to z, = 10 V. This implies that

0.1 0 O
T=|0 0.1 O
0 0 2.0

With z representing the estimated states in the observer, the transformed

realisation of the control law is

z = Az + Bu + K(y-Cz)

(7.2)
u = lryr - Lz
where
-0.45 0  5.45 113.6 42.7
A=| 0 -0.07 -0.80 B=| 0 K= [46.7
|-20 20 o 0 119
c=[1.0 o 0
L = [0.249 0.685 -0.0962] ; 1= 0.95

More sophisticated methods are available for transformation of state space models
into well-conditioned, or balanced, realisations [5]. These methods generally have
the disadvantage that they destroy "exact zeros™ in the matrices. In our case this
means a loss of structure in the A matrix which implies that more components
are required in the implementation. Furthermore, balancing methods do not

guarantee that the state values stay within the required range. Amplitude scaling
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was therefore considered to be a more appropriate method for our problem.

Controller stability and windup protection

In state space control design, the feedback gain L and observer gain K are chosen
such that the closed loop system and the observer error have specified
dynamics. We have no guarantee at all, however, that the resulting controller will
be stable. This is not just a state space design problem, the same problem arises
when using the input-output approach. If we eliminate u from the observer
equation, and collect all terms on the right hand side containing the state vector

z, the controller equations can be written as:

N
il

(A-BL-KC)z + Bl y_ + Ky

u = lryr - Lz

The controller is unstable if the matrix (A-BL-KC) has eigenvalues in the right
half of the plane. As we have seen in Section 5.2, this is in fact the case with
our nominal design. An unstable controller implies that extra precautions must be
taken in the implementation to avoid windup problems during startup, or if the
loop is at any time broken. One way to do this is to distinguish between the
process input u and the controller output u, and write the controller

ut
equations as

z = (A-KC)z + Bu, + Ky

Yout - lryr - Lz

This is a standard method to avoid windup in the controller if the process input
saturates or otherwise differs from the controller output signal [18]. If we break
the -loop, i.e. u, # U the observer part of the controller is a stable system
and the state estimates will follow the true states as long as the observer is fed
with the same input signal as the process. Thusi we will get a (comparatively)
smooth transient when the loop is closed since the calculated control signal is
based on correct state estimates. The start-up or "connect” procedure for the

analog controller should be:

1) Power on (with process disconnected from controller).
2) Connect process input u to u of controller.

3) Connect controller output u to process input u.

out
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Shut down cor "disconnect” is done by reversing this procedure.

Implementation

The implementation structure for the observer and state feedback control law was

chosen as

z = Az + Bu, + K{y-Cz)
(7.3)

Yout = lryr - Lz

This structure does not minimize the required number of components, but it has
several other nice properties which make it suitable for a prototype controller. It
can be implemented with a one-to-one correspondence between each matrix
element and a single component (resistor or capacitor) value, which means that
independent changes of model parameters (A, B, C) and controller gains (L, L K)
can be made easily. It also performs an explicit calculation of the estimated
process output {/ = Cz and the estimated output error {/ = y-{(. The output
estimate {/ is a filtered value of the measured output y (which is distorted by
tachometer ripple), and can be used in the friction compensation circuit. The

output estimate error ';/ may be of interest for diagnostic purpocses.

The standard analog integrator circuit includes a change of sign. The integrator
outputs will thus correspond to the state estimates z if the integrator inputs are

chosen as
-z = —Az-—Buin—K(y-Cz)

With the observer states as integrator outputs, and positive state feedback gains
(cf. eqn 7.1), the control signal can be computed in one single inverting amplifier
stage. Only one sign shift is needed for the reference signal. Using the structure

above and the fact that several matrix elements are zero, the controller equations

will be
2y = -a,yzy -a 4z ~byu, -k (y-c,z,)
T2y T T3p0%5 T5373 Kk, (y-¢42,)
(7.4)
T3 T T331%4 "a33%p k3(y-cyz,)
Wout = 1p¥ye T14Zg "1Zp -laZa

60




Chapter 7 Experimental Results

Conventional analog circuits based on operational amplifiers were used in the
implementation. The circuit design required 11 operational amplifiers, 30 resistors
and 3 capacitors. A block diagram and a complete circuit diagram for the analog

linear controller is given in appendix D.

Non-colocated speed sensor

Only minor modifications of the prototype controller are required to implement
the linear analog controller "with a non-colocated speed sensor. These
modifications involve the observer circuits only. The computation of the estimated
process output {( = Cz must of course be modified, and the observer gain vector
K is different. An extra inverter must also be included, since one of the observer
gains (k3) is negative in the nominal design case. The computation of the control

signal

uout = ll"yl“ - Lz

is independent of the selected sensor location, provided that the state estimates

are correct. A complete circuit diagram can be found in appendix D.

7.2 EXPERIMENTAL RESULTS WITH THE LINEAR CONTROL LAW

The behaviour of the closed loop system was tested with a step reference signal
(step amplitude = 1 Volt = 10 rad/s). The drive motor speed vy the inertial load
speed 12 and the control signal u were logged with a special purpose data
acquisition program with a sampling interval of 10 ms. A high frequency
disturbance can be seen on the Yy signal. It is caused by tachcmeter ripple, and
the ripple frequency is proportional to the drive motor speed vy The normal
steady state speed, vy = 1 V, corresponds to a ripple frequency of 100 rad/s.
The maximum speed value in the experiments, vy = 3 V, gives a maximum ripple
frequency of 300 radf/s or approximately 50 Hz. This maximum frequency

appears only in transients.

Nominal design

Figure 7.1 shows the closed loop step response with nominal linear control design
(wcl = 12 rad/s). The transient behaviour agrees very well with the simulation of
the nonlinear model (cf. Figure 4.2), and a a limit cycle oscillation can be
cbserved when the speed reference is zero. The limit cycle frequency coincides

with the predicted value 2.5 Hz. The amplitude of the oscillation is approximately
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Fig. 7.1 Analog linear controller: Closed loop step response with y
. . 1
measured and nominal design (wcl=12 rad/s).

0.2 V. This is smaller than the predicted value 0.3 V (cf. Section 5.1). The
amplitude discrepancy between the simulations and the experiments can be
explained by an incorrect value of the Coulomb friction torque. It follows from
equation (5.2) that an incorrect value of the friction torque gives an error in the

predicted amplitude, but not in the frequency.

Reduced bandwidth

The closed loop step response with reduced bandwidth design (wcl = 8 rad/s) is
shown in Figure 7.2. The limit cycle oscillations have now disappeared just as
predicted by the analysis in Chapter 5 and 6. The transient behaviour agrees well
with the simulations (cf. Figure 4.4). Note that the steady state error is much
smaller in the experiment than in the simulated step response. This can be
explained by errors in the estimated Coulomb friction torques. In steady state
with non-zero speed, the Coulomb friction may be regarded as a load disturbance
on the control signal. With a low bandwidth design the controller gains are small,
and a load disturbance on the control signal will have a large influence on the
output steady state error. An incorrect Coulomb friction torque will therefore

have a significant influence on the steady state error in the simulated step
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Fig. 7.2 Analog linear controller: Closed loop step response with vy
measured and reduced bandwidth (wcl=8 rad/s).

response.

As mentioned in Section 4.1, steady state errors can of course be eliminated by
introducing integral action in the regulator. This does not change the basic issues
that we want to study. The regulator then becomes more complex, however, and

the algebraic calculations will be much more involved.

