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PREFACE

A few words on the genesis of this work may be necessary
to explain some of its idiosyncrasies. The germ of the
problems discussed was provided by Karl Johan Astrdm, who
suggested an investigation of Kalman-Bucy-type filters for
nonlinear systems. This eventually lead to the results

presented in Part I of the thesis.

When this work was completed, my interest was attracted to
the area of stochastic stability. I found that problems
related to my own had been studied within this framework.
It was natural to compare the results obtained using
different approaches, more precisely the role of the model-
ling in the design. This is the reason why the second part
contains relatively few results that are new to readers

acqguainted with the field.

The text is intended for readers who have a general back-
ground in control theory and know the basics of determin-
istic stability theory (Lyapunov stability, the circle
criterion etc.). For Part II, a general familiarity with
stochastic convergence concepts belong to the prerequisites,
but no knowledge of stochastic stability is assumed. In
some instances, mathematical rigour has been sacrificed for

the sake of readability.

Valuable criticism on the manuscript was given by Bo Egardt,
Per-0Olof Gutman, Jan Sternby and Karl Johan Astrdm. To
these and other friends and colleagues at the department in
Lund, from whom and together with whom I have learned what
I now know about control theory, I wish to express my

sincere gratitude for the years past.

Part of the work was done while I was with Jan C Willems

at the Dept of Mathematics of the University of Groningen.




The hospitality of this department is gratefully acknowl-
edged.

Last but not least I wish to thank Birgitta Tell, who drew
the figures, and Eva Dagnegard, who produced a magnificently

typed version of a barely decipherable hand-written manu-

script.

Lund, in June, 1979

Per Molander
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INTRODUCTION

The problem of uncertainty

The modelling of any physical system is subject to un-
certainty. Such uncertainty may be due to nonmeasurable
disturbances and unknown or only partly known system

parameters.

Since any systematic design procedure is based on a model
of the system to be controlled, the synthesis is liable

to the same uncertainty as the modelling. In many cases,
the regulator has an inherent robustness against disturb-
ances and parameter variations. This is generally true for
feedback regulators, which is in fact one of the main

reasons for using feedback.

However, there are numerous cases in which the influence
of the uncertainty on the system performance is so large
that it has to be accounted for in the design. A typical
example of large parameter variations caused by exogeneous
variables is the variation of aircraft dynamics with the
dynamic pressure and the Mach number. A servo motor with
an unknown nonlinear characteristic is another example. In
these situations, standard linear design techniques are

inadequate.

Adaptive versus robust design

There are two basically different ways of tackling the
design problem for uncertain systems. One is to measure
and/or estimate changes in the system parameters, and to
base the synthesis on the current estimates. If the para-
meter variations are caused by exogeneous variables which

can be measured with sufficient accuracy, it is often
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sufficient to precompute a finite number of regulators
and to choose the one that best suits the current para-
meter values. This is referred to as gain scheduling.
Alternatively, it is possible to estimate the unknown
parameters using some on-line identification method, and
then to modify the controller according to the current

estimates. This yields an adapfive regulator.

An entirely different method of tackling the problem of
unknown or varying parameters is to design the regulator
apriori with the object of quenching the effect of the
uncertainties. This approach, producing a hobust regulator,

is the main topic of the present work.

Previous work

The problem of designing for low sensitivity is an old

one in control theory, and the literature on this topic

is extensive. An elaborate method based on classical fre-
quency domain techniques has been developed by Horowitz
and Sidi ([Hor 11, [Hor 2]). Lead-lag compensators are
used to twist the Nichols plot of the open-loop transfer
function in order to satisfy given time-domain specifica-
tions. These techniques are somewhat troublesome to extend

to multivariable systems.

Also in modern control theory much interest has been
devoted to the problem of low-sensitivity design; see for
instance the book by Cruz ([Crul) for an overview of the
subject. For small variations around the nominal plant,
sensitivity derivatives have been used extensively.
Various methods to reduce the eigenvector sensitivity,
trajectory sensitivity, or the sensitivity of some per-
formance index have been proposed. Rigorously speaking,
these methods are efficient only for local variations. For

large parameter fluctuations, the design has mostly been
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based on minimax-strategies, i.e. basically a trial-and-

—error approach.

Previous work which is more in the vein of the present

one is a long series of papers by Gilman and Rhodes (see
[Gil], which contains further references). In these papers
the influence on the performance index of substantial
nonlinear terms in the plant equation is studied. However,

no guidelines for the design are given.

Synopsis

The problem posed in the preseht work is: when can a non-
linear and/or timevarying system be stabilised by means

of a linear feedback regulator? The requirement on sta-
bility is of course far from sufficient for practical pur-
poses, but it permits the formulation of precise theorems.
Further, the results can be modified to cover the case
when the closed-loop poles are required to lie in some

prescribed subset of the complex plane.

There is of course a danger in isolating one aspect of
the control problem (in this case stability), namely that
other relevant aspects are left aside. Therefore, the
theoretical results presented are to serve more as a moral
support for the designer. The trade-off between the vari-

ous specifications in a given problem remains to be done.

In order to impose some structure on the problem, a model
for the disturbances must be chosen. The standard dicho-
tomy of modern control theory -~ deterministic versus
stochastic models - appears also in this context. Part I
discusses the problem in a deterministic setting. The
disturbances are modelled as cone-bounded nonlinearities.
Chapter 2 contains the main existence theorems for a sta-

bilising feedback as the confining sector of the
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nonlinearities increases without bound. Output feedback
is also discussed. To our knowledge, most of these results
are new, but some known results (due to Haussmann [Haul)

have been included for the sake of completeness.

Chapter 3 gives the corresponding theorems for sampled-
-data systems, with an emphasis on the differences between

the discrete-time and continuous—-time results.

The analysis is based on modern frequency-domain stability
criteria. These are known to yield conservative results.
This is natural, since very little is assumed about the
nonlinearity. In some applications, it is reasonable to
assume that the parameter variations are independent of
the state, and that the average behaviour over long time
intervals is known, even though the variations may be
large locally in time. This motivates the use of stochas-

tic models.

The introduction of a stochastic element poses some new
problems. Firstly, the intuitive idea of noisy parameters
must be given a rigorous formulation. This is more than a
mathematical game. The stability conditions obtained
depend critically on the stochastic integral concept
chosen. Secondly, the many different stochastic converg-
ence concepts offer a variety of possibilities as the
Lyapunov stability definitions are to be rephrased in
stochastic terminology. These topics are discussed in

some detail in Chapter 4.

Chapter 5 finally contains a study of the stabilisability
problem for random-parameter systems, and can be regarded
as the stochastic counterpart of Chapter 2. The mean-
-square stabilisation problem was treated by Willems and
Willems in [Will] using Wonham's solution of the linear-
—-quadratic optimal control problem for white-noise para-

meter systems. These results are compared to what was
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obtained in Chapter 2. The main object is thus to study
the influence of the modelling on the regulator obtained.
This final chapter also includes a discussion of the
relevance of the various stability definitions. It is
shown that the two problems of stabilising a control sys-
tem in the mean square and almost surely, respectively,

display qualitative differences.
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NOTATION

The notation used is standard.Capital letters (A, B, M,
N) are used for matrices and small letters (x, m, n) for

vectors or column matrices.

Im(A) denotes the subspace spanned by the columns of A,
and Ker (A) the kernel of A considered as a mapping. A (A)
is used for the eigenvalues of A, and A—l(-) for the in-
verse image (notice that the matrix inverse of A need not
exist).

U'L is the orthogonal complement of the subspace . ¥ V
i

denotes the span of the subspaces Ui’ and < A|B >
n-1

= T A, Im(B).
. i
i=0

In the stochastic section, E{-} is an expectation value,
and E{.-1%} means the expected value conditioned with

respect to some o-algebra X.
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PART I - DETERMINISTIC MODELS

CHAPTER 1, PRELIMINARIES

The basic definitions and main theorems to be used in the
sequel are given here. The stability definitions are spe-
cialised to motions described by ordinary differential
eguations, since that will be the main concern in the
present work. They are easily translated to the case of
difference equations and more general motions. Further, the
unperturbed motion (i.e. the motion whose stability is be-
ing.studied) is assumed to be the solution which is iden-
tically zero. It will be called the equilfibrium, the null
so0lution, or the trilvial solution.

1.1 Basic definitions

Consider the system of ordinary differential equations in

X = (Xl’ Koy eeey xn):
( dx,
'“d::"' (t) = fl(xl(t)' Xz(t)/ s sy Xn(t)l t)
dx2
) '—('i:' (t) = fz(xl(t)’ X2(t)l s 0 0y xn(t)l t) t > tO
dxn
"d"_t— (t) = fn(xl(t)’ Xz(t)l "'Ixn(t)l t) (l.l)
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3 ( 3
[ % (tg) X190
(k) || X0 | 4
= 2 x
. O
\ Xn(to) ) \ Xno J

The functions fi are assumed to satisfy
fi(O, 0, v..,0,¢t) =0, i=1,2,...,n,

so that x(t) = 0 is a solution of equation (1.1). It is
further assumed that the fi's are regular enough for the
general existence and uniqueness conditions to be satisfied

over the entire half-axis t > ty (see e.g. [Cod]).

Definition 1.1 The equilibrium is said to be stable iff

for any given € > 0 there exists a § > 0 such that

%o Il <0
implies
=) || < e

for all t > tO' o

Definition 1.2 The equilibrium is said to be attractive
iff there exists a § > 0 such that

=g Il <8
implies

lim x(t) = 0. (*)
>
The set of xo's such that (*) holds form the domadin o4
atiraction. o

Definition 1.3 The equilibrium is said to be asymptotically
stable iff it is stable and attractive. It is undformly
asymptotically stable iff further § in the above definitions
can be chosen independently of ty. It is uniformly
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asymptotically stable in the Large if further the domain

of attraction is the whole of RP®. o

In the sequel, the only concern will be with asymptotic
stability, and "stability" and "asymptotic stability" will

be used indiscriminately.

The above stability definitions, wHich are rephrased ver-
sions of Lyapunov's definitions in his pioneering work,
refer to perturbations of the initial state. In many prac-
tical situations, other forms of perturbations may be
equally or more relevant. Assume for instance that a small
(in some suitably chosen norm) term is added to the right-
-hand side of equation (1.1). An investigation of the
behaviour of the solutions x(t), t:>t0, leads naturally

to the concept of stability under pernsisient distunbances
(or fotal stability). It can be shown ([Hah]) that uniform
asymptotic stability in the sense of Lyapunov implies total
stability, which makes it relevant to consider Lyapunov
stability even if the ultimate interest is in additive

disturbances.

Alternatively, the fi's may be perturbed by functions Iir
which are not necessarily small, but which satisfy

i(O, 0, «e.,0,t) =0.

Such perturbations arise as models of parameter fluctua-
tions or nonlinearities which are not accounted for in the
modelling. The problem of investigating stability (in the
Lyapunov sense) under such disturbances is the one envis-

aged in the present work.
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1.2 Frequency domain stability criteria

An early attempt in this direction was the formulation

of the absolute stability problem by Lure and Postnikov
([Lur]) . The configuration, which has become a standard
one in modern stability theory, consists of a linear, time-
—invariant link in the forward path and a time-invariant

nonlinear function in the feedback loop.

Lure and Postnikov proposed to find conditions on G(s)
that would ensure stability of the feedback system under
the sole condition that

gd(oc) > 0 for all o.

The breakthrough came with Popov . ([Pop]l), who pfoved a
criterion based on the frequency response function G(iw).

The condition turned out to be a positive-realness one.

Definition 1.4 Let G(s) be a square transfer matrix whose

entries are analytic in the open right half-plane. Then

G(s) is said to be positive real if
(G(s) + G (-s)) 3 0

for all s with Re(s) > 0.
G(s) is termed strictly positive neal if G(s-e) is positive

real for some € > 0. o

G(s)

-¢()

Fig. 1.1 - The standard configuration.
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The synthesis problem is thus reduced to one of making a

certain transfer function positive real.

The only concern in this work is with time-varying non-
linearities, and the Popov criterion is therefore not appli-
cable. The appropriate stability theorem to use is instead
the circle criterion. Early versions were given by Rozen-
vasser ([Roz]) and Narendra and Goldwyn ([Nar 1]). Their
results were generalised by Sandberg and Zames using func-
tional analysis methods. Two forms of the multivariable
circle criterion will be used here. They are in fact equi-
Valent, and one can be obtained from the other by means of

a simple loop transformation (see [Nar 2], which also con-

tains a proof of the theorem).

Circle criterion. Consider the configuration of Fig. 1.1,

where 9 (+, -) is a mapping from |RYx R into [RY satisfying

@(G,t)T(®(0,t)-K.o) <0

for some positive scalar k and all o € IRq, t > tO.
Then the trivial solution of the ordinary differential equ-
ation corresponding to the given feedback system is uni-
formly asymptotically stable in the large if k.G(s) +I is

strictly positive real. o

Circle criterion, small-gain form. Consider the same con-

figuration as above but with ®(.,.) subject to

| ®(o,t) || < «x-.

| o ||
for some positive scalar x and all ¢ € IRq, t 2 tO.

