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SELF-TUNING REGULATORS.

During the industrial revolution clever engineers heuris-
tically designed regulators which could bring the output
of a system back to a reference value after a disturbance.
These regulators which are nowadays called PI-regulators
(Proportional and Integral regulators) can be described

mathematically by the equation

t

L e(s)ds

u(t) = Kle(t) + T
where u is the control signal and e is the difference bet-
ween the desired and the actual output of the system. The
PI-regulator has the property that the stationary error
after a step disturbance is equal to zero irrespective of
the system to be controlled if the closed loop system is
stable. The first complete analysis of the PI-regulator
was done by J.C. Maxwell [5] about 80 years after their
construction. Maxwell explained mathematically the impor-
tance of the integral term. The PI-regulators are the main
tools of control engineering practice. The regulators have
been implemented in many different ways using analog tech-
nique and mechanical, pneumatic, hydraulic and electronic
technology. In the last 10 - 15 years PI-regulators have
also been implemented digitally on computers. The ways of
implementing the regulators have been different but the

basic idea has always been the same.

The PI-regulators are robust and are sufficiently good in
many cases. It is also fairly easy to tune the regulator,
i.e. to choose its parameters (K and T). The simple PI-
regulator is, however, not suitable in all cases and more
sophisticated regulators have been developed. More comp-
lex regulators are for instance needed if the process con-

tains dead-time. The computer technology has given new pos-




sibilities to implement regulators. Much more complex re-
gulators can be implemented on a computer than if analog
technique is used. The growing complexity of the control-
lers has made the tuning more difficult. The tuning prob-

lem is one reason why complex regulator seldom are used.

The tuning problem has two aspects. The parameters of the
regulator must be chosen at the start-up. The regulator
must also be retunedd occasionally if the process dyna-
mics are changing. This has L#d’ to the idea of adaptive
controllers. The word adaptive implies that the regulator
has the ability to change its parameters when the process
dynamics or the characteristics of the disturbances are
changing. Adaptive controllers have so far not been imple-

mented to any greater extent.

If the parameters of the process are modelled as stochas-
tic processes it is possible to formulate the adaptive
control problem within the framework of stochastic opti-
mal control theory. It is, however, difficult to get a
practical solution to the problem since the computational
requirements are such that only the simplest cases can be
solved numefically even with the largest computers avail=
able today [1]. The solution has, however, a very inte=-
resting structure. Feldbaum [4] has pointed out that these
control strategies have a twofold goal. The controller
must obtain good estimates of the unknown parameters of
the process, i.e. the controller must perform real-time
identification. Secondly the controller must make as good
control as possible based on the available information.
These two goals are contradictory and there must be a comp-
romize between the identification and control activities
of the controller. Controllers with these properties are

called dual controllers.

One interesting simplification of the adaptive control




problem is obtained if it is assumed that the process to
be controlled has constant but unknown parameters. Cont-
rollers for this type of processes will be called self-

tuning regulators. This thesis treats one type of self-

tuning regulators and compromise of the following three

parts:

I. On Self-Tuning Regulators, Automatica, 9, No. 2,
March, 1973, pp 185 = 199, Coauthor K.J. Astrdm,

IT. A Self-Tuning Regulator, Report 7311, Division of

Automatic Control, Lund Institute of Technology,

ITI. An Industrial Application of a Self-Tuning Regula-
tor, Report 7310, Division of Automatic Control,

Lund Institute of Technology, Coauthor U. Borisson.

The thesis covers the steps from analysis to practical
implementation of a self-tuning regulator. The regulator
is derived to control single-input single-output systems
which are minimum phase. One early version was presented
by Wieslander and Wittenmark at a IFAC Symposium in Prague
1970 [9]. At the same symposium Peterka presented a simi-
lar algorithm [6]. Part I of this thesis was presented at
the IFAC World Congress in Paris 1972. Saridis and Dao [8]
consider the self-tuning problem when the unknown parame-
ters belong to a known discrete set of parameter values.
Astrdm has in [2] given a self-tuning algorithm which can
be used for nonmimimum phase systems. A more complex self-
tuning regulator which can handle multiple-input multiple=-

output systems is given by Peterka and Astrém [71.

Part I introduces the basic idea behind the considered class

of self-tuning regulators based on the natural assumption of
separation of identification and control. Some asymptotic re-
sults are given. For instance it 1s shown that if the algorithm
converges then the controller under weak assumptions will con-
verge to the minimum variance regulator that can be obtained

if the parameters are known.




Part II is a detailed discussion of the properties of the

self-tuning regulator. The results are partly obtained

through analysis and partly through extensive simulations
using an interactive computer program. The simulations
have thus been used to gain insight into the properties

of the algorithm and to generate hypotheses, some of which
were later proved mathematically. The investigation in
Part II shall thus be regarded as being theoretical as

much as experimental.

Part III relates some of the results obtained from an imp-
lementation of a self-tuning regulator on an industrial

process.

The self-tuning regulator discussed can be thought of as
performing two tasks. The parameters in a model of the pro-
cess are estimated using the method of least squares and

a minimum variance regulator is computed based on the es-
timated parameters. The steps are repeated in each samp-
ling interval. The computations to be done in each step

are very small. It is interesting to compare the complexi-
ties of the PI-regulator and the self-tuning regulator. The
number of operations (additions or multiplications) in a
digital PI-regulator is about 4. The self-tuning regulator
with two parameters requires about 34 operations. The num-
ber of operations for the self-tuning regulator is increa-
sing with the square of the number of parameters. Experi-
ments and simulations indicate that up to 6 parameters is

a reasonable number of parameters in a self-tuning regula-
tor, This means that the information processing is an or-
der of magnitude larger when using a self-tuning regulator.
A better performance of the system can, however, compensate

for the more complex computations.

It is relatively easy to characterize the asymptotic pro-
perties of the self-tuning algorithm. If the parameter es-

timates converge then




N .
lim % ) oy (trT)y(t) = 0
N—e t=1
and

1 N
lim ] y(t+odult) = 0
N~ t=1

for certain values of t. This is true for a large class

of processes. The self-tuning regulator can thus be com-
pared with a PI-regulator. The PI-regulator will make the
control error equal to zero irrespective of the properties
of the process as long as the closed loop system is stable.
Analogously the self-tuning regulator will make mean values
of sums of squares of outputs and inputs equal to zero.

The self-tuning regulator will converge to a generalized
dead-beat regulator if the changes in the reference sig-
nal is dominating and to a minimum variance regulator if

the noise is dominating.

The asymptotic properties discussed in Part I are true un-
der the assumption that the parameter estimates really
converge. The transient properties of the self-tuning al-
gorithm are difficult to analyze. In Part II the conver-
gence 1is discussed for some special cases. The algorithm
does not converge for all linear single-input single=-out-
put systems with constant parameters. This can be shown by

counter-examples.

Some parameters must be specified when using the self-
tuning regulator. These are a scale factor for the cont-
rol: variables, the number of time-delays in the system,
the number of parameters in the regulator, the initial
values of the estimates and their covariances. The choice
of these parameters is discussed in Part II. Experience

has shown that it is fairly easy to make the proper choice




in practice. These parameters are also much easier to
choose than to directly determine the coefficients of a

complex control law.

The self-tuning regulator presented has been used on dif-
ferent industrial processes. An example from the mining
industry is given in [3]. Part III of this thesis gives
experiences of one implementation in the paper industry.
The process under consideration is moisture content cont-
rol on a paper machine at the Gruvén mill of Billerud AB,
Grums, Sweden. The experiences of the implementation are
very good concerning the transient as well as the statio-
nary behaviour of the regulator. The experiments at Gruv-
6n show that it can be easy to implement a self-tuning
regulator on a process which already is controlled by a
process computer. The engineers at the mill could take
over the operation of the self-tuning regulator after a

short training period only.

The self-tuning regulator discussed has many attractive
properties. It can be used for a large class of linear
single-input single=-output systems. The algorithm can be
used for systems which have slowly time-varying parame-
ters. It has turned out that even nonminimum phase sys-
tems can sometimes be handled. Finally the algorithm is
easy to implement on a computer and to install on a real
process. Among the drawbacks are the fact that the algo-
rithm does not always converge. Further it is not possible
to automatically handle nonminimum phase systems which is
possible with the algorithm described in [2]. The presen-
ted algorithm can only handle single-input single-output
systems. Multivariable systems can, however, be handled
through cascade control. It is also believed that the re-

sults can be extended to certain multivariable systems.

It is the belief of the author of this thesis that the




presented self-tuning regulator is a valuable tool for
control engineers. It should be pointed out that the
self-tuning regulator is not a substitute for but a good

complement to the conventional PI-regulators.

The thesis has been possible to accomplish thanks to ma-
ny persons in my environment. First of all I want to ex-
press my sincere thanks to my advisor Karl Johan Astrdm
whose ideas, help and enthusiasm have guided and encouraged

me throughout the work.

My collegues at the Division I want to thank for hours of
discussions. In particular I want to thank Lennart Ljung
who has helped me to understand the convergence proper-
ties of the self-tuning regulators and Ulf Borisson with
whom I have shared hours of disbelief and success at the
paper mill. Further I want to express my gratitude to Ivar
Gustavsson and Per Hagander who always have time to dis-

cuss larger and minor problems.

The experiments with the self-tuning regulator at the paper
mill have been possible to make thanks to financial support
from STU, contract No 72-1026/U833 and to the kindness of
Billerud AB. A special thank to 0Olle Alsholm, Leif Endresen
and 0dd Stavnes at the Gruvén Mill at Grums for their help

and support during the experiments.

Thanks also to Gudrun Christensen and Kerstin Palmqvist
who have typed the manuscripts and to Birgitta Tell and

Bengt Lander who have made the drawings.

My girls Karin, Emma, Ida and Johanna have spent many eve-
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On Self Tuning Regulators®

Sur les Régulateurs Auto-Syntonisants

Uber selbsteinstellende Regler

O caMoHacTpauBarOIUMXCs PETYJIATOPax

K. J. ASTROM and B. WITTENMARK

Control laws obtained by combining a least squares parameter estimator and a minimum
variance strategy based on the estimated parameters have asymptotically optimal per-

Jormance.

Summary—The problem of controlling a system with con-
stant but unknown parameters is considered. The analysis
is restricted to discrete time single-input single-output
systems. An algorithm obtained by combining a least
squares estimator with a minimum variance regulator com-
puted from the estimated model is analysed. The main
results are two theorems which characterize the closed loop
system obtained under the assumption that the parameter
estimates converge. The first theorem states that certain
covariances of the output and certain cross-covariances of
the control variable and the output will vanish under weak
assumptions on the system to be controlled. In the second
theorem it is assumed that the system to be controlled is a
general linear stochastic nth order system. It is shown that
if the parameter estimates converge the control law obtained
is in fact the minimum variance control law that could be
computed if the parameters of the system were known.
This is somewhat surprising since the least squares estimate
is biased. Some practical implications of the results are
discussed. In particular it is shown that the algorithm can
be feasibly implemented on a small process computer,

1. INTRODUCTION

IT HAs been shown in several cases that linear
stochastic control theory can be used successfully
to design regulators for the steady state control of
industrial processes. See Ref. [1]. To use this
theory it is necessary to have mathematical models
of the system dynamics and of the disturbances. In
practice it is thus necessary to go through the steps
of plant experiments, parameter estimation, com-
putation of control strategies and implementation.
This procedure can be quite time consuming in
particular if the computations are made off-line. It
might also be necessary to repeat the procedure if
the system dynamics or the characteristics of the
disturbances are changing as is often the case for
industrial processes.

* Received 2 March 1972; revised 12 September 1972.
The original version of this paper was presented at the 5th
IFAC Congress which was held in Paris, France during
June 1972, Tt was recommended for publication in revised
form by Associate Editor A, Sage.
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From a practical point of view it is thus meaning-
ful to consider the control of systems with constant
but unknown parameters. Optimal control prob-
lems for such systems can be formulated and solved
using non-linear stochastic control theory. The
solutions obtained are extremely impractical since
even very simple problems will require computations
far exceeding the capabilities of todays computers.
For systems with constant but unknown para-
meters it thus seems reasonable to look for strate-
gies that will converge to the optimal strategies that
could be derived if the system characteristics were
known. Such algorithms will be called self-tuning
or self-adjusting strategies. The word adaptive is
not used since adaptive, although never rigorously
defined, usuvally implies that the characteristics of
the process are changing. The problem to be dis-
cussed is thus simpler than the adaptive problem in
the sense that the system to be controlled is
assumed to have constant parameters.

The purpose of the paper is to analyse one class
of self-adjusting regulators. The analysis is re-
stricted to single-input single-output systems. It is
assumed that the disturbances can be characterized
as filtered white noise. The criterion considered is
the minimization of the variance of the output. The
algorithms analysed are those obtained on the basis
of a separation of identification and control. To
obtain a simple algorithm the identification is
simply a least squares parameter estimator.

The main result is a characterization of the closed
loop systems obtained when the algorithm is applied
to a general class of systems. It is shown in
Theorem 5.1 that if the parameter estimates con-
verge the closed loop loop system obtained will be
such that certain covariances of the inputs and the
outputs of the closed loop system are zero. This is
shown under weak assumptions on the system to be
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controlled. Moreover if it is assumed that the
system to be controlled is a sampled finite dimen-
sional linear stochastic system with a time delay in
the control signal it is demonstrated in Theorem 5.2
that, if the parameter estimates converge, the corres-
ponding regulator will actually converge to the
minimum variance regulator. This is true, in spite
of the fact that the least squares estimate is biased.

The major assumptions are that the system is
minimum phase, that the time delay is known and
that a bound can be given to the order of the
system. The first two assumptions can be removed
at the price of a more complicated algorithm.

The paper is organized as follows: sections 2 and
3 provide background and a motivation. The al-
gorithm is given in section 4. Control strategies for
systems with known parameters are given in section
2. Least squares parameter estimation is briefly
reviewed in section 3. Some aspects on the notion
of identifiability is also given in section 3. The
algorithm presented in section 4 is obtained simply
by fitting the parameters of a least squares structure
as was described in section 3 and computing the
corresponding minimum variance control strategy
as was described in section 2. The possible diffi-
culty with non-identifiability due to the feedback is
avoided by fixing one parameter.

The main result is given as two theorems in
section 5. We have not yet been able to prove that
the algorithm converges in general. In section 6 it
is, however, shown that a modified version of the
algorithm converges for a first order system. The
convergence properties of the algorithm are further
illustrated by the examples in section 7. Some
practical aspects of the algorithm as well as some
problems which remain to be solved are given in
section 8. In particular it is shown that the al-
gorithm is easily implemented on a minicomputer.

2. MINIMUM VARIANCE CONTROL

This section gives the minimum variance strategy
for a system with known parameters. Consider a
system described by

YO +ayt—D+ ... +a,yt—n)=bu(t—k—1)
+ .o o ut—k—n)+Ae(t)+ce(t—1)
+ ... Fee(t—n),
1=0, +1, 42, ... 2.1
where u is the control variable, y is the output and
{e(®), t=0, &1, +2,... }is a sequence of indepen-

dent normal (0, 1) random variables. If the for-
ward shift operator g, defined by

gy)=y(t+1)

and the polynomials
A@)=2"+a;z" "'+ ... +a,
B(z)=b;z" '+ ... +b,, b, %0
C@=z"+ez" '+ ... +e,

are introduced, the equation (2.1) describing the
system can be written in the following compact
form:

A@yO)=B(@u(t—k)+ 2 C(qe(?). 2.2)

It is well known that (2.1) or (2.2) is a canonical
representation of a sampled finite dimensional
single-input single-output dynamical system with
time delays in the output and disturbances that are
gaussian random processes with rational spectral
densities.

The model (2.1) also admits a time delay 7 in the
system input which need not be a multiple of the
sampling interval. The number & corresponds to
the integral part of v/h, where h is the sampling
interval.

Let the criterion be

V,=Ey*(1) (2.3)
or

i N
Vy=E_3y*(®). (24
N7
The optimal strategy is then

__ 4G9
u(®) my(t) (2.5

where F and G are polynomials
F)=z"+fz""1+ ... +f, (2.6)
G(@)=goz" ' +g,2" %+ ... +g,_; (2.7
determined from the identity

7*C(9)=A(@)F(9)+ G(g). (2.8)

Proofs of these statements are given in [2]. The
following conditions are necessary:

—The polynomial B has all zeroes inside the unit
circle. Thus the system (2.1) is minimum
phase.

~—The polynomial C has all zeroes inside the unit
circle.

These conditions are discussed at length in [1].
Let it suffice to mention here that if the system 2.1)
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is non-minimum phase the control strategy (2.5)
will still be a minimum variance strategy. This
strategy will, however, be so sensitive that the
slightest variation in the parameters will create an
unstable closed loop system. Suboptimal strategies
which are less sensitive to parameter variations are
also well known. This paper will, however, be
limited to minimum phase systems.

3. PARAMETER ESTIMATION

For a system described by (2.1) it is thus straight
forward to obtain the minimum variance regulator,
if the parameters of the model are known. If the
parameters are not known it might be a possibility
to try to determine the parameters of (2.1) using
some identification scheme and then use the control
law (2.5) with the true parameters substituted by
their estimates. A suitable identification algorithm
is the maximum likelihood method which will give
unbiased estimates of the coefficients of the 4, B
and C polynomials. The maximum likelihood esti-
mates of the parameters of (2.1) are, however,
strongly non-linear functions of the inputs and the
outputs. Since finite dimensional sufficient statistics
are not known it is not possible to compute the
maximum likelihood estimate of the parameters of
(2.1) recursively as the process develops. Simpler
identification schemes are therefore considered.

The least squares structure

The problem of determining the parameters of
the model (2.1) is significantly simplified if it is
assumed that ¢;=0 for i=1, 2, ..., n. The model
is then given by

A(@)y(t) = B(qu(t—k)+ Ae(t+n). 3.D

The parameters of this model can be determined
simply by the least squares method [3]. The model
(3.1) is therefore referred to as a least squares model.

The least squares estimate has several attractive
properties. It can easily be evaluated recursively.
The estimator can be modified to take different
model structures, e.g. known parameters, into
account, The least squares estimates will converge
to the true parameters e.g. under the following con-
ditions.

—The output {y(#)} is actually generated from a
model (3.1).

—The residuals {e(?)} are independent.

~The input is persistently exciting, see Ref. [3].

—The input sequence {u(?)} is independent of the
disturbance sequence {e(?)}.

These conditions are important. If the residuals
are correlated the least squares estimate will be
biased. If the input sequence {u(f)} depends on

{e(?)} it may not be possible to determine all para-
meters.

When the inputs are generated by a feedback they
are correlated with the disturbances and it is not
obvious that all the parameters of the model can be
determined. Neither is it obvious that the input
generated in this way is persistently exciting of suffi-
ciently high order. A simple example illustrates the
point.

Example 3.1
Consider the first order model

¥ +ay(t—1D=bu(t—1)+e(?). 3.2)
Assume that a linear regulator with constant gain

u(t)=ay(t) (3.3)

is used. If the parameters ¢ and b are known the
gain a=a/b would obviously correspond to a mini-
mum variance regulator. If the parameters are not
known the gain a=4a/b where 4 and b are the least
squares estimates of ¢ and b could be attempted.
The least squares parameter estimates are deter-
mined in such a way that the loss function

V(a, b)= i [y(t+D+ay@—bu(®]* (3.4

is minimal with respect to a and b. If the feedback
control (3.3) is used the inputs and outputs are
linearly related through

u(t)—ay(t)=0. (3.5)

Multiply (3.5) by —y and add to the expression
within brackets in (3.4).
Hence

N
V(a, b)= % [y(t+ D+ (a+ap)y®—(b+nu(®)]

=V(a+ay, b+y).