Non-colocated speed sensor

Figure 7.3 shows the closed loop step response with nominal design (wcl = 12
rad/s) and a non-colocated speed sensor, i.e. direct measurement of the inertial
load speed. As predicted in Chapter 6 no limit cycles appear in this case. The
dynamic response agrees well with the simulations (cf. Figure 6.2). Note that the
variation in the drive motor speed vy due to disturbances has increased
compared with the colocated speed sensor case. This different behaviour can be
explained as follows. When Yy is measured, the controller senses the
disturbances and tries to counteract them to keep y1 at a constant value. With a
non-colocated speed sensor, these disturbances are filtered by the elastic coupling
between the drive motor and the inertial load. Therefore the disturbances are not

noticed by the controller and consequently not compensated. This is not
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Fig. 7.3 Analog linear controller: Closed loop step response with
non-colocated speed sensor. Nominal design (ucl=12 rad/s).

important, however, since our main objective is to control the inertial load speed
Yo Small variations in the drive motor speed can be accepted as long as they do

not propagate to the inertial load.

Conclusions

The experimental results with linear state feedback and reconstruction agree well
with the simulations and theoretical calculations. Explanations have been given in
those cases where differences have been noticed. We may therefore conclude that
the flexible servo model presented in Chapter 3 provides a description of the
system dynamics sufficiently accurate to be used for analysis and design of linear

control laws.

7.3 ANALOG FRICTION COMPENSATION

The simulations in Chapter 6 indicate that the limit cycle oscillations can be
practically eliminated by nonlinear friction compensation, i.e. by adding a term
corresponding to the Coulomb friction torque to the control signal from the linear
controller (cf. Section 6.3). Two approximations of the ideal relay friction model

were tested in the simulations, a relay with a small deadzone and a high gain with
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saturation. The performance of the two approximations was found to be quite
similar. An analog friction compensation circuit has been built to test these

results on the prototype flexible servo system.

Implementation

A relay with a small deadzone is easier to implement with analog circuits than a
high gain amplifier with a sharp saturation. The friction compensation circuit
used in the experiments is described with the following equation (cf. equation

6.14):

F+; y1> €
ue =10 ;5 |y l<e (7.4)

F ; y1 <-¢

In this equation u_ is the output voltage from the friction compensation, {} 1 is the

estimated angular fvelocity of the drive motor (calculated in the observer of the
linear controller) and € is the relay deadzone. F + and F_ are voltage levels
corresponding to the Coulomb friction torque in the positive and negative
direction of rotation, respectively. These two levels where made individually
adjustable to enable compensation of unsymmetric Coulomb friction. The deadzone
e was also made adjustable. A circuit diagram of the analog friction compensation

is given in appendix D.

Experimental results

The deadzone e was adjusted to a minimum while still maintaining reliable cicrcuit
performance, and the parameters F + and F were trimmed to achieve minimum
limit cycle amplitude. These experiments showed that the Coulomb friction was
unsymmetric. The best performance was achieved with the following parameter

values:

F+= 17 mV
F=9mV

e = 20 mV,

The friction torque Mf corresponding to u, can be calculated from (cf. Chapter 3)

f

With the parameters given above this vyields Mf+= 4.3-10-4 Nm and
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Fig. 7.4 Limit cycles with analog linear controller (nominal design,
wcl=12 rad/s), and linear controller with friction compensation
(relay with deadzone). F =17 mV, F =9 mV, ¢~20 mV.

Mf_= 2.3-10-4 Nm. A comparison with the earlier estimated values in Section 3.2
shows that the values given above are significantly smaller (particularly Mf_).
This agrees with the fact that the amplitude of the observed limit cycles is smaller
than the predicted value, since the amplitude predicted by the describing function
method is proportional to the Coulomb friction torque (cf. Chapter 5). We may
thus conclude that either the friction torque has changed or the previous

estimates were too high.

Figure 7.4 illustrates the effect of the analog friction compensation on the limit
cycle oscillations (note that the figure shows two different experiments, hence the
two curves are not synchronized in time). The limit cycle amplitude is reduced
approximately by a factor of four, but the oscillations do not disappear. It may be
argued that it would be better to feed the friction compensation circuit with the
measured 12 signal instead of the reconstructed value \}1. This has also been
tested, however, and it was found to give a deteriorated performance. This may
be due to the ripple on the vy tacho signal, which causes the friction
compensation circuit to miss the zero crossings and thus change the

compensation torque at incorrect times.
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A relay without deadzone has also been tested, implemented as an analog zero
crossing detector. The results were similar to those in Figure 7.4, with only a
slightly different limit cycle curve shape. We may thus conclude that the
deadzone size used in the experiments (e = 20 mV) is not too large, and that this

is not the reason for the bad performance of the friction compensation.

Conclusions

The friction compensation schemes that have been used in these experiments
seems to be too simple to enable elimination of the limit cycle oscillations. A
significant reduction of the oscillation a{mplitude can be achieved, however. It
appears that it is not the selected approximation of the relay function that is the

critical part, but that the relay Coulomb friction model is too simple.

The general impression from the experiments is that friction compensation is
very sensitive to parameter variations. This is not surprising, since it is well
known that static friction torques vary due to temperature changes, mechanical
wear etc. Friction compensation is also sensitive to disturbances, since the
" friction torque is a discontinuous function of the speed. It is important to be able
to detect the zero crossings of the measured speed with great accuracy, and
minor disturbances at or near the zero crossings may have a large negative

effect on the performance.

The conclusion that can be drawn from these experiments is that nonlinear
friction effects in servo systems with resonant modes cannot be compensated
with the simple friction compensation schemes presented here. In order to
beliminate the limit cycle oscillations induced by Coulomb friction, more
sophisticated friction models and compensation schemes will have to be employed.

This, however, brings us beyond the scope of this thesis.
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Active damping of resonant modes

It has been demonstrated that a control design based on a linear model and pole
placement with state feedback is an adequate method to provide active damping of
the resonant modes in a flexible servo system. Well damped closed locop poles
gives a well-damped inertial load speed step response. The step response of the
drive motor speed, however, will exhibit a significant overshoot. This overshoot
grows when the closed loop bandwidth is increased, and thus introduces large
torsion torques in the connecting shaft during transients. The achievable
bandwidth is therefore limited by the maximum torque that can be transferred by
the shaft.

Limit cvcles and their relation to regulator stability

Further performance constraints are introduced by the nonlinear friction terms.
Limit cycle oscillations, caused by the Coulomb friction in the drive motor, appear
at zero speed reference if the desired closed>loop bandwidth is pushed too far.
The existence of these oscillations, as well as their amplitude and frequency, can
be predicted by the describing function method in combination with a simple
nonlinear friction model. It has been proved that an unstable regulator is a
sufficient condition for the appearance of these limit cycles. Unfortunately we
have no proof that this is also a necessary condition. Thus we cannot guarantee
that limit cycles can be avoided by requiring a stable regulator. In all cases that
have been tested so far, however, limit cycle appearance has coincided with an
unstable regulator. It is therefore conjectured that regulator instability is also a
necessary condition for limit cycles to appear. This, in combination with the
inherent windup problem, leads to the conclusion that unstable regulators if

possible should be avoided in control design for flexible servo systems,

Bandwidth constraints

It has been shown that the stability of the regulator mainly depends on a

dimensionless quantity w defined by
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where J:2 is the load inertia, w is the closed loop natural frequency and k is the
shaft spring constant. When the drive motor speed is measured, the regulator
will be unstable for large w values and hence limit cycles will appear. Analytic
expressions have been derived from which approximate values of the w stability

limit can be calculated with good accuracy.