Then stability holds if

sup max {Ai(GT(—iw) G(iw))| < 4%—. o
we€R i K
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1.3 Geometric control theory concepts

A brief review of some fundamental concepts from Wonham's
geometrical control theory will be given here. For a de-
tailed exposé including proofs, the reader is referred to
[Won 417.

n

An (A,B)-4nvariant subspace V of IR is a subspace that

satisfies
AV < V + Im(B).

Equivalently, there exists an L such that

(a-8LY) v <.

Every subspace W of |R" contains a maximal (A,B)-dinvariant
subspace. The maximal (A,B)-invariant subspace of W/, denoted

by V*, can be generated by the algorithm

v~y
v =y AT 4 oe))
which converges in a finite number of steps to U*. (A_l

denotes inverse image and does not imply that the indicated

matrix inverse exists.)

A controllability subspace R of R™ is a subspace for

which there exists an L such that
T
R =< A-BL" | (Im(B) NR) >,

Every subspace W of IR" contains a maximal conthollabillity
subspace. The maximal controllability subspace in W, denoted
by R*, is a subspace of U* and can be generated by the algo-
rithm

RO~

R = yx g (arv1) +Im(B))
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which converges in a finite number of steps to R*.

The following important pole assignment property holds
([Wwon 4], Prop. 4.1 and Cor. 5.2):

if V* is a maximal (A,B)-invariant subspace of
W< IR" and R* the corresponding controllability
subspace, the spectrum of (a-BLT) is freely assign-

able on R* + (IR - V*) with L subject to

(a-BLT) Vv*x < vx,
Finally, let L be such that

(A -BLT) Vv*x < v*,
Consider the canonical projection P:IRnean/R* and denote by
A* the mapping induced by (aA-BLT) in R"/R*. Let p(s) be the
minimal polynomial of A*, restricted to V*/R*, and let
p_(s)p+(s) be a factorization of p(s), where p_(s) contains

all the zeros of p(s) in the closed left halfplane. Then

the space V* is defined as

Vx = b (Rer (p_ (a%)) n Vk/R*).

For readers who are not used to this geometric apparatus,
some comments relating these definitions to more well~known
concepts might be justified. Any linear subspace W of [RD

can be written as the kernel of some linear mapping,
W = Ker (MT).

Assume first that
rank (M) = rank(B).

Then it can be shown (this is done in Chapter 2) that an L

which realises
(A -BLT) Ux < Ux
places poles in all the zeros of the transfer matrix

H(s) = M (sT -a) T B.
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The condition for V* to equal W is consequently that H(s)
have a maximal number of zeros (= n-rank(M)), or, equiva-
lently, that MTB be nonsingular ([Koul). Further, V* will
equal V* if all the zeros are located in the closed left
half-plane. Notice that in general the spectrum on V* will

be fixed in this case, so R* = 0.

If
rank (B) > rank(M),

H(s) will in general have no zeros, and it can be shown
(this is also done in the following chapter) that if this

is the case, it is possible to satisfy

(a -BLT) Vx < ux
and still to place the closed-loop poles arbitrarily, so,
in general,

V = Ux = Rx*

in this case.

Finally, if
rank (B) < rank(M),
V¥ = R*x =

in general.

The physical interpretation of the subspace V* is that a
motion starting in it can be kept there by means of a suit-
ably chosen feedback. The same holds for R*, with the
additional requirement that the dynamics of the motion can
be chosen arbitrarily. V* finally contains the modes that
are "naturally" stable plus the ones whose spectrum is

freely assignable subject to the constraint that

(A - BLT) U* c v*,
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In summary: generically, any linear subspace of codimen-
sion equal to the number of inputs is an (A,B)-invariant
subspace, and any subspace of codimension less than the

number of inputs is a controllability subspace.
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CHAPTER 2. STABILISATION OF SYSTEMS WITH CONE-BOUNDED
NONLINEARITIES

This chapter contains the main theorems on robust regu-
lators for systems given by equations perturbed by time-
varying nonlinearities. The most important contributions
are Theorem 2.2 and Corollary 2.1, which deal with plant
uncertainty. These results also provide some extensions
(Thm. 2.3) of a theorem by Kwakernaak and Sivan ([Kwa 2])

on limiting forms of linear—quadratic optimal control.

For input-channel disturbances, some easy extensions of

the standard results on the robustness of optimal regula-
tors are given in § 2.3. Haussmann's theorem on stabilis-
ability under control-dependent disturbances (Thm. 2.4) has

been included for later reference.

The above solutions assume that the state is accessible
for measurement. The more general problem of output feed-
back is discussed in the last two sections. As in the
standard linear case, the solution is based on a recon-
struction of the sfate. This consequently calls for the
construction of an observer for the nonlinear system in
question. A convergence result for the basic observer
structure, which is a straightforward extension of the
linear Kalman-Bucy filter, is proved in § 2.4 (Thm 2.5,
Cor. 2.2) by simply dualising Theorem 2.2 and its corol-
lary. Overall stability of the system and the observer
follows trivially from a perturbation theorem (Thm. 2.6).
For practical purposes, however, Theorem 2.7 on reduced

Observers is believed to be much more important.
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2.1 Formulation of the robust regulator problem (RRP)

Consider a nonlinear, time-varying system given by

ax

T () = ax(t) - No(MTx(t), t) + Bu(t) + To(u(t), t).

(2.1)

Here, x GIRn, u € mP, A is (nxn), M and N (nxqg), and B and
T are (nxp) métrices. ®(+,+) and O(-,+) are nonlinear
mappings from RYx R into RYZ and RP x R into RP, re-
spectively, which satisfy the conicity conditions

|| 8(o,t) || < x-|| || for all o € RY, ¢ 3 to-

: (2.2)
[l o(t,t) || g «-

t|] for all T e RP, t 3 tgy-
(There is no restriction in assuming the same sector for &
and 0, since this may always be accomplished by a re-scal-
ing of N and T.)

Further, (A,B) is assumed to be a controllable pair. Spe-
cifically, this implies that if T is zero (no control-
-dependent disturbances), A can be assumed to be stable

without loss of generality.

Equation (2.1) is quite general, although it has been
written in a rather special form to make an application of
the circle criterion easy. The minus sign is chosen for

conventional reasons.

Relatively to Equations (2.1), (2.2) the following problem
(the nobuét*)&eguZaton probfem, RRP) may be posed:

i) Given A,B,M,N, and T, when does there exist, for

any given k, a linear, constant feedback law

u(t) = - LTk (t) (2.3)

*) Notice that some authors (e.g. Davison) use the word

"robust" in a different sense.
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such that the null solution of (2.1) - (2.3) is

uniformly asymptotically stable in the large?

ii) If such an L does not exist for any given k, can
apriori bound on the maximally permissible sector

radius k be given?

Definition 2.1 Penfect robustness (PR) of (A,B) with
respect to (M,N,T) is said to be achievable if a stabilis-

ing L exists for any given k. o
A study of simultaneous perturbations in the plant and in

the input channels is difficult to carry through. These

two problems will therefore be considered separately.

2.2 Plant uncertainty

In this section, the following special case of equation

(2.1) is considered:

9x

o (B = Ax(t) - No (MTx (t), t) + Bu(t). (2.1) "

2.2.1 Solution of the RRP

Since ¢ is a nonlinear time-varying function, the multi-
variable circle criterion is the appropriate stability
theorem to use. Recall (§ 1.2) that, for a given k, stabil-
ity holds if

sup max IAi(GT(—iw) G(iw))]| < ;% ,
wER i K
where in this case
G(s) = MY (s1-a+BrT)7 1 N, (2.4)

The problem of the transfer matrix (2.4) is that, unless
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Im(N) € Im(B), not only the poles but also the zeros
depend on L. This indicates that a straightforward high-

-gain design need not be successful.

In any case, it might be tempting to let all eigenvalues
of the matrix (A—BLT) tend to negative infinity along some
properly chosen half-rays in the left half-plane, which

are symmetric with respect to the real axis.

To motivate the definition below, a simple special case

will be discussed. Let

(% % ... % % (1
1 0 O
A=10o 1...0 o] BT
L0 0 ...1 o0 L0

be the controllable canonical form of the linear part of
the system (asterisks denoting possibly non-zero entries).
It is fairly easy to see that disturbances of the form
N®(MTx (t), t) can be quenched by the regulator for the
above choice of L if |

Im(N) < Im(B).

Now, the ones of the A-matrix denote the integrators by
which the input can reach successively the subspaces AB,
A2B etc. It seems reasonable that N could belong to the
subspace spanned by B and AB provided that the one in the
(2,1) position is not touched by the disturbances, i.e.

provided that

Generalising this idea leads to the following definition.

()

Definition 2.2 Let the sequence S be defined by

sO) - 1n(m)

s = g D) L a(ger (uT) n gDy,
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and let S* be the first S(U) satisfying

s _ gu=1)

Theorem 2.1 PR of (A,B) with respect to (M,N) is achiev-
able if

Im(N) c S*. o

Proof. Consider first the single-input case. If Im(N) <
Im(B), G(s) may be written as qg(s)/p(s), where g(s) is
independent of L and p(s) is the closed-loop characteris-
tic polynomial. If the closed-loop poles Py i=1,2,...,n
are chosen as t-pio, where t is real and the pio's are in
the left half-plane,

n
= 40 5 _
(S_t'poi) =t I ( pOi).

p(s) =
1 i=1 ¢

|}

i
Writing g(s) in the same way shows that G(s) will indeed
tend to zero uniformly on the imaginary axis as t tends to

infinity, since the degree of the numerator is at most
(n-1) .

For the general single-input case Im(N) < S*, write

MY (sT-A+BLY) 1 aB =

“list+a-8.T) B +

Ty=1 T

MY (sT - a +BLT)
T

+ M7 (sI - A +BL sI +BL

T) _l

B =

T T

- M'B + M B+ (s +1TB).

(sI -A+BL

Continuing this way gives

1

MT (

sI-A+BLY) T abB =

= - A Dg L oyTa=2lg oy g (=1 Tpy 4

+ MT(SI --A-i-BLT)_lB(s;Ll +S(U‘1)LTB+ . +LTA(U_1)B).

If Im(N) < S*, the first term above will give a zero
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contribution to the expansion of G(s) = MT(sI—A+BLT)—lN.
Notice also that the second term is strictly proper,
since the last factor of this term is compensated for by

a greater pole excess of G(s) (cf. [Koul).

With the same pole placement as above,

tTaVs = oV,

This implies that the coefficients of the factor

(sM +,s(“'l)LTB +ooe.t LTA(u_l)B) (2.5)

remain bounded as the complex variable is changed from s
to s/t. By the same argument as above, it can be inferred
that the modulus of G(s) can be made arbitrarily small
uniformly over the imaginary axis by choosing t large

enough.

For the general multi-input case, choose a basis bi’ Abi
etc. in S$* and complete this to a basis for R™. In this
basis, A and B have the following structure (asterisks de-

noting possibly non-zero entries):

(< @l ] < @2 —> | | ¢——0 _) f<———p-———+
L 0 *x | * | . . * é
< | 0 I l 0 . . 0
\ | | | :
0 1 * | * | | * 0
x| * | | * 01
0 L ° D o, 0 .
A= " \\\ . | | ; B= .
* | 0 1 x | | * 00
I T N I o
* | x| I * 1
I - I I l O L) O
0 B 0 : \\\ . 0
* l I )
* | * | | O 1 % 0
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After a standard change of basis, this can be brought into

r

< 0

0

|«— 0 Y

! 5]
* * | x ... x| S
1 0]
| I J
\ | o 0
R R L S
* ... ok |k LL.0 % | | * ee %
o 0 |
A= 0 | \\\ | | 0 ; B as before.
0 1
I A I
. | . | I .
T
x . TR | R %
1 0
S 1\
| |
L i | 1 01

The feedback matrix L can be chosen so that all entries
outside the diagonal blocks are zero. If this is done, the
closed-loop poles will be given by the eigenvalues of dia-
gonal blocks. (Using this structure, it may not be possi-
ble to generate all closed-loop pole configurations, but
this is irrelevant for the conclusion.) If L is chosen so
that the closed-loop poles tend to infinity as indicated
above,

tj—l+l)

O( in the diagonal blocks

s e = ,t—>oo
1]

0(1l) otherwise
Consequently, LTaAVE = O(tV+l), and it follows that the
elements of G(s) can be made arbitrarily small uniformly

over the imaginary axis if t is chosen large enough. o

Remark 1. An examination of the above calculations shows
that nothing is gained by letting aff poles tend to in-
finity. In fact, it is sufficient to place u of them, u

being the dimension of S*, far out in the left half-plane.
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This observation will be important in the sequel. o

Remark 2. The space S* is in fact the orthogonal comple-

ment of the maximal (AT

/M) -invariant subspace of Ker (BT)
of the dual system (BT,AT,M). This (not.very intuitive)

interpretation will be exploited later. o

The condition for the high-gain design to be successful
is a fairly restrictive one. However, there are other,

more efficient ways of reducing the effects of the dis-
turbances. The idea is to make the system maximally un-

Observable from MT

. This may fix some of the closed-loop
poles. The freedom that is left is used to let the remain-
ing poles tend to negative infinity along the lines of

the preceding theorem.