The loss function will thus have the same value for
all estimates ¢ and b on a linear manifold. Thus
the two parameters ¢ and b of the model (3.2) are
not identifiable when the feedback (3.3) is used.

The simple example shows that it is in general not
possible to estimate all the parameters of the model
(3.1) when the input is generated by a feedback.
Notice, however, that all parameters can be esti-
mated if the control law is changed. In the par-
ticular example it is possible to estimate both
parameters of the model, if the control law (3.3)
is replaced by

u()=ay(t—1)
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or

()=, y(t)+ay y(t—1)

or if a time varying gain is used.

4. THE ALGORITHM

In order to control a system with constant but
unknown parameters the following procedure
could be attempted. At each step of time determine
the parameters of the system (3. 1) using least
squares estimation based on all previously observed
inputs and outputs as was described in section 3.
Then determine a control law by calculating the
minimum variance strategy for the model obtained.
To compute the control law the identity (2.8) must
be resolved in each step. The problem of computing
the minimum variance regulator is simplified if it is
observed that by using the identity (2. 8) the system
(3.1) can be written as

Yi+k+D+oayO)+ ... +oy(t—m+1)
=Pold)+ Bru(t =)+ ... +But—1)]
+e(t+k+1) 4.1

where m=nand /=n+k—1. The coefficients o; and
B; are computed from the parameters a; and b, in
(3.1) using the identity (2.8). The dlsturbance s(t)
is a moving average of order k of the driving noise
e(t).

The minimum variance strategy is then simply

u(t)='8i[oc1y(t)+ st y(t—m+1)]
0

—ﬂlu(t—l)—- oo —ﬁ,u(t—l). (42)

In order to obtain simple computation of the
control strategy it could thus be attempted to use
the model structure (4.1) which also admits least
squares estimation. The trade-off for the simple
calculation of the control law is that k more para-
meters have to be estimated.

As was shown in Example 3.1 all parameters of
the model (4.1) can not necessarily be determined
from input-output observations if the input is
generated by a feedback (4.2) with constant para-
meters. In order to avoid a possible difficulty it is
therefore assumed that the parameter Bo is given.
It will be shown in section 6 that the choice of Bo
i not crucial.

Summing up, the algorithm can be described as
follows.

Step 1 parameter estimation
At the sampling interval ¢ determine the para-
meters oy, ... a,, fi,..., [, of the model

YO+ p(t—k—1)+ ... +o, y(t—k—m)

=Polu(t~k—1)+Bu(t—k—2)
+ o FPut—k—1—-1D)]+£@) 4.1)

using least squares estimation based on all data
available at time ¢, i.e.

t

ﬂe(k)

minimum. The parameter f8, is assumed known.

Step 2 control
At each sampling interval determine the control
variable from

u(t)=ﬁ—1[oz1y(t)+ ot yt—-m+1)]

0

—Buu(t—=1)— ... —Bu(t—1) 4.2)
where the parameters o; and g, are those obtained
in Step 1.

The control law (4.2) corresponds to

=OC1 +062q_1+ e +‘xmq_m+1
"0 Boll+Bg™ '+ ... +ﬁ1q—’]y(t)
=ql m+1 (q) 43
a0’ 0P (4.3)

Since the least squares estimate can be computed
recursively the algorithm requires only moderate
computations.

It should be emphasized that the algorithm is not
optimal in the sense that it minimizes the criterion
(2.3), or the criterion (2.4). Tt fails to minimize
(2.3) because it is not taken into account that the
parameter estimates are inaccurate and it fails to
minimize (2.4) because it is not dual in FELDBAUM’S
sense [4]. These matters are discussed in [2]. It will,
however, be shown in section 5 that the algorithm
has nice asymptotic properties.

The idea of obtaining algorithms by a combina-
tion of least squares identification and control is
old. An early reference is KALMAN [5]. The par-
ticular algorithm used here is in essence the same as
the one presented by PETERKA [6]. A similar al-
gorithm where the uncertainties of the parameters
are also considered is given in WIESLANDER—
WITTENMARK [7].
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5. MAIN RESULTS

The properties of the algorithm given in the
previous section will now be analysed. We have

Theorem 5.1

Assume that the parameter estimates o,(2),
i=1,...,m, B(r), i=1,...[ converge as f—0
and that the closed loop system is such that the
output is ergodic (in the second moments). Then
the closed loop system has the properties

Ey(t+oy()=r(1)=0 t=k+1,...k+m (5.1)

Eyt+ou®)=r,(0)=0 t=k+1,..., k+I+1.
(5.2)

Proof

The least squares estimates of the parameters

Assume that the parameters converge. For suffi-
ciently large N, the coefficients of control law (4.2)
will then converge to constant values. Introduction
of (4.2) into (5.3) gives

y(t+k+Dy()=0
Zy(t+k+Dy(r—1)=0

(it +k+D)yt—m+1)=0
Sy(t+k+ Du(t—1)=0

Ty(t+k+ Du(t—1)=0.

Using the control law (4.2) it also follows that
Zyp(t+k+ Du(t)=0.

Under the ergodicity assumption the sums can

04y Oay v vy Oy B1s Bas «o., By is given by the furthermore be replaced by mathematical expecta-
equations tions and the theorem is proven.
Dy Zy(y-1) ... Ey@Oy(t—m+1) — BoZy(u o = BoZy(u(t—-1)
Zy®y(t—1) Zy(—-Dy(t—m+1) ' '
Zy(Oy(t—m+1) Ty*(t—-m+1) —BoEy(t—m+Du(t—1) . . . —oEy(t—m+Du(t—1I)
—BoZy(Du(t—1) Biru*(t—1) oL BEZu(t—Du(t—1)
—BoZy(Hu(t=10 . .. PIXTR ()

%y —Zy(t+k+Dy() + BoZu(®)y(®)

%, Zy(t+k+Dy(t— 1D+ BoZu(®y(t—1)

Ol —Zy(t+k+Dy(t—m+ D)+ fZu@)y(t—m+1) (5.3)

By — BoZy(t+k+ Du(t—1)— BEZu(Hu(t—1)

B BoZy(t+k+Du(t—D)—BiZu(du(t—1)

where the sums are taken over N, values, See Ref. [3].
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Remark |

Notice that the assumptions on the system to be
controlled are very weak. In particular it is not
necessary to assume that the system is governed by
an equation like (2.1) or (3.1).

Remark 2

It is sufficient for ergodicity that the system to be
controlled is governed by a difference equation of
finite order, e.g. like (2.1), and that the closed loop
system obtained by introducing the feedback law
into (2.1) gives a stable closed loop system.
Remark 3

The self tuning algorithm can be compared with
a Pl-regulator. If the state variables of a deter-
ministic system with a Pl-regulator converge to
steady state values, the control error must be zero
irrespective of the properties of the system. Analo-
gously theorem 5.1 implies that if the parameter
estimates of the self tuning algorithm converge the
covariances (5.1) and (5.2) are zero.

Remark 4

Theorem 5.1 holds even if the algorithm is modi-
fied in such a way that the parameter estimation
(Step 1) is not done in every step.

If it is assumed that the system to be controlled
is governed by an equation like (2.1) it is possible
to show that the conditions (5.1) and (5.2) in
essence imply that the self tuning regulator will
converge to a minimum variance regulator. We
have
Theorem 5.2

Let the system to be controlled be governed by
the equation (2.1). Assume that the self tuning
algorithm is used with m=n and I=n+k~1. If
the parameter estimates converge to values such
that the corresponding polynomials o/ and & have
no common factors, then the corresponding regu-
lator (4.2) will converge to a minimum variance
regulator,

r1 By ... f 0
0 1 p

0 ... 01 p

0 oy ... o O
0 oy

Proof

Assume that the least squares parameter esti-
mates converge. The regulator is then given by
(4.3) i.e.

_4T" ) L ghed(q)
O """

where the coefficients of 7 and & are constant.
Since the system to be controlled is governed by
(2.1) the closed loop system becomes

[4(9)%(@)— B/ (@IN() =1 C() B(@)e(r).  (5.4)

The closed loop system is of order r=n+/. Intro-
duce the stochastic process {v(t)} defined by

1
)= 749 o). (55
STAY e e ACKI R
Then
YO =q""'B(g)v() (5.6)
and
ut)=q~"* 1ol (q)¥(t). (5.7

Multiplying (5.6) and (5.7) by Mt+7) and taking
mathematical expectations gives

1@ =1y D)+ Brry(t+1) ... + Bt +1) (5.8)
¥ ,u(T) =ayr,,(T) + b, (T+1)
+ oo tar,t+m=1). 5.9)

Furthermore it follows from Theorem 5.1, equa-
tions (5.1) and (5.2), that the left member of (5.8)
vanishes for t=k+1, ..., k+m and that the left
member of (5.9) vanishes for 7=k + ..., k+1+1.
We thus obtain the following equation for 7,u(T).

0 ] rryv(k +1) i FO_
ro(k+2) 0
0
B = (5.10)
0
0
oth —ry,,(k +I1+ m)—’ _0—
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Since the polynomials s/ and % have no common
factor it follows from an elementary result in the
theory of equations [8, p. 145] that the (/+m)
x (I+m)-matrix of the left member of (5.10) is non-
singular.

Hence

Fy(T)=0 t=k+1,. .., k+I+m. (5.11)

Since v is the output of a dynamical system of
order r=n+/=m+ [ driven by white noise it follows
from (5.11) and the Yule~Walker equation that

ry(T)=0 t=k+1. (5.12)

The equation (5.8) then implies
r(t)=0 =k+1. (5.13)
The output of the closed loop system is thus a

moving average of white noise of order k. Denote
this moving average by

Y=g~ F(g)e(r) (5.14)

where F is a polynomial of degree k. Tt follows
from (5.4) and (5.14) that

q’fC=FA_B_Fg,
B

Since ¢*C and FA are polynomials BF.sZ/% must
also be a polynomial.

Hence
g*C=FA+G (5.15)
where
G= B4 (5.16)
B

is of degree n—1 and F of degree k. A comparison
with (2.8) shows, however, that (5.15) is the identity
which is used to derive the minimum variance
strategy. It thus follows from (2.5) that the mini-
mum variance strategy is given by

k
u(t)= —%gy(o .

The equation (5.16) then implies that

k k
_46_qa¥ (5.17)
BF %

and it has thus been shown that (4.2) is 2 minimum
variance strategy.

Remark

The conditions m=n and /=n+k—1 mean that
there are precisely the number of parameters in the
model that are required in order to obtain the
correct regulator for the process (2.1). Theorem
5.2 still holds if there are more parameters in the
regulator in the following cases.

(i) Theorem 5.2 still holds if m=n and
IZn+k—1. In this case the order of the system is
r=n+1 and since m=n the equation (5.10) implies
(5.11)~(5.13) and the equation (5.16) is changed to

ql—k—-m+1BFd
7 .

G=-— (5.16")

The rest of the proof remains unchanged.

(ii) If m=n and /=n+k—1 the theorem will also
hold. The closed loop system is of order r<m+/
but the equation (5.10) will still imply (5.11) and
(5.16) is changed to (5.16"). The rest of the proof
remains unchanged.

(iii) If m>n and I>n+k—1 the theorem does
not hold because .o/ and % must have a common
factor if the parameter estimates converge. It can,
however, be shown that if the algorithm is modified
in such a way that common factors of &/ and & are
eliminated before the control signal is computed,
Theorem 5.2 will still hold for the modified al-
gorithm. ’

6. CONVERGENCE OF THE ALGORITHM

It would be highly desirable to have general
results giving conditions for convergence of the
parameter estimates. Since the system (2.1) with
the regulator (4.2) and the least squares estimator
is described by a set of nonlinear time dependent
stochastic difference equations the problem of a
general convergence proof is difficult. So far we
have not been able to obtain a general result. It has,
however, been verified by extensive numerical simu-
lations that the algorithm does in fact converge in
many cases. The numerical simulations as well as
analysis of simple examples have given insight into
some of the conditions that must be imposed in
order to ensure that the algorithm will converge.

A significant simplification of the analysis is
obtained if the algorithm is modified in such a way
that the parameter estimates are kept constant over
long periods of time. To be specific a simple
example is considered.

Example 6.1
Let the system be described by

YO +ay(t—1D)=bu(t—1)+e(®)+ce(t—1) |c|<1.
(6.1)
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Assume that the control law

u(t) =0, y(t) (6.2)
is used in the time interval t,<¢<t,,,; where the

parameter o, is determined by fitting the least
squares model

Y+ D+ oy()=u(t)+e(t+1) (6.3)

to the data {u(?), y(¢), t=t,_1, ..., t,—D}.
The least squares estimate is given by

th-2
tth_ YO+ 1D —u®]
th-2
Y YA

t=tn—1

Oy =—

tho2
Y (D)
=Oln-1_“——‘——“—'——t=t"—,:_2 (64)
PBAO)

t=tp—1

where the last equality follows from (6.2). Assume
that t,—¢,_,— 0 and that

la—ba,_(|<1 (6.5)

which means that the closed loop system used
during the time interval ,_; <#<t, is stable then

gy DD
Uy =0y g ry(O) (66)

where r(t) is the covariance function of the
stochastic process {y(f)} defined by

YO +(@a—ba,_Dy(t—D=e()+ce(t—1). (6.7)

Straightforward algebraic manipulations now
give

(c—~a+ba,_ )1 —ac+bco
1+¢*—2ac+2beca,_

n—l). (6.8)

Oy =0y—q —

The problem is thus reduced to the analysis of the
nonlinear differerence equation given by (6.8).
Introduce

Xy == 0l — 6.9
5 (6.9)
the equation (6.8) then becomes
b2ex?
Xpp1=0(x)=1-b)x,+——"2 . (6.10
=g =U=Dnt o (610)

The point x=0is a fixed point of the mapping g
which corresponds to the optimal value of gain of
the feedback loop, i.e. «=(a—c)/b. The problem is
thus to determine if this fixed point is stable. Since
the closed loop system is assumed to be stable it is
sufficient to consider

S (6.11)

Three cases have to be investigated

1. ¢=0
2. ¢>0o0rc<0,0<bg1
3. e>0o0re<0, 1<h<?,

For all cases g(x)~(1—b)x if x is small. This
implies that solutions close to 0 converge to x=0
if0<b<2.

Case 1
The equation (6.10) reduces to

Xny1= (1 - b)xn

and the fixed point x=0 is stable if |1 —b]<1 i.e.
0<b<2,

Case 2

The pincipal behavior of g(x) when ¢>0 and
0<b<1is shown in Fig. 1. It is straightforward to
verify that all initial values in the stability region
(c—D/b<x<(c+1)/b will give solutions which
converge to zero.

1

/
v

%0

/

/

-1

-1 0 1

Fig. 1. Graph of the function g when 0<b<1. The
figure is drawn with the parameter values g=—0-5,
b=0-'5 and ¢=0-7.

Case 3

The function g(x) for this case is shown in Fig. 2.
It is not obvious that x will converge to zero,
because there might exist a “limit cycle”,
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X0

-1

-1 0 1

Fi1G. 2. Graph of the function g when 1<b<2. The
figure is drawn with the parameter values a=—0-5,
b=1-5 and ¢=0-7.

If ¢>0 and starting with x,>0 then if g(x,)<0
it can be shown that after two iterations the new
value x, will satisfy O0<x,<x, i.e.

O0<g(g(x)<x if x>0, g(x)<0.
If (¢ —1)/b< x <0 then g(x) will be positive and can
be taken as a new initial value for which the con-

dition above will be satisfied. If ¢<O then it can
be shown that g(g(x))>x if x<0 and g(x)>0.

Summary
From the analysis above we can conclude that
x=0 is a stable fixed point if

—-1<exl
and

0<b<2. (6.12)

The example shows that under the condition (6.12)
the version of the self-tuning algorithm where the
parameters of the control law are kept constant
over long intervals will in fact converge. In the
analysis above f§,=1 was chosen. If §,#1 then the
condition (6.12) is replaced by

0<b/B,<2 (6.12)

or i

0.5b<f, <. (6.13)
The condition (6.13) implies that it is necessary to
pick the parameter 8, in a correct manner. The
algorithm will always converge if f, is greater than
b. Under-estimation may be serious and the value
B,<0:5b gives an unstable algorithm.

- The analysis presented in the simple example can
be extended to give stability conditions for the
modified algorithm in more complex cases. The
analysis required is tedious.

7. SIMULATIONS

The results in section 5 are given under the
assumption that the least squares estimator really
converges, but yet we have not been able to give
general conditions for convergence. But simulation
of numerous examples have shown that the al-
gorithm has nice convergence properties.

This section presents a number of simulated
examples which illustrate the properties of the self-
tuning algorithm.

Example 1.1
Let the system be

yO)+ay(t—D=bu(t—1)+e(f)+ce(t—1) (7.1)

with a= —0:5, =3 and ¢=0.7. The minimum
variance regulator for the system is

u(r)=5"—;-‘iy(t)= —0:4y(0). (1.2)

A regulator with this structure can be obtained
by using the self-tuning algorithm based on the
model

Y+ D+ oy(t)=Bu(t)+e(t+1). (7.3

Figure 3 shows for the case f,=1 how the para-
meter estimate converges to the value o= —0-4
which corresponds to the minimum variance
strategy (7.2).

In Figure 4 is shown the expected variance of
the output if the current value of « should be used
for all future steps of time. Notice that the algor-
ithm has practically adjusted over 50 steps.

0.0

~0.5

Parameter estimate

-0 T T
0 200 400
Time

" FiG. 3. Parameter estimate a(t) obtained when the self
tuning algorithm based on the model (7.3) is applied to
the system given by (7.1). The minimum variance regu-
lator corresponds to a=—0-4 and is indicated by the

' dashed line.
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FiG. 4. Expected variance of the output of Example 7.1

if the control law obtained at time ¢ is kept constant for

all future times. Notice that the estimate at time =26
would give an unstable system.

The analysis of Example 6.1 shows that, since
b>2, and f,=1 the modified self-tuning algorithm
obtained when the parameters of the controller are
kept constant over long intervals is unstable. The
simulation in Example 7.1 shows that at least in the
special case a conservative estimate of the con-
vergence region is obtained by analysing the modi-
fied algorithm. If the value of b is increased further
it has been shown that the algorithm is unstable.
Unstable realizations have been found for 6=5.
In such cases it is of course easy to obtain a stable
algorithm by increasing §,. This requires, however,
a knowledge of the magnitude of b.

The system of Example 7.1 is very simple. For
instance, if no control is used the variance will still
be reasonably small. The next example is more
realistic in this aspect.

Example 7.2
Consider the system

(1)~ 1.99(t—1)+0-99(t—2) = u(t—2)

+u(t—3)+e(t)—0-5e(t—1). 79
If no control is used the variance of the output is
infinite. Also notice that B(z)=z—1. The assump-
tion that B has all zeroes inside the unit circle is
thus violated. The minimum variance strategy for
the system is

u(t)= —176y(t)+ 1-:26p(t— 1) — 0-4u(t—1)
+ 1-4u(t—2). (7.5

A regulator with this structure is obtained by
using the self-tuning algorithm with the model

Wt+2)+ o y(B) +oy(t—1)
=u()+Bu(t— 1+ pu(t—2)+e(r+2). (7.6)

The convergence of the parameters is shown in
Fig. 5. Figure 6 showsthe accumulated losses when

Parameter estimates

0 2(')0 400
Tima

F1G. 5. Parameter estimates a1, a2, f; and S, obtained

when the self tuning algorithm based on (7.6) is applied

to the system given by (7.4). The thin lines indicate the

parameter values of the minimum variance strategy.