Non-colocated speed sensor

No limit cycles appear in the nominal design case with a non-colocated speed
sensor, i.e. when the inertial load speed is measured and used as input to the
regulator. This can be explained with the describing function method. It also
agrees with the conjecture that regulator instability is a sufficient and necessary
condition for limit cycles, since the corresponding regulator is stable. With a
non-colocated speed sensor, the regulator does not go unstable when the closed
loop bandwidth is increased. The conclusion is that with this sensor location the
limit cycle problem may be avoided in applications where fast response is

required.

Friction compensation

Friction compensation schemes, based on different approximations of the ideal
relay friction model, have been tested. Simulations indicate that a continuous time
friction ccmpensation works well, i.e. it reduces the limit cycle amplitude to a

negligible level.

Implementation and experimental resulis

A continucus time linear state feedback controller has been built and tested on
the prototype flexible servo system. Most experimental results agree well with the
simulations. With a low closed loop bandwidth, the linear controller works well
and gives a well damped inertial load step response. Limit cycle oscillations
appear as predicted when the bandwidth is increased. The observed amplitude and
frequency agree with the calculated values with reasonable accuracy, considering
the approximate nature of the describing function method. The continuocus time
friction compensation scheme, however, does not work as well in practice as in
the simulations. The limit cycle amplitude is reduced, but the oscillations are not
eliminated. It is believed that this depends on the friction models being too simple.
The use of unstable regulators requires extra precautions in the implementation
to avoid windup problems during startup or if the loop is at any time broken.

These problems can be handled with normal anti-windup mesthods.




Chapter 8 Conclusions

The experimental results show that simple models can be used to analyse and
predict the behavior of flexible servo systems. They give good insight into
qualitative properties and also, in most cases, quite accurate quantitative results.

Nonlinear friction compensation seems to be a difficult problem, however.

Suggestions for further work

Many conventional servo control systems consist of two cascaded loops, one
outer position loop and one inner speed loop. This work can be applied directly
to the inner loop of such systems. It would of course be of great practical
interest to apply these methods to the position control problem, and also to
investigate the implications of integral action in the regulator. Another possible
extension is to study more complicated flexible systems, e.g. systems with multiple
inertias in combination with nonlinear friction. The problem complexity will then

increase rapidly, however.

Friction compensation probably requires more detailed friction models than the
simple relay-type functions used here. Another problem is that the friction
torque also is time-varying due to temperature changes, mechanical wear etc.
This naturally suggests the use of adaptive friction compensation, see [1], [3] and
(4].

In robotic applications, one major problem is the inertia variations due to
different arm configurations. Active damping of the resonant modes with pole
placement requires that the resonance frequency is known with reasonable
accuracy. Since the resonance frequency depends on the load inertia, a varying
inertia will give degraded performance. Robotic applications therefore require that

inertia variations are taken into account in the control design.
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Appendix A

Appendix A

Most of the numerical calculations in this thesis were done with Ctrl-C, a product
of Systems Control Technology, Inc. Ctrl-C is an interactive program with
commands for control system analysis and design, matrix analysis, digital signal
processing, and graphics. It is particularly useful for control problems on state
space form, due to the powerful matrix computation facilities. For further details,
see [5]. This appendix contains a collection of Ctrl-C programs used in the

control system analysis and design.

Contents:

SERVOPAR Servo parameters

SERVOSS Servo state space model

CD Ceontinuous time control design

CDS Continuous time control design with scaling
DD Discrete time control design

F1wi Closed loop linear subsystem (y1 measured)
F1W2 Closed loop linear subsystem (y2 measured)
CPD3 Desired continuous poles

CSFP Continuous time parameter file

DPD3 Desired discrete poles

DSFP Discrete time parameter file

LGSPACE Logarithmically spaced frequency values
NYPL Nyquist plot

RCP1 Regulator char. polynomial (y1 measured)
RCP2 Regulator char. polyncmial (y2 measured)
TRSS Transformation of state space description
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/] SERVOPAR.CTR
/1

// Flexible servo parameters (wire # 3)
/]

J1 = 22e-6

J2 = 150e-6

k = 2.4e-3

d =0.0

dl = 1.0e-5

d2 = 1.0e-5

km = 0.1

ki = 0.25

kwl = 0.1

kw2 = 0.1

// SERVOSS.CTR

/1

// Continuous state space model of flexible servo speed loop.
/1

A=

[-(d1+d)/J1 a/Jj1  k/I1
d/ J2 —(d2+d)/J2 -k/J2
-1 1 0 ]
[kixkm/J1 O 0]"
[kwi O 0]

nw
I ou

CD.CIR

Ctrl-c procedure for design of continuous state feedback

control for flexible servo.

Enter servo model (A,B,C) and design parameters (wcl, z and alfa)
before using this procedure.

External function references:
CPD3 calculates desired poles
CSFP converts parameters to SIMNON file

Author: Anders HWallenborg

— T T M e T S S T

cpd3(z,wcl,wcl) /] closed loop poles
place(A,B,P)

cpd3(z,alfaxwcl,alfaxwcl) // observer poles

o = place(A',C',P)’

clear p

gain = Cx ((-A+B«L)\B!} /] closed loop steady state gain
Ir = 1/gain

csfp(A,B,C,Ko,L,1r,'reg")

monn
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CDS.CTR

Ctrl-c procedure for design of continuous state feedback
control for flexible servo. Scaling of state variables included.
Enter servo model (A,B,C) and design parameters (wcl, z, alfa)
before using this procedure.

External function references:
CPD3 calculates desired poles
CSFP converts parameters to SIMHON file
TRSS transformation of state space description

Author: Anders Wallenborg

=[0.10
00.1
0 0

[Az,Bz,Cz] = trss(A,B,C,T)

= cpd3(z,wcl,wcl) /| closed loop poles

= place(Az,Bz,P)

= cpd3(z,alfaswcl,alfaxwcl) // observer poles

o = place(Az',Cz',P)’

gain = Czx ((-Az+BzxL)\Bz) /| closed loop steady state gain

Ir = 1/gain

clear p gain

e e e e TR TR TR TR TR T TN
e e e TR T TR TR TR T T

—

.
*

.
»

oo
(-]

P
L
P
K

csfp(Az,Bz,Cz,Ko,L,1r, 'reg")

// DD.CTR

/1

/| Ctrl-c procedure for design of digital state feedback

/] control and observer using latest measured value.

/1

/| Enter servo parameters (A, B, C), sample interval (h), and
/| design parameters (wcl, z, alfa) before using this procedure.
/1

/] External function references:

// DPD3 calculates desired discrete poles

//  DSFP generates SIMNON parameter file

/1

// Author: Anders Wallenborg

//

[F,G] = c2d(A,B,h)

P = dpd3(z,wcl,wcl,h) /| closed loop poles

L = place(F,G,P)

P = dpd3(z,alfaxwcl,alfaxwcl,h) /]| observer poles

Kobs = place(F',(CxF)',P)'

clear p

gain = Cx ((eye(3)-F+GxL)\G) /| closed loop steady state gain
Ir = 1/gain

dsfp(F,G,C,Kobs,L,1r h, 'reg")
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F1W1.CTR
Ctrl-c procedure for generating closed loop system matrices Acl, Bel & Ccl
for the flexible servo controlled with state feedback & reconstruction.