Let V* be the maximal (A,B)-invariant subspace of Ker(MT),
and let R* be the corresponding maximal controllability
subspace. Finally, let V* be the subspace of V* that was
defined in § 1.3. The following theorem then holds.

Theorem 2.2 PR of (A,B) with respect to (M,N) is achiev-
able if

Im(N) = S* + U*, o

Proof. Choose an L such that

(a-BLT) V¥ < ux,

Then V* consists of the modes in Ker(MT) with eigenvalues
fixed in the left half-plane plus the ones whose spectrum
is freely assignable. These modes do not contribute to
G(s) and can thus be discarded as long as internal stabil-
ity is ensured. There may be eigenvalues on the imaginary
axis for the chosen L, but if this is the case, L may be
perturbed slightly in order to achieve asymptotic stabil-
ity without destroying the PR property. Outside V*, where

the spectrum is freely assignable, the poles may be placed
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arbitrarily far out in the left half-plane. If V*nS* 3 0,
it follows from a theorem by Bengtsson ([Ben], Thm. 4.1)
that V*¥ n S* < R*, so there is no conflict between these

two strategies. o

The following corollary gives a somewhat more concrete

picture of the situation.

Corollary 2.1 i) If p=qg, PR of (A,B) with respect to

(M,N) is acheivable if

H(s) = MY (sI-a) 1B
is invertible and has no zeros in the open right half-plane.
ii) If p > g, PR of (A,B) with respect to (M,N) is achiev-

able if H(s) is right invertible and has no zeros in the
open right half-plane.

iii) If p < q, PR of (A,B) with respect to (M,N) is in
general not achievable (using these methods; cf., however,
Remark 1 following the proof). o

Proof. i) (p=gq) The proof consists of two parts. First

the invertibility assumption will be shown to imply that
S* 4+ yx = g",
The claim then follows once it has been proved that V¥ = Vx*

if H(s) is minimum-phase.

Notice first that the algorithm generating V* can be modi-
fied slightly to look like

V(O) = Ker (M7)

TALUNSETAU RV A"ty ney).
Compare this with the S* algorithm:

5 (0)

= Im(B)

st _ s(“'l)-+A(Ker(MT) n S(“"l)).
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A moment of reflection in the right direction shows that

(W) yL _ ()
(S ) - Vd 4

VQU) being the sequence generating US,‘the maximal (AT,M)—
—-invariant subspace of Ker(BT) in the dual system (quﬂaM).
Further, invertibility of H(s) is equivalent to ([Sil])

V* N Im(B) = 0O,

which in turn implies that R* =0. According to the pre-

viously mentioned theorem by Bengtsson ([Ben], Thm. 4.1),
RE = vx n (vHT,

which completes the first part of the proof.

To conclude, it will be shown that any L satisfying
(a-BLT) V¥ < v*

places closed-loop poles at the zero locations (this was
even proposed as a definition in [Ben]). The zeros of the
invertible transfer matrix

T

H(s) = MY(sI-a) 1B

can be defined as the complex members s for which the

matrix
sI-A | B
e
Mt 1 o
loses rank ([Ros 2]). Further, the poles corresponding to

unobservable modes of the closed-loop system (M:LA—BL?Iﬂ
are the points where

sI-A+BLT

- = - - - (2.6)

loses rank ([Ros 1], Ch. 2). From this it is clear that

an eigenvalue corresponding to an unobservable mode is
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also a zero. Now assume that Sg is a zero, and that

Vi
v = -
Vo

is an (n+p)-vector satisfying

(SOI—A) vy +BV2 =0

(2.7)

Clearly, vy # 0, whence there exists an (nxp)-matrix L

satisfying

Thus (2.7) can be written as

T _
(SOI-Am+BL ) vy = 0

MTVl =0,

which on comparison with (2.6) shows that Vi is an
unobservable mode and that Sy is the corresponding eigen-
value. Summarising, all zeros will be eigenvalues for any

L satisfying
(A-BLT) vx < y*,

The minimum-phase condition then ensures that

ii) (p>g) That zeros of H(s) (if any) are also closed-

-loop poles for any L subject to
(A-BLT) V* < v

follows in the same way as before. It will be shown that,

in the absence of zeros,
R¥ = V¥,

To simplify matters, assume that
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Ker (MT) = V*,

Recall that Ker(MT) is a controllability subspace iff
T n-l T, 1 T
Ker(M™) = ¥ (A-BL") (Ker(M™) nIm(B)) (2.8)
i=0 s

for any L such that

(a-BLT) v* < vx.
Assume that

Rer (M) N Im(B) = Im(By),

where
B = {Bl l Bz}.

The definition of zeros given for the square case above
is equally valid for nonsquare systems ([Dav]). In a

suitable basis, this matrix takes the form

< q > < (n—q) > < (p-q)_—-) ——qg—>
(O (P - S o | 5 )
? q 1l ds (n-q) | "a,(p-q) | 21
1 O N I
(nl ) Do STin-q)™P22 1 Br2 | B2z (2.9)
T e B T R s BT
I 0 0 0
f q : q, (n-q) : g, (p-q) : q,9
\ J
where A = (A—BLT). If (2.8) does not hold, there is an Sq

such that the (n-q)x(n+p-2q)-block in the centre of (2.9)
has rank < (n-q). But then the full matrix has rank < (n+q)

for S =84, which was to be proved.
iii) (p<q) dim(V*) + dim(S*) < (n-1). o

Remark 1. The corollary is weaker than the theorem, since
N does not enter. For instance, PR is achievable with
respect to any number of nonlinearities in Im(B). But as

a condition on M, A, and B only, the minimum-phase
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condition is necessary. For, dualising the previous
results, it is easy to see how N should be chosen in order
to make the system maximally uncontrollable from B. Pick-
ing such an N and letting <I>(-,-)==Iq implies that system
will contain uncontrollable, unstable modes irrespectably
of the choice of L. Whether the minimum~phase condition is
necessary for a fixed N is a considerably more complex

problem. o

Remark 2. Nonsquare systems have zeros only in "exceptio-
nal" cases. PR is thus generically achievable in case

P> qg. @O

According to iii) of the corollary, PR will in general not
be achievable in the case p < g. There will have to be a
trade-off between the maximally permissible sectors for
the different nonlinearities. The theory used so far gives
no indication of how this problem should be tackled. A
method for solving the RRP in this case, which is perhaps
the most common in practical applications, is proposed in
the following section. A slightly different approach is
suggested in Chapter 5.

For this case (p <qg) and cases p =g when PR is not achiev-
able, it would be desirable to produce bounds for the
maximal sector of the nonlinearities, based on A, B, M,
and N. This is difficult, however, already for the simpler
problem in which the nonlinearity is replaced by a con-
stant, unknown gain, ranging over some finite interval.
Obviously, the critical values of the gain (if any) for
which the system will contain uncontrollable, unstable
modes, are bounds for the permissible sector. That the
interval in which the gain can take its values contain no
such critical value is, however, not a sufficient condi-
tion for stabilisability, as is shown by the following

counterexample.
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Example 2.1 Consider the linear, time-invariant system

given by
000
g—’é (t) = |1 0 0] x(t) —«| 2|(1-20 20) x(t) +| 0| u(t).
010 :

It is readily verified that this system is controllable

for all positive values of k. Applying the feedback

yields the closed-loop characteristic polynomial

P (s) =87 +s £l+5K)-+s(—lOK-+22(l—2K)-23K) +

+ 21-4O|< + &L2-20|< + 23 (1L+8k) .
For k = 0,

3 2
S -+£ls -+225-+2

pK(S) 37

and necessary conditions for stability are

L. > 0, i=1,2,3. (2.10)

3

- 2 -10=0 =
pK(s) = g~ + s (sLl+5) +s (=10 %4 23) +405Ll+2022+923,

and a necessary condition for stability is

lO+JZ,2+,Q3 < 0. (2.11)

Clearly, (2.10) and (2.11) are not compatible, whence
there exists no fixed, linear, constant feedback law that
stabilises the system for all values of k in an interval
that contains [0,1]. o
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2.2.2 Solution of the RRP using linear-quadratic optimal

control

The object of this section is to show that the feedback law
derived previously is easily generated within the framework

of linear-quadratic optimal control (LQOC) theory.

Consider the problem of minimising, with respect to uf(-:),

the performance index

Jp = J (X(S)TMMTx(s)-+p u(s)TRu(s)) ds, (2.12)
0
where x(+) solves
dx
—(t) = Ax(t) + Bu(t)
dt (2.13)
x(0) = g

It is well known that the solution is given by

-1

u(t) = - p R™L

BTpr(t),

where Pp is the largest solution of the algebraic Riccati

equation
ATp +p An+MMT-p'lP BR™18TP = 0. (2.14)
p P P P
The minimum value of Jp is given by x&ijxO.

The asymptotic behaviour of the solution L and the result-

ing closed-loop system was investigated by Kwakernaak and

Sivan in [Kwa 2]. Define
PO = 1lim P
p-+0

(the limit always exists) and let

¥

Then the results of [Kwa 2] may be summarised as follows:

Il

rank (B)

rank (M) .
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i)  if p<q, Py#0.

ii) 1if p=gq, Pp=0 if and only if H(s)=Dﬂ%sI—Ale

has no zeros in the open right half-plane, pro-
vided that H(s) is invertible.‘

iii) if p>qg a sufficient but not necessary condition
for Py to be zero is that there exists a (pXxq)-
-matrix D such that ﬁ(s)==MT(si—AleD satisfies

the condition of ii).

Consider first the case p = g. Clearly, Py cannot be equal
to zero if the closed-loop system has finite poles, whose
corresponding modes are observable from MT. This implies
that the solution of the LQOC problem (2.12),(2.13) asymp-
totically reproduces the feedback gain obtained in § 2.2.1
by entirely different methods, provided that H(s) is
minimum-phase. If, on the contrary, H(s) has right half-
-plane zeros, some closed-loop poles tend to the mirror
images of these zeros with respect to the imaginary axis
as p tends to zero. The corresponding modes then remain

observable from MT

also in the 1limit, and P0=#0. The. modes
discussed here correspond to V* in the earlier notation;
that S* belongs to Ker(PO) can be inferred directly from

the Riccati equation.

Consider now the case g < p. It will be shown that the
minimum-phase condition is valid also in this case. Sec-
tion 2.2.1 exhibits a feedback law that makes the closed-
-loop system unobservable from MT
side V* far out in the left half-plane, all this provided
that H(s) = MT(SI-A)—lB is minimum-phase. A straightfor-

ward calculation shows that this suboptimal u makes J

and places the poles out-

zero in the 1limit, whence Py must be zero.

Further, if H(s) has a zero, then this zero will asymptot-
ically be a pole of the closed-loop system generated from
(2.12),(2.13). To see this, consider the standard
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frequency domain equality obtained from the Riccati equa-
tion (2.14) (cf. [Kwa 1], § 3.8):

1

pCL(S)PCL(“S) = p(s)p(-s) det(Ip-+E R—l

HT(—S)H(S)).

. (2.15)
(pCL(s) and p(s) are the closed-loop and open—-loop charac-
teristic polynomials, respectively.) If H(s) is invertible,
det(H(s)) $#0, and it follows from (2.15) that the finite
closed-loop poles approach the zeros of H(s) as p tends to
zero. However, if g<p, det H(s) =0, and the coefficient
of p—p is zero. The first non-vanishing coefficient is that
of p~9 ([Gan], p. 70), which equals the sum of all (gxqg)-
-minors of HT(—s)H(s). If H(s) has a zero Sy (s—so) is a
factor of all these minors of H(s) ([Kon]), and it follows
that Sg (or its mirror image in case it is a right-half-
-plane zero) is indeed a closed-loop pole in the limit. In
the nonminimum—-phase case, the closed-loop system will
have finite poles, whose modes remain observable from MT

as p tends to zero, and PO will be different from zero.

Summarising, the minimum-phase criterion is valid also in
the case g<p, and it is further generically satisfied. The
following extension of Kwakernaak-Sivan's result has thus

been established.

Theorem 2.3 Let Pp be the largest solution of the alge-

braic Riccati equation (2.14), and assume that
i) rank(M) = rank(B) and
H(s) = MT(sI-a) 1B is invertible,
or that
ii) rank (M) < rank(B) and
H(s) is right invertible.

Then the rank of

PO = lim P

o+0 P
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equals the number of right-half-plane zeros of H(s), and

Ker (P = S* 4+ U*x, n

o)
Remark 1. It is not clear from the proof in [Kwa 2]
whether the assumption on invertibility is essential. That

this condition is in fact necessary can be concluded from

the following counterexample.