1500

1000

o

=3

=]
|

Accumulated foss

o

T
0 200 - 400
Time

Fi1G. 6. Accumulated loss
t

PIREO)
s=1

for a simulation of the system (7.4) when using the self
tuning algorithm (thick line) and when using the optimal
minimum variance regulator (7.5) (thin line).

using the self-tuning algorithm and when using the
optimal minimum variance regulator (7.5).

In both examples above, the models in the self-
tuning algorithm have had enough parameters so it
could converge to the optimal minimum variance
regulator. The next example shows what happens
when the regulator has not enough parameters.

Example 7.3
Consider the system

()~ 1:60p(t— 1)+ 1:61p(t—2)—0-776y(t — 3)
=1:2u(t—1)—0:95u(t — 2) + 0:2u(t — 3) + e(r)

+0-1e(t—1)+0-25e(t —2)+0-87e(t—3). (1.7)
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The polynomial A(z) has two complex zeroes near
the unit circle (+0-440-9/) and one real zero equal
to 0-8.

If a self-tuning regulator is determined based on
a model with m=3 and /=2 it will converge to the
minimum variance regulator as expected. Figure
7(a) shows a small sample of the output together
with the sample covariance of the output, # (7).

5 1 \
(a N I\A'AVA Vf\v \A.A\/ ’%AMVAVAVAVV Avh\ ) 0 - S

-5 T T - T
0 25 50 75 o 5 10

[~}

Sample covariance

Output

o
I
=
T
——
—
=
.
S—
=——

{b

—
—]
=
=
—_—
=
<—
=
Y
—~—t
=
%
=
Sample covariance

Output

T -
0 5 50 75 0 5 10

{¢

(=}

o=

=3

——

4

"

ez ]

ey

—

P v

———rt

— ]

—]

3,

—————
Sarmple covarionce

Output

Time

Fi1G. 7. Output of the system (7.7) and sample covariance
of the output ?,(z) when controlling with self tuning
regulator is having different number of parameters

(a) m=3 (b) m=2 (¢c) m=1
[=2 =1 [=0.
The dashed lines show the 5 per cent confidence intervals
for 7#0.

If the self-tuning algorithm instead is based on a
model with m=2 and /=1 it is no longer possible
to obtain the minimum variance regulator for the
system since there are not parameters enough in
the self-tuning regulator. Theorem 5.1 indicates,
however, that if the self-tuning regulator con-
verges, its parameters will be such that the co-
variances (1), ¥ (2), r,,(1) and r,,(2) are all zero.
The simulation shows that the algorithm does in
fact converge with f,=1:0. The covariance func-
tion of the output is shown in Fig. 7(b). It is seen
that the sample covariances #(1) and 7/(2) are
within the 5 per cent confidence interval while # (3)
is not as would be expected from Theorem 5.1.

If a self-tuning algorithm is designed based on a
model with m=1, /=0 then Theorem 5.1 indicates
that r,(1) should vanish. Again the simulation

shows that the algorithm does in fact converge and
that the sample covariance #,(1) does not differ
significantly from zero. See Fig. 7(c).

When using regulators of lower order than the
optimal minimum variance regulator, the para-
meters in the controller will not converge to values
which for the given structure gives minimum
variance of the output. In Table 1 is shown the
variance of the output for the system above when
using different regulators.

The loss when using the self-adjusting regulator
is obtained through simulations. The optimal regu-
lator is found by minimizing r (0) with respect to
the parameters in the controller.

TABLE 1

N
Loss 1 X Hyy(r)

Ni=t
m ! Self-adjusting Optimal
3 2 10 1-0
2 1 2-5 19
1 0 4-8 34

The previous examples are all designed to illus-
trate various properties of the algorithm. The
following example is a summary of a feasibility
study which indicates the practicality of the al-
gorithm for application to basis weight control of
a paper machine.

Example 7.4

The applicability of minimum variance strategies
to basis weight control on a paper machine was
demonstrated in [9]. In this application the control
loop is a feedback from a wet basis weight signal to
thick stock flow. The models used in [9] were
obtained by estimating the parameters of (2.1) using
the maximum likelihood method. In one particular
case the following model was obtained.

big '4+b,q7?
H=—0un-"= 27 L u(t—2)+0(i 7.8
y(® a0 T ra> @=2)+o(®) (7.8)

where the output y is basis weight in g/m? and the
control variable is thick stock flow in g/m2. The
disturbance {v(f)} was a drifting stochastic process
which could be modelled as

(=4 1teig” +eq7?
(I+aqg  +ag (1~

e 7.9
= ®» 79
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where {e(r)} is white noise. The sampling interval
was 36 sec and the numerical values of the para-
meters obtained through identification were as
follows

a;=—1.283
a,=0-495
by=2.307
b,=—2-025
¢;=—1.438
¢, =0-550
A=0:382,

To investigate the feasability of the self-tuning
algorithm for basis weight control, the algorithm
was simulated using the model (7.8) where the
disturbance v was the actual realization obtained
from measurements on the paper machine. The
parameters of the regulator were chosen as k=1,
/=3, m=4 and B,=2.5 and the initial estimates
were set to zero. The algorithm is thus tuning 7
parameters.

The results of the simulation are shown in Figs.
8-10. Figure 8 compares the output obtained when
using the self-tuning algorithm with the result
obtained when using the minimum variance regu-
lator computed from the process model (7.8) with
the disturbance given by (7.9). The reference value
was 70 g/m?. In the worst case the self-tuning
regulator gives a control error which is about
1 g/m? greater than the minimum variance regu-
lator. This happens only at two sampling intervals.

After about 75 sampling intervals (45 min) the
output of the system is very close to the output
obtained with the minimum variance regulator.

75

~
o
{

Wet basis weight [g/m?]

D
al

T T
30 60 90

Time [min]

Fic. 8. Wet basis weight when using the self tuning

regulator (thick line) and when using the minimum

variance regulator based on maximum likelihood identi-

fication (thin line). The reference value for the con-
troller was 70g/m2,
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F1. 9. Accumulated loss for Example 7.4 when using
the self tuning regulator (thick line) and when using the
minimum variance regulator (thin line).
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Fig. 10. The control signal in g/m? for Example 7.4
when using the self tuning regulator (thick line) and
when using the minimum variance regulator (thin line).

Figure 9 compares the accumulated losses
t
Vin=y y*(n)
n=0

obtained with the minimum variance regulator and
the self-tuning regulator. Notice that in the time
interval (21, 24) minutes there is a rapid increase in
the accumulated loss of the self-tuning regulator of
about 17 units. The largest control error during
this interval is 2.7 g/m? while the largest error of
the minimum variance regulator is 1 g/m?. The
accumulated losses over the last hour is 60 units for
the self-tuning regulator and 59 units for the mini-
mum variance regulator.

The control signal generated by the self-tuning
algorithm is compared with that of the minimum
variance regulator in Fig. 10. There are differences
in the generated control signals. The minimum
variance regulator generates an output which has
more rapid variations than the output of the self-
tuning regulator.

The parameter estimates obtained have not con-
verged in 100 sampling intervals. In spite of this
the regulator obtained will have good performance
as has just been illustrated. The example thus indi-
cates that the self-tuning algorithm could be feasible
as a basis weight regulator.
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8. PRACTICAL ASPECTS

A few practical aspects on the algorithm given in
section 4 are presented in this section which also
covers some possible extensions of the results

A priori knowledge

The only parameters that must be known & priori
are k, [, m and f,. If the algorithm converges it is
easy to find out if the & priori guesses of the para-
meters are correct simply by analyzing the sample
covariance of the output. Compare Example 7.3.
The parameter f8, should be an estimate of the
corresponding parameter of the system to be con-
trolled. The choice of B, is not critical as was
shown in the Examples 6.1 and 7.1. In the special
cases studied in the examples an under-estimate led
to a diverging algorithm while an over-estimate was
safe.

Implementation on process computers

It is our belief that the self-tuning algorithm can
be conveniently used in process control applications.
There are many possibilities. The algorithm can be
used as a tool to tune regulators when they are in-
stalled. It can be installed among the systems pro-
grams and cycled through different control loops
repetitively to ensure that the regulators are always
properly tuned. For critical loops where the para-
meters are changing it is also possible to use a dedi-
cated version which allows slowly drifting
parameters.

A general self-tuning algorithm requires about 40
FORTRAN statements. When compiled using the
standard PDP 15/30 FORTRAN compiler the code
consists of 450 memory locations. The number of
memory locations required to store the data is
(/—14+m)*+3(I—1+m)+2k+4. Execution times
on a typical process computer (PDP 15) without
floating point hardware are given in the table below.
The major part of the computing is to update the
least squares estimate.

Number of parameters Execution time ms

I+m
1 5
3 16
5 34
8 69

Improved convergence rates

The results of this paper only shows that if the
parameters converge the regulator obtained will
tend to a minimum variance regulator. Nothing is
said about convergence rates, which of course is of
great interest from practical as well as theoretical
points of view. There are in fact many algorithms

that have the correct asymptotic properties. Apart
from the algorithm given in section 4 we have the
algorithm which minimizes (2.4). But that algorithm
is impossible to use due to the computational re-
quirements. It is of interest to investigate if other
possible algorithms have better convergence rates
than the algorithm of section 4. No complete
answer to this problem is yet known. A few possi-
bilities will be indicated. It could be attempted to
take into account that the parameter estimates are
uncertain. See Refs. [2, 7 and 10]. The least squares
identifier can be improved upon by introducing
exponential weighting of past data. This has in
some cases shown to be advantageous in simula-
tions. Algorithms of this type have in simulations
been shown to handle slowly drifting parameters.

Another possibility is to assume that the para-
meters are Wiener processes, which also can be
incorporated fairly easily [2, 7]. It has been verified
by simulation that the region of convergence can be
improved by introducing a bound on the control
signal.

Feed forward

In many industrial applications the control can
be improved considerable if feed forward is used.
The self tuning regulators in this paper can include

feed forward control by changing the process model
4.1 to

Wi+k+D+ap@+ ... +o,y(t—m+1)
=Bolu()+Bru(t—1)+ ... +Bu(t—D]+y.s(t)

+ o Hys(t—p+ 1)+ e(t+k+1) 8.1)

where s(7) is a known disturbance.
The parameters a;, §; and y, can be identified as
before and the control law (4.2) will be changed to

u(t)=El-[oc1y(t)+ con R0 Y(E—m+ 1) =y s(0)

= e ~=ys(t—p+1)]-pu(t—1
= =Bu=0. (8.2

Nonminium phase systems

Difficulties have been found by a straightforward
application of the algorithm to nonminimum phase
systems, i.e. systems where the polynomial B has
zeroes outside the unit circle.

Several ways to get around the difficulty have
been found. By using a model with B(z)= B, it has
in many cases been possible to obtain stable al-
gorithms at the sacrifice of variance.
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It is well-known that the minimum variance regu-
lators are extremely sensitive to parameter varia-
tions for nonminimum phase systems [1]. This is
usually overcome by using suboptimal strategies
which are less sensitive [1]. The same idea can be
used for the self-tuning algorithms as well. The
drawback is that the computations increase because
the polynomials F and G of an identity similar to
(2.8) must be determined at each step of the itera-
tion. An alternative is to solve a Riccati-equation
at each step.

Multivariable and nonlinear systems

It is possible to construct algorithms that are
similar to the one described in section 4 for multi-
variable and nonlinear systems as long as a model
structure which is linear in the parameters [3, p. 131]
is chosen. For multivariable systems the structure
given in equation (3.2) of Ref. [3] can thus be
attempted. Analyses of the properties of the
algorithm obtained when applied to a multivariable
or a nonlinear system are not yet done.

9. CONCLUSIONS

The paper has been concerned with control of
systems with constant but unknown parameters.
The analysis has been limited to single-input single-
output systems with disturbances in terms of filtered
white noise. A control algorithm based on least
squares parameter estimation and a minimum
variance regulator computed from the estimated
parameters has been analysed. Assuming that the
parameter estimates converge the closed loop
system has been analysed. A characterization of
the closed loop system has been given under weak
assumption on the system to be controlled. Under
stronger assumptions on the system to be controlled
it has been shown that the regulator obtained will
actually converge to the minimum variance regu-
lator if the estimates converge.

Since the closed loop system is characterized as a
nonlinear stochastic system it is very difficult to
give general conditions that guarantee that the
estimates converge. The convergence has only been
treated for simple examples and under further
assumptions as in section 6. But simulations of
numerous examples indicate that the algorithm has
nice convergence properties.

The simplicity of the algrorithm in combination
with its asymptotic properties indicate that it can
be useful for industrial process control. The feas-
ibility has also been demonstrated by experiments
on real processes in the paper and mining indust-
ries.
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Résumé—On considere le probléme du contrdle d’un systéme
avec paramétres constants mais inconnus. L’analyse se
limite aux systémes discrets a entrée unique et sortie unique.
Un algorithme obtenu en combinant un estimateur a carrés
minimum avec un régulateur a variance minimum calculée
du modele estimé, est analysé. Les résultats principaux sont
deux théorémes qui caractérisent le systéme a boucle fermée
obtenu en supposant que les estimations des paramétres
convergent, Le premier théoréme dit que certaines co-
variances de la sortie et certaines covariances transverses de
la variable de contrdle et de la sortie disparaitront avec des
suppositions faibles du systéme contr6lé. Dans le second
théoréme il est supposé que le systéme a contrbler est un
systéme général linéaire stochastique du néme ordre. II est
montré que si les estimations des paramétres convergent, la
loi de contrOle obtenue est en fait la loi de controle de
variance minimale qui pourrait étre calculée si les para-
meétres du systéme étaient connus, Ceci est quelque peu
surprenant car ’estimation des carrés minimum est partiale.
On discute certaines des implications pratiques des résultats.
11 est montré en particulier qu’il est possible d’appliquer
I’algorithme & un petit ordinateur.

Zusammenfassung—Betrachtet wird das Problem der
Steuerung eines Systems mit konstanten, aber unbekannten
Parametern. Die Analyse wird auf Systeme mit Diskretzeit
und einem Eingang bzw. einem Ausgang beschrdnkt. Ein
durch Kombination einer Schétzeinrichtung und der
Methode der kleinsten Quadrate mit einer aus dem Schitz-
modell berechneten Regeleinrichtung erhaltener Algorithmus
wird analysiert. Die Hauptergebnisse sind zwei Theoreme,
die unter der Annahme, daB die Parameterschitzungen
konvergieren, den erhaltenen geschlossenen Regelkreis
charakterisieren. Das erste Theorem konstatiert, daf
bestimmte Kovarianzen des Ausganges und bestimmte
Kreuz-Kovarianzen der Steuervariablen und des Ausgangs
unter schwachen Annahmen iiber das zu regelnde System
verschwinden. Im zweiten Theorem wird angenommen, daB3
das zu regelnde System ein allgemeines lineares stochastisches
System n-ter Ordnung ist. Gezeigt wird, daB bei Konvergenz
der Parameterschiitzung des erhaltenen Steuergesetzes in der
Tat das Steuergesetz bei minimaler Varianz ist, das berechnet
werden kann, wenn die Parameter des Systems bekannt
waren. Das ist etwa iiberraschend, weil die Schitzung nach
den kleinsten Quadraten angesteuert wird. Einige prak-
tische Folgerungen aus den Ergebnissen werden diskutiert.
Speziell wird gezeigt, daB der Algorithmus auf einem kleinen
ProzeBrechner leicht verwirklicht werden kann.

Peatome—PaccmaTpuBaeTcs  npobiieMa  peryJIMpoBaHHs
CHCTEM IIPH NOMOIIH HOCTOSIHHBIX HO HEU3BECTHBIX Hapa-
METPOB. AHAIM3 OrPaHAYMBAETCH CUCTEMAMU JUCKPETHOTO
BpEMEHH C OHMM BBOAOM H C OJHUM BBIBOOOM. AHaIH3H-
pyeTcsa alfOpPHTM, HOMYy4YEHHLIH myTeM KOMOHWHHpPOBAaHHS
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OLICHOK HAHMEHBUIMX KBAZAPATOB C DETYIIMPOBKOH MHHU-
MaJbHBIX KoyeOannit, BEIMUCIICHHBIX U3 PACie€TAOM MOOETH.
OCHOBHEIMH ~ pe3yJIbTaraMH  SBJISIOTCS  JBE TEOPEMEL,
XapaKTePHUIYIOIME CHCTEMY 3aMKHYTOTO KOHTYpa, HOJIY4eH-
HOTO B HOPEANOJIONEHHH, YTO OLUSHKH HApaMETpPOB CXOA-
arcsa. IlepBas Teopema yTBEpHkKOaeT, 4YTO HeEKOTOpas
KOBAapHAHTHOCTh BBIBOAA M HEKOTOpasi Iepecekarolnast
KOBapUaHTHOCTh KOHTPOIbHEIX NCPEMEHHBIX BEIBOAA HCYE3-
HYT OpH HeOOJIBIINX HOMYIICHAIX B PEryIHPYeMOil cacTEME.
Bo BTOpOIt TeOpeMe MIPENIOIaraeTcs, YTO KOHTPOIHAPYEMast
CHCTEMA gABJseTCS OOmMell JMHEWHON CTOXacTHYECKO

cucreMoft mopsaxa n:th, IToxazaHo, 4YTO, eclid OIEHKH
apaMeTpoB CXOLATCH, TO TOJYyYCHHEBIE 3aK0H PeryIHpOBKS
HBIISETCA (DAKTHYECKH 3aKOHOM PETYIHPOBKM MHHHMAIIb-
HOTO KO/e6anus, KOTOpoe MOTJIO OBl GbITh BHMHCIEHO IPH
H3BECTHBIX Mapamerpax CHCTEMBI. OTO OO HEKOTOpOH
CTENEeHN HEOXHIAAHHO, TaK KaK OIEHKA HAWUMEHBINUX KBAI-
paToB ABAAETCA CMEIEHHOH. OOCYXKIAIOTCS HEKOTOPHIE
MPAaKTHYECKHE BLIBOABI M3 pE3yILTATOB. B 4YacTHOCTH,
MOKA34HO, YTO 3TOT AITOPHTM MOXET OBITh IIPHAMEHEH Ha
HeGOIBIION CUETHO-BBIMHCIIMTENLHON MaNIAHE A HPOLec-
COB.
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A SELF-TUNING REGULATOR.

B. Wittenmark

ABSTRACT.

The control of constant but unknown single-input single-
output systems is considered. Controllers for this type
of systems are called self-tuning regulators. The pro-
posed algorithm can be divided into two steps. Firstly,
the parameters in a model of the process is estimated
using the method of least squares. Secondly, a minimum
variance controller is determined based on the estimated
parameters. The basic algorithm discussed in the report
has several attractive properties. It can, for instance,
be shown that if the estimation converges, then under
weak assumptions the regulator will converge to the op-
timal controller that could be obtained if the parameters
of the system were known. The behaviour of the system has
been investigated theoretically as well as experimentally.
Questions concerning convergence and limitations are dis-
cussed. The algorithm is easy to implement on a small com-
puter which makes the regulator very attractive for use

on industrial processes.
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7. INTRODUCTION.