(Motor speed (wi) measured, static friction on motor).

Note: Enter servo parameters & control design parameters
(wel, a, alfa) before using this procedure.

External functions used:
CPD3 calculates desired poles

Author: Anders Wallenborg

b e e S
e e e e e N e T T TR TR T TN

= [-(d1+d)/J1 d/J1  k/J1
d/ J2 ~(d2+d)/J2 -k/J2
-1 1 0 1
B =[1/J1 0 0]"; // Note: input = motor torque
C = [kwl 0 O];
/1
p = cpd3(z,wecl,wcl); // desired closed loop poles
L = place(A,B,P); // state feedback design
/1
p = cpd3(z,alfaxwcl,alfaxwcl); /] desired observer poles
Ko = place(A',C',P)"; |/ observer design
/]
// Closed loop system with state feedback and observer
/1
Acl = [ A -BxL
KoxC A-BxL-KoxC 7J;
Bcl = [B' 0 0 0]';
Ccl = [C 0 0 0];
FiW2.CTR

Ctrl-c procedure for generating the closed loop system matrices for
the flexible servo controlled with state feedback & reconstruction.
Load speed (y2) measured, static friction on motor.

Note: Enter servo parameters & regulator design parameters
(wel, z, alfa) before using this procedure

External functions used:
CPD3 calculates desired poles

Author: Anders Wallenborg

e e N T T A TR TR TR TR TR T T
e e e T T e e TR TR TR T T TN N

= [-(d1+d)/J1 /)1 k/ 1t
d/J2 -(d2+d)/J2 -k/JI2
-1 1 0
B =[1/J1 0 o}’ // Note: input = motor torque
C1 = [kwl O 0]
c2 = [0 kw2 0]
/1
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P = cpd3(z,wcl,wcl) /] desired closed loop poles
L = place(A,B,P)

P = cpd3(z,alfaxwcl,alfaxwcl) /| desired observer poles

Ko = place(A',C2',P)’
/

/

/

A

won o

Closed loop system with state feedback and observer

foad
H

[ A -BxL
KoxC2 A-BxL-KoxC2 ]
[B' 0 0 0]
[C1 0 0 0] /] closed loop output = motor speed

os]

9]

et
o

[p] = CPD3(z,w,a)

Calculates a vector p with eigenvalues corresponding
to the char. equation

(s+a) (sxs+2zws+wxw)=0

>
jor
c+
oy
o]
=

Anders Hallenborg

-a;
~-zxWw + wxsqrt{1-zxz)ssqrt(-1);
-zxW — wxsqrt(1-zxz)*sqrt(-1);
= [p1;p2; p3];

[ I S e e S

= CSFP(A,B,C,K,L,1r,syst);

Conversion of state feedback controller parameters to a
SIMNON parameter file with the system name 'syst'.

= A matrix

= B matrix

= C matrix

= observer gain vector

= state feedback gain vector

r= reference signal gain

syst = SIMNON system name (should be entered within single quotes)

RO >

Output file name: CSFPAR.T
Maximum system order = 5

[m,n] = size(a); // n = system order

syst=['[',syst,']'];

astr=['all:'; 'al2: '; 'a13:"’ '; 'alb: '
'a21: '; 'a22:'; 'a23: "' 's 'a2b: ',
'a31:'; 'a32:'; "a33: '; 'a34:’'; 'a3h: ';
‘adl: '; 'ad2: '; 'ad3: '; 'y 'adb: ';
'a51:';'352:';'a53:';'a54:’;'a55:'];

astr = [astr(1:n,:);
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astr(6: 5+n,: );

(
astr(11: 10+n,: );
astr(16: 15+n,: };
astr(21: 20+n,: ) ];
bstr = ['b1: ';'b2: ';'b3: ';'bd: ';'bE: '];
cstr = ['cl: ';'c2: ';'e3: ';'ch ';'ceh '];
kstr = ['ki: ';'k2: ';'k3: '; 'kd: '; 'kb: '];
Istr = ['11: ';'12: ';'13: ';'14: ';'16: '];
lrstr = 'Ir: ';
//
for i=1i:n,
bpar(i,:) = str(b(i));,
cpar(i,:) = str(c(i));,
kpar(i,:) = str(k(i});,
lpar(i,:) 1(i)); .,

[}
L}
- ot

~

for j=i:n,
apar ((i-1)*n+j,:) = str(a(i,j));.
end, ...
end;
Irpar = str(lr);
/1
diary >csfpar.t ;
disp(syst};
disp([astr(1:n«n,:) apar;
bstr(1i:n,:)  bpar;
(1:n,:)  cpar;
(1:n,:)  kpar;
Istr(l:n,:) lpar;
Irstr Irpar 1)
diary -off;

[p] = DPD3(z,w,alfa,h)

Generates a vector p with the poles of a discrete system
corresponding to a continuous system with char. equation

(s+alfa) (sxs+2zws+wxw)=0
and sample interval = h

Author: Anders

p(2) = -zxw + ixwxsqrt(il-zxz);
= —zxW - ixwksqrt(il-zxz);

j=1:3, ...

p(35) = exp(p(i)h);

end;

for

Appendix A
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DSFP(F,G,C,K,L,1Ir,h,syst);

Conversion of discrete state feedback controller parameters to a
SIMNON parameter file with the system name 'syst'.

F = Fi matrix

G = Gamma matrix

C = C matrix

K = observer gain vector

L = state feedback gain vector
lr= reference signal gain

h = sample interval (sec)

syst = SIMNON system name (should be entered within single quotes)

Output file name: DSFPAR.T
Maximum system order = b

Author: Anders Wallenborg

[1=
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

[m,n] = size(f); // n = system order

syst=['[',syst ']'];
fstr=[ 'f11:"; 'f12: '; "f13: '; "f14: '; "f15: ';
£21: ;'f22:';'f23:';'f24:';'f25:%
'£31:'; '£32: 7; "£33: '; "£34: '; "£35:
'f41:'; '£f42: 7; 'f43: '; 'f44: '; "£45: 7;
"f51: '; 'f52: '; '£53: '; 'f54: '; 'f55: ' ];
fstr = [fstr(l:n,:);
fstr(6: 5+n,:});
fstr(11:10+n,:);
fstr(16: 15+n,: );
fstr(21: 20+n,: )]
gstr = ['gl: ';'g2: ';'g3: ';'g4: ';'gh 'L
cstr = ['el: ';'c2: ';'c3: ' 'cd: ' 'eh ']
kstr = ['ki: ';'k2: ';'k3: ';'k4: ';'k5: ']
lstr = ['11: *;'12: ';'13: ';'14: ';'15: '];
gstr = gstr(l:n,:);
csrt = cstr(l:n,:);
kstr = kstr(1l:n,:);
Istr = lstr(i:n,:);
lrstr = 'Ir: ',
hstr = "h:  ';
/1
for i=i:n,
gpar (i,:) = str(g(i));,
cpar(i,:) = str{c(i));,
kpar(i,:) = str(k(i));,
lpar(i,:) = str(1(i));.,
for j=1:n, fpar{(i-1)*n+j,: ) = str(f(i,j));, end,
end;
Irpar = str(lr);
hpar = str(h);
/1
diary >dsfpar.t ;
disp(syst);
disp([hstr hpar;

fstr(l:n«n,:) fpar;
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gstr(1:n,:) gpar;

cstr(1l:n,:) cpar;

kstr(1i:n,:)  kpar;

1str(1:n,:) lpar;

Irstr lrpar ])
diary -off;

[w] = LGSPACE(lgwl,1lgw2,n)

Creates a vector of n logaritmically spaced vector
elements between 10%x (lgwl) and 10xx (lgw2).