Example 2.2 Consider (2.12),(2.13) with

000 10
T 010
A= |100(; B=|01l]; M = .
0 01

H(s) = MY (sI-A) 'B =

has no zeros, but

00O
Py = 0 00. o
001

Remark 2. Although Thms. 2.2 and 2.3 are closely related,
they are independent. To see the difference, let

A=1 - p‘lBR‘lBTPp,
and pick any vector xy € Im(N). Then

T

lim x.P x, =
00 0" p~0
(T ~T T, 1 -1.T ~
= lim xo<jexp(A s)(MM™ += P BR "B'P )exp(As)ds)xo >
ox0  O\p P o P

W

lim xo [ exp (ZXTS) MMT exp (As)ds ) x, =
0 0
p>0 0

= lim x%(if(—iwI-AT)_l MMT(iwI-i)—ldw> X
p+0 —00

so that, with G(s) = MT(SI-A)—lN,
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Im(N) < Ker(P,)

implies
[ee)

lim [ GT(-iw) G(iw) dw = 0.
p>0 =

However, for the circle criterion an estimate of

sup max ]Ai(GT(—iw)G(iw))]
WER i
is asked for, and in general there are no implications

between Ll—convergence and L_-convergence. 0o

The reason why the LQOC apparatus has been introduced is
twofold:

i) It provides what is believed to be a sane way of tack-
ling the case g > p. PR is in general not achievable in
this case, and the maximally permissible sectors for the
nonlinearities are conseqguently interdependent. It is then

possible to choose the penalty on x as a weighted sum:

3, = J(x(s)To,x(s) +u(s) Ru(s)) ds,
0

where a Ai should be chosen large if the corresponding

sector radius is large and vice versa.

ii) So far the only concern has been to produce a feedback
gain matrix that guarantees stability under certain per-
turbations. In practice, stability will not be the only
requirement on the design. The LQOC framework permits one
to make a suitable trade-off between robustness and other
specifications, such as the transient behaviour of the
nominal plant. This is basically a trial-and-error proce-

dure, as is synthesis via LQOC in the standard case.
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2.3 Input channel uncertainty

The case of control-dependent disturbances will now be
tackled. The special form of equation (2.1) to be studied
is consequently

—g-fé(t) = Bx(t) + Bu(t) + To(u(t),t). (2.1)"

Section 2.3.1 considers the case when thé implementation
of a desired linear, constant feedback law is corrupted by
timevarying nonlinearities. The results can be expressed
in classical terms such as gain and phase margins. In §
2.3.2 more general control-dependent disturbances are con-

sidered.

2.3.1 Gain and phase margins for high-gain regulators

Since the discovery by Kalman of the frequency domain

inequality satisfied by linear-quadratic optimal control
regulators, an abundance of literature has been produced
on the robustness of these regulators (see e.g. [Kwa 1],

§ 3.9, and [Saf]l). The basic results are as follows. Let
G(s) = LT (sz-a+BLT) 1B,

where L is the optimal gain derived from the Riccati equa-

tion:
1T = r~18Tp
ATp + pA + 0 -pPBR™IBTP = 0.

Elementary manipulations of this equation lead to the

equality

T
I_-G(- R(I_- =
(I,-G(=s))" R( 56 (s))
= R-BT((—sIn—A+BLT)T)_l Q(sIn—A+BLT)—lB. (2.16)
(Notice that the above equation is given for the closed-
-loop transfer function and that it is thus not quite

standard.) Suppose for simplicity that R==Ip. If Q is at




47

least positive semidefinite, the second term on the
right-hand side is nonpositive on the imaginary axis. A
straightforward application of the circle criterion then
shows that system stability will be retained if the nomi-
nal input is perturbed by any timevarying nonlinearity

®(-,+) satisfying the sector condition
ot (0,t) 3 oTo(- %-+e) for some € > 0. (2.17)

This is illustrated in Fig. 2.1. This covers gain drops by
fifty per cent, and also any dynamical perturbations (for
instance neglected actuator dynamics) subject to the above
sector condition. The only requirement is that Q be
positive—semidefinite, and no restriction is laid on the
plant. It can be shown by examples that (2.17) is tight,
i.e. cannot be improved without further information about
A and/or Q.

Various extensions of the above result have appeared in

the literature, for instance in [Won 2]. In this paper,

the problem of maximising the permissible sector for the
nonlinearity ¢ was also posed. It will be shown that this
problem has a trivial solution and that, as such, it is not

very meaningful.

-(Ip+ (-, 1))

Fig. 2.1 - Tllustrating the robustness result of (2.17).
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Obviously, a necessary sector condition for open-loop

unstable plants is
078 (a,t) » olo(-lte), €>0. (2.18)

For certain feedback gains, this is also sufficient.

Proposition 2.1 For any positive €, there exists a feed-

back gain L that guarantees stability of the closed-loop
system for any perturbation from the nominal gain subject

to inequality (2.18). o

Proof. Choose any feedback gain Ly, designed via linear-
—-quadratic optimal control with a Q > 0 and use

1

L—_-—E- L

0° m]

Maximal robustness in the above sense can thus be achieved
by choosing a large nominal gain. An alternative means to
produce such a gain is to let the penalty p on the input
tend to zero in the optimal control problem along the lines
of § 2.2.2. This is not quite equivalent, however. A neces-
sary condition for improved robustness as p tends to zero
is that the function BT(—sI—AT)_lQ(sI—A)—lB have no zeros

on the imaginary axis.

In classical terminology, stability under the condition
(2.18) implies infinite gain margin, and asymptotically
100 per cent gain reduction tolerance and 90 degrees phase

margin.

A few words of caution are necessary here. Using high gains
in order to achieve a larger gain reduction tolerance and
a better phase margin may not be so successful as the above
results would seem to indicate. For instance, if the gain
drop is due to saturation, there is obviously no point in
increasing the nominal gain, since this will only make the

regulator saturate more often.
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Secondly, high gains means high bandwidth, which in turn
implies that dynamics neglected in the modelling phase may
become important. This implies that what has been gained
in phase margin may very well be consumed by no longer

negligible actuator dynamics, for instance.

These arguments indicate that the problem of maximising
the robustness of the controller in the -above sense is not
well-posed. For the solution to be practically meaningful,
robustness must be achieved without recourse to high gains.

These matters will be discussed elsewhere ([Mol]).

It is necessary to point out that the gain and phase
margins hold separately. A simultaneous gain drop and
phase shift in the implementation may well result in insta-
bility even though they are in the permissible interval

when considered separately.

Finally, it should be stressed that the above results
assume that the state is accessible for measurement. Some
errors on this point have occurred in the literature. If
the state is not measurable, and the synthesis is based on
an observer, two cases may occur. If the disturbance & (., -)
is known, it can be included in the observer, and the
robustness result is still wvalid. If it is not known,

therne L8 no generally valid robusitness rnesult whatsoeven
([And]l, § 9.1, [Doy1).

2.3.2 General disturbances

The purely geometric problem of selecting linear combina-
tions of the inputs in order to achieve complete disturb-
ance isolation was solved by Haussmann in [Hau]. Haussmann
discusses the stochastic problem of stabilising, in the
L,-sense, a linear system with white-noise input-dependent

disturbances. The results are geometric in nature,
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however, and are equally valid for the problem to be
treated here. Only a brief sketch of the arguments will
be given here. For the details, as well as for the neces-
sity part of the proof, the reader is referred to [Haul.

N

The system equation is repeated for convenience:

—g—%(t) = Ax(t) + Bu(t) + To(u(t),t). . (2.1)"
The problem is to find conditions under which (2.1)" can

be stabilised using linear state feedback as the confining
sector of the nonlinearity 0 (:,+) increases without bound.
The condition rank(T) = p, which was introduced in the

formulation of the RRP, can be dropped in this context.

The basic idea is given in the following simple proposi-

tion.

Proposition 2.2 Let X_ be the subspace of R" spanned by
the stable modes of A. Assume that (A,B) is a stabilisable

pair, and that
Im(T) < X_ . (2.19)

Then the system given by Eguation (2.1)" is stabilisable

for arbitrarily large disturbances 0(-,-). o

The proof is omitted.

In the single-input case, this exhausts all possibilities.
In the multivariable case, however, it may be possible to
proceed under the additional assumption that the disturb-
ances enter linearly. In this case, the system equation

can be written as

%fci(t) = Ax(t) + Bu(t) + T(u)k(t),
_ where
p
T(u) = > T.ua.
i=1 t
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() = (e (), ky(E), wany ko (E)),

and the Ti’s are {(nxq) matrices. The idea is to split the
state space into a sequence of subspaces, where each
subsystem is stabilised by a control praducing disturb-
ances only in the subsystems that have already been

stabilised.

Theorem 2.4 Define

MT(X) = {Bu; Im(T(u)) € X}.
Let the sequence T(U) be generated according to
70 = x_
) o =) A| Moy (T(u-l)) >,

and let T* be the first T(u) satisfying
70 _ pu-1)

Then the system given by equation (2.1)" is stabilisable

for arbitrarily large disturbances if

T* = R, o

It should be stressed that the condition of the theorem is

a restrictive one.

2.4 Observers for nonlinear systems

The solution of the RRP presented above assumes that the
state is accessible for measurement. If this is not the
case, some sort of state reconstruction Will be necessary,
which poses the problem of constructing an observer for
the nonlinear system in question. Great efforts have been

made in the area of nonlinear filtering, but the solutions
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which are optimal in some sense are generally of limited
value due to their complexity. This justifies a search
for simpler, suboptimal solutions, which can be proved to
converge. Although the problem of reconstruction will be
discussed in a deterministic setting here, it should be
stressed that the question whether there exists a fixed-
—gain observer of the type to be discussed below is of
theoretical interest in itself for the corresponding

stochastic problem (cf. [Tar]).

2.4.; Basic observer structure

Consider the nonlinear time-varying system given by

() = ax(t) -No(MTx(£), £) +F(u(t))
(2.20)
y£) = clx(t).
F(*) 1s any nonlinear, n-vector-valued function, which

includes inputs and known disturbances. As usual, M and N
are (nXq)-matrices, and C is an (nxm)-matrix. The function
®(+,+) is assumed to be known. Notice that the assumption
on linear observations is not so restrictive as it may
seem, since a nonlinearity in the output may often be
transferred into a nonlinearity in the plant via a change

of state variables.

A simple alternative for reconstructing the state of
(2.20) is obviously to use an ordinary Kalman-Bucy-type
filter with a fixed, linear gain. Postulating thus the

observer structure

X (e) = ak(e) ~Ne(uTR(£), £) +F(u(t)) +K(y-cTR(£))
(2.21)
yields the following equation for the reconstruction error

A
e = X~ X:
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ég(t) = (A-KCT) e(t)-—N@(MTx(t),t)-+N®(MT§(t),t)

A
dt

>

(A-KCT) e(t) -N¥(MTe(t), t). (2.22)

Notice that, since x(t) is not known, ¥Y(-,t) is an unknown
function of e, but that it is confined to lie within the
incremental sector of &(+,t). The initial values of (2.22)
range over the whole of R", and a K is therefore sought
which will guarantee asymptotic stability in the large of

the null solution.

Two important differences between the regulator and the
observer cases should be noticed. In the observer case,
®(-,+) must be a known function, since otherwise the esti-
mate will be biased. Further, the sector of ¥ (-,t) appear-
ing in equation (2.22) is the Aincremental sector of &(*,t),

which is always larger than the confining sector of &(-,t).

The following theorem and its corollary are proved by
simply dualising the results of § 2.2. The involved spaces

Sg, V;, and Vfd are now subspaces of the dual of RI.

Theorem 2.5 There exists a K such that the null solution

of equation (2.22) is globally uniformly asymptotically

stable for & (*,t) incrementally in any finite sector if
T * *
Im(M*) < Sg t V_d. o

Corollary 2.2 i) If m = g, a K that ensures consistency

of the estimate exists if
H(s) = cT(s1-n)"1In

is invertible and has no zeros in the open right half-

-plane.

ii) If m > g, a K that ensures consistency exists if H(s)
is left invertible and has no zeros in the open right
‘half—plane.
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iii) If m < g, a K ensuring convergence for all incre-
mental sectors if ®(*,t) can in general not be found
(using these methods; cf., however, Remark 1 following Cor.
2.1). o

2.4.2 An application: state estimation in autopilots for

large tankers

Consider the motion of the ship shown in Fig. 2.2. u and v
are the forward and lateral velocities, respectively, § is
the course, r = dy/dt is the yaw rate, and § is the rudder
angle. u may often be considered as constant in the anal-

ysis.

The ship motion can, with sufficient accuracy, be described
by a third order system (this is the model currently used

in autopilots, cf. [K&l]), which linearised around the

B>

Fig. 2.2 - Coordinates and variables used for the equa-
tion of motion.
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origin, is given by the equations

(dv )

ac (B ajp @35 2p3ffvit) b1

dr _

aE(t) = a21 a22 a23 r(t)| + blz\ S§(t).
dy

= (t) 0o 1 o0 |lw) 0

If the length unit is chosen as the length of the ship,
and the time unit the time it takes to travel a length
unit (given the forward velocity u), the coefficients aij
and bij turn out to be remarkably invariant for different
ships. They depend heavily on the load conditions, however.
If the wind and wave disturbances are negligible, aq3 and
a,3 can be set to zero, and the system in this case con-

tains a pure integrator.

Although the above linear model is sufficiently accurate
when controlling the ship for constant course, it is in-
adequate when the course of the ship is being changed. Non-

linear effects become important even at moderate yaw rates.

The synthesis problem is the following. Suppose that the
course Y is measured. Is it possible to find a constant-
—gain state estimator of the type (2.21) that converges in

presence of the nonlinearities?