One difficulty when designing regulators is to determine
a good model of the process to be controlled. The dyna-
mics of the process as well as the characteristics of the
disturbances must in many cases be known. Identification
methods of different kinds have been developed to meet
this demand [6]. In many cases it is necessary to make
the computations of the control strategy off-line. This
has led to the idea of adaptive controllers. An adaptive
controller has the ability that it can change its para-
meters depending on the environment. An adaptive regula-
tor will thus assure that the regulator loop is properly
tuned despite changing dynamics and characteristics of
the disturbances. It is, however, very difficult to ana-
lyze a system controlled by an adaptive controller. One
interesting spécial case is when the process has constant
but unknown parameters. Controllers for this type of pro-

cesses will be called self-tuning regulators. This report

thoroughly discusses a self-tuning regulator described in
[8]. A similar algorithm is given in [24]. Other approach-

es are discussed for instance in [26] and [27].

The basic algorithm described in [8] is derived to cont-
rol minimum phase single-input single-output systems. The
algorithm is based on the assumption that it is possible
to separate the estimation of the parameters in the pro-
cess from the determination of the control law. The algo-
rithm can thus be divided into two parts. Firstly, the
parameters in a model of the process are estimated using
the method of least squares [6]. Secondly, the minimum
variance regulator [1] is computed, as if the values of
the estimated parameters were the true ones. Thus it is
not taken into consideration that the values of the esti-
mated parameters are uncertain. The self-tuning regulator

contains a few parameters that must be specified. For in-




stance it is necessary to determine the time-delay in the
process and the number of parameters in the regulator.
The main features of the basic algorithm were examplified
in [8]. Under weak assumptions it can be shown that if the
algorithm converges then the regulator will converge to
the minimum variance regulator that could be obtained if
the parameters in the process were known. The properties
of the algorithm will be further analyzed and discussed
in this report. Various types of modifications and exten-
sions will also be given. The self-tuning regulator has
successfully been used on processes in the paper and mining
industries. Experiences of moisture control on a paper

machine are given in [12].

It is not trivial to analyze the properties obtained when

a self-tuning regulator is used to control a stochastic
system since the closed loop system is nonlinear, stochas-
tic and time-varying. Certain asymptotic results can be
established mathematically. Many interesting practical
questions like convergence, convergence rate etc. have been
investigated through simulations. One serious drawback with
simulation is, however, that it is difficult to find out

if an algorithm converges. The simulations have been per-
formed through the use of an interactive computer program
which makes it possible to enter system and regulator de-
scriptions from a teletype. The results of the simulations
can be presented on a display or a line-printer. Simulation
of a second order system with four parameters in the regu-
lator takes about 25 seconds for 1000 time steps on a PDP-
-15. The simulations’have served as a rich source of empi-
rical results. Some of these results could later be proved
mathematically. The investigation of the self-tuning regu-
lators given in this report should thus be considered as an
experimental as much as a theoretical study. It is, of course,
not possible to present all the results of the simulations,

only a small fraction is given in this report.




The report is organized as follows: In Section 2 the ba-
sic algorithm and the main results given in [8] are lis-
ted for easy reference. The selection of the different
parameters in the algorithm is discussed in Section 3.
Theoretical results as well as practical rules of thumb
are given. The convergence of the algorithm can be proved
in some special cases. It is possible to give examples
which show that the algorithm does not converge in gene-

ral., Convergence is discussed in Section 4.

Modifications of the basic algorithm are given in Section
5. It is e.g. shown how feed forward compensation can be
included in the self-tuning algorithm. Although the algo-
rithm in most cases has a very good performance there are
certain limitations of the algorithm. One limitation dis-
cussed in Section 6 is that the parameters of the process
are assumed to be constant. If the parameters are slowly
varying it is possible to modify the algorithm in such a
way that the regulator can follow the parameter variations.
But i1f the variations are fast the algorithm will have an
unsatisfactory behaviour. Nonminimum phase systems can al-

so be handled by making some minor modifications.

In order to get a smooth start-up the algorithm can be mo-
dified to take into consideration that the parameter esti-
mates are uncertain. This is discussed in Section 7. In
Section 8 it is shown how self-tuning regulators can be
used in connection with the classical servo-mechanism
problem, i.e. to design regulators which make it possible
to reproduce different types of reference signals. Refe-

rences are given in Section 9.

I want to express my gratitude to my advisor Karl Johan
Astrém who has found time to discuss and to give valuable
criticism from the first ideas until the final manuscript.
Also I want to thank Lennart Ljung who has helped me with
the part concerning the convergence properties of the self-

tuning regulators.




2. THE BASIC ALGORITHM.
The basic self-tuning algorithm is described in [81. The

algorithm is derived to control linear single-input single-

output systems which can be described by the model:
A(q)y(t) = B(giu(t-k) + C(gle(t) (2.1)

where q is the forward shift operator, {e(t)} is a sequence

of independent N (0,0) random variables and

ACq) = g™+ aa™ v Lk (2.2)
B(q) = bya™ | 4 ...+ b_ (2.3)
C(q) = q" + c1qnm1 ooy (2.4)

It is assumed that the parameters in the polynomials (2.2)-
-(2.4) are constant but unknown. Further it is assumed that
the B-polynomial has all roots inside or on the unit circle,

i.e., the system is minimum phase.

If the parameters in (2.1) are known the output variance

is minimized by using the control law [1]

<G(q)
u(t) = - 22297 y(t)
B(g)F(q)

F and G are polynomials of degree k and n-71 respectively

given by the identity

g clq) = A(QIE(Q) + 6(q) (2.5)




If C(q) = g it is possible to rewrite (2.1) as

y(t) + a,y(t-k=1) + ... + o y(t-k-m) =
= Bo[u(t»kuﬂ) + Bqu(t—kmz) t o, + gzu(t~k«z—1)] +
+ e(t) ' (2.86)

where m = n and £ = n+k-1. The parameters oy and Bi can
be computed from the parameters in (2.1) using the iden-
tity (2.5). The disturbance e(t) is a moving average of
order k of the noise e(t). The minimum variance regula-
tor for (2.6) is

Wlt) = —lay(t) + .. + o y(t-me1)] -
B
0

- Bqu(t~1) - . - Bzu(t—ﬁ) (2.7)

The idea is now to estimate the parameters in the model
(2.6) and to use the estimated parameter values instead

of the true parameter values in the controller (2.7).

The algorithm can thus be described as follows:

Step 1: Parameter estimation. At each sampling interval

t determine the parameters Gy woen Oy Bys oree 82 of
the model (2.6) based on data available at time t using

the method of least squares, i.e. minimize
t
) e(i)?

[3]1. The parameter Bo is assumed known.




Step 2: Control. At each sampling interval determine the
%

control variable from the control law (2.7) where the pa-

rameters a; and §; are those obtained in Step 1.

Using the forward shift operator the control law (2.7)

can be written as

OL,I + u2q°1 + ... + Q(,mq“ml*h’I
u(t) = y(t) =
...’] -0
30[1 + 844 + e Tt qu J
L-m+1
= 4 Alg) v(t) (2.8)
B(q) l
where
- -2
Ji(q) = ;L[uqqm 1 + azqm + ... aé} (2.9)
By
B(q) = q° + 8.qa "+ v B (2.10)
1 2

The idea to estimate the parameters in a model as (2.6)
using the method of least squares is for instance found
in [19]. The least squares estimates can easily be com-
puted recursively, see [31, [301].

Introduce the vectors ¢ and 6 defined by

o(t) = [-y(t) =-y(t=1) ... -y(t-m+1) Bou(t=1) - Bou(tml)]
B, +.. B,]

The equation (2.6) can then be written as




y(t) = pyult-k=1) + ¢(t-k=1)o + e(t)

and the recursive equations of the estimates are given

by

BCt+1) = a(t) + K1) ([y(t) = Bult-k=1) - (t-k=1)6(t)) (2.11)

-1

K(E) = P(t)p(t=-k=1)T (1 + o(t-k-1)P(t)olt-k-1)T) (2.12)

PCt+1) = P(t) = K(£) (1 + o(t-k=DP(t)ot-k-D T )x()T  (2.13)

i

To update the estimates the equations (2.11) - (2.13) have
to be iterated one step. The algorithm thus requires a mo-
derate amount of computation. Computation times for the

basic self-tuning algorithm are given in [81].

If the estimates obtained in Step 1 converge, it is pos-
sible to characterize the closed loop system. In [8] the

following two theorems are stated and proved.

Theorem 2.1. Assume that the estimates of the parameters
ui(t), i =1y o0, m, Bi(t), i=1, ...y & in the model
(2.6) converge as t - « and that the closed loop system

is such that the output is ergodic (in the second moments)
when using the control law (2.7). Then the closed loop

system has the properties

Py(T) = Ey(t+t)y(t) = 0 T

k+1, ..., ktm (2.14)

ryu(r) = Ey(t+tiul(t) = 0 T kK+1, ooy k+o+1 (2.15)

If the system to be controlled is governed by an equation
like (2.1) it is possible to show that the conditions
(2.14) and (2.15) in essence imply that the self-tuning

regulator will converge to a minimum variance regulator.




Theorem 2.2. Let the system to be controlled be governed
by the equation (2.1). Assume that the self-tuning algo-

rithm is used with m = n and g = n+k-1. If the parameter

estimates converge to values such that the corresponding
polynomials A and B have no common factor then the cor~
responding regulator (2.8) converges to a minimum va-

riance regulator. ®W

If the noise is white, i.e. C(q) = q" it is not surprising
that the regulator can converge to the optimal regulator.
The self-tuning regulator can, however still converge to
the optimal regulator for a general C-polynomial. This is
unexpected since if C(q) # qn the least squares estimates
will be biased [3]. Theorem 2.2 now states that the esti-
mates will be biased in such a way that.the regulator

will be optimal. The class of systems for which the ba-

sic self-tuning algorithm can be used is thus larger than
could be expected at first.

It should be pointed out that the main object of the algorithm
is not to minimize the variance of the output but to make cer-

tain covariances and cross-covariances equal to zero. The mini-

mum variance regulator that can be obtained in some cases 1is

a concequence of the conditions (2.14) and (2.15).

It is not necessary that the disturbance e(t) is a sto-
chastic process. Let the disturbance be a deterministic
signal and replace the ergodicity assumption in Theorem
2.1 with the assumption that the closed loop system is
stable. If the estimates converge the conditions (2.14)
and (2.15) will be changed.to




lim

N-oo

lim
N->c

The

N

i Zy(t+t)y(t) = 0 T = k+1, ..., k+m
N

4 N

— Ly(t+t)lu(t) = 0 T = k+tl, .., kta+1
N

regulator parameters will, however, converge to dif-

ferent values depending on the properties of the deter-

ministic signal.Deterministic disturbances will be dis-

cussed in Section 8.
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3. SELECTION OF THE PARAMETERS IN THE ALGORITHM.

The performance of the basic self-tuning algorithm is
influenced by the choice of some parameters. This choice
has theoretical as well as practical implications. The
theoretical aspects mainly concern the relationship bet-
ween the structure of the regulator and the model of thé
process to be controlled. From a practical point of view
the main task is to make the regulator work well on a
real process. This implies that the regulator must ope-
rate satisfactorily in spite of minor nonlinearities in
the process, changes in the environment etc. For a known
process it is easy to determine the parameters of the
algorithm. It is, however, also necessary that the para-
meters are easy to determine in practice when the regula-
tor is used on a real process. Furthermore it is desir-

able that the choice of the parameters is not crucial.

The basic self-tuning regulator is specified by the fol=-

lowing parameters:

o exponential forgetting factor, i,

0 initial values for the least squares estimator,
o allowed maximum value of the control signal,

o scale factor in the regulator, By s

0 number of regulator parameters, m, &,

0 number of pure time-delays in the model, k,

0 sampling time.

The transient and the asymptotic properties of the system
are influenced by the choice of these parameters. Theore-
tical as well as empirical rules of thumb will be given
which can facilitate the practical use of the self-tuning
regulators. Experience has indicated that it is much
easier to select the parameters given above than to se-

lect the parameters 6 of the control law directly.
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3.1. Exponential Forgetting.

The estimates may sometimes converge very slowly, see e.g.
Fig. 3.2a below. The magnitude of the changes of the es-
timates in each step depends on the gain in the least
squares estimation algorithm, K(t), see (2.12). The gain
K(t) decreases with time. It may happen that the gain be-
comes too small before the estimates are close to the fi-
nal values. This is e.g. the case if the input signals

are large in the first steps. One obvious remedy is to
prevent K to become too small. This can be done by in-
troducing an exponential weighting of past data in the
least squares estimation [30]. The ordinary least squares
estimator minimizes the loss function Ze(t)Q. The new loss

function
t t=-n 2
V(t) = ) a7 eln) A (3.1)

gives more weight to recent data and less to past. The
estimator which minimizes (3.1) is described by the equa-
tions (2.11), (2.12) and

P(t+1) = 1[P(t) - KCe) (1 4 @(t—k~1)P(t)¢(t—k—1)T)K(t)T} (3.2)

A

The weighting given by (3.1) can be interpreted as send-

ing E(t)2 through a first order filter

V(t) = Av(t=1) + e(t)2

while A = 1 (ordinary least squares) corresponds to an

integrator.
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Weight At

Figure 3.1 shows how old data are weighted for different
values on A. The weight is ' after n steps. The weight

has decreased to 0.1 for
n=1n 0.1/1n x = 2.3/(1=1)

This can be used as a rule of thumb to determine how many
values should be remembered. About 200 old values are pe-

membered for ) = 0.99, while when only 40 are remembered
for A = 0.95.

0.999

0.99

0.98

0.95
0.90

o
|

I
0 100 200

Time

Fig. 3.1 - The weighting function \E for different values

on A,

The value of X will influence both the transient and the
stationary behaviour of the estimates. This is illustrated

by the following example.
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Example 3.1. Consider the system

y(t) = 0.9y(t=1) = 0.5u(t=1) + e(t)
The minimum variance regulator is given by
ul(t) = = 1.8y(t)

The system was simulated with BO = 1 using different
values of the exponential weighting factor i. Figure 3.2

shows the estimated parameter in the model
y(t+1) + ay(t) = ul(t) + e(t+1)

for » = 1.00, 0.99 and 0.95 respectively. By decreasing

x the estimate converges faster to a neighbourhood of

the optimal value. But the estimate will also become more
"noisy" for smaller values on A. This will influence the
control in the long run. Table 3.1 shows the average

losses for the first 200 steps and for the interval t =

= 8017 - 1000 when using different values on X,
200 1000
1 2 1 2
A srm ) y(t) R AL
200 4 200 861
1.00 1.18 1.02
0.99 1.15 1.01
0.95 1.10 1.03
0.90 1.10 1.05
0.80 1.13 1.10
Min. variance
controller .04 1.01
No control 3.70 5.27

Table 3.1 - Average loss for the system in Example 3.1
using different values of the exponential

forgetting factor A.
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Fig. 3.2 - Estimated parameter when controlling the system in
Example 3.1 using different values of the exponential

forgetting factor A.
a. » = 1.0 b. » = 0.99 c. A =0.95 m




The experience based on many examples is that a a-value
of about 0.90 - 0.95 gives the best transient performance,
while a value close to one gives the best stationary per-

formance.

Example 3.1 shows that the choice of A must be a compro-
mise between the desired rate of convergence and the cont-
rol in the long run, a typical dilemma of adaptive cont-

rollers.

In a practical case it must be taken into account that
the characteristics of the process and the disturbances
may change with time. Using an exponential weighting fac-
tor which is less than one it is possible to follow slow-
ly time-varying parameters. The value of X must then be
adapted to the rate of change in the parameters. Time-

varying systems are further discussed in Section 6.

The parameter 2 is best chosen by inspecting the varia-
tions in the parameter estimates. Too much fluctuations
implies either that too many parameters are used in the
regulator or that a too small a value of X is used. If
the parameter estimates are almost constant it is advis-
able to make a small decrease in the value of A occasion-
ally. This should be done in order to make sure that the
estimates really have converged and not only are slowly

changing, compare Fig. 3.2a.

When implementing self-tuning regulators it is desirable
that the parameter ) can be changed. The change of A can
be done manually by studying the estimated parameters.
The parameter X can also be changed automatically aécord-
ing to a time schedule. To make this time schedule re-

quires, however, good knowledge about the process.

15
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3.2. Initial Values.

Initial values of the parameters o, and Bs and the cova-
riance matrix, P(t), must be given when starting up the
least squares estimator. The matrix P(0) shall reflect
the confidence in the initial values of the parameters

1
are measured will, of course, influence the values of the

a, and Bi. The units by which the inputs and the outputs

parameters. A good practice is to choose the units in such
a way that the inputs and the outputs have approximately

the same magnitude.

If the parameters are completely unknown a standard choice
can be to put them equal to zero. In this case the cova-
riance matrix shall be given a rather large value, say

10 = 100 x I, where I is a unit matrix. If P(t) is large
then the estimator is allowed to take large steps and the
estimator can find fairly good estimates already after a

few steps. The choice of P(0) is not crucial in this case.

If the parameters in the system are approximately known
these values can be used as initial values for oy and B
P(0) can then be given a small value which means that the
estimator shall have a large confidence in the initial
parameter values. Typically P(0) can be chosen as ’lOa1 -

- 10_4 times a unit matrix.

The exponential forgetting factor gives a smallest value
to the gain K(t) in the estimator. This can be used to

increase the convergence rate. Using A < 1 has, however,

the drawback that the asymptotic properties are influenced.

The estimates will no longer converge but will vary

around the stationary values that would be obtained if
A = 1., Another way to increase the convergence rate is
to restart the estimation using the obtained parameter

estimates as initial values. Through the initialization
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the P-matrix can be given a larger value than before and
the estimates of the parameters can again take larger
steps. This method has the advantage that A = 1 can be
used. Also notice that it follows from (3.2) that a sud-
den reduction of ) has the same effect as a sudden in-
crease of P. A very low value of ) during the first steps

thus has the same effect as to use a large value of P(0).

To summarize the choice of initial values for the esti-
mator is not crucial. A too small value on P(0) can, how-
ever, give rise to a slow rate of convergence. In order
to avoid this the exponential forgetting factor can be

given a value somewhat less than one as discussed above.

3.3. Limitation of Control Signal.

Many control systems have nonlinearities. There may be
saturation, static friction and dead zones in the actua-
tors. Experience has shown that the performance of the
self-tuning regulator in the presence of such nonlinea-
rities can be improved by exploiting the information
about these effects. No detailed analysis will be given
let a heuristic argument suffice. The idea is simply that
the self-tuning regulator must know the signal that actu-

ally 1is acting on the process. The variable u(t) used in
the estimation and in the computation of the control

signal should be the process input but is actually the
actuator signal. In the presence of actuator nonlineari-
ties there may be a considerable difference. This can to
some extent be eliminated if the process input is measured.
If this is not done an alternative is to provide a simple
static model for the nonlinearities. This has also the ad-
vantage that the dynamics of the actuator is taken into
consideration when estimating the parameters in the model

of the process. For example, if the actuator saturates it
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is

it

often a good idea to limit the control signal before

is sent to the actuator. There are also other good

reasons to limit the output signal. The control signals

or

ny

It

the rate of change in the control signals are in ma-

cases limited for security.

has been shown in simulations that a limitation of

the control signal in many cases has good influence on

the transient behaviour of the self-tuning regulators.

This i1s the case if the initial estimates of the parame-

ters are poor. The regulator might then send large sig-

nals into the process which can cause large errors ini-

tially. The control signal can thus be limited to get a

smooth start-up. The limit can be small in the beginning

and later increased when better parameter estimates are

obtained. Another way is to have a fixed limit which

should not be reached under normal control of the pro-

cess. If the maximum value is reached often it is not

possible for the regulator to converge to the minimum

variance regulator.