Author: Anders Wallenborg

BT T TR T TR T

10 = log(10);
= exp((lgwl: ((lgw2-1gwl)/(n-1)): 1gw2)*1n10);

B el e e T TR TR T

[fr] = NYPL(a,b,c,d,lgwl,1lgw2,n)
Nyquist plot for system on state space form

a,b,c,d = system matrices

lgwl = log(start frequency)
lgw2 = log(stop frequency)
n = number of frequency points

Author: Anders Wallenborg

T T S T S S
e e T T T T TR TR T T

w = lgspace(lgwl,lgw2,n);
[Re,Im] = nyqu(a,b,c,d,1,w);
fr = [w' Re' Im'];
plot(Re,Im);
xlabel('Re',' 1');
ylabel ('Im',"' 1'});

// [a2n,a3n,en,w] = RCP1(wl,dw,w2,z,a,j1,j2)

/]

/] Normalized coefficients in the char. polynomial of the state feedback

/| observer/controller for the flexible servo with colocated speed

// sensor (simplified model).

/]| Coefficients are calculated and plotted as a function of the

// dimensionless parameter w.

/]

/] Author: Anders Wallenborg

/1

w = wl;

x = wi;

a2n = —( (ax*3)%xx*%3 —(4x (ax*2)*xzx*2+2xax (a+1)xx2xz+ax*x3+axx2+a)xxx*2 ...
+(4xaxzxx2+2% (atl)*xx2xz+axx2+a+l)xx - (1+J2/J1) );

a3n = ( ax*2% (2xz+1)x (a+1)*x*x%2 —(4xax (a+1)x (z+xx2+z)+axx3+a*xx2+a+i)*x ...
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+(a+1)* (2x2+1)x (1+32/J1) );
en = —( a*x3x (a+1)* (2xz+1)xxxx2 ...
—(8xaxx2% (a+1)*xzxx3+4x (ax*x4+4xaxx3+dxax+2+a)xzx*2 ...
+4x (a%* 4+2xax*x3+2xaxx2+a) xz+(axx4+axx3+axx2+a) )xx ..
+8xax (a+1)*xzx*x3+4x (ax*3+3xaxx2+3xa+1)xzxx2 .
+2x% (2xax*3+3xaxx2+3xat+2)xz+ax (atl) );

/1

for x = wil+dw:dw: w2,

= [w; x]; .
a2 = —( (ax*3)¥x¥x3 — (4% (ax*2)*zx*x2+2xax (a+1)**2xz+ax*3+akx2+a)xxk*x2 ...
+(4xaxzx*x2+2x (a+1)xx2xz+axx2+a+1)xx —(1+J2/J1) };
= [a2n;a2];

= ( ax*2x (2xz+1)x (a+1)xxx%x2 —(4xax (a+1)x (z#x2+z)+axx3+axx2+a+1)*x ...

+(a+1)* (2«2+1)x (1+J2/J1) );
a3n = [a3n;a3]; .
e = —( ax*3x(a+1)x (2xz+1)*xxx2 ...
—(8%axx2x (a+1)*z**3+4% (axx4+4xaxx3+4xaxx2+a)xzxx2 ...
+4x (@ x 4+2%ax*3+2xaxx2+a) xz+ (a*x4+axx3+axx2+a) )xx ...
+8%ax (a+1)*zx*x3+4x (ax*3+3xa*x2+3%xa+1)xzxx2 ...
+2x% (2% ax* 3+3xaxx2+3xa+2)xz+ax (a+l) );
= [en;e];
end;
/1
eras;
plot(w,a2n,'solid’,w,a3n, 'dashed’',w,en, 'dotted’);
xlabel ('w');
ylabel('a2 (solid), a3 (dash), e (dot)');

[a2n,a3n,w] = RCP2(w1l,dw,w2,z,a,j1,j2)

Normalized coefficients in the char. polynomial of the state feedback
observer/controller for the flexible servo with non-colocated speed
sensor (simplified model).

Coefficients are calculated and plotted as a function of the
dimensionless parameter w.

Author: Anders Wallenborg

MO TN TN T TR TR TR T T T
e e e

( 4xaxzxx2 + (2xaxx2+4xa+2)*xz + (axx2+a+l) )xx - (1+j2/j1);
( (4ra*xx2+4xa)*z*xx2 + (4xaxx2+4xa)xz + (ax*3+a*x*x2+a+l) )xx
- ((2+%a+2)* j2/ j1+(2xa+2) )xz - ((a+1l)+(a+1)xj2/j1);

for x = wil+dw:dw: w2,
= [w;x]; ...
32 = ( Axaxzxx2 + (2*a**2+4*a+2)*z + (axx2+a+1) )xx - (1+j2/j1);
= [a2n;a2];
a3 = ( (4xaxx2+4xa)xzxx2 + (4xaxx2+4xa)xz + (axx3+axx2+a+i) )x*x
- ((2%a+2)xj2/ j1+(2xa+2))*xz - ((a+1)+(a+1)xj2/j1);
a3n = [a3n;a3]; .
end;

/1

eras;
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plot(w,a2n, 'solid',w,a3n, 'dashed'});
xlabel{'w');
ylabel{'a2 (solid) a3 (dashed)');

BN e T TR TR T T

B T T TR TN T T

o
N

Q
N

[Az,Bz,Cz] = TRSS(A,B,C,T)

Transformation of state space system description S=(A,B,C)
to new coordinates z=Tx

Author: Anders Nallenborg'

A/T;
TxAz;
TxB;
C/T;

Appendix A
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Appendix B

The simulations in this thesis were done with SIMNON, a product of the
Department of Automatic Control, Lund Institute of Technology. SIMNON is an
interactive simulation program for nonlinear continuous and discrete time
systems. For further details, see [6] and [7].

This appendix contains a collection of SIMNON system descriptions, parameter

files and simulation macros.

Contents:

SERVO Linear servo model

SERVONL Nonlinear servo model

CSFNL Continuous time regulator

CSFPAR1 Continuous time regulator parameters (nominal design)
CSFPAR2 Continuous time regulator parameters (reduced bandwidth)
CSFPAR3 Continuous time regulator parameters (y2 measured)
DSFNL Discrete time regulator

DSFPAR1 Discrete time regulator parameters (nominal design)
STEPC Connecting system

STEPR Step response simulation macro
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CONTINUOUS SYSTEM SERVO
" Flexible servo system with two moments of inertia
(linear model}.