Example 2.3 A typical set-up for a tanker, when nonlinear

effects are taken into account, is

’

%%(t) = all'v(t)-C°v(t)' v(t)l-+a12~r(t)-+bll'6(t)
! -g{-(t) = a,"V(t) +a,, r(t) +b 6 (L)

dy _

FE(t) = r(t)

with
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a;; = -0.94
| a19 = -0.36
ay; = -1.75
a,y = -1.19 .
{ by, = 0.23
b12 = =-1.24
and
c = 2.00.

Theoretically, the sector of the nonlinearity @(v)==v-|v|
covers the whole of the first and third quadrants, but for
physical reasons, the sway rate v is bounded apriori. A
conservative estimate for the relevant interval is

[-0.5, 0.5]. Without changing the behaviour of the esti-
mator in the physically relevant interval, & (c) may conse-

quently be replaced by

o+ 0.25 o £ =-0.5
¢ (o) = d (o) -0.5 < o ¢ 0.5
c—-0.25 c > 0.5.

¢ (o) and 5(0) are shown in Fig. 2.3. The incremental sec-
tor of 5(6) is [0, 1].

In the notation of § 2.1,

(-0.94 -0.36 0 (o 1
A= |-1.75 =-=1.19 0)l; C = 0}l; M = 01;
0 1 0 1 0
(2.00
N = o |.
0
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al

Fig. 2.3 - Modifying the nonlinearity & (o).

An inspection shows that N is orthogonal to CT and CTA,
whence the condition of Thm. 2.1 (or rather its dual) is

satisfied. In fact, the condition on

G(s) = MY (sT -a +xcT) "Iy

is rather weak; the circle criterion guarantees (physical-
ly relevant) global convergence of the estimator (2.21) if
(G(s) +1) is strictly positive real. The eigenvalues of A

are 0, -0.27, and -1.87, and if the eigenvalues of (A-KCT)
are chosen for instance as -3, -4, and -5, it can be shown
that this condition is indeed satisfied. This pole place-

ment also gives a bandwidth which is reasonable with

respect to the measurement disturbances. o

Example 2.4 The second example is a fully loaded tanker

of the same size as the previous one. The state equations

are
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(k) =ay v(E) —ep v(t) [Vt | +ay, r(t) +by; -8 (t)
dr — - — - L] »
] gE () =a, v(t) +ay, r(t) —cyytr(t) |x(t) | +by,+8(¢)
dy _
with
( = -
aj; = -0.39
] aj, = -0.45
ay] = =3.40
a22 = _1.058,
{ by, = 0.097
b,, = =0.81,
and
{ ¢, = 1.18
chy = 1.25.

(The open-loop system is unstable, but this is irrelevant

for the analysis.)

Since the number of nonlinearities exceeds the number of

outputs, this is a case for the LQOC design. With
(-0.39 -0.45 0 0 [1 0
A = |-3.40 -1.58 0 |; = 10|; M= |0 1};
L O 1 0 1 0 0
(1.18 ©
N = '0 1.25},
0 0

the condition for global convergence is that

G(s) = MY(sI-a+xCY) "IN
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satisfy
G(s) +I strictly positive real.

A K was found by solving, for different values of A, the

Riccati equation

T T, _
APA + PAA + QA - PKCC PX = 0, (2.23)
where
A0 0
QX = O X 0
0O 0 1

A =10 turned out to be sufficient, yielding the gain

matrix
-3.49
K = -5.65 |.
3.51

The positive realness condition may of course be checked
by means of the Yakubovi&-Kalman lemma; alternatively the
PX solving equation (2.23) can be shown to work as a

Lyapunov function for the nonlinear system in gquestion. o

2.5 Stabilisation using output feedback

The results from the preceding sections will now be com-
bined to provide a solution of the stabilisation problem,
when the full state is not accessible for measurement. In
§ 2.5.1, a simple separation theorem is proved under the
same assumption as in § 2.4, namely that &(-,-) is a known
function. This assumption is somewhat awkward, for there
may be more efficient ways of designing a regulator than
those presented above, if &(-,+) is known. Section 2.5.2

pbresents a simplified observer structure which works
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without this unrealistic assumption, and for which stabil-

ity conditions can be expressed in known quantities.

2.5.1 A separation theorem s

It is natural to ask whether, as in linear systems, the
overall stability of the system, controlled by feedback
from the observer, can be guaranteed from considerations
of stability via state feedback and consistency of the

estimate separately. Under very general assumptions, the

answer is indeed affirmative.

Theorem 2.6 Consider the system of ordinary differential

equations
T (t) = £(x(t), e(t), t) (2.24)
L) = gle(t), t) (2.25)

where the null solution of (2.24) is uniformly asymptotic-
ally stable in the large for e(*) = 0 and the null solution
of (2.25) is asymptotically stable in the large. Assume
that £(x,*,t) is continuous at the origin, uniformly in x
and t. Then the equilibrium of (2.24),(2.25) is globally
asymptotically stable. o

Proof. Due to the continuity assumption, (2.24) can be

written as

T(B) = £(x(t),0,£) +h(t),
where
h(t) = £(x(t), e(t), t) - £(x(t), 0, t)

tends to zero as t = o, The assertion then follows from a

general perturbation theorem ([Hah], Thm. 68.2). o
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Remark. In the case treated here, the uniform asymptotic
stability is guaranteed by the use of the circle criterion

(which ensures even exponential stability). o

2.5.2 Simplified observer structure

The observer structure (2.21) assumes that the exact shape
of the nonlinearities is known. This is of course unreal-
istic, particularly in the time-varying case. The estimate
will therefore in general be biased. It is a trivial matter
to verify that the synthesis presented above will produce

a small (in any reasonable sense of the word) bias, if no

or false information on %(.,.) is used.

This can be exploited further. Suppose that the observer
is part of a regulator whose task it is to stabilise the
given system. If the regulator works, the state will be
close to zero, and the bias will be small. Since the non-
linearities are assumed to be contained in symmetric sec-
tors, an obvious way of reducing the complexity of the
Observer is to omit the nonlinearity from the right-hand
side of equation (2.21). For the resulting closed-loop

system, the following robustness result holds.

Theorem 2.7 Consider the nonlinear, time-varying system

g%(t) = Ax(t)-N@(MTX(t),t)-+Bu(t)
(2.26)
y(t) = cTx(t)
together with the observer
g—}é(t) = Ax(t) +Bu(t) +K(y(t) - CTR(t)) (2.27)
and the feedback
u(t) = - LT%(t). (2.28)

Assume that the condition of Thm. 2.2 and its dual is
satisfied for (A,B) and (CT,A) with respect to (M,N). Then
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the trivial solution of equations (2.26) - (2.28) is asymp-
totically stable in the large for a proper choice of K and
L. o

Proof. The equations for x(+) and the reconstruction error
e(*) are

—gié-(t) = Ax(t) - No(MTx(t), t) - BLT (x(t) ~ e(t))

%%(t) = (a-krcT) e(t) - N@(MTx(t),t).

This system can be analysed as a nonlinear feedback system
with

T sI-A+BLT .t )71 (n
G(s) = {M 0] T
0 sI-A+KC N
in the forward path and ®(-,+) in the feedback loop.
Expanding G(s) gives
G(s) = M' (sI-2+BLT) "IN + MT (s1-a+BLT) “1BLT (sT-a+xcT) Ly

1>

Gl(s) + G2(s)'G3(s).

Consider the second term in the expression for G(s).
According to the PR assumption on the pair (A,B), the fac-
tor G,(s) can be made arbitrarily small by a proper choice

of L. More specifically,

Sup max [Ai(Gz(—iw)TGz(iw))] = O(t_l)
WER 1

if
L(t) = O(t), t » o,

t being the scalar parameter in the proof of Thm. 2.1.
This estimate together with the dual assumption on (CT,A)
show that the term G2(S)G3(S) can be made arbitrarily

small. The same goes for Gl(s), which proves the claim. o
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In case PR is not achievable, the above expression for
G(s) still provides an estimate for maximally permissible
sector of 9(+,t). Notice that the overall stability is not
necessarily enhanced by the inclusion of the nonlinear

term in the observer.

N
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CHAPTER 3, DISCRETE-TIME PROBLEMS

The natural framework for high-gain controllers is contin-
uous time. The obvious reason is that the closed-loop poles
of a sampled-data system have to lie within the unit circle,
and consequently there are very precise limits on the
magnitude of the feedback gains once the sampling interval

has been fixed.

The conditions for perfect robustness to be achievable will
consequently be more restrictive in sampled-data systems
if the same methods are used. As in the continuous-time
case, the space R? is split into two subspaces, which are
complementary under certain conditions. In one of these, U*
in the previous terminology, the disturbances are complete-
ly decoupled. In the other, S*, only finite-~sector non-

linearities can be coped with.

No complete theory will be given. The theorems merely serve
to show some resemblances and differences between the con-
tinuous-time and discrete-time problems. In § 3.2 it is
shown that, under certain conditions generically satisfied,
the achievable robustness of a sampled-data system approach-
es that of the corresponding continuous control system as

the sampling interval tends to zero.

3.1 The RRP for sampled-data control systems

3.1.1 Plant disturbances

Consider the system described by the set of difference

equations

x(t+1) = Ax(t) - N6 (M x (t), t) +Bu(t). (3.1)
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As usual, x belongs to IRn, u 1s a p-vector, and o (-, ») is
a nonlinear time-varying function from R¥x R into RY

satisfying the conicity condition
| @(o,t)]| ¢ «+]|| o|] for all o € IRT. (3.2)

The control function u(+) is assumed to be a linear, con-
stant feedback law

u(t) = - LTx(t). (3.3)

With respect to (3.1) - (3.3) the same questions may be
asked as in the corresponding continuous-time problem. A
sufficient condition for perfect robustness to be achiev-
able is given in the following theorem. The notation is
identical to that of Chapter 2.

Theorem 3.1 Perfect robustness of (A,B) with respect to

(M,N) is achievable if

Im(N) < V*x. o

Proof. Since the theory of disturbance decoupling is iden-
tical for continuous-time and discrete-time problems, the
proof of the corresponding result in Chapter 2 is

unaltered. o
For more general perturbations, the following finite-sector
condition is sufficient. Only the square case gq=p is con-

sidered.

Theorem 3.2 Consider (3.1) - (3.3) with p=g. Assume that

the matrix (MTB) is invertible, and let the component of N
along S* be denoted by N
(3.1), (3.2) if

g** Then a stabilizing L exists for

i) Im(N) < S* + Ux

and 1/
ii) «k < [max Ai((MTNS*)T(MTNS*))] . O
1
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Proof. The proof is very much like the one in the contin-
uous-time case. Notice first that the invertibility of
(MTB) implies

S* = Im(B)
and

S* e Ux = [R",

so that N can be uniquely decomposed along S* and U*,
Further, the component along V* does not contribute to the
transfer function, if L is chosen properly. On S* (= Im(B)),
the poles can be placed at the origin, yielding the closed-

—~loop transfer function

G(z) =z T (M'Ng,) .

The condition then follows from a straightforward applica-

tion of the circle criterion. o

Remark. In case S* and Im(B) do not coincide, the situation

becomes more complicated. o

In analogy with what was done for continuous-time systems,
approximate versions of this geometrically designed feed-
back gain may easily be generated from a linear-quadratic
optimal control problem. The discrete-time version of "cheap
control" is known as the (output) dead-beat regulator. The
behaviour of the closed-loop poles as the penalty on the
input tends to zero is analogous to that in the continuous-

~time case (see [Kwa 1], Section 6.4).

3.1.2 TInput channel disturbances

Sampled-data optimal controllers do not enjoy the same
robustness properties as their continuous-time counterparts.
This fact seems to have attracted little attention in the
literature, and a quick derivation of the frequency domain

inequality for these controllers will therefore be given.
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Consider thus the problem of minimizing, with respect to

u(*), the performance index
J = ; (x(s) Tax (s) + u(S)TRu(s)),
s=0 .
where x(*) is governed by the difference eguation
x(t+l) = Ax(t) + Bu(t)
{ x(0) = x,.

As is well known, the solution is given by

u(t) = - (R+8TeB) ! B PAX (t),

P being the solution of the algebraic Riccati-type equa-
tion

ATPA -P +0 - ATPB (R+BYPB) "t BTPA = 0. (3.4)

If the term
z"lpa + zaTp - aTpa
is added to both members, (3.4) can be rewritten as

-1 T)

T
(z In A

T 1 T

PA-FATP(zIn—A)-FA pB (rR+BTPB) "t BTpA =

-1

_ _ _aT _
= (z In A7) P(zIn A) + Q.

Multiplying from the left and the right by B Ty-1

In—A

and (zIn—A) B respectively yields .

T -1 T 1 T, -1

B'PA(zI ~A) "B +B (z I -A%) ATPB +

+ BT(z_lIn—AT)_l ATpB (R+BTPB) "1 BTPA(zIn—A)_l B =

T T

= - B"PB +B (z_l

T, -1 -1
I -A ) Q(zIn—A) B.