There are, however, two situations when the control sig-

nal should not be limited too hard. If the system is un-

stable it may be difficult to get good parameter estimates

before the system has drifted far away from the reference

value. A limit on the control signal may then make it im-

possible to stabilize the system. To handle this situa-

tion the process can be stabilized by a fixed regulator.

The self-tuning regulator can then be used to tune the pa-

rameters in a regulator for the stabilized system.

If
to
of

as

the noise is drifting large input signals may be needed
compensate for the drift. In this case the increment
the process input, vu(t) = u(t) - u(t-1), can be chosen

the control signal. The differences can now be limited.
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Example 3.2. The effect of limiting the control signal

will be shown using the following system:
y(t) - 0.9y (t=1) = 0.25u(t-2) + e(t)
The minimum variance controller is given by

u(t) = - —3:22% oy (3.3)

1+ 0.9

If e(t) € N(0,1) the minimum average loss is 1.81 per
step and the variance of the optimal control signal is
10.5.

The parameters BO =1, m=2=1and A = 0.99 were used,
when simulating with the self-tuning regulator. Curve a
in Fig. 3.3 shows the accumulated loss, Zy(t)z, when u(t)
is not limited. The value used for BO is too large com-
pared with the first coefficient in the B-polynomial of
the system. This explains the large loss in the first 25
steps. After about 500 = 100' steps the estimator has ob-

tained good parameter estimates and the control is good.

Curve ¢ shows the loss when |u(t)| is limited to 5. The
control signal reaches the limit approximately 40 times
over the first 1000 steps. The loss function when using
(3.3) and with |u(t)| limited to 5 is shown by curve d.
If the control signal is limited harder the controller
has not "authority" enough to make as good control as be-
fore. Curve b in Fig. 3.3 shows the loss for the self-
tuning regulator when the control signal is limited to 1.
In this case the control signal is on the limit in almost

every step.

Table 3.2 shows the average loss over the first 100 steps
and over the interval 501 - 1000 when different limits

are used for the control signal.
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Fig. 3.3 - Accumulated loss, Zy(t)z, for different regu-
lators and limitations of the input signal.
a. Self-tuning regulator no limitation
b. - " - - " - ]u{g?
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d. Controller (3.3) |lu| < 5
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Limit of 1 100 5 1 1000 ’
control == ) y(t) = ) vyt
; 100 2 500
signal 1 , 501
oo 17.07 1.88
5 2. 41 1.87
2 2.00 2.20
1 2.28 2.71
0.5 2.73 3.42
Control law
(3.3) with 1.52 1.86
Jute)] < 5
Table 3.2 - The average loss during different periods of

time when controlling the system in Example
3.2 and using different limits of the control

signal. m

3.4, Scale Factor.

The parameter BO should ideally be an estimate of the pa-
rameter b,, the first coefficient in the B-polynomial of
the system (2.1). In [8] it is shown that the choice of
Bq 1s crucial for the convergence of the self-tuning al-
gorithm when a long time horizon is used for the identi-
fication. For a first order system it is shown that the

ratio Bo/b1 must then be within the interval

0.5 < Bo/b,1 < ®

Since the choice of Bo is crucial, why not estimate Bg
too? In [8] it is shown that if a fixed control law is
used then it might happen that the system is not identi-
fiable [10]. But if the control law is time=-varying the
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system can be identifiable. This is illustrated by the

following example:

Example 3.3. Let the system be

y(t) = 2y(t=-1) = u(t-1) + e(t)

Estimate the parameters o and g of the model

y(t+1) + ay(t) = gult) + e(t+1) (3.

using the method of least squares and use the control

law

alt)
B(t)

u(t) = v(t)

If the control law is fixed it is not possible to identi-
fy both o and B. Simulations have, however, shown that it
is possible to estimate both o and B if a time-varying

control law is used. The convergence may in some cases be

very slow.

The estimates of o and B from one simulation are shown in
Fig. 3.4. The controller gain o/ is shown in Fig. 3.5.
In this case the noise is white and o and B converge to
the true values of a and b. If the noise is coloured the
estimates will be biased but the controller will still

converge to the minimum variance regulator. m

The example above confirms that sometimes it is possible
to identify By+ The number of parameters that need to be
estimated is, however, increased. The next example shows
that the choice of By is less crucial if the control sig-

nal is limited.

4)




23

2
3
5 -2
£
o
v
(1]
—
)]
[
[1)]
£
o
£ -4

g
NN _—=
_ a
I
0 1000 2000
Time '
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Fig. 3.5 - Regulator gain,a/B, for the model (3.4). The value of

the optimal regulator is indicated by the dashed line.




Example 3.4. The system

y(t) = 1.5y(t=1) + 0.54y(t=2) =
= 2ul(t=-1) - 1.8u(t=-2) + e(t) + 0.2e(t~1) - 0.48e(t~2)

is simulated for m = 2, & = 1 and different values of
the ratio BO/b1' The initial values of the parameters
are equal to zero except for BO/b1 = 25 and the control
signal is limited to #5. In Table 3.3 the average loss

is shown for different values of Bo/bq'

Numb. of times
o ] 10200 02| 10200 (02 | ) s limited|
0’1 T000 ¢ y 500 <54 Y during the in-
4 terval (0-50)
0.05 2.71 1.065 23 1.00
0.2 1.44 1.04 4 1.00
1 1.1 1.04 1 1.00
5 1.12 1.04 0 0.95
10 1.39 1.05 0 0.95
25 1.58 1.14 0 0.95
Minimum
variance 0.98 1.02 0
controller

Table 3.3 = Average loss for different values on the ra-
tio BO/b1' For BO/b1 = 25 the initial values
were o, = -20, ap = 15 and Bq = -0.5, in all
other cases the initial values were zero. The
different values of the exponential weighting

factor, A, used are also shown in the table.

The ratio BO/b1 is thus varied from 0.05 to 25 and the
system still has acceptable behaviour. If BO/b1 is further




decreased the system becomes more difficult to control
since the o, parameters in the controller will be very
small and the system will be more sensitive to variations

in the a; parameters. If 80/b1 is large the a. parameters

i
will be large too. This explains why initial values not

equal to zero were chosen for BO/b1 = 25, 1

To summarize if BO is assumed known its value is not cru-

cial for the convergence if the control signal is limited.

The transient behaviour seems to be best if BO and b1 are

of the same magnitude.

After an experiment it is possible to judge if a sensible
value of BO has been used. Suppose that the control sig-
nal is limited in such a way that the limit is seldom
reached after the parameters have converged. The number
of times the control signal hits the limit can be used
to determine if a good value of 8, has been used. If By
is too small, then the control signal use to reach the 1li-
mit more often, than if too large a By is used, compare
Table 3.3. Too large a Bg will on the other hand give ve-
ry small input signals in the beginning. Further the o,

parameters use to be large if BO is too large.

3.5. Number of Regulator Parameters.

Theorems 2.7 and 2.2 show how the number of parameters in
the regulator influences the asymptotic properties of the
closed loop system. If m = n, 2 = n+k-1 and the correct k
is used in the identification then if the estimation con-
verges the obtained controller will be the minimum vari-
ance controller. What might happen if k does not have the

correct value is discussed in Section 3.6.

25
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If m or & is too large then Theorem 2.2 is still valid.
In that case simulations have shown that the extra para-

meters will converge to zero.

If m >n and 2 > n+k-1 then Theorem 2.2 is not valid
since if the estimates converge then the regulator will
contain a common factor. Simulation with too large values
on m and ¢ have shown that the algorithm still seems to
converge, at least in the sense that the parameter esti-
mates are practically constant. The control law will then
contain a common factor. It is not possible to decide

if the estimates and thus the common factor will slowly
change, but the remaining part of the regulator is cons-
tant. The performance of the system when A <1 indicates
that this may be the case. Using X < 1 can result in large
fluctuations in the estimates but the closed loop system

may still have a near optimal performance.

It is possible to investigate if the number of regulator
parameters is sufficient by computing the covariance func-
tion of the output, ;y(T). If ;y(r) is equal to zero for
all t 2 k+1 then m and % are sufficiently large. If some
;y(r):s for v > k+m differ from zero the number of para-

meters has to be increased.

The covariance function has to be computed from a realisa-
tion of the process and it cannot be assumed that ;y(r) is
exactly equal to zero for =t x k+1. It is, however, pos-
sible to make a hypothesis test. If {x(t), t = 1,2,...,N}
is a sequence of independent stochastic variables then for
T + 0 the normalized computed covariance ;X(T) with pro-=
bability 0.95 is within the interval +1.96/YN for large N.
Now the outputs, y(t), are generally not independent, but
the test can still be used for 1 z2k+1 if y(t) is a moving

average of order k of independent stochastic variables.




Sometimes the purpose of the control can be to make as
good a control as possible using a regulator which is as
simple as possible. In those cases Theorem 2.1 can be
used to determine which covariances and crosscovariances
that are equal to zero. The theorem gives, however, no
indication of how much the output variance is increased
if the number of regulator parameters is decreased. With
the right structure of the regulator the algorithm will
converge to the regulator giving the minimum output va-
riance. But this is no longer the case if the number of
regulator parameters is decreased. Let the number of pa-
rameters in the numerator and the denominator of the re-
gulator be specified. It is then possible to use a mini-
mization routine to determine the values of the parame-
ters that minimize the output variance of the closed loop
system. These parameter values will not be the same as
those obtained when using a self-tuning regulator of the

same structure. This was shown by an example in [8].

3.6. Number of Time=-Delays.

The number of pure time-delays in the model, k, is the
most crucial parameter to choose. Too large a value of

k can give an output variance which is larger than ne-
cessary. Sometimes it is also difficult to get the esti-
mates to converge. Too small a k can make it very diffi-
cult to get good control and even make it impossible to
stabilize the system. This is intuitively clear. Assume
that the estimator uses a time-delay, k, which is small-
er than the true value, ko. The controller then tries to
make the predicted output k+1 steps ahead equal to zero

using the control signal u(t). But u(t) will influence

the output first at time t+k;+1. Thus to make the predicted

0
output at time t+k+1 equal to zero the controller will use

27
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large input signals, since the effect of u(t) on y(t+k+1)
is small. If the control signal is limited then u(t) will
reach the limit in almost every step. If k < ko and the
regulator is started with initial values of the regulator
parameters near the values of the minimum variance regu-
lator then the control may be good for some periocd of
time. The estimates may, however, drift away from the op-

timal values and the system can become unstable.

The following example illustrates the effect of choosing

the wrong time-delay.

Example 3.5, Consider the system

y(t) = 1.6y(t=-1) + 0.8y(t-2) = u(t-2) + 0.5u(t-3) + e(t) (3.5)

The expected minimum loss is 3.56 per step if a minimum
variance regulator is used. Without any control the loss
is about 14 per step. The system (3.5) is controlled
using the self-tuning regulator with k = 1, 2, 3 and 4

and with m = 2 = 2. The sample covariance functions ;y(T),
when u(t) = 0 and for k = 1, 2 and 4 respectively have
been computed over 5000 steps of time and are shown in
Fig. 3.6. From Theorem 2.1 it is expected that gy(r) is
equal to zero for 1 = k+1 and k+2. It turns out that

r (1) is within the 5% test limit for 1 % k+1. The output

y . a
covariances in the different cases are

K r (0)
< ry(

1 3.59
2 3.97

4 3.62
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Fig. 3.6 - Estimated covariance function of the output of
the system in Example 3.5. The dashed lines show

the 5% limits to test if fy(T) = 0,
a. Without control b. k = 1 c. k =2 d. k = 4
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The value Bb = 1 was used for k = 1. For k = 2 and 4 it
was necessary to use BO = 5 in order *to get convergence.
For k = 3 it was impossible to get convergence of the pa-
rameters in spite of many attempts of selecting Bp» A and
the initial values. A typical behaviour of the parameter
estimates for k = 3 is shown in Fig. 3.7. The dashed lines
correspond to the parameter values of the minimum variance
regulator. It seems as if the estimator tries to reach the
values of the minimum variance regulator. When the esti-
mates approach these values they are forced away to small
values. The parameter values corresponding to the minimum
variance regulator have also been used as initial values,
but the estimates drifted away from this set of parameters
and started to behave as in Fig. 3.7. Even if the esti-
mates did not converge for k = 3 the control was fairly
good. Over a period of 7500 steps the average loss was
5.44 which can be compared with 14 without any control

and 3.56 for minimum variance control.

As expected the controller converges to the minimum vari-
ance regulator for k = 1. In that case the output is a
moving average of first order. For k = 2 the controller
seems to converge to a regulator making the output to a
moving average of second order. The control law after

6000 time-steps was

-1
u) = 1.16 + 0.94q (o)

1+ 1.57q" " + 0.60q

This regulator is practically the same as the suboptimal
minimum variance regulator described in [1] which is ob-

tained from the following identity

1

1 = (1-1.6q" +0.8q_2)(1+f1qm1+f2q_2) +

1

+ q—z(g0+g1q“1)(1+0.5q“ )




Parameter estimates

This gives the controller

1.176 + o.93uq""1

1+ 1.6q° " + 0.584q

u(t) = — y(t)

and the closed loop system

1

y(t) = (1+1.6q +o.584q“2)e(t)

The covariance function for this

system is in agreement

with the covariance function obtained in the simulation

with k = 2.

A = 0.995. The dashed

B :
- add
a2 W
B2
&
. |
0 2500 5000
Time
Fig. 3.7 - Parameter estimates of the system in Example
3.5, k = 3 is used in the identification and

lines show the parame-

ter values, corresponding to the minimum va-

riance regulator.
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For k = 4 the controller again converges to parameter
values which give a moving average of first order, i.e.
the controller again converges to the minimum variance

regulator.

The example shows that the algorithm can converge to dif-
ferent controllers depending on the number of time-delays
that is chosen in the parameter estimator. Figure 3.8
shows what might happen if too small a value on k is used.
For k = 0 the controller is started with parameter values
which give the minimum variance controller, aq = -1.76,
Gy = 1.28, B, = 2.1 and B, = 0.8. The starting value of
the covariance matrix was 0.005 times a unit matrix. The
exponential forgetting factor was X = 1 and the control
signal was limited to 10. The parameters move away from
the initial values and after about 500 steps the closed
loop system becomes unstable. The same initial values but
with k changed to 2 gives the loss shown by curve b. For
comparison the loss when using the minimum variance cont-

roller is also shown, curve c. B

In the example above the closed loop system had the pro-
perty that if the parameter estimates converged then

;y(T) = 0 for T 2 k+1. This experimental observation can
be formalized in the following theorem which is a slight

modification of Theorem 2.2.

Theorem 3.1. Let the system to be controlled be governed

by the equation
Alqly(t) = B(q)u(t»ko) + C(gre(t)

where A, B and C are polynomials of degree n, n-1 and n

respectively. Assume that the self-tuning algorithm is
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Fig. 3.8 - The accumulated loss, Zy(t)Q, when controlling
the system (3.5) with different regulators.
Curves a and b show the losses when using the
self-tuning regulator with k = 0 and k = 2
respectively. Curve c shows the loss when using
the minimum variance regulator.
used with m = n and ¢ = ntky=1. If the parameter estimates

converge to values such that the corresponding polynomials
A and B have no common factor, then the output of the
closed loop system has the property that

ry(r) = 0 T 3 k+1

where k 3 kg is the number of pure time-delays used for

the identification of the regulator parameters.
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Outline of the proof. The proof of Theorem 2.2, given in

[8], can be copied step by step. Theorem 2.1 shows that
r (¢) = 0 for t = k+1, ..., k+tm. Using the same arguments
as in [8] it can be shown that ry(r) = 0 for 1 2 k+1, i.e.

y(t) is a moving average of maximum order k. ®

Remark 1. Theorem 3.1 is valid under the assumption that
the estimates actually converge. Example 3.5 shows that
there may be difficulties with the convergence for some
values of k. The convergence of the algorithm is further

discussed in Section 4.

For different values on k the closed loop system can be
a moving average of different order. It is not necessary
that a larger k will imply that the moving average will
be of higher order.

To summarize it is critical if k is chosen too small, but
less critical if k is one or two sampling intervals too

large. Estimates of k can be obtained through experiments.

3.7. Sampling Time.

The choice of sampling rate is crucial when implementing
the self-tuning regulators. The sampling interval influ-
ences the number of time-delays as well as the parameters
in the discrete time model of the process. The choice of

sampling interval can also change other properties of the
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system. For instance a continuous time system which is
minimum phase can have a discrete time representation
that is nonminimum phase [4]. This may be serious when

using dead-beat and minimum variance regulators.

There are many aspects that must be considered when de-

termining the sampling interval, e.g.

0 the dynamics of the process
0 the dead time in the process
0 the complexity of the regulator

0 computation times

How the choice of sampling interval influences the beha-
viour of the self-tuning regulators has not yet been in-
vestigated. The problem must, however, be carefully con-
sidered when making an implementation of a self-tuning

regulator.
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4. CONVERGENCE PROPERTIES OF THE SELF-TUNING REGULATORS.

It is difficult to analyze a system controlled by an adap-
tive regulator. The difficulties depend on the nonlineari-
ties, the stochastic disturbances and the time-dependence of
the closed loop system. The tools that can be used to prove
convergence are for instance Lyapunov theory [23] and hy-
perstability concepts [18]. It should, however, be pointed
out that most algorithms for which the convergence have

been proved utilize the unknown parameters when the regu-
lator is designed. It is the sensitivity derivatives of the
system that are usually used which depend on the unknown
parameters of the system. For the practical use of the algo-
rithm it will probably not matter that the regulator does
not use the true values of the sensitivity derivatives. But
the convergence can only be proved under the assumption that
the regulator ﬁses the correct values of the sensitivity de-

rivatives.

From a mathematical point of view it is necessary to assume
that the parameters of the system are constant, otherwise
the problem is too difficult to handle. The empirical re-
sult of simulations with the basic self-tuning regulator

is that the algorithm converges in most cases from a prac-
tical point of view. It is impossible to determine if and
when the algorithm really converges from simulation. It is,
however, possible to prove convergence for some special ca-
ses. For instance it can be shown that the algorithm con-
verges when the noise is white, i.e. C(q) = q". It is also
possible to give examples which show that the basic algo-
rithm does not converge in general. These examples were pos-

sible to construct only by a thoroughly analyse of the 1i-

nearized estimator equations.
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It is possible to derive a related set of differential
equations from the difference equations of the estimator
[20]. To prove convergence of the algorithm will then be
the same as to prove stability of the differential equa-
tions. The differential equations are strongly nonlinear
but the advantage is that the stochastic part of the prob-
lem is eliminated. To make the analysis easier a simpli-
fied algorithm will be introduced. The new algorithm is
based on the idea of stochastic approximation. The beha-
viour of the basic and the simplified algorithms are com-
pared. The solutions of the differential equations rela-
ted to the simplified algorithm can be interpreted as the
expected trajectories of the parameters in the regulator.
The differential equations make it possible to show con-
vergence for a first order system with one regulator pa-
rameter and to analyze how the number of time-delays used
in the identification will influence the system. The dif-
ferential equations for the regulator parameters have al-
so been simulated for a system with two regulator parame-
ters. That example gives valuable insight into the con-

vergence properties of the self-tuning algorithm.

Convergence and asymptotic properties of the self-tuning

regulators are further discussed in [20] and [21].

4.1. Convergence of the Basic Self~-Tuning Algorithm.

The basic algorifhm is derived heurically under the as-
sumptions that identification and control can be separa=-
ted and that the least squares method can be used for
identification. The least squares estimate is unbiased
only if the noise acting on the process is white, i.e.
C(q) = q". Simulations have shown, however, that the al-

gorithm in most cases also converges to the minimum va-
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riance regulator also when C(q) * qn. When the noise 1is
white it is straightforward to prove the convergence of
the algorithm when the system is of arbitrary order and

has an arbitrary but known time-delay.