" File name: SERVO.T

" Author: Anders Wallenborg

INPUT u - " motor drive amplifier input [V]

OUTPUT y1 " shaft 1 tacho signal [V]

OUTPUT y2 " shaft 2 tacho signal [V]

STATE w1 " shaft 1 angular velocity [rad/s]

STATE w2 " shaft 2 -" - [rad/s]

STATE fi " position difference (shaft 2 - shaft 1) [rad]

DER dwl dw2 dfi

" system dynamics -——————————————————— —_—

Mi = kixkmxu " motor torque
dwi = (-(di1+d)*wl + dxw2 + kxfi + Mi)/J1

dw2 = (dxwl - (d2+d)*w2 — kxfi)/J2
dfi = -wi +w2

yi = kwixwl

y2 = Kw2xw2

" parameter values -

ki : 0.25 " drive amp gain [A/V]

km : 0.1 " motor current to torque gain [Nm/A]

J1 : 22.0E-6 " moment of inertia of motor [kgm2]

J2 : 150.0E-6 " shaft 2 inertia [kgm2]

k 2.4E-3 " transmission rigidity [Nm/rad]

d : 0.0 " damping coefficient of transmission [Nm/rad/s]

di : 1.0E-5 " viscous friction coefficient of shaft 1 [Nm/rad/s]
d2 : 1.0E-5 " - of shaft 2 [Nm/rad/s]
kwl: 0.1 " shaft 1 tacho gain [V/rad/s] (including ext. amplifier)
kw2: 0.1 " shaft 2 tacho gain [V/rad/s]

END
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CONTINUOUS SYSTEM

7"

sServo

Flexible servo system with two moments of inertia.

" Nonlinear model with static and Coulomb friction.

File name: SERVONL.T

" Author: Anders Wallenborg

INPUT u "
OUTPUT y1 "
OUTPUT y2 "
STATE w1l "
STATE w2 "
STATE fi "
DER  dwl dw2 dfi

" system dynamics

motor drive amplifier input [V]

shaft 1 tachometer
shaft 2 tachometer

signal [V]
signal [V]

shaft 1 angular velocity [rad/s]

shaft 2 - " -

[rad/s]

position difference (shaft 2 - shaft 1) [rad]

Mi = kixkmxu " input torque from motor
M1 = kxfi -disxwl -dx(wl-w2) +Mi " net linear torque
M2 = —kxfi —-d2xw2 +dx (wl-w2)

Mf10 = if abs(M1)>F1 then Flxsign(M1) else M1 " Coulomb friction
Mf20 = if abs(M2)>F2 then F2xsign(M2) else M2

Mf1 = if abs(wl)<eps then Mf10 else Flxsign(wl)

Mf2 = if abs(w2)<eps then Mf20 else F2xsign(w2)

dwil = (M1-Mf1)/J1

dw2 = (M2-Mf2)/J2

dfi = -wl +w2

vyl = kwilxwl

y2 = kw2xw2

" parameter values

pi : 3.141593

eps: 0.001

ki : 0.25 "
km : 0.1 "
J1 . 22.0E-6 "
J2 : 150.0E-6 "
k : 2.4E-3 "
d : 0.0 "
d1 : 1.0E-5 "
d2 : 1.CE-5 "
kwil: 0.1 "
kw2: 0.1 "
F1: 5.E-4 "
F2 : 5.E-4 "
END
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drive amp gain [A/V]

motor current to torque gain [Nm/Aj

moment of inertia of motor [kgm2]

shaft 2 inertia [kgm2]

transmission rigidity [Nm/rad]

damping coefficient of transmission [Nm/rad/s]
viscous friction coefficient shaft 1 [Nm/rad/s]

"

shaft 1 tacho gain
shaft 2 tacho gain
static friction on
static friction on

shaft 2 [Nm/rad/s]
[V/rad/s] (including ext. amplifier)
[V/rad/s]
shaft 1 [Nm]
shaft 2 [Nm]
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CONTINUOUS SYSTEM reg

" State feedback controller with full state reconstruction and
" friction compensation.
" The friction compensation scheme is controlled with the switch 'fc':

" fc =0 No friction compensation (linear controller)
" 1 High gain with saturation
" 2 Relay with dead zone

" File name: CSFNL.T
" Author: Anders Wallenborg

INPUT yr " reference signal

INPUT vy " measured signal

OUTPUT u " control output

STATE xle " estimate of wl

STATE x2e " - " - w2

STATE x3e " estimated position difference

DER dxle dx2e dx3e

" linear controller - ——— -

dxle = allxxle + al2xx2e + al3xx3e + blxu0 + kix(y-ye)
dx2e = a2lxxle + a22xx2e + a23«x3e + b2xuld + k2x(y-ye)
dx3e = a3lxxle + a32xx2e + a33xx3e + b3xul + k3x(y-ye)
ye = clxxle + c2xx2e + c3xx3e

v = lriyr -llsxxle -12«x2e ~13%x3e

u0 = if v<umin then umin else if v<umax then v else umax

" friction compensation - -~ —

Mf1 = if abs(ye)<eps then Fxye/eps else Fxsign(ye)

Mf2 = if abs(ye)<eps then O else Fxsign(ye)

Mf = if not fc then O else if fc<1.5 then Mf1l else Mf2
uf = Mf/ (kmski)

"

output control signal - - S _———

u = ud + uf

" parameters - - ——

umax : 8.0 " maximum control output

umin :-8.0 " minimum - " -

fc: 0.0 " friction compensation switch (O=off)
eps: 0.001

ki : 0.25 " drive amp gain [A/V]

km : 0.1 " motor current to torque gain [Nm/A]
F 5.E-4 " static friction on shaft 1 [Nm]

lr : 0.0 " reference signal gain

11 : 0.0 " state feedback gain vector

12 : 0.0

13 : 0.0

ki: 0.0 " observer gain vector

k2 : 0.0
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k3 :
alil:
alz:
al3:
a2l:
a22:
a23:
a3i:
a32:
a33:
b1l :
b2 :
b3 :
cil :
c2
c3 :

" A matrix elements

" B matrix elements

" C matrix elements

CO00O00O0O00COO0O0OO0OO0O0O0O
CO0O00OO0O0O0D0ODO0OO0ODO0D0OOD0OO0OO

END

[REG]

" Continuous regulator parameters
" Nominal control design (yl measured): wcl=12, z=0.7, alfa=1.5
" File name: CSFPAR1.T

Al11:-0.4545
A12: 0.000CE+0
A13: 109.1

A21: 0.0000E+0
A22: -6.6667E-02

A23: -16.00
A31: -1.000
A32: 1.000
A33: 0.0000E+0
B1i: 1136.

B2: 0.000CE+0
B3: 0.0000E+0
Ci: 0.1000

cz: 0.00COE+0
C3: 0.0000E+0

K1: 426.8
K2: 466.7
K3: 59.55

L1: 2.4885E-02
L2: 6.8553E-02
L3: -0.1924
LR: 0.9504
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[REG]

" Continuous regulator parameters
" Reduced bandwidth design (yl1 measured): wcl=8, z=0.7, alfa=1.5
" File name: CSFPAR2.T

Al11: -0.4545
A12: 0.0000E+0
A13: 109.1

A21: 0.0000E+0
A22: -6.6667E-02

A23: -16.00
A31: -1.000
A32: 1.000
A33: 0.0000E+0
B1: 1136.

B2: 0.00C0E+0
B3: 0.0000E+0
Ci: 0.1000

C2: 0.0000E+0
C3: 0.0000E+0

K1: 282.8
K2: 114.3
K3: 20.04

Li: 1.6437E-02
L2: 1.0823E-02
L3: -2.3966E-02
LR: 0.2816

[REG]

" Continuous regulator paraméters
" Nominal design (y2 measured): wcl=12, z=0.7, alfa=1.5
" File name: CSFPAR3.T

Ai1:-0.4545
A12: 0.COO0CE+0
A13: 109.1

A21: 0.0000E+0
A22: -6.6667E-02

A23: -16.00
A31: -1.000
A32: 1.000
A33: 0.0000E+0
B1: 1136.