Introducing

1T -1

G(z) = (r+BTPB) ! B PA(2zI_-A) B,

this can be written as
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(IP-FGT(z—l)) (R + BTPB) (Ip-+G(z)) =

= r + BT (z"t1_-aT) 7! g(z1_-a)7! B.
n n
If Q is positive semidefinite, the second term on the
right-hand side is nonnegative on the unit circle, and the

following inequality results:
(Ip-+GT(z_l))(R+BTPB)(Ip-+G(z)) > R for |z|=1. (3.5)

This result is weaker than the corresponding inequality for
continuous-time systems ([Kwa 1], § 3.9). Further, the in-
equality depends on P, the solution of the Riccati equation
(3.4) , whence no universally valid robustness result can be
stated.

It was pointed out in Chapter 2 that the phase margin and
gain reduction tolerance could be increased by reducing the
penalty on u(+) in the performance index. For the dead-beat
regulator there is no corresponding result, and conditions
must be imposed on the plant in order to produce robustness

results. An example is given below.

Example 3.1 Consider the single-input, single-output system

described by the difference equation

-1 - -
Alg) y) =gt B@h uw),
where
r l n .
A(g 7)) = T a,. q_l an # 0
i=0 * ' 0 '
{
-1 n-1 -i
B(g ™) = ¥ b, g, b, * 0.
. i 0
L 1=0
A(*) and B(°*) are assumed to have all their zeros outside

the unit circle. Assume that the implementation of the
dead-beat regulator is corrupted by the timevarying non-

linearity ¢(-, -) satisfying the conicity condition
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0 < 00 (o, t) < 02.

Ny

1

A sufficient condition for stability is then that A(g )

be strictly positive real.

The proof is based on the polynomial identity generating
the dead-beat controller. If G(q—l) solves

then the dead-beat regulator is given by

G(g™h
u(t) = - ——-—:I— Y(t) + ur(t)r
B(g ™)

where u,. denotes the reference value. The controller con-

figuration is shown in Fig. 3.1.

The transfer function of the linear part is

g B(gh)  ew@™h g lee™h
| r;l) -1y T )

Using the sector condition on ®(+,t), the circle criterion

B(g ™) A(g

guarantees stability of the closed-loop system if (H(q—l)+l)

is strictly positive real. The claim now follows from the
identity (3.6).

Ur u q“’B(q—U y
Alq™)

G(g™")
B(g™")

¢ (1)

Fig. 3.1 - The configuration of Example 3.1.
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If the transfer function of the plant contains more time
delays, i.e.
-k "'l)

al@h y) = ¥ B@™H u, k > 1,

the identity (3.6) is changed into
1 = a(g™1) F(q‘l) + gk g™,

where F(+) and G(*) have degrees (k-1) and (n-1l) respec-
tively. The condition for stability is then that A(qfl)F(q“l)

be strictly positive real. o

To close this section, a few words should be said about the
more general control-dependent disturbances treated for the
continuous-time case in § 2.3.2. Clearly, Haussmann's
results are purely geometric in nature and consequently do
not depend on the structure of the set where the time
variable takes its values. The statements and the proofs
thus remain valid without changes for the discrete-time

case.

3.2 Effects of fast sampling

The discussion so far assumes that the sampling interval
is given. It is natural from the designer's point of view
to ask what is the effect of the sampling interval on the
achievable robustness. In particular, it seems intuitively
clear that the robustness results for continuous-time
systems should be recovered as the length of the sampling

interval tends to zero. This need not be the case, however.

The reason is that the minimum-phase quality of the con-
tinuous-time system may be lost even if the sampling inter-
val is chosen short. Some additional assumption is needed

in order order to prevent this from happening.
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Lemma 3.1 Consider a continuous-time system with the
square transfer matrix G(s). If G(s) has a maximal number
of zeros and is strictly minimum-phase, then the same holds
for the corresponding sampled-data system if the sampling

interval is short enough. o s

Proof. A simple computation shows that, under the assump-
(s)

tion of the lemma, the zeros of the sampled-data system Z 3

can be expressed as

z{8) =1 4 zic)- T + O(T?), T » 0

i
c . .
where zi ) are the zeros of the continuous-time system. o

Consider now the system given by the set of ordinary dif-

ferential equations

%% (t) = Ax(t) - No(M x(t),t) + Bu(t) (3.7)

together with its sampled-data counterpart
X(t+T) = Ax(t) - NO(MX(t), t) + Bu(t). (3.8)

Only the case rank (M) =rank(B) will be discussed.

Notice first that, under the assumption of the lemma, the

T - —
system (M™,A,B) will be minimum-phase if (MT,A,B) is. This
means that the decoupling part of the feedback carries over

from the continuous-time system to the sampled version.

If Equation (3.7) is written as an integral equation, the

following estimates are easily derived:

A =714+ AT + O(Tz)
N = N*T + 0O(T?) T > 0
B = BT + O(TZ)

Further,

Feto )|l < k-] of|
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implies
| @(o,t) ]| < k-(L+0(T))-]]| ol

For plant disturbances, the estimate on N shows that the «

of Theorem 3.2 increases to infinity as T tends to zero.

For input channel disturbances, the estimate on B together
with the fact that the solution P of equation (3.4) de-
creases with T implies that inequality (3.5) asymptotically

reproduces the result from continuous~time optimal system.
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PART Il - STOCHASTIC MODELS

CHAPTER 4. PRELIMINARIES

The stabilisation problem will now be studied within

a stochastic framework. The introduction 6f stochastic
assumptions requires some care both in the modelling and
the analysis. The problem of giving the white-noise
assumption a rigorous formulation by means of an Ito
equation is discussed in § 4.1. The following section
presents the basic stability definitions to be used in
the sequel together with a necessary and sufficient con-
dition for the almost-sure stability of linear random-
-parameter equations. It should be stressed that these
two sections are included not for the sheer mathematical
pleasure, but because the stability results depend crit-

ically on the model and the convergence mode chosen.

Section 4.3 contains a brief review of stochastic Lya-
punov functions. Relations between the existence of

Lyapunov functions and moment stability are also given.
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4.1 Modelling

Consider the Langevin equation

() = £(x(t), t) + o(x(t),t) wt) . (4.1)
where x, £, and O'EIRn, and w is scalar "white noise".
The meaning of Equation (4.1l) 1is that the drift term
f(x(t), t) is perturbed by a disturbance o(x(t),t)w, where
w has a spectral density which is constant up to frequen-
cies which are high compared to the time constants of the
noise-free system. The equation was proposed by Langevin

in [Lan] as a model for the Brownian motion.

For analysis purposes, a rigorous version of Equation
(4.1) is needed. The following Ito equation was originally

proposed:
dx(t) = f(x(t),t)dt + o(x(t),t)dw(t). (4.2)

In [Won 1], Wong and Zakai analysed the relationship bet-
ween Ito integrals and ordinary integrals obtained from
Equation (4.1), when w is a process with large but finite
bandwidth. It was shown that a correction term must be
introduced if Equation (4.1) is to be modelled by an Ito
equation. The modified equation corresponding to (4.1) is

dx (t) = £(x(t), t) +% ~g—;‘{(x(t),t) o(x(t), t) +

+ o(x(t),t) dw(t) ,

do/dx being the Jacobian of ¢ with respect to x. The same
fact led Stratonovié¢ ([Strl) to propose an alternative
definition of the stochastic integral, such that the above
correction term (frequently called the "Stratonovid correc-

tion") is =zero.

In the sequel, only Tto equations will be considered,
since the transition between the various integral defini-

tions is in most cases trivial.
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4.2 Stochastic stability

There are several modes of convergence to choose between
when adapting the Lyapunov stability concepts to a stoch-
astic framework. Naively speaking, a practically oriented
analyst should of course be interested primarily in the
physically observable behaviour of the solution process.
What can be observed is the sample paths, and one is thus
led naturally to the concept of stability with probability
one. However, also moment stability may be relevant in
some applications, since it measures in some sense the
frequency and magnitude of excursions made by the process
from the equilibrium. In particular, the popularity of
quadratic loss functions motivates an interest in second-

~-moment stability.

4.2.1 Basic definitions

In the definitions given below x(t;xo,to) is a stochastic
process which is the solution of some differential or
difference equation. The initial value at tO is Xge The

equilibrium solution studied is the null solution.

Let ]|'||p denote the R"-norm defined by
el = (2 xglP) "
X = z o x, > p > 0.
A ’

|| || will be used when the value of p is irrelevant.

Definition 4.1 The null solution is said to be almost

sunely stable (or stable with probability one) if for all

>0, €, >0 there exists a § >0 such that

€1

P( sup  sup ||x(tix,,ty)]] > € > < g,. O
[ENIET = e e
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Alternatively, Definition 4.1 may be expressed as ([Koz 1])

P< lim  sup |[x(tixy, ty)l| = O> = 1.
Ixll =0 2ty

It is thus clear that the deterministic .stability defini-

tion holds for almost all sample paths.

Definition 4.2 The equilibrium is said-to be afmost

surnely attractive (or attractive w.p. 1) if there exists
a 8§ >0 such that [|x0H < § dimplies

1><1im x(tixy, tll = o) =1. o

t*>co

Definition 4.3 The equilibrium is said to be almost
sunely asymptotically stable (or asymptotically sitable w.

p. 1) 1if it is stable and attractive w.p. 1.

It is globally asymptotically stable w.p. 1 if further §

in Definition 4.2 can be taken arbitrarily large. o

The following definitions describe the time evaluation of

the moments of the process.

Definition 4.4 The null solution is said to be p-th mean
asymptotically stable if the function

P
E { Hx(t;xo,tO)H }
P

is asymptotically stable.

It is p-4th mean exponentially stable if there is a C > 0

and an o > 0 such that

b,

B { llx(eixg el S < ¢ llx exp(- o (t-ty)). o

Notice that E{[[x(t;xo,toﬂ|gﬂ is a deterministic function.

In some cases it is possible to derive a differential
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(difference) equation for this function, which can be
studied using deterministic Lyapunov theory. A stronger
version of Definition 4.4 uses
. p :
£t 3
“"0

but this will not be necessary for our purposes.

P-th-mean stability implies g-th-mean stability for g < p.
There are also implications between moment stability and
almost sure stability. For instance, it has been shown by
Kozin and Sugimoto ([Koz 3]) that for linear It6 equa-
tions, almost-sure stability is equivalent to p-th-moment

stability as p tends to zero.

4.2.2 A necessary and sufficient condition for almost-

—sure stability

Consider the linear system given by

x(t+l) = A(t) x(t)
(4.3)

x(0) = Xq

where x is an n~-vector and

{a(e) 17,

is a sequence of independent, identically distributed
random matrices with given distribution function. The
problem is to give conditions on this distribution which
ensure stability with probability one of the trivial solu-
tion of (4.3). To this end, let

o =x/|lx|l,

where 0 is thus the coordinate vector on the unit sphere.

Obviously,

log(|[x(e)[[) = log(l[%4ll) + £ log([|a(s)o(s)]]). (4.4)

s=0
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Now, ©(t) defines a Markov process on the unit sphere
which is ergodic under general assumptions. Assume that
the corresponding invariant measure (i.e. the "steady-
-state" measure defined by the process) can be calculated.
If conditions for the validity of the strong law of large
numbers are satisfied, the sum in (4.4) will behave
roughly like its mean value, or more precisely

t-1

lim X log(||A(s)0(s)|]) = + o or -
t+o  s5=0

according as
E { log(]||ae]])} > 0 or < 0. (4.5)

The expectation is taken with respect to the original
distribution of A and the invariant measure of 0. Stabil-
ity will consequently hold almost surely if the expecta-

tion value in (4.5) is negative.

The relevance of (4.5) to the stability problem was
established by Khasminskii ([Kha]l]). Unfortunately, the
invariant measure can be computed analytically only in
exceptional cases. One such case is the linear Ito equa-

tion
dx(t) = Ax(t)dt + Bx(t)dw(t). (4.6)

As in the discrete-time case, the key step is the projec-
tion of the process on the unit sphere by the introduction
of 0 = x/ ||x||. The stability limit is determined by the
expected value of L(log(]||x][)) with respect to the invari-
ant measure of the diffusion on the unit sphere (L is the
Kolmogorov backward operator pertaining to equation (4.6)).
This expectation value can be obtained in closed form. The
reason is that the variable © itself satisfies an Ito
equation, from which the invariant measure can be deter-
mined. If equation (4.6) is two-dimensional, the O-process
is scalar, and Feller's theory for one-dimensional diffu-

sions can be applied (see [Ito 1] (in Russian), [Ito 2]1;
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cf. also [Ast], [Koz 2], which contain illustrative
examples) . The picture may be complicated by singular
points, i.e. points where the diffusion term of equation
(4.6) vanishes. In such cases, Feller's classification of

singular points must be invoked.

Ay

4.3 Stochastic Lyapunov functions

The possibility of using Lyapunov functions in studying
the stability of random-parameter systems was discovered
by Bertram and Sarachik ([Ber]) and Kats and Krasovskii
([Ratl). Recall that a Lyapunov function for a determin-
istic motion is a positive definite function which is non-
-increasing along the trajectories of the motion. The
existence of such a function is sufficient to guarantee
the stability of the system. If the Lyapunov function is
decreasing along the trajectories, asymptotic stability

is ensured. In the stochastic theory, the change of the
Lyapunov function is replaced by the expected change, con-
ditioned with respect to the present state. If this is
negative, stability can be inferred from a supermartingale
convergence theorem. Only the most important theorem and
no proof will be given here. An extensive reference is

the book by Kushner ([Kus 21]).