Assume that the system to be controlled can be written as
Al(q)y(t) = B(q)u(f—k) + e(t+n) (4.1)
Using the identity

M 2 A(QIF(Q) + 6(q)

it is possible to rewrite (4.1) as

y(t+k+1) = q—(nmq)G(q)y(t) =

o PR F(qut) + eCtrke1) ‘ (4.2)

where
e(t+k+1) = F(gle(t+1)

When using the self-tuning algorithm the parameters in

the model (2.6) are estimated using the method of least
squares. The model (2.6) is of the same structure as (4.2)
if m = n and & = n+k-1. For systems of the form (4.2) the
following theorem [21] holds.
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Theorem 4.1. Consider the system

yOtHke1) + a,y(E) + ... o o, y(t-m+1) =

= Bo[u(t) + B1u(t—1) O Bgu(t=2)] + e(t+k+1) (4.3)

where e(t+k+1) is a sequence of random variables with
uniformly bounded fourth moments. Let e(t+k+1) be inde-
pendent of y(t), y(t=1), ..., u(t), ult=1), ..., e(t),
e(t-1), .... Assume that B g is known. Let the system be
controlled by the control law

w(t) = fagyCo) + ..+ yCeemeD)] - Bou(e-1) -
o (4.4)
- B, u(t-2)

where Gy i = 1,.m, Bi, i=1,..., & are the least squares

estimates of the parameters in (4.3). Suppose that the closed

loop system is such that

ly(t)]| < ¢!

(4.6)
lu(t)] < ¢

C' and C'" may depend on the realization. Then with proba-
bility one




The theorem is proved in [21]. Let if suffice to make some
remarks. The conditions (4.6) that |y(t)| and |u(t)| are |

bounded are physically relevant although these conditions

are not satisfied if e(t) is normal distributed. The
conditions (4.6) are stated in order to use the iterated
logarithms law for martingales. There are mainly two rea-
sons which make the proof somewhat difficult. Firstly,

the output and input processes will in general be non-
stationary thus the ergodic theorems usually relied

upon when proving convergence are not applicable. Secondly
the question of identifiability must be considered which
is no easy problem for a timevarying feedback. In [21] it
is shown that the system (4.3) is identifiable when using
the control law (4.4). In a few words it can be said that
the system is identifiable if the control law is sufficiantly

complex.

The parameters in the model (2.6) will thus converge to the
minimum variance regulator if £, m, k and BO in the model
(4.3) are known. The parameter By can, however, be difficult
to determine. The parameter Bo in the basic algorithm was
chosen to be fixed in order to avoid possible difficulties
with identifiability. If B is identified then there exists
a linear manifold of parameter values that gives the optimal
regulator. In [21] it is shown that the regulator will con-

verge to the optimal regulator. Compare Example 3.3.

The difficulties to determine By can be avoided by fixing
another parameter in the system. One parameter of a sys-
tem that is fairly easy to determine ex@erimehtally is
the steady state gain. The steady state gain can be used

as the parameter that is assumed to be known. This can be
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done by writing the regulator as a polynomial in (1—q=1)
instead as a polynomial in q_1° This method is proposed
in [29]. Since the choice of By in practice does not seem

to be crucial this idea is not stressed further.

In [201 and [21] it is shown that there exist ordinary
differential equations associated with the difference
equations of the estimator. The equations are nonlinear
and difficult to analyze in a general case. Through 1i-~
nearization it has been possible to determine systems
which make the linearized equations unstable. One example

is given below.

Example 4.1, Consider the following system

y(t) = 1.6y(t=-1) + 0.75y(t-2) =
= ult=1) + u(t=2) + 0.9u(t-3) + e(t) + 1.5e(t=1) +
+ 0.75e(t-2)

The C-polynomial has negative real part for an interval
on the unit circle. The A- and B-polynomials have been
chosen in such a way that (A-C)/BC has a large gain for
the frequencies when the C-polynomial has a negative real

part.

The system has been controlled using the basic self-tuning

algorithm with m = 1 and & = 2. Using By = 1 it has not

been possible to get convergence. Figure 4.1 shows the
parameter estimates during 200 steps. The initial values
were a, = -3.1, B, = 1 and B, = 0.9 which corresponds to

minimum variance regulator. The covariance matrix was
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Fig. 4.1 - Parameter estimates when the system in Example
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P(0) = 0.01 x I and A = 1. The estimates are forced away
from the values corresponding to the minimum variance re-
gulator. Since the parameters cannot converge to any other
set of parameters they will vary continuously. The accumu-
lated losses when using the basic algorithm and when using

the optimal regulator are shown in Figure 4.2. B

4.2. A Simplified Self-Tuning Algorithm.

A simplified self-tuning algorithm will now be introduced.
The estimator is simplified by replacing the least squares
estimate by an estimate based on stochastic approximation.
For a survey of stochastic approximation methods see e.g.
[281.

Consider the model
y(t+k+1) = Bou(t) + o(t)e + e(t+k+1) (4.6)

where ¢(t+k+1) is assumed independent of y(t), y(t-1),

., u(t), ult-1J), ..., and where
o(t) = [-y(t) -y(t-1) ... =y(t-m+1) Bog(tw1)
Bou(t=-2)1]
N Ch “m P1 P Byl

If B is assumed known the parameter vector g can be es-

timated using the following scheme
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8(t) = 8(t=1) + K(t)(y(t) - y(t[t-k=1)) (4. 7)

where 6(t) is the estimate of 6 given data up to and in-
cluding time t. §(t]t“kﬂ1) is the prediction of y(t),
based on data up to and including time t-k-1. Due to the

assumption on e¢(t) the prediction is simply
y(t]t-k=1) = gyult-k=1) + 9(t-k=1)06(t-k=1) (4.8)

The purpose of the control is to minimize the output va-

riance and the following control law is used

ult) = hoeltyact) | (4.9)
8o

Introduce (4.8) and (4.9) into (4.7), then

o(t) = p(t-1) + K(t)y(t)

The problem is how to choose the vector K(t). When using
Kalman filtering or least squares estimation the estima-
tor has the same structure as (4.7), and in those cases
K(t) is proportional to @T(twk=1). But K(t) is also de-
creasing inversely proportional with time. The idea of
stochastic approximation also gives an estimator, having
the same structure. In that case the gain K(t) can be cho-

sen to be proportional to 1/t. Hence choose

K(t) = £ o(t-k-1)"

ot

‘The parameter p can be interpreted as a step length.

The self-tuning algorithm will thus be to estimate the

parameters in (4.6) using
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e(t) = o(t-1) + £ P(t-k=1)"y (L) (4.10)
and to use the control law (4.9).
For the simplified algorithm it is possible to state a

theorem that is analogous to Theorem 2.1,

Theorem 4.2. Assume that the parameter estimates 6(t) in

(4.10) converge as t - « and that the closed loop system
is such that the output is ergodic (in the second moments)
when the controller (4.9) is used. The closed loop system

then has the properties
Py(r) = Ey(t+t)y(t) = 0 T = k+1, .., k+m

ryu(r) = By(t+tiult) = 0 To= kT, ., ket

Proof. The estimate at *time N can be written as
- . LA T
6(N) = 6(0) + o ) T ol~k-1)"y(t)

t=1

Since the estimates are assumed to converge when N - o

we get

b= o(t-k-DTy(t) < o
1

Using Kronecker's lemma, see e.g. [16, p. 117] it follows
that

1 N T
lim o ] ¢ (t-k=1)"y(t) = 0
N-eo 1




46

Then from the ergodic assumption

ry(r) =0 T

k+1, ..., k+m

11

r (1) =0 .

kK+2y ooy k241
y

Using the control law (4,9) it also follows that ryu(r) =

= 0 for 1t = k+1 and the theorem is proven. B

Using Theorem 4.2 and Theorem 2.2 it follows that the
simplified algorithm converges to the minimum variance
regulator if the estimation converges and if the number
of parameters in the model is sufficient. The simplified
algorithm thus has the same asymptotic properties as the
basic algorithm. The simplified algorithm has in some
cases a slower convergence rate than the basic algorithm,
as can be expected. Variations in the step length, o,
influence the convergence rate. Too small a o gives slow
convergence while too large a p can make the system un-

stable if the control signal is not limited.

Example 4.2. Example 7.2 from [8] is used to compare the

behaviour of the basic and the simplified algorithms. The

system 1s influenced by drifting noise and is given by

y(t) = 1.9y(t=1) + 0.9y(t=2) = u(t-2) - u(t-3) + e(t) -

- 0.5e(t-1)

In the simulation the gain vector K(t) is normalized with

the estimated output variance, i.e.
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K(t) = —F—o p(t-k-1)7T

Z y(s)2

1
The following parameter values were used p = 3, BO = 1,
m = & = 2 and the initial values for the parameters were

equal to zero. The estimates for the simplified algorithm
is shown in Figure 4,3, When using the basic algorithm
the parameters converge after about 200 steps while for
the simplified algorithm all the parameters have not con-
verged after 1000 steps. Figure 4.4 shows the accumulated
losses when the basic and the simplified algorithm is
used. W

4.3, Convergence of the Simplified Algorithm.

The algorithm introduced in Section 4.2 has in principle
the same properties as the basic algorithm. For instance
the linearized estimator equations mentioned in Section
4,1 are the same as those for the basic algorithm. It is,
however, easier to analyze some simple systems if the
simplified algorithm is used. The main tool in this sec-
tion is a theorem given in [21]. This theorem gives the
differential equations for the expected trajectories of
the parameter estimates and thus makes it possible to eli-
minate the stochastic part of the problem. In [8] a con-
vergence proof is given for a first order system when using
a long time horizon in the identification. For this simple
system it is now possible to prove the convergence when
the simplified as well as the basic self-tuning algorithm

is used.
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Example 4.3. Consider the system

y(t) + ay(t-1) = bu(t=1) + e(t) + ce(t-1) b > 0
The minimum variance regulator is given by

ult) = 2% (1)

b

The system is controlled using the simplified algorithm.

The regulator parameter is estimated using the model

y(t+1) + ay(t) = ult) + e(t+1)

i.e. it is assumed that Bg = 1. The differential
equation for the expected trajectories of the para-

meter o is according to [21] given by

S~ (1) (4. 11)
o y( ;

where

(c-a+ab) (1 - cl(a-ab))
1 - (anab)z

ry(1)

The right hand side of (4.11) has only one stable statio-
nary point, o = (a~c)/b within the interval where ry(?) is
defined. This point corresponds to the minimum variance

regulator. Now
> 0 if (a=c)/b < a < (a+1)/b

ry(1)
<0 (a=1)/b < o < (a-c)/b

Thus if the closed loop system is stable then
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Notice that in this case it is not necessary to assume
that By = b. From (4.11) it can be seen that it is
essential that BO and b have the same sign. Simula-
tions have shown that it is not necessary to assume
that the closed loop system is stable if the control

signal is limited.

For the basic algorithm the differential equation corres-
ponding to (4.711) will be

o =‘f(t)ry(1)

where f > 0 and depends on the actual realization of the
estimate. The variable f(t) can be regarded as a time-
varying time scale factor for the differential equation.
As £ > 0 it will not influence the stability properties
of the differential equation. This implies that the basic
algorithm also converges to the minimum variance regula-

tor.

It is also possible to investigate how the number of time-
delays used in the identification, k, will influence the
behaviour of the closed loop system. For a general k the

differential equation (4.11) for o will be changed to

(ub—a)k(c—a+ab)(1 - c(a-ab))
1 - (a—onb)2

a:s 1 = 4,1
o Py(k+ ) ( 2)

For ¢ > 0 the principal shape of ry(k+1) is shown in Fig.
4.5 for k = 0, 1, 2 and 3 when a = -0.99, b = 1 and ¢ =

= 0.7. The differential equation now has two stationary
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oints, one corresponding to the minimum variance regu-
9 g

lator and one corresponding to the dead-beat regulator

Q
1
o'l

When ¢ > 0 the parameter value o = (a-c)/b will be the
stable solution to (4.12) if k is an even number. If k
is odd then the algorithm will converge to the dead-beat
regulator. If ¢ < 0 then the minimum variance regulator
all the time will be the stable solution of (4.12).

If for instance k= 2,4,...and ¢ > 0 and the differential
equation is started with a value a/b < o < (a+1)/b then

o will converge to a/b, but a slightest perturbation of
avin that point in the direction of decreasing o will
give convergence to the stable point o = (a-c)/b. When
using the self-tuning algorithm the noise will all the
time perturb the system. This will make the system con-
verge to the minimum variance regulator. Simulations have
shown that theestimate can for long time be in the sur-
rounding of the dead-beat regulator. Simulations with ba-
sic algorithm have for this example given the same result

as when the simplified algorithm has been used.

For the gimple system in Example 4.3 it was possible to
show convergence when not having white noise. Further it
was possible to analyze what happens if the wrong number

of time-delays is used in the identification.

The differential equations for the parameter estimates

are difficult to analyze when the number of regulator pa-
rameters is increased. The differential equations for the
expected estimates can, however, also be used to inves-
tigate how the number of pure time-delays influence the
convergence properties when the regulator has two paramew

ters.




Example 4.4, Consider the system

v(t) + ay(t-=1) = u(t=1) + bu(t-2) + e(t) + ce(t-1)

The minimum variance regulator for this system has the

structure

ult) = m—a—&—-—-j y(t)
1 + B8q

The differential equations for the expected trajectories

of o and B are given by [21]

L)

Q
]

- ry(k+1)

™ e
it

ryu(k+2)

where k is the number of time-delays used in the identi-~

fication.

Which are the stationary points of these equations? Theo-
rem 3.1 shows that the only values of o and g that need
to be considered are those making the closed loop system

a moving average. The closed loop system is

(T+ea” (148~ D)

y(t) = - =
1) - aqg 1(1+bq

)

(1+aq” 1) (1+8q"
Straightforward calculations give that there are four re-

gulators making (4.13) a moving average, see Table 4.1,

The first regulator corresponds to the minimum variance
regulator. Regulator number two is the dead-beat regula-
tor. The third regulator is the suboptimal minimum vari-
ance regulator discussed in [1]. This regulator can be

obtained by using the identity

e(t) (Y.

53
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o 8 Order of the
moving average
1 a - ¢ b 0
2 a b 1
c - a !
3 e T b 1
2
* " b - a " b - a b 2
Table 4.1 - The values of the regulator parameters which
make (4.13) a moving average of different or-
der.
(1+cq”1) = (1+aq=1)(1+f1qm1) + qn1go(1+qu1)

and the control strategy

u(t) = ————F y (1)
17 + f1q

This regulator can be used for nonminimum phase systems
and is not sensitive to variations in the parameter

values.

The fourth regulator is obtained by using ¢ = 0 in the
identity above. This can be referred to as the suboptimal

dead-beat regulator.

Figure 4.6 shows trajectories with different starting
values when a = ~0.99, b = 0.5 and ¢ = -0.7 and when k =

= 0, 1 and 2. The trajectories are obtained by using an
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interactive program for simulation of nonlinear differen-
tial equations, SIMNON [14], available at the Division of
Automatic Control, Lund Institute of Technology. For k =

= 0 the stable point corresponds to the minimum variance.
regulator. The stability region of the differential equa-
tions is the same as the stability region for the closed
loop system which is indicated by the triangles in Fig.
4.6. For k = 1 the stable point corresponds to the sub-
optimal regulator. The stability area for the differen-
tial equations is no longer the same as the stability re-
gion of the closed loop system. When k is further increased
to 2 then again the stable point corresponds to the minimum
variance regulator. In this case the points corresponding
to the dead-beat and the suboptimal regulator are stable
points for trajectories coming from some directions. But
small disturbances can make the system converge to the mi-

nimum variance regulator (compare Example 4.3). H

Thus by using different k in the identification the algo-
rithm will converge to regulators making the closed loop
system a moving average of different orders, compare
Example 3.5. The results are verified by simulations with
both the simple as well as the basic algorithms. Also for
the basic algorithm it is possible to derive differential
equations from which the stability can be investigated.
The number of equations will be larger than the number of
regulator parameters for the basic algorithm [20]. This
implies that the expected parameter trajectories are not
uniquely determined by the actual values of the parame-
ters but also depends on the past values, i.e. the expec-
ted parameter values are in this case not a state vector

for the system.




5. MODITIED MODEL STRUCTURES.

The model structure (2.6) used for the basic algorithm
was chosen in order to make it easy to compute the cont-
rol signal. It is also possible to apply self-tuning to

other structures. This is discussed in this section.

5.1. Time-Delay in the Regulator.

There are essentially two ways to implement control algo-

rithms using a computer [17].

Case A: The measured variables, y(t),are read at time t
and the control variables to be set at time t+1, u(t+1),
are computed from y(t) during the time interval (t,t+1),

see Figure 5.1,

Case B: The measured variables, y(t), are read at time t
and the control variables are evaluated as quickly as pos-
sible and set at time t+71, where 1 is the smallest time

required to do the computation, see Figure 5.2.

In Case A the time-delay introduced in the controller is
distinct and known, but may be undesirably long. In Case
B the introduced time-delay is as small as possible, but
it may vary in an unknown way depending on the work load

on the computer.

Case B is assumed when using the basic self-tuning algo-
rithm and it is further assumed that the computation time
is short compared with the sampling time. In many cases
the computational time cannot be neglected and Case A must

thus be considered.

57
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Fig. 5.1 - Illustration of Fig. 5.2 - Illustration of

inputs and outputs in Case synchronization of inputs

A, (From [171.) and outputs in Case B. (From
[171.)

For Case A it is straightforward to derive the minimum
variance regulator for known systems. The effect of having
one time-delay in the regulator is the same as having one
extra time-delay in the system. The minimum variance regu-
lator when having one extra time-delay in the regulator

has the structure

Hp1

m
u(t) = — z aiy(t"i) -

Biu(t=i) (5.1)
1 i

1

To obtain a self-tuning regulator it is thus possible to

estimate the parameters in a model with the structure
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y(t+k+1) + a,y(t=1) + ... + o y(t-m) =
= BgluCt) + Byult-1) + ... + g ult-2)] +
+ e(t+k+1) (5.2)
As before the parameter BO is assumed known and Ggs ones
o> Bs e B, are estimated using the least squares

method. Equation (5.7) is then used to compute the cont-
rol signal. The control law has the desired property that
u(t+1) can be computed in the time interval (t,t+1) using

data obtained up to and including time t.

It is straightforward to extend Theorems 2.1 and 2.2 to
the case when there is a time-delay of one unit in the

regulator. In Theorem 2.1 equation (2.14) is changed to
ry(T) = Ey(t+t)y(t) = 0 T = k+2, ..., k+m+

In Theorem 2.2 the only change is that the number of pa-
rameters in the denominator of the regulator must be in-
creased by one, i.e. & = n+k. Thus if m = n and 2 = n+k

and if the algorithm converges then the output will be a
moving average of order k+1. The time-delay in the regu-
lator has the same effect as an additional time-delay in

the system.

5.2. Identification Structures.

In the basic algorithm the identification is done using
a very special structure of the model selected in such a
way that the parameters of the regulator are equal to the
estimated parameters. Is it possible to use other struc-
tures of the model and still get the same results as be-

fore?
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Consider the system
ACg)y(t) = B(glu(t-k) + e(t+n) (5.3)

Identify the parameters in (5.3) using the least squares

method and compute the control law from

~

B(g)F(qg)

Ka(q)
u(t) = - 22297 () (5.4)

where IF(qg) and G(g) are polynomials obtained using the

identity

<t - AT + G (5.5)

If the closed loop system is identifiable then

> A
- B

W >

The problem of identifiability when the control law is
fixed is for instance discussed in [10]. In Example 3.3
it was shown that the conditions for identifiability might

be relaxed if the control law is time-varying.