B2: 0.0000E+0Q
B3: 0.0000E+0
C1: 0.0000E+0

C2: 0.1000
C3: 0.0000E+0
K1: 546.1
K2: 426.8
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K3: -395.7
L1: 2.4885E-02
L2: 6.8553E-02
L3: -0.1924
LR: 0.9504

DISCRETE SYSTEM reg

" Discrete time state feedback controller with full state
" reconstruction (using latest measurement).

" Nonlinear friction compensation included.

" The friction compensation scheme is controlled with the switch 'fc':

"fe =0 No friction compensation
" 1 High gain with saturation
2 Relay with deadzone

" File name: DSFNL.T
" Author: Anders Wallenborg

INPUT yr ' " reference signal

INPUT v " measured signal

OUTPUT u " control output

STATE xlo x20 x30 " observer states [xe(k|k-1)]
NEW nxlo nx2o nx3o

TIME t

TSAMP ts

" linear controller —- -

yo = clsxlo + c2xx20 + ¢3xx30

xle = xlo + kix(y-yo)
x2e = x20 + k2x(y-yo)
x3e = x30 + k3% (y-vo)

v = lrxyr -lilxxle -12«x2e -13%x3e

u0 = if v>umax then umax else if v<umin then umin else v
nxlo = filsxle + f12xx2e + f13xx3e + glsxul

nx2o0 = f2lsxxle + f22xx2e + £23xx3e + g2xul

nx3o = f31xxle + f32xx2e + f33%xx3e + g3xul

ts = t+h

" friction compensation —————————————— -

ye = clxxle+tc2xx2e+c3xx3e

Mf1 = if abs(ye)<eps then Fxye/eps else Fxsign(ye)
Mf2 = if abs(ye)<eps then 0 else Fxsign(ye)

Mf if fc<1.5 then Mf1l else Mf2

uf = if not fc then O else Mf/ (kmxki)

W

" output control signal ———-——-

u=ul + uf

parameters -
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maximum control output [V]
”

minimum - " - [V]
friction compensation switch

umax
umin : -
fec
eps:

[= =)

| ©
e

static friction on shaft 1 [Nm]
drive amp gain [A/V]

" motor current to torque gain [Nm/A]
sample interval [sec]

reference signal gain

state feedback gain vector

[0

observer gain vector

Fi matrix elements

Gamma matrix elements

C matrix elements

4y
-
N . s e e ee .
OO0 0000CO0O0O0OOO0OO0D0OD0O000O0D0DO0DOOR,rO0O0ULIO O
O00000O0O0CO0O00O00D0O00O0O00COOOP,NIMO O

[REG]

" Nominal discrete time control parameters (yl measured)
" (wel=12, z=0.7, alfa=1.5, h=0.040)

" Observer using latest measured value

" File name: DSFPAR1.T

H: 4 .0000E-02
F1i: 0.8972
F12: 8.5234E-02
F13: 4.181
F21: 1.2501E-02
F22: 0.93848
F23:-0.6181
F31: -3.8329E-02
F32: 3.8632E-02

F33: 0.9021
G1: 43.75
G2: 0.1910
G3: -0.8886
C1: 0.1000
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C2: 0.0000E+00
C3: 0.0000CE+00

K1: 8.186
K2: 8.155
K3: 1.056

L1: 1.6797E-02
L2: 3.7445E-02
L3: -8.6916E-02
LR: 0.5540

CONNECTING SYSTEM stepc

" Servo speed loop with step reference input
" Author: Anders Wallenborg

TIME t

y[reg] = if myl then yl[servo] else y2[servo]
yr[reg] = if t<ti then O else if t<t2 then vref else O
u[servo] = uf[reg]

t2
vref : 0 " speed reference
myl : 1.0 " measurement switch (1=shaft 1, O=shaft 2)

]

t1: 2.0
5.0

1.

END

MACRO stepr

" Simulation of speed loop step response.
" Author: Anders HWallenborg

STORE u[reg]

PLOT y1 y2 yr[reg]
SPLIT 2 1

AXES h 0 10 v -2 3
SIMU 0 10 / stepr 0.02
TEXT ' y1 y2 [V]'
MARK a 16.5 6.7
MARK "t [sec]
AXEShO0O10v -11
SHOW u /stepr

TEXT ' u [V]"

MARK a 16.5 0

MARK "t [sec]

END

90




Appendix C

Appendix C

MACSYMA is a general symbolic manipulation program from Symbolics Inc.,
Cambridge, Mass., USA. It is a wvaluable tool for performing otherwise tedious
algebraic calculations. For further details, see [13]. This appendix contains the
MACSYMA programs that were used to calculate the transfer functions in
Chapter 3 and the coefficients of the characteristic equation for the regulator in

Chapter 6.

Contents:

SERVOSS State space model of servo
TRFUNC Transfer function
SERVOTRF Servo transfer functions

ACKERMANN  State feedback pole placement

CPD3 Desired closed loop poles
REGCP1 Regulator char. polynomial (y1 measured)
REGCP2 Regulator char. polynomial (y2 measured)
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/+ SERVOSS.BAT

Flexible servo state space model

:{matrix([—(dd1+d)/j1, d/ijt, k/ij1],
[ d/j2, -(dd2+d)/i2, -k/j2],
[ o1, 1, o s

b:matrix([km«ki/ j1], [0], [0])$

c:[kwl, 0, 0]$

/* TRFUNC.DEF

Calculates the transfer function of a (SISO} system given on
state space form:

Ax + Bu
Cx + Du

X
y

Author: Anders Hallenborg

*/
trfunc(a,b,c,d) := c.((diagmatrix(length(a),s)-a)~~-1).b + d$

/* SERVOTRF.BAT

Transfer functions for flexible servo
Author: Anders Wallenborg

x/

batch("trfunc.def"};
batch("servoss.bat");
writefile("servotrf.log")$
a;

b;

c;
gl:ratsimp(trfunc(a,b,c,0));
c: [0, kw2, 0];
g2:ratsimp(trfunc(a,b,c,0));

[+ simplified transfer functions with d=0 x/

ratsubst(0,

0,d,gl);
ratsubst(0,d ;

1
,82)

closefile();
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ACKERMANN . DEF

Function for single input state feedback gain calculation
with Ackermanns formula.

Ref. Kailath: "Linear Systems", p. 201

It works in the same way as PLACE in CTRLC.

Inputs: A matrix from system desription
B matrix from system desription
P vector with desired closed loop poles

Cutput: Vector with feedback gains

Author: Michael Lundh

ackermann(a,b,p): =
Block([n,cc,r,tmp,i,q,pa,l],
n: length(b),
r: ematrix(1,n,1,1,n),
/* create controllability matrix =/
cc: b,
tmp: b,
for i:1 thru n-1 do (tmp:a.tmp, cc:addcol(cc,tmp) },
q: r.invert(cc),
/* Evaluate A in new characteristic polynomial x/
pa: ident (n),
for i:1 thru n do pa:pa.(a-determinant(p[i])*ident(n)),
l:q.pa,
for i:1 thru n do 1[1,i]:ratsimp(1[1,i]),
return: 1)$

/* CPD3.DEF

CPD3(z,w,a) calculates a vector with eigenvalues corresponding
to a 3rd order system with the characteristic equation

(s+a) (sxs+2zws+wxw)=0

Inputs: a = real pole

z = relative damping of complex poles
w = natural frequency of complex poles
Output: vector with desired poles

Author: Anders Wallenborg
*/
cpd3(z,w,a) := matrix([-a],
[-zxw + %ixwxsqrt(1-zxz)],
[-zxw - %ixwxsqrt(1-zxz)])$
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/* REGCP1.BAT

MACSYMA batch file for calculating the coefficients of

the characteristic polynomial of a state feedback/observer
for the flexible servo with COLOCATED speed sensor (drive
motor speed measured). Regulator design based on the
simplified servo model.