Only homogeneous Markov processes will be considered, i.e.
processes whose transition probabilities are independent
of the initial time. This simplifies the analysis some-
what, since the Lyapunov function candidates can be chosen

time-independent.
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4.3.1 A stochastic Lyapunov theorem

The continuous-parameter stochastic version of Lyapunov's
theorem on stability will now be stated. The discrete-time
case is simpler, since the technicalities of the Ito
calculus do not enter. Only a brief sketch of the condi-
tions are given. For a detailed account, the reader is

referred to [Kus 2].

Definition 4.5 The function ¢(*) is said to be in the

domain of the weak Ainfinitesimal operator L of the pro-

cess x(t) if

E{o(x(t+8)) [x(t) =x} - o(x(t))

>

i) 1lim L(yp) exists =1y (x)
§+0 $ ;
and

ii) lim E{v(x(t+8))]|x(t) =x} = ¢ (x).
§~+0

u]

Example 4.1 For Ito processes, the weak infinitesimal

operator L is given by the Kolmogorov backward operator L.

Explicitly, let the It0 equation
dx(t) = £(x(t))dt + o(x(t))dw(t)

be given. Then, if L(y) is defined,

n n 2
£ 1 3"
L{p) = L(p) = £ f,»"*—+ = T 0,0, =~ . O
i=1 T 9%y 24 5o T3 9xy8xy
Theorem 4.1 ([Kus 2]) Let x(t) be a continuous-parameter

Markov process, and let V(x) be a positive function in the

domain of L. Define

QM = {x; V(x) < M}.

If, for all x € QM’
L(V) (x) € - W(x) £ 0,

then
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i) P< sup V(x(t)) = M |x(t0)==x0> < V(xo),/M,
t St<oo
0
and
ii) lim W(x(t)) = 0 with probability = (l—V(xO)/M). o

t >

4.3.2 Relations to moment stability

A general existence theorem for stochastic Lyapunov
functions was proved by Kushner ([Kus 1]) by rephrasing
Massera's proof for the deterministic problem in stochastic
terminology. The theorem to follow has a rather special
form, which gives a connection between Lyapunov functions
and moment stability. Special cases have appeared before

in the literature.

Theorem 4.2 Let x(t;xo,to) be a continuous parameter

Markov process which is homogeneous in éime, and let L be
its weak infinitesimal operator. Let x(t;O,tO) =0 be the

equilibrium.

i) If the equilibrium is p-th mean exponentially stable
for some p >0, there exists a time-invariant function V

solving

L(V) (x) = - g(x) (4.7)
with V and g subject to

aleprs V(x) < ocszpr (4.8)

agllxllP s a0 € oy lixll P, (4.9)
all a, > 0.

i

In particular, p-th mean exponential stability for some

p>0 implies stability with probability one.
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ii) Assume that equation (4.7) has a solution V for some
q with V and g satisfying (4.8), (4.9). Then the equili-

brium is p-th mean exponentially stable. o
Proof. i) Consider N
' 1
Vi(x,t,t) = E*{f a(x(s))ds [x(t)==xf.
t .
If x(t) is p-th mean exponentially stable,

T
lim EI{J’q(x(s))ds ]x(t)==x} < o,
T+ t

and

lim V(x,t,1) = V(x,t)

T—>co

exists, independent of time due to the homogeneity. Equa-
tion (4.7) then follows from the definition of V and

Dynkin's formula ([Kus 2], p. 10).
ii) From Dynkin's formula one obtains
E{V(x(t))[x(ty) =x,} =

t
= V(xg) + E-{g-—q(x(s))ds|x(t0)==x0}.
0

Using the inequalities (4.8), (4.9) this implies

E{v(x(t))]|x(t x,} <

o) = g}

IA
A

t
Vixg) - E{tf °°3||X(S)prds!x(to) =X0}

0
t
$ V(xy) - E {f g% V(x(s))ds]x(t0)==x0} =
t
t
= V(xq) - Z—z— ! E{V(x(s))|x(to) =x0} ds,
t

0

whence
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o
—-4§(t—t0)

E{V(x(t))[x(ty) =x,} s V(xy) e @2

Again, using (4.8),

E{||x(t)| p|x(t ) =x.} < E-ng || P e
p 0 00 = oy ol'p '
which proves the claim. o

Remark. Suppose that the interest is in asymptotic sta-
bility rather than exponential stability, and that the
stability region in some parameter space is to be deter-
mined. If the situation is such that Khasminskii's result
can be applied, the relevant stability condition is
expressed as the negativity of the inequality (4.5).
Assuming that the expectation value (4.5) depends con-
tinuously on the parameters in question, there will then
be room for an € to make the system exponentially stable.
Under these conditions, there will consequently be no gap

between asymptotic and exponential stability. o
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CHAPTER 5. STABILISATION OF RANDOM PARAMETER SYSTEMS

The problem of stabilising - in different possible

senses of the word - a random-parameter.system will now
be tackled. In contrast to what was done in Chapter 2, it
will be formulated as an optimization proklem. If the
optimal solution exists, it can, at least formally, be
obtained via the functional equation of dynamic program-
ming. Minimisation over an infinite time-horizon yields a
time-independent solution of the functional equation,
which can be used as a Lyapunov function for the closed-

-loop system to prove stability.

As usual, the case of linear systems and quadratic loss
functions is exceptional in the sense that it permits a
fairly explicit solution of the dynamic-programming equa-
tion. Known results for this solution are compared to what
was derived for the corresponding deterministic problem in
Chapter 2.

The almost-sure stabilisation problem is also discussed.
The optimal solution cannot in general be obtained in
closed form. It is therefore natural to consider subopti-
mal solutions, which can be shown to stabilise the system.
Since the goal formulated at the outset of this work was
to investigate what can be achieved with linear regulators,
the study is confined to this class. No general answers
are available here, but examples are given which show that
there are indeed quélitative differences between the

almost-sure and the mean-square stabilisation problems.

The main stress is on continuous—-time systems.
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5.1 An optimisation problem

Consider a motion given by the continuous-parameter
stochastic process x(t), which is assumed to be homogen-
eous in time. The process is controlled:from the input u.
The object is to minimise, over some class of permissible

control functions, the performance index
T
J, = E {[ g(x(s) ,u(s))ds |x(t)==x} (5.1)
t
where g(+,+) is some nonnegative function.

Assume that the minimum exists within the given class of

controls, and define

V(x,t,7) = min J

u(+)

T

Using dynamic programming ([Won 31), the following func-

tional equation can be derived for u and V:

min [L (V) (x,t) + g(x,u)] = 0. (5.2)
u
Here, Lu denotes the infinitesimal generator obtained for
a given control u. Equation (5.2) is a version of the
Hamilton-Jacobi-Bellman equation. Assume that there exists
a unique u* minimising the left member of (5.2). Inserting
this u gives an equation for V only. If this equation can

be solved, u* can be expressed as a feedback,
u*(t) = - 2*¥(x(t)).
This results in a new equation for V:
Los (V) (x,t) + g(x,2%(x)) = 0. (5.3)

If the optimisation over an infinite horizon is meaning-
ful, the V solving this equation will be time-independent.
Comparing this with Theorem 4.2 shows that a positive V
solving the time-invariant version of Equation (5.3) will

work as a Lyapunov function for the closed-loop system.
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5.2 Stabilisation in the mean-square

5.2.1 Solution of the dynamic-programming equation

Consider the linear Ito equation

AN

k
dx(t) = Ax(t)dt + < ) dKiAi> x(t) + Bu(t)dt +
i=1
52, N
+ <_z d)\iBi> u(t) (5.4)
1=1

together with the performance criterion

I, = E'{E (x(s)Tox(s) +u(s)TRu(s)) ds | x(t)==x}.(5.5)
As usual, x € R®, u € RP, A, Ai’ B, and Bi are matrices of
appropriate dimensions, and the Ki'S and the Ai's are in-
dependent unit Wiener processes. Q is assumed to be posi-
tive semidefinite and R positive definite (although the
latter condition may be dispensed with under certain con-

ditions) .

The first to treat this problem in any generality were
Wonham ([Won 3]) and independently, in a special case,
Kleinman ([Klel]). It turns out that the solution of the
Hamilton-Jacobi-Bellman equation (5.3) can be obtained as

a quadratic form,
Vix,t) = xTP(t)x,

where P(t) satisfies the Riccati-type equation

k
- dr = AT T _
dt(t) = A"P(t) +P(t)A+Q+ iilAi P(t)Ai
4 L -1 (5.6)
- T T
P(t) B<R+i§1 Bi P(t)Bi> B*P(t)
P(t) = 0.

The optimal input u* is a linear state feedback,
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( \L
u*(t) = - \R—+ > B. P(t)Bi} B P(t)x(t).

If the system is mean-square stabilisable,

lim J_ =0 o

T+ T
will exist, and equation (5.3) will have a time-invariant
solution. Equivalently, the solution P(t) of (5.6) will
converge to a constant matrix P, which satisfies the alge-
braic equation

aTp +pa+9+ 1z< AiTPAi—PB<R+ ’; BiTPBi> lBTP = 0.
i=1 i=1 (5.7)

The term

; A”TPA.

=1 * 1
has the effect of increasing the penalty on x and tends to
produce large gains, whereas the term

3

iil BiTPBi
increases the penalty on u.and thus has the opposite
effect. These tendencies are conflicting and there may
indeed be situations where no positive solution of equa-

tion (5.7) exists.

5.2.2 Consequences for the mean-square stabilisability

The solvability of equation (5.7) with a positive P and
its implications for the problem of stabilising, in the
mean-square sense, the null solution of equation (5.4) was
~examined by Willems and Willems in [Wil]. A brief account
of these results will be given here, with an emphasis on

the case of large noise intensities.
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State-dependent noise

Consider first the case of state-dependent noise only,
and assume for simplicity that all perturbation matrices

Ay have unit rank. Let the Ai's be factored according to
A, = O n m, i=1,2,..., k. (5.8)

Here, 0; are variance parameters introduced for conveni-
ence. Let Ei’ i=1,2,...,k, be a basis for the subspace

spanned by the mi's, and form the matrix
M = col(mi).

Consider - further the algebraic Riccati equation in P

T

ATR )+ PR+ MM - p_l T

P BR "B'P_ = 0. (5.9)
p p

Let P0 be the limiting solution of Equation (5.9) as the

scalar parameter p tends to zero (this limit exists). The

following result is proved in [Will]:

The null solution of Equation (5.4) is mean-sgaure
stabilisable for all noise intensities o if and

only if

i) the deterministic system (corresponding to 0i=0,
all i) is stabilisable in the usual sense,
and

ii) o

™M~

. lIm(ni) < Ker(PO).
This result should be compared -to Thms. 2.2 and 2.3. It
turns out that the conditions for L2—stabilisability of
the system (5.4) for arbitrarily large noise intensities
and stabilisability in the deterministic sense of the

system given by the equations (2.1)', (2.2), (2.3) for an

arbitrarily large sector radius k are the same.

The resemblance goes somewhat further. Using the notation
(5.8), Equation (5.7) takes the form
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k
ATPG-FPOA-FQ-f.Z o&?'n;TPOni -mimip— PGBR_lBTPO =0,
=1 (5.10)
where the notation PO is used to show the dependence of P
upon the variance parameters O, Considgr first the case
k=1. Then it is clear from (5.10) that the asymptotic
closed-loop pole configuration obtained as the Gi's tend
to infinity is the same as produced from the cheap-control

used in § 2.2.2.

For k > 1, Equation (5.10) is more interesting. Recall
that an equation of the type (5.9) was suggested in § 2.2.2
for solving the robust regulator problem in the case when
perfect robustness is not achievable. A drawback of that
approach is that the information about the n-vectors is
not used. An attractive feature about Equation (5.10) is
that it provides an automatic scaling of the relative
weights of the matrices mimiT, in the sense that an n,
with a large component outside Ker(PO) (as defined from
Equation (5.9)) will tend to penalise the corresponding
mimiT more. This suggests the use of Equation (5.10) in
the design for robustness also in systems where Equation
(5.4) is not a good model of the disturbances. After all,
the object of the design is to produce a good regulator
rather than a good model. The price paid for the automatic
scaling of the weights is the somewhat greater computa-
tional complexity of Equation (5.10) (or Equation (5.6),
if straightforward integration is used to find the steady-
-state solution) as compared to the ordinary Riccati equ-

ation.