Thus if C(q) = q" and if the algorithm converges then

the controller will converge to the minimum variance re-
gulator. From the arguments given above it could be tempt-
ing to conclude that the control law (5.4) will converge
to the optimal controller also when C(q) % q". A counter
example will be given which shows that this is not always
true if the identified model is of the same order as the

system.




61

Example 5.71. Consider the system

y(t) + ay(t-1) = bu(t=3) + e(t) + ce(t-1)

The minimum variance regulator is given by

2
u(t) = a(a-c)/b 5 y(t)

T+ (c=~==a)qm1 + ala-cdq

Identify the system using the model
y(t) + ay(t-1) = bu(t-3) + e(t) (5.6)

From equations (5.4) and (5.5) the control law is given

by

s -
u(t) = —2h sy (5.7)
1 - ag + a’q

The control law (5.7) is optimal only if

2 = az(awc)/b

a = a - c

2% = a(a-c)

These relations can be satisfied only if ¢ = 0 or c = a.

Thus 1t is in general not possible to get the optimal

controller in the assumed way.

The analysis will be illustrated by simulations when a =
= =-1.5, b =1 and ¢ = 0 or -0.9. When ¢ = 0 the parame-
ters a and b will rapidly converge to -1.5 and 1 respec-
tively and the loss is near optimal as can be seen in
Figure 5.3. Figure 5.4 shows the parameters and the ac-
cumulated loss when the basic self-tuning algorithm is

used.
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Parometer estimates

Parameter estimates

20000

10000~ s

Accumulated loss
N

T T
1000 2000 0 1000

2000
Time

Parameter estimates and accumulated loss for
the system in Example 5.1 when ¢ = 0 and when
the parameters are identified using the model
(5.6) and the control law is according to (5.7).

The dashed line indicates the expected minimal

loss.
4 20000
P‘\p-— P2
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F
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o 10000 -
/
. #
3 4
- #
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WJﬁrcr:____________“L___ E 4
< o0
-4
T 10l00 2000 0 1OIOO 2000
Time Time
Fig. 5.4 The parameter estimates and accumulated loss

when ¢ = 0 and when the basic self-tuning al-
gorithm is used. The dashed lines indicate
the optimal parameter values and the expected

minimal loss respectively.
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If ¢ = -0.9 and if a and b are estimated using the model
(5.6) the accumulated loss will be approximately 50%
greater than the optimal loss, see Figure 5.5. The loss

is in average 3.33 per step computed over 5000 steps while
the minimal expected loss is 2.17 per step. The basic self-
tuning algorithm will behave similar to the expected beha-

viour of the optimal controller, Figure 5.6.

When identifying the parameters according to the model
(5.6) using the correct value on the order of the system
and when C(q) % qn then the class of controllers possible
to generate does not contain the optimal controller. But
if the order of the model is increased then the controller
gets more degrees of freedom and it can be possible to get

a better controller.
Let the model be changed from (5.6) to
y(t) + a,y(t=1) + a,y(t-2) = bju(t-3) + boul(t-4) + e(t) (5.

The algorithm now converges to a controller having a com-

mon factor

-1

(140.610" 1+0.919” %) (1+0.56q" )

The control law is based on parameter values obtained af-
ter 10000 steps. When the common factor is removed the
rest is very close to the minimum variance controller,

which is

u(t) = =1.35 — ()

1+ O..Bq_1 + 0.9q

The behaviour in this case is shown in Figure 5.7.

8)
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Fig. 5.5 - Estimates and loss when ¢ =-0.9 and the para-
meters are estimated according to the model
(5.6) and when the control law (5.7) is used.
The dashed line indicates the expected mini-
mal loss.
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Fig. 5.6 - Egstimates and loss when c¢ = -0.9 and when the

basic self-tuning algorithm is used. The dashed
lines indicate the optimal parameter values and

the expected minimal loss respectively.
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3
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T
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Time Time

T
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o

Fig. 5.7 - Estimates and loss when ¢ = =-0.9 and when the
parameters are estimated according to the mo-
del (5.8) and the control law is computed from
(5.4) and (5.5). The control law will contain

a common factor. A

Simulations indicate that it is possible to identify the
parameters using the model (5.3) and compute the control
signal from (5.4) using the identity (5.5). One drawback
compared with the basic self-tuning algorithm is that the
computation of the control signal is more complicated
since the identity (5.5) has to be solved in each step

of time. Further it is sometimes necessary to use a cont-
roller of higher order than if the basic algorithm is

used.
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5.3. Feedforward Control.

In many applications it is possible to measure some of
the disturbances acting on the process. It is then pos-
sible to use these measurements to reduce the influence

of the known disturbances using feedforward compensation.

The structure of a regulator with feedforward compensa-
tion is first given in the case of a system with known

parameters. Let the system be

Algly(t) = B(gilu(t-k) + C(qle(t) + D(glv(t-k) (5.

where A, B, C and D are known polynomials of degree n,
n-1, n and n-1 respectively. Further v(t) is known at
time t and v(t) is independent of e(t). Using the iden-
tity

ch(q) = A(g)F(q) + G(q)
the equation (5.9) can be written as

% n(t+1) + % e(t+kt1) + & v(t+1) =

it

y(t+k+1)

= Fe(t+1) + %{Gy(t+1) + BFu(t-k+1) + DFv{(t-k+1)]

The variance of y(t+k+1) is minimized if the control sig-

nal 1s chosen as

k
ut) = - L8 o) - 2 v | (5.
BT B

The control law (5.10) eliminates the disturbance v(t)

completely. But if v enters in equation (5.9) with the

9)

10)
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time argument t-k' where k' < k it is not possible to
get a total elimination of v(t) with a causal regulator.
Then in equation (5.10) v(t) has to be replaced by
&(t+k-k'[t)‘which is the prediction of v(t+k~-k') based

on data available up to time t.

From (5.10) it is seen that the feedforward terms appear
in the controller in the same way as the measurements.
To make a self-tuning regulator which includes feedfor-
ward compensation the following algorithm can be attemp-
ted:

Step 1: Estimation. Determine the parameters in the mo-
del

y(t+k+1) + o y(t) + o+ a y(t-m+1) =
= So[u(t) + Bult=1) + ...+ goult-2)1 +
toygve) 4oL 4 YDv(t—p+1) + e(t+k+1) (5.11)

using least squares estimation. The parameter Bg is as-

sumed known.

Step 2: Control, At each sampling interval determine the

control variable from

OLIY('t'“l'i”] ) -

. Biu(t“i> =
1 1

1~
H e~

u(t) = .
$]

9 1

i

- L % viv(t=i+1) (5.12)

BO 1=1

Using the forward shift operator, g, (5.12) can be written

as
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Q;”m‘}',] Q/“p+1-"
B T 4= D N LT L- DA,

B (q) B (q)

u(t)

where R and B are given by (2.9) and €.10) respectively

and

€ (q) = Y1qp_1 + y2qpm2 o,

If the estimation in Step 1 converges it is possible to
characterize the closed loop system in the same way as

when the basic self-tuning algorithm is used.

Theorem 5.1. Assume that the system is controlled by

the control law(5.12). Further assume that the signal

v(t) is persistently exciting [6] and that the parameter
estimates ui(t), i=1, ..., m, Bi(t), i=1,..., &, and
Yi(t), i=1,..., ps of the model (5.11) converge and that
the closed loop system 1s such that the output is ergodic
(in the second moments). Then the closed loop system has

the properties

Py(r) = 0 T = k+1, «.., k+m (5.13)
Pyu(r) = 0 o= k+1, .., k+o+1 (5.14)
Pyv(T) = 0 T = k+1l, ..., k+D (5.15)

Proof. The least squares estimates are given by the sys-

tem of equations (5.16).
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Since the parameters converge the coefficients of the
control law (5.12) will converge to constant values for
sufficiently large Ng- Introduce (5.12) into (5.16).

Hence

lim 1 ry (t+k+1)y(t) = O
N
N-»eo

1lim 1-Zy(t+k+1)y(t-—m+1)

Nsw N

i
(e8]

ry (t+k+1)ult-1)

i
o

lim 1
N+e N |
Tim & 5y Ct+k+dult=2)
N+ew N

1ip LIy (tHkeDvit) =

N+ N,

13
O

(=]

lim j-Zy(t+k+1)v(“c--’p+’!)
N+ N

]
[en]

It also follows from the control law (5.12) that

lim lZy(t+k+1)u(t) = 0
N+ N

Under the ergodic assumption the sums can be replaced by

mathematical expectations and the theorem is proven. W

Remark. If v(t) is a deterministic signal the condition
(5.15) shall be interpreted as

N

. 1
lim — ) y(t+t)v(t) = 0 T o= k+1,

= T
N N t=1 > TP

Consequently it is possible to state a theoren that is
analogous to Theorem 2.72.
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Theorem 5.2. Let the system to be controlled be governed

by the n:th order system

A(g)y(t) = B(glult-k) + C(gle(t) + D(q)v(t-k)

where A, B, C and D are polynomials of degree n, n-1, n

and n-1 respectively. e(t) is a sequence of independent
stochastic variables. v(t) is a known disturbance which
is persistently exciting when the parameters are tuned.

Further it is assumed that v(t) is independent of e(t).

Assume that the self-tuning regulator is used with m = n,

¢ = n+k-1 and p = n+k. If the parameter estimates converge,
independertly of the realization of v(t), to values such
that the controller polynomials A and 3 do not contain

any common factors, then the corresponding regulator (5.12)

will converge to the minimum variance regulator (5.10).

Proof. Assume that the least squares estimates have con-

verged. The control law is then given by

g-m+1 L=p+1
w(ey = R ey 4 8 8(a) ,(¢) =
B (q) R(q)
KA(q) 6(q)
= AA) gy 4 2282 ()
B (g) B(q)

The closed loop system becomes

(AB-BA)y(t) = CBe(t) + (BE+DB)v(t-k)

or

gty = —CB oy 4 26+ DB

ABD - BRA AB - BR

v(t-k) (5.17)
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A, DB and @ are constant and assume that v(t) is equal to
zero over a long period of time then the closed loop sys-

tem is given by

_CcB
AB - BR

y(t) = e(t)

The conditions (5.13) and (5.14) are still valid. Use

Theorem 2.2 which now implies that

K X
u(t) = %gﬁ vty = L8 (e
BF

where

a“c = AF + @

and that

AR - AB = qBC

B = BF
Use these expressions in (5.17) then for v(t) # 0

8 + DT

v(t-k)
qu

y(t) = q_kF(q)e(t) +

The transfer function

& + DpF

qu

H =

is of order n+k. The crosscovariance function between y(t)

and v(t) will now be
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ryv(f) = H(q)rv(rmk)

Condition (5.15) now implies that H(q) = 0 implying that

@ = -DF

Thus
k k

ut) = LR gy + 8y = L6 gy - By
B BF B

The controller has thus converged to the minimum variance

regulator which gives the closed loop system

y(t) = q *F(qle(t)

The disturbance v(t) is totally eliminated. Hm
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6. LIMITATIONS OF THE BASIC SELF-TUNING ALGORITHM.

The self-tuning algorithm described in [8] and in this
report has good transient and asymptotic properties al-
though the algorithm does not converge for all systems.
The algorithm can handle systems having different orders,
many time-delays, coloured noise, feedforward terms etc.
Another advantage is that only few parameters are needed
to specify the algorithm. There are, however, some limi-
tations of the algorithm. Analysing the assumptions done
when deriving the algorithm it can be found that some

types of systems are excluded.

Firstly it is assumed that the exciting noise is statio-

‘nary. An example will show what might happen if the va-

riance of the noise is time-varying.

Secondly when deriving the minimum variance regulator

for known systems it is assumed that the system is mini-
mum phase. If the system is nonminimum phase special care
must be taken since the ordinary minimum variance regula-
tor is extremely sensitive for variations in the values
of.. the parameters in the regulator. It should, however,
be desirable if nonminimum phase systems could also be

handled by the basic self-tuning algorithm.

Thirdly it is assumed that the parameters in the system
are constant. It will be shownAby examples what may hap-

pen if the parameters are time-varying.

It turns out that the performance of the self-tuning al-
gorithm will deteriorate in the cases discussed above,
but the performance will in many cases still be accept-
able. In essence the basic self-tuning algorithm seems
to be able to handle most types of systems. It is, how-
ever, necessary to use the algorithm with care when at-

tempting to solve more difficult problems.
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6.1. Nonstationary Noise.

When the minimum variance controller is derived for sys-
tems with known parameters it i1s assumed that the noise
is stationary. In many practical situations this is not
the case. It is thus desirable that the self-tuning re-
gulators can work satisfactorily even 1f the noise is

nonstationary.

The self-tuning regulators are mainly characterized by
Theorems 2.1 and 2.2. In Theorem 2.1 nothing is assumed
concerning the noise, but if the estimation converges
then certain covariances are equal to zero. Since no ge-
neral convergence proofs are available it is only pos-
sible to investigate the behaviour of the algorithm using
simulations. In Section 8 the case when the noise is a
deterministic signal will be discussed. In this section
will be demonstrated what may happen if the stochastic

variables e(t) are not equally distributed.

In many practical cases the disturbances can be described
as stationary processes, but suddenly larger disturbances
may occur in the process. From simulations it can be con-
cluded that a time-varying standard deviation of the
noise is not especially serious for the self-tuning re-

gulators.

Example 6.1. Consider the system

y(t) - 1.9y(t=1) + 0.9y(t-2) =
= u(t-2) - u(t-3) + e(t) - 0.5e(t-1)

The noise e(t) is gaussian distributed, N(0,0) with a

time~-varying standard deviation, o, given by
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Time
Fig. 6.1 - The parameter estimates for the system in
Example 6.1. The jumps in the estimates occur
when the noise amplitude is increased.
25
oj/\,l\,ﬂM
+—> t+“—> P
=25
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Fig. 6.2 - The output from the system in Example 6.7.
The arrows show the intervals when the vari-
ance of the noise 1is increased.
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i t (mod 100) < 80
o(t) =
5 t+ (mod 100) =z 80

The minimum variance regulator is given by

-1
ult) = 1.76 t11.26q — y(t)
17 + 0.hq - 1.4q

The system is controlled by a self-tuning regulator with
m= 8 = 2, P(0) = 10 x I and » = 1. The parameter esti-
mates are shown in Figure 6.71. The convergence is not as
fast as when the noise is stationary (compare Example 7.2
in [8]). The regulator will, however, still converge to
the minimum variance regulator. If ¢ is constant equal to
1 the estimates will converge in about 400 steps of time.
The average loss for the self-tuning regulator is 17.Y4
per step calculated over 1000 steps while the optimal re-
gulator would give a loss of 17.2 per step. One part of

the output is shown in Figure 6.2. H

The noise entering the system will also be nonstationary
if the parameters in the A or C polynomials in (2.1) are
time-varying. In that case the optimal regulator will be
time=varying and not fixed as in Example 6.71. This case

will be discussed in Section 6.3.
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6.2. Nonminimum Phase Systems.

Let the system to be controlled be described by
A(gly(t) = B(glult-k) + C(gle(t) (6.1)

If the parameters in (6.1) are known the minimum variance

controller is given by [1]

_ k
u(t) = - -9-8La) oy (6.2)
B(g)F(qg)

where G(q) and F(q) are polynomials defined by

qc(q) = A(gIF(q) + G(q) (6.3)

If the system is nonminimum phase, then the closed loop
system will be extremely sensitive for variations in the
regulator parameters. A slightest error in the parameters
will make the system unstable. This since the closed loop
system has uncontrollable modes outside the unit circle

which are cancelled if the parameters are exact.

One way to get around the problem is to use a suboptimal
control law which is discussed in [1]. Introduce B1(q)
and B,(q) such that

B(qg) = Bq(q)BQ(q)

and where B1(q) has all zeroes inside the unit circle and
B,(q) has all zerces outside the unit circle. Determine F

and G from the identity

k+n2
q C = A(qQ)F(q) + B,(qi6(q) (6.4)
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where n, is the order of the B2 polynomial and use the

control law

el
u(t) = - L2 y(v)

BTF

The closed loop system will now have the characteristic

polynomial

k+n2
q B1C

i.e. the modes corresponding to B, are moved to the ori-
gin. This suboptimal regulator will make the closed loop

system to a moving average of order k+n2.

Another way to get around the problem with nonminimum
Phase systems is to reformulate the control problem. As-
sume as before that the output variance shall be mini-
mized, but now under the constraint that the closed loop
system has all poles inside the unit circle. This prob-
lem can be solved using linear quadratic control theory.
If the system is minimum phase the solution will be the
same as when the identity (6.3) is used. If the system

1s nonminimum phase the reformulated control problem will

give the closed loop system
k
q B1§2C

where the zeroes of %2 have the reciprocal values of the
zeroes of BZ . The closed loop system will no longer be a
moving average. The problem can be solved either by sol-
ving an identity similar to (6.4) [25] or by iterating a
Riccati equation. From a computational point of view it

seems to be more favourable to solve the problem by ite-
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rating the Riccati equation than by solving a system of

equations.

One way to make a self-tuning regulator is now to esti-

mate the parameters in the model
A(gly(t) = B(glult-k) + e(t)

using the method of least squares. The control law can
then be obtained by iterating a Riccati equation based

on the estimated parameters. This approach was proposed
in [5]. It is thus possible to make self-tuning regula-
tors that automatically can handle nonminimum phase sys-
tems. These routines are, however, more complicated and
have a much longer computation time than the basic self-
tuning algorithm. It would thus be attractive to use the
basic self-tuning algorithm also for nonminimum phase
systems. Examples in Sections 3 and 4 showed that the
basic gself-tuning regulator can converge to the subopti-
mal regulator obtained by using the identity (6.4). This
can happen if the number of time-delays used in the iden-
tification, k, .is greater than the number of pure time-
delays in the system.kGuided by this observation the fol-

lowing example is considered:

Example 6.2. Let the system be

y(t) = 0.99y(t-1) = = u(t=1) + 2u(t-2) + e(t) - 0.7e(t-1)

The suboptimal controller obtained by using the identity
(6.4) is

u(t) = - 0.28 v (t)

1+ 0.57q"
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Fig. 6.3 - Expected trajectories of the parameters o and
B when the simplified self-tuning algorithm is
used to control the nonminimum phase system in
Example 6.2. It is assumed that k = 3 in the

identification.
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which gives a loss of 1.33 per step. The solution to the
linear quadratic problem results in a controller giving

a loss of 1.25 per step.

To apply the basic self-tuning algorithm the following

model i1s used:
y(t+k+1) + ay(t) = Bo[u(t) + pu(t=1)]1 + e(t+k+1)

According to the rule of thumb given in Section 3.4 By
should in this case be chosen equal to -1. Since the sta-
tic gain in the system is negative By must be given a po-
sitive sign in order to get a stable system. Bo is thus

given the value 1.