Author: Anders Hallenborg

/% load external functions x/

batch("ackermann.def")$ /x pole placement (Ackermann's formula) */
batch("cpd3.def")$ /* desired closed loop poles x/

/+ simplified servo model */

a:matrix([ 0, 0, k/ijt],
[ 0. 0. 2],
[-1,1, O
b:matrix([km*kl/]i] [0] [0])$

c: [kwl, 0, 0]$
/* control design x/

:cpd3(z,w,uw)$

: ackermann(a,b,p);
:cpd3(z,alfaxw,alfaxw)$

: ackermann(transpose(a),transpose(c),p)$
: transpose (k);

~RT g

/* controller char. polynomial x/

areg:a-b.1-k.c$

cp: charpoly(areg,s)$
cp: ratsimp(cp,s)$
kill(k)$

array(coef,3)$
for i:0 thru 3 do coef[i]: ratcoeff(cp,s,3-1)$
a0: coef[0]$
for i: 0 thru 3 do
( coef[i]:ratsimp(coef[i]/a0,w), display(coef[i]) };

/* substitute dimensionless quantity x = j2+wx*2/k x/

a2: ratsubst(xxk/ j2,wsxx2,coef[2])$
a2:ratsimp(a2,x);

a3:ratsimp(coef[3]/w,w)$
a3: ratsubst(xxk/ j2,wxx2,a3)$
a3:ratsimp(a3%w,x);

:ratsimp(coef[1]xcoef[2]-coef[3],u)$
:ratsimp(e/ (wxx3),w)$
:ratsubst (xxk/ j2,wxx2,e)$

:ratsimp (exwx*3,x)$

@ o 0O o
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en:ratsimp(ex j2/ (j1xwxx3) ,x);
array(c,2)$
for i: 0 thru 2 do
( c[i]: ratsimp(ratcoeff(en,x,2-i),z), display(c[i]) );

/* print results in log file x/

writefile("regcpl.log");

for i:0 thru 3 do display(coef[i]);
a2;

a3;

for i:0 thru 2 do display(c[i]);
closefile();

/* REGCP2.BAT

MACSYMA batch file for calculating the coefficients of

the characteristic polynomial of a state feedback/observer
for the flexible servo with NON-COLOCATED speed sensor.
Regulator design based on the simplified servo model.
Author: Anders Wallenborg

/* load external functions x/

batch("ackermann.def")$ [+ pole placement (Ackermann's formula) x/
batch("cpd3.def")$ /* desired closed loop poles x/

/* simplified servo model x/

0, 0, k/ijt],
0, 0, -k/ij2],

[-1, 1, 0 1%
b:matrix ([kmxki/j1], [0], [0])%
c: [0, kw2, 0]$

armatrix ([
[

/* control design x/

cepd3(z,w,w)$

:ackermann(a,b,p);
:cpd3(z,alfaxw,alfasw)$
:ackermann(transpose(a),transpose(c),p)$
: transpose (k);

N AT =T

/# controller char. polynomial x/

areg: a-b.1-k.c$

cp: charpoly(areg,s)$
cp:ratsimp(cp,s)$
kill (k)$

array(coef,3)$

for i:0 thru 3 do coef[i]:ratcoeff(cp,s,3-i)$
a0: coef[0]$

for i:0 thru 3 do
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( coef[i]:ratsimp(coef[i]/a0,w), display(coef[i])} };

/% substitute dimensionless quantity x

a2:ratsubst(xxk/ j2,wxx2,coef[2])$
a2:ratsimp(a2,x);

a3:ratsimp(coef[3]/w,w)$
a3:ratsubst(xxk/ j2,wxx2,a3)$
a3:ratsimp(a3%w,x);

e:ratsimp(coef[1]xcoef[2]-coef[3],w);
/* print results in log file x/

writefile("regcp2.log");

for i:0 thru 3 do display(coef[i]);
az;

a3;

€

closefile();
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Appendix D

This appendix contains circuit diagrams and component lists for the analog

contrcller and the friction comensation circuit.

Contents:

Analog controller block diagram

Analog controller circuit diagram (y 1 measured)
Component list (y1 measured, nominal design)
Component list (y1 measured, reduced bandwidth)
Analog controller circuit diagram (y2 measured)
Component list (y2 measured, nominal design)

Friction compensation circuit diagram
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Appendix D

Analog controller - Component list

Output: y = 0.1-w1

Spring constant: k = 2.4107>

Nominal design: W= 12, ®obs™ 18

Resistors Capacitors

R1 10k Ci 4.7 uF
R2 39k Cc2 10 uF
R3 100k C3 1.0 uF
R4 100k

R5 10k

R6 100k

R7 10k

R8 100k

RO 100k

R10 100k

R11 -

R12 - Integrated Circuits
Ri3 5k6 + 1k8

Ri14 470k IC1 LM 324
R15 3%k IC2 LM 324
R16 47k IC3 LM 324
R17 120k

R18 1M

R19 22k

R20 47k

R21 82k

R22 47k Variable Resistors
R23 sfc

R24 ofc VR1 10k
R25 38k

R26 15k

R27 100k

R28 10k

R29 10k

R30 -

R31 -

R32 -

R33 15k

R34 18k
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Analog controller - Component list

Output: y = 0.1(‘)1

Spring constant k = 2.4,-10_3

Decreased bandwidth design: w = 8, w , = 12
cl obs

Resistors Capacitors

R1 10k Ci 4.7 uF
R2 3%k Cc2 10 pF
R3 100k C3 1.0 uF
R4 100k »

R5 10k

R6 100k

R7 10k

R8 100k

RS 100k

R10 100k

Ri1 -

R12 - Integrated Circuits
R13 5k6 + 1k8

R14 470k IC1 LM 324
R15 30k IC2 LM 324
R16 82k IC3 LM 324
R17 120k

R18 1M

R19 82k

R20 47k

R21 270k

R22 47k Variable Resistors
R23 s/c

R24 o/c VR1 10k
R25 56k

R26 100k

R27 820k

R28 33k

R29 10k

R30 -

R31 -

R32 -

R33 15k

R34 18k

Appendix D
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Analog controller - Component list

Qutput: y = 0.1-@)2 (non-colocated speed sensor)
Spring constant: k = 2.410™°

Nominal design: w = 12, Wops™ i8

Resistors Capacitors

R1 10k C1 4.7 uF
R2 30k Cc2 10 uF
R3 100k C3 1.0 uF
R4 100k

R5 10k

R6 100k

R7 10k

R8 100k

RO 100k

R10 100k

R11 100K

R12 100K Integrated Circuits
R13 5k6 + 1k38

R14 470k IC1 LM 324
R15 30k IC2 LM 324
R16 30k IC3 LM 324
R17 120k

R18 iM

R19 22k

R20 47k

R21 12k

R22 47k Variable Resistors
R23 s/ec

R24 o/c VR1 10k
R25 39k

R26 15k

R27 100k

R28 10k

R29 10k

R30 -

R31 -

R32 -

R33 15k

R34 18k

Appendix D
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