Control-dependent noise

The case of control-dependent disturbances only will now
be examined. Also this problem is related to a limiting
form of the ordinary deterministic LQOC prbblem, namely

the minimum-energy control. More precisely, consider the
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algebraic Riccati equation

T -1.T
A"S_+ s A + - S B B S_ = 0. 5.11
A c (5.11)
SE is a decreasing function of ¢ and thus
S, = lim S
0 £>0 C

exists, in fact independent of Q. In [Wil] the condition
for mean-square stabilisability is expressed using equa-
tion (5.11) as follows:

i) The null solution of Equation (5.4) is L,-stabi-
lisable if and only if there exists an R such that
X ,
¥ B,'s
. i

B, < R.
1=1 1

0

ii) With B, =0, *B;,s stabilisability for arbitrarily
large Ui's holds if and only if the conditions of

Thm. 2.4 are satisfied. o

The above result is possible to motivate from intuitive
reasoning. Sincé‘the control action introduces noise in
the system, it should be minimised in order to minimise
the noise level of the system. However, the conclusion is
somewhat different from what was obtained for some of the
deterministic input channel disturbances in Chapter 2. For
instance, it was shown that high integrity against gain

drops is achieved by high-gain controllers.

Conclusion

The moral lesson contained in these results is that where-
as the modelling of plant disturbances has a minor influ-
ence in the design for robustness, it is highly important
to specify the character of the disturbances in the input

channels.
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5.2.3 Discrete-time mean-square stabilisability

It is an easy matter to translate the above results into
their discrete-time counterparts. In fact, the proofs
become somewhat simpler, since the technicalities of the

Ito0 calculus do not enter.
Consider the system given by the difference equation

k L
x(t+l) = (A-+ > K.(t)A.>x(t)-+<B-+ 2 A.(t)B.\ u(t).
i=1 7t T
(5.12)
Here, the Ki'S and the Ai's are assumed to be independent
white-noise sequences. The object is to minimise, with
respect to u(+), the performance index
)T

T
J_ = E:{ b3 (x(szQx(S)-+u(S Ru(S))!X(t)==X}r

T s=t
where Q is positive semidefinite and R is positive defi-
nite. Using dynamic programming, it can be shown that the
optimal input ié a linear feedback from the state, and
that the optimal loss is given by

'JT = XTP(t)X,

where P(t) solves the difference equation

.

T k
P(t) = A P(t+l)A-+Q-+( ¥ A
i=1

T

{ P(t+l)Ai> -

- aTp (t+l)B[R +BTP (£+1)B +
(5.13)

2 -1,
+ (z B.TP(t+1)B.>] B P (t+1) A
i=1 * .

Under the condition of mean-square stabilisability, P(t)
converges to a constant matrix P, which solves the alge-

braic matrix equation
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K
ATPA~P+Q+<>: AiTPAi> -
i=
T T Lo “1q
—APB[R+B PB+<ZBi PBi>] BIpA = 0. (5.14)

i=1

Conversely, the existence of a positive solution of equa-
tion (5.14) guarantees stabilisability in the mean square.
This requires stabilisability of the noise-free system and

is further a condition on the noise intensities involved.

5.2.4 The ﬁuncertainty threshold"

It was pointed out earlier that the algebraic Riccati-type
equations arising from the dynamic-programming equation
(Equations (5.7) and (5.14)) may not have a positive solu-
tion if the noise levels are sufficiently high. This
implies that the optimisation of the quadratic performance
over an infinite horizon has no solution, or, equivalently,
that the system in question is not mean-square stabilis-
able. Based on a first-order scalar equation, Athans, Ku,
and Gershwin in [Ath] introduced the term "uncertainty
threshold" for the values of the variance parameters for
which a solution ceases to exist. It is claimed in [Ath]
that "this result has several implications in engineering
and socio-economic systems, since it points out that there
is a quantifiable boundary between our ability of making
optimal decisions or not as a function of the modeling

uncertainty". '

There are at least two reasons why such a basic concept
as an uncertainty threshold should not be tied to equa-
tions (5.7), (5.14):

i) For continuous-time systems, the first reason lies in
the modelling problem. Having the discussion of § 4.1
in mind, it is clear that, for most applications, the

Stratonovi& interpretation of the stochastic integral
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is the appropriate one. This means that the Stratono-
vié correction must be taken into account before the
Itd calculus is used. However, in presence of control-
—dependent noise, this correction depends on the
vet-to-choose feedback law. There may be ways to over-
come this difficulty, for instance using iterative
methods, but in any case Equation (5.7) will have to
be modified.

ii) The introduction of a stochastic framework requires
some care in the choice of an appropriate stability
concept. The bulk of the literature is concerned with
L2—stability, but the reason for this seems to be
relative computational simplicity rather than

intrinsic importance.

What then should be the decisive criterion in the
choice between the various available convergence con-
cepts? For the practising engineer, it seems reason-—
able to adopt the relevance to the actual physical
behaviour of the process as the touch-stone by which
the convergence concepts should be judged. This
implies that almost-sure convergence rather than Lp—
—convergence is the logical basis for the definition

of an uncertainty threshold.

It can be argued that knowledge of the ultimate behav-
iour of the moments yields some insight into how large
excursions the process will make from the equilibrium.
On the other hand, there is no reason to single out
the second moment in this context. In some applica-
tions, interest in higher moments is in fact justified
(see [San] for a discussion of such problems in a

" deterministic setting).

= This is not to say that Equations (5.7), (5.14) are un-
interesting. On the contrary, based on the\arguments in

§ 5.2.2, they are believed to provide an effective means
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to design low-sensitivity regulators. But the role attri-
buted to them in [Ath] seems difficult to justify.

Y

5.3 Stabilisability in the almost-sure sense

An investigation of the almost-sure stabilisability of a
control system should concentrate on the dynamic-program-
ming equation (5.2), where the penalty function g contains
only p-moments for p close to zero. Unfortunately, this
equation becomes untractable already for second-order
systems. But since the only concern in this work is with

linear regulators, only such regulators will be considered.
The first example is a scalar first-order equation, which
despite its simplicity already illustrates some of the

points of the preceding discussion.

Example 5.1 Consider the Itd equation

dx = ax dt + bu dt + ocu du (5.15)

where a is assumed to be greater than zero. The problem is
to determine for what noise intensities the system can be

stabilised.

It is readily verified that Equation (5.7) yields

2
2 . b

° 2a

as a necessary and sufficient condition for mean-square
stabilisability. The almost-sure stabilisability problem
is trivial in this case, since stability is enhanced rela-
tively to the noise-free system by the introduction of the
term o0 udu. The system is stabilisable almost surely for
arbitrarily large noise intensities, and no uncertainty

threshold exists. o
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The second example shows that the minimum-phase condition
that turned out to be crucial for stabilisability in both
the deterministic and the mean-square sense, is no longer
relevant for the almost-sure stabilisability problem.

Y

Example 5.2 Consider the control system described by the

linear Ito equation

( 0 O 1
dx (t) = x(t) dt + u(t) dt +
1 0 0
* 0
+ 0 (1 a) x(t) dw(t) (5.16)
1
du(t) = - 2T ax(t) = - g, dxq(£) - &y, dx,(t)  (5.17)

The problem is to investigate the stabilisability almost
surely of the trivial solution of (5.16) using the linear

feedback (5.17) as a function of the variance parameter o.

Notice first that if a is positive, the minimum-phase con-
dition is satisfied, so the system is stabilisable in the
mean square sense, thus a fortiori with probability one,
for arbitrarily large noise intensities. This is no longer
true if a is negative, and the almost-sure stabilisability
must be examined separately. The analysis will be based on
Khasminskii”s condition for almost-sure stability. Recall
(§ 4.2.2) that a necessary and sufficient condition is that
the expected value of L(log(||x||)) with respect to the
invariant measure of the diffusion process, projected on
the unit sphere, be negative. The process (5.16) is singu-
lar, i.e. the diffusion term vanishes for certain x's. To
determine the invariant measure, the singular points of

the diffusion must be studied.

~ On the unit circle, the generator L takes the form
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o2 ' 5 2
L = — (cos © + a sin 0)° cos® 0 — +
2 ae

+ <—402 (cos 6 + a sin @)2 cos O sin 6 + 00526 +

.2 d .
sin O) 30

>

+ SLl cos B sin® + 5&2

2

d d

a(®) 2= + b(e) = .
402 de

>

It follows that the singular points of the process are

@ =% /2, 0O = OO = arctan(-1/a) and 0 = 0, + T.

0

Introducing Feller's canonical speed s(0) and canonical

measure m(0) ([Itd 11), one obtains

S
exp (- f b(e) dcp) de =

ds(@)

a(p)
2
= 12 * exp [— J% <~% « tan 0 +
cos“e o a
Qla-222
+ ———=—= . 1n(|1+a-tan 0|) +
3
a
JLla—JLz—az 1 ]
+ . = Jde] (5-18)
a3 l+a+tan 0
and
dm(0) = —h=— + exp (_? ble) d@> ao =
a(o0) a (o)
2 %
= — 5 * exp [-—%(——;-tan@+
0" (cos @+ asin9) o} a
Qla-2£2
+-—————j———-ln(ll+a-tan@]) +
a
2
2a-%2,-a
1
+ L 2 . )]d@. (5.19)
a3 i1+4+a.tan ©

. Consider first the interval [-'%’@0]' It follows from

(5.18), (5.19) that for this interval, —-g\is an entrance

point. @O is an exit point provided that a < 0 and
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Fig. 5.1 - Diffusion picture of Eqns. (5.16), (5.17).

21, 22 > 0. For the interval [60,%-], one obtains that @O
is an entrance point (assuming that the above inequalities
hold), whereas % is an exit point. Further, the diffusion

is symmetric with respect to the origin.

It follows that the O-process will diffuse around the unit
circle in the counterclockwise direction without being
trapped at any point. It is ergodic over the entire unit

circle.

The invariant measure of the process can be obtained in
closed form using its factorisation in the speed and scale
measures, but no explicit form will be needed. Instead,

consider the integrand
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2
L(log(lixlIl)) = 92— (cos 0+ a sin 0) %cos 20 - 2 cos? 0 -

- (22—1) sin O cos O. (5.20)

An inspection of the three terms forming (5.20) shows that
the integrand can be made negative on tﬁe entire unit
circle for any given o if 21 is chosen large enough.
Necessarily, the expected value is then negative, which

ensures stability. o
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CONCLUSION

The results presented in this work, although limited in
their scope, are none the less believed to provide some
general guidelines in the design of robust requlators. A
few final remarks will be made here on the major issues

discussed.

Modelling

One of the major contributions is perhaps the study of

the effect of the modelling on the synthesis. In summary,
the modelling of Large plant distunbances is Less critical
than that of input-channel disturbances. The design for
robustness against the former class of perturbations leads
to some combination of high gains and disturbance decoup-
ling, irrespectively of their fine-structure. In fact, it
follows from standard stability theorems that robustness
is ensured against any form of deterministic dynamic dis-

turbances using the synthesis of Chapter 2.

In contrast, synthesis for robustness with respect to
input-channel disturbances requires a fairly accurate de-
scription of these disturbances. In some cases a high-gain

regulator results, in others more cautious forms.

From the theoretical point of view it may be interesting
to note that the stochastically phrased problem permits
the formulation of necessary and sufficient conditions for
stabilisability, whereas only sufficient conditions are
given in Part I of this work (at least using all the data
of the problem).

What then should be considered as the‘"best" way of model-

ling a disturbance, about which only little information
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is available? It is known that the circle-criterion-type
theorems generally produce conservative results, the
reason for this being that the assumptions on the non-
linearity are very weak. On the synthesis level, this may
imply that too much energy is devoted te the stability
problem, which may deteriorate the performance of the
regulator in other respects. The assumption on ergodicity
of the time-varying parameters, which is easy to justify
in many applications, enhances the stability considerably

(at least in the almost-sure sense).

Further, and this may be more important in practical
design problems, the L,-design based on Equation (5.7)
captures some interesting quantitative features of the
design problem, which are closely related to classical
concepts. In fact, the cautious character of the regulator
obtained from equation (5.7) reflects the classical trade-
-off between accuracy and fast response (high gains) on
one hand and stability and low noise sensitivity (low
gains) on the other (generally referred to as the band-
width compromise). This is an appealing feature of theI?—
—-design, which, combined with its relative computational
simplicity, makes it attractive from the user's point of

view.

Adaptivity versus robustness

An adaptive regulator can in principle handle arbitrarily
large parameter variations, provided that these varia-
tions are slow compared to the time constants of the con-
trolled system (see for instance [Ste]). The constant
linear feedback regulator, on the contrary, has a satis-
factory performance only in certain regions of the para-
meter space. Bounds for these regions are given by the
manifolds (if any) where the system will contain unstable,

uncontrollable modes. On the other hand, there are no




105

bounds on the rate of variation of the parameters.

The adaptive regulator is fairly complex in structure,

and requires a rather deep knowledge of estimation theory
(stochastic or deterministic). The much .simpler structure
of the robust linear feedback regulator is compensated

for by the use of (sometimes) large control signals, some-
thing that is bound to create problems in certain appli-

cations.

In summary, the choice between these two design principles

should not be too difficult to make in practical cases.

The limits of regulation

The concept of "threshold of uncertainty" introduced by
Athans and co-workers, which was discussed in § 5.2.4, is
believed to be an important subject for theoretical anal-
ysis. However, for the reasons given above, it is felt
that convergence almost surely rather than in the mean
square is the sound basis for such a definition. This dis-
cussion is of course of academic interest only, since a
control system with noise levels anywhere in the near of
the stability limit (be it mean-square or almost-sure

stability) is useless for practical purposes.

At the heart of this problem lies a yet-to-define concept

of stochastic controllability.
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