For k equal to 0, 1 and 2 it has not been possible to ob-
tain convergence. But for k = 3 the algorithm will con-
verge to the suboptimal regulator. Using the same argu-
ments as in Example 4.3 it is possible to derive diffe-
rential equations for the expected trajectories of the
parameters when the simplified self-tuning algorithm is
used. The trajectories for some starting values are shown
in Figure 6.3 when k = 3. In this case simulations show
that the simplified and the basic algorithm have the same
gross features. Even if the regulator only contains two
parameters it has not been possible to tell which values
on k that will give’convergenoe to the suboptimal regula-
tor. There seems, however, to be some regularity since it
has been possible to get convergence to the suboptimal
controller for k = 3, 5, but the system has not been stable
for k = 0,1, 2, 4. W

In the example above the suboptimal controller gives only
a small increase in the loss compared with the loss ob-
tained when solving the linear quadratic control problem.
The difference between the two controllers is larger in

the next example.
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Example 6.3. Consider the continuous time system

v(s) = 128 y(s)
1 + s
The system is sampled with a sampling time T = - 1n 0.7 =

= 0.35 seconds and a delay of two sampling intervals is
introduced. The sampled system is then described by the

difference equation

_ -2
y(t) = —4
1T - 0.7q

+ 1.3q° 8

z ult)

Drifting noise characterized by

v(t) = ! — e(t)

(1-0.79" Y (1-q" ")

is added to y(t) and the following system is finally ob-

tained
y(€) = 1.7y(t=-1) + 0.7y(t=2) = = vu(t-2) + 1.3vu(t-3)+
+ e(t) (6.5)
where
vu(t) = ul(t) - ult-1)

The basic'self—tuning regulator is used to control the
system with m = & = 2. For k = 1 the closed loop system
will be unstable. If k is increased to 2 the algorithm

will converge to the suboptimal controller

-9.77 + 6.44q |

1+ 1,797 + 11.98q

vu(t)= = v {(t)
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This controller gives an expected‘loss of 147 per step.
The controller obtained by solving the linear quadratic
control problem gives an expected loss of 62 per step.
The two step head prediction error for the system desc-
ribed by (6.5) corresponds to a variance of 3.89. The
nonminimum phase property will thus to a large extent

deteriorate the behaviour of the system.

The algorithm appears to diverge if using k = €6 in the
identification. The loss will, however, be smaller than
if the suboptimal controller is used. Figure 6.4 shows
the accumulated losses when using the complex self-tuning
regulator based on linear quadratic control and when
using the basic algorithm with k = 2 and 6. The diffe-
rence between the used controllers can also be seen in
the covariance functions, Figure 6.5. The output will

be a moving average of second order when the basic self-
tuning algorithm is used with k = 2. The complex self-
tuning algorithm gives a covariance function which in
this case is exponentially decreasing. It is very diffi-
cult to describe what happens when the basic algorithm

is used with k = 6. The algorithm tries to make ry(7) and
ry(8) equal to zero. Theorem 3.1 shows that if the esti-
mation converges then the output will be a moving average.
Analyzing the closed loop system it can be shown that in
this case there are only two possibilities to obtain a
moving average. The first case corresponds to the mini-
mum variance regulator, which is very sensitive to vari-
ations in the parameters. The second case corresponds to
the suboptimal regulator, which gives a moving average

of second order. One heuristic explanation of the beha-
viour when k = 6 can be the following: The algorithm tries
to converge to the suboptimal regulator by making ry(7)
and ry(8) equal to zero. Since the algorithm only can in-
fluence the covariance function for 1 = 7 and 8 the beha-
viour of the closed loop system can be sensitive for va-
riations in the parameter estimates. This seems to cause
a smoother control which results in the lower loss when

k = 6.
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Fig. 6.4 - The accumulated losses when the system (6.5)
is controlled by different regulators.
a. Basic self-tuning algorithm Xk 2.
b. Basic self-tuning algorithm k 6.
c. Complex self-tuning algorithm.

Estimated output covariance fy(t)

__1 l
0 5 10
Time t

Fig. 6.5 = Estimated covariance function when the system
(6.5) is controlled by different regulators.
a. Basic self-tuning algorithm k = 2.
b. Basic self-tuning algorithm k = 6.
c., Complex self-tuning algorithm. B
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The examples above show that the basic self-tuning algo-
rithm can in fact be used to control nonminimum phase sys-
tems. The number of time-delays used in the identification
must, however, be increased. General rules for how much k
ought to be increased have not been found. Further the pa-
rameter g, must be chosen in such a way that it has the

same sign as the steady state gain of the system.

If the performance of the system is not satisfactory when
the basic self-tuning algorithm is used it is possible to
use the more complex routine based on linear quadratic

theory.

6.3. Time-Varying Parameters.

In the analysis of almost all adaptive controllers it is
assumed that the parameters of the process are constant.
Otherwise it is very difficult to make any statements
about stability and convergence. Having obtained results
for the case of constant parameters the results may then
sometimes be extended to systems with slowly varying pa-
rameters. The self-tuning algorithms are derived to cont-
rol systems with constant but unknown parameters. The
self-tuning regulators can also be used for systems with
slowly time-varying parameters. In Section 3.1 the expo-
nential forgetting factor, X, was discussed. By introdu-
cing a » < 1 it is possible to follow slowly varying pa-
rameters. This is done at the price of fluctuations in
the estimates in case the parameters are constant. It is
difficult to say anything in general about how fast the
parameters are allowed to vary. Some examples are given

in the following.




Example 6.4. Let the system be

y(t) + a1(t)y(t—1) + a2(t)y(t=2) = u(t) = 0.5u(t-2)+ e(t)
where the parameters a, and a, are time-varying

a1(t) = = /] OuOO’]t

az(t)

1]

0.09 + 0.002t

The open loop system will be unstable when t is greater
than 455. This system has been controlled by the basic
Bg = 1) P(0) =

= 10 x I and zeroes as initial values for the parameters

self-tuning regulator using m = 2, 2 = 1,

in the controller. The average loss over the interval
1017 - 2000 is shown in Table 6.2 for different values on
M. If the system is controlled by the minimum variance

regulator then the expected loss is 1.00 per step.

y 2%?0 5
A TERE y(t)

1900 =101
1.00 6.26
0.999 2.86
0.995 1.18
0.99 1.07
0.95 1.09
0.90 1.22

Table 6.1 - Average loss for different values on ) when

the system in Example 6.4 is controlled by

the basic self-tuning regulator.

By using an appropriate value on X it is in this case pos-

sible to get a quite good control of the system in spite
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Fig. 6.6 - The parameter estimates for the system in
Example 6.4. The parameter values of the op-
timal controller are indicated by the dashed

lines. The value of A is 0.99.




of the time-varying parameters. For A less than about
0.97 the estimates of the parameters are very noisy. The
estimated parameters when A = 0.99 is shown in Figure
6.6.

It is possible to increase the rate of change in the pa-
rameters without encounting any difficulties. If the rate
of change is increased by a factor 10 then the smallest
average loss was 1.25 per step which was obtained for ) =
= 0.92. m

In the following example the zero of the system is time-
varying in such a way that the system becomes nonminimum

phase.

Example 6.5, Consider the following system

y(t) = 0.99y(t=1) = u(t-2) + b(t)ult-3) + e(t)
where
b(t) = 0.1 + 0.001t

For t 3 900 the system is nonminimum phase. The system
has the property that the steady state gain is positive
for all t. This means that the same sign of By can be

used in the basic self-tuning algorithm.

If the number of time-delays in the identification is

k = 1 then it is possible to use the basic algorithm up
to t = 1000. After that time the system becomes unstable
and the control signal will all the time be limited. If
k is increased to 3 then the loss will be about 25%
larger over the first 1000 steps. It is, however, pos-

sible to control the system also after it has become non-
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minimum phase. Some difficulties to get a stable systen

were encountered. It was necessary to use BO = 10 and
A= 0.97,

It is in this case easier to use the regulator ba-

sed onlinear quadratic control. Thisalgorithm tries to
place the poles of the closed loop system inside a circle
with radius ry. For the system under consideration it is
favourable to choose ry somewhat less than one. The esti-
mate of b(t) lags the true value somewhat and the system
will thus be nonminimum phase some time before this is
discovered by the estimator. A radious of 0.9 will give
good performance of the system in this particular case.
The loss functions when using the basic routine with k =
= 1 and 3 and when using the more complex routine is

shown in Figure 6.7. The control signal will start to hit

the limitation at t = 1000 when the basic algorithm is
used with k = 1,

loss

Accumulated

6000
4000 —
2000 —
0 T
0 1000 2000
Time
Fig. 6.7 - Accumulated loss when controlling the system

in Example 6.5. [u(t)|<10.

a. Basic self-tuning algorithm k 1.

b. Basic self-tuning algorithm k 3.

c. Complex self-tuning algorithm based
onlinear quadratic control theory. |
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The examples discussed show that it is possible to use
the basic self-tuning algorithm even if the systems have
time-varying parameters. In the first example the open
loop system became unstable and then it seems to be quite
easy to follow parameters that are varying relatively fast
in comparison with the system dynamics. This depends pro-
bably on the fact that the estimator is very sensitive to
errors in the parameters if the system is unstable. It
may be difficult to follow parameter variations if b, is
increasing. In that case the a;-parameters can become ve-
ry small and if a too small 2 is used then the a;-parame-
ters can get wrong sign because of the '"noisy" estimates.
This can, however, be circumvented by increasing By which

will increase the abgolute value of the o;-parameters.

Using an exponential factor there is no possibility to
use a priori knowledge that some parameters are constant
while others are time-varying. This can, however, be done

by making a minor change in the estimator.

Assume that the parameter vector 6(t) can be described as

a stochastic process
e(t+1) = o(t) + v(t)

where Ev(t)v(t)T = Ry. The parameter vector can now be es-
timated using a Kalman filter [30]. The equations (2.11)
and (2.12) in the estimator will be the same as before but
(2.13) is changed to

P(t+1) = P(t) + R, - K(£) (1 + o(t-k-1P(t)o(t-k-1T ()T

It is convenient to choose Ry as a diagonal matrix. The
elements in the diagonal shall reflect the rate of change
in the parameters. If a parameter is assumed to be cons-
tant then the corresponding diagonal element in R, shall

be zero or very small.
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7. ALGORITHMS USING PARAMETER UNCERTAINTIES.

The algorithm for the self-tuning regulators is derived
heuristically based on the assumption that identifica-
tion and control can be separated. Further the control
law is the deterministic control law with the true para-
meter values substituted by the estimated ones. The fact
that the estimates are inaccurate are thus not considered
when deriving the control law. In [7] and [31] an alter-
native was proposed where the uncertainties of the esti-
mates were included. In this section these contrcl stra-
tegies are compared with the basic self-tuning algorithm.
The analysis follows [71] the notation is, however, slight-
ly different in order to make a direct comparison with

the basic algorithm possible.
Consider the minimization of
Ey(t+k+1)2 (7.1
Using a fundamental lemma from stochastic control theory

[T, p. 261] it is possible to show that the minimization

of (7.1) is equivalent to the minimization of
E(y(t+k+1)2|Ht) (7.2)

with respect to u(t) where

Ht = [y(t), y(t=1), ..., ult=1), ult-2), ...]

i.e. a notation for all available information up to and

including time t.

Let the system be described by the model




y(t+k+1) + cyy(t) o, ¥ umy(t—m+1) =

= Bgult) + giu(t=1) + ... + g ult-g) + e (t+k+1) (7.3)

Introduce

&i(t+k+1) E(ui(t+k+1)lut]

i1

B (tk+1) E (g (t+k+1) [y, )

Pwigi(t+k+1) = E((ui(t+k+1) = oy (trk+1)) .
+ {8y Ctrict1) - Bj(t+k+1))]Ht]
Psisj(t+k+1) = E((Bi(t+k+1) - Bi(t+k+1))

. (Bj(t+k+1) Bj(t+k+1))I%t}

i.e. the estimates and the variance of the estimation
errors of the parameters at time t+k+71 in the model (7.3)
based on data up to and including time t. The following

theorem can now be stated. Compare [7, p. 100].

Theorem 7.1. Let the system be described by (7.3) where
e(t+k+1) is independent of"\{JC and u(t). The loss function

(7.1) is then minimized by the control strategy

u(t) = < 5 !
BA(tH+1)™ + o (t+k+1)
0 By8g

m A~ ~
. {iz1(ai<t+k+1)eo(t+k+1) +

L.

+p

8 (t+k+1nLKt“i@ (7.4)

0fs




Proof. Using basic properties for gaussian stochastic
processes the conditional expectation (7.2) can be writ-

Ten as

E(yCteke DY) = siuct)® + o uce)? -

~ ~

= 2u(t) uiBOy(t~i+1) -

ne~—14

i=1

- 2u(t) y(t=-1i+1) +

1
p
131 %3Bg

+ 2ult)

i

BiBOu(twi) +
1=1

+ 2u(t) P u(t=-4i) +

1 BBy

D~

i

+ terms independent of u(t)
For simplicity the time arguments for o; and B, are omit-
ted. Take the derivative with respect to u(t) and set it

equal to zero then

o mo. .
(gt P yult) = J CagBop

Yy (t-i+1) -
BoBo 121 i Bg

L
- (B:BA*P Ju(t-i)
Z 0 " Eg8;

Divide by éé * Pggsp and the theorem is proven. m
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Remark 1. If the variance matrix is equal to a zero mat-
rix the control law (7.4) will be the same as the basic

self-tuning algorithm when also B, is estimated.

Remark 2. If the parameter B8, is not estimated then all
covariances Po; By and PgyB; are equal to zero and the
control law reduces exactly to the control law for the

basic gself-tuning algorithm.

~

In order to use the control law (7.4) the expressions o
B Pa; 8y a@nd pgys; have to be evaluated. This can be
done in special cases only. Let the system be described

by an n:th order model
A(gly(t) = B(giult=k) + C(gle(t) (7.5)

Assume that C(q) = qn and k = 0, the model (7.5) can then
be transformed to a model described by (7.3) where e(t+
+k+1) is white noise. The problem of evaluating ., éi
etc. now falls within the framework of Kalman filtering
and the parameter estimates and the covariance matrix are
given by (2.11), (2.12) and (2.13). The details are given

in [7].

For C(q) = g and a general k the model (7.5) can be trans-
formed to a model (7.%) where e(t+k+1) is a moving average
of order k. If the coefficients of the moving average were
known it would be possible to use Kalman formalism to es-
timate &i’ éi etc. But since the A and B polynomials are
unknown the coefficients of the moving average will be un-

known.

Since it is difficult to obtain the conditional distribu-
tions of the parameters the following algorithm could be

attempted:
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Step 1: Parameter estimation. Estimate the parameters Gy s

s Ops Bas ey By in the model (7.3) using the least
squares method described by the equations (2.11), (2.12)
and (2.13).

Step 2: Control. Choose the control signal according to

equation (7.4) where the estimates and covariance matrix

are those obtained in Step 1.

The algorithm obtained will minimize the loss function
(7.1) in the special case C(q) = g and k = 0 only. The
properties of the modified algorithm are now illustrated

by an example.

Example 7.1. Consider the system

y(t) = 1.6y(t=1) + 0.8y(t-2) = bu(t-1) + 2.5u(t-2) + e(t)
The parameters in the model

y(t+1) + o,y(t) + a,y(t=1) = Bou(t) + o Bult=1) + e(t+1) (7.6)

are identified and the system is controlled with the re-
gulator (7.4) using P(0) 2 2xI, A = 1 and |u|] < 1.5. The
output of the system for t = 0=-50 is shown in Figure 7.1a
where also the output when using the optimal minimum va-

riance regulator is shown.

If the parameters in (7.6) are identified and the control

law

o t asQ
u(t) ! 2

—7 v (t) (7.7)




is used then the output will be as shown in Figure 7.1b.

The output when using the basic self-tuning algorithm is
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shown in Figure 7.71c¢c and d when Bo is 2.5 and 5 respective-

ly, i.e.

-1
cy,,] + OL2Q_

u(t) =

BO(1+61q )

where 60 is fixed.

The behaviour when using the different controllers is sum-

y(t)

the control law 1is

(7.8)

marized in Table 7.1, where the accumulated losses at t =

= 50 are given together with the average losses over the

loss over the period t =

time interval t = 101 - 1100.
50 ) ; 1100 ’ Number of times
Regulator )y 550 ) () u(t) reaches the
1 101 limit for t=0-50
Uncertainties
considered (7.4) 68 0.99 0
Basic self=-tuning
algorithm with es- © 296 0.99 3
timation of Bg (7.7)
Basic self-tuning
algorithm By = 2.5 259 0.99 4
Basic self-tuning
algorithm By = 5 7 1.00 0
Basic self-tuning
algorithm gy = 7.5 161 1.08 0
Optimal 48 0.99 0
Table 7.1 - The accumulated loss at t %750 and the average

1017 = 1100 when the

system in Example 7.1 is controlled by diffe-

rent regulators.
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C. d.

Fig. 7.1 - The output when the system in Example 7.1 is
controlled by different regulators (|u| < 1.5).
a. Control law using parameter uncertainties

By estimated Eq (7.4)

b. Self-tuning regulator with Bo estimated (7.7)
c. Basic self-tuning regulator, Bg * 2.5 Egq. (7.8)
d. Basic self-tuning regulator, Bg = 5 Eq. (7.8)
The thin line shows the output when the optimal

regulator is used.
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The table shows that the accumulated loss after 50 steps
is lower for the modified algorithm (7.4) in comparison
with the basic algorithm with the correct value of Bp-
The table also shows that the accumulated loss at t = 50
is fairly sensitive to a selection of B and that an at-
tempt to estimate By» regulator (7.7) is worse than a
fixed value in the range 0.5by < By < 2b,. The table al-
so shows that after 1000 steps there are very small dif-
ferences between the algorithms with exception of the ba-
sic self-tuning algorithm with Bg = 7.5 which has a slight-
ly higher loss.

It can also be seen from Figure 7.1 that the controller
(7.7), which attempts to estimate By has the largest loss
at t = 50, converges quicker than the others to the opti-
mal regulator. This indicates that the large control sig-
nals obtained initially helps the regulator to obtain

good estimates. A

The example above shows that the parameter uncertainties
mainly influence the transient behaviour of the system.
After a short period the effect of the uncertainties can-

not be seen.

Simulations show that also for k £ 0 the control law (7.4)
can give a smaller loss in the beginning than the basic
algorithm. If the control signal is limited harder there
will be smaller differences between the algorithms. In a
practical implementation precautions should be taken to
prevent the regulator from introducing large disturbances
before the parameters of the regulator have obtained rea-
sonable values. This means that an identification period
can be used when the algorithm only performs the estima-
tion and when the control is done manually or by a fixed
regulator. When reasonable parameter estimates have been ob-

tained the fixed regulator can be disconnected and the self-
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tuning regulator takes over the control. Having this in
mind it should not be necessary to use algorithms which
take the parameter uncertainties into consideration, at
least not when the parameters of the process are constant.
If the process has rapidly time-varying parameters then
it is probably more important to use parameter uncertain-
ties in the control law, but the self-tuning regulator is,

of course,not the proper tool to handle such processes.

Tn [7] and [31] it is shown that the algorithms using pa-
rameter uncertainties may behave in a strange manner. The
control can for longer or shorter periods of time be
turned off unintentionally. This so called "turn-off" phe-
nomenon is analyzed and explained in [32] for a simple
case. The turn-off has only occured when the parameters
have been timemvarying. The turn-off phenomenon has never
occured when using the basic self-tuning algorithm or its
modification which includes parameter uncertainties on
systems with constant parameters in the extensive simula-
tions that have been performed so far. If the system has
rapidly varying parameters it may happen that the control
can be turned off when controlling with algorithms which

include parameter uncertainties.

The way to prevent turn~-off is to use dual control strate-
gies [15]. Dual control strategies for some simple examples
are discussed in [7] and [11]. One simpler way to prevent

turn-off is to introduce a perturbation signal [11]1, [31].
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8. CLASSICAL DESIGN AND SELF-TUNING REGULATORS.

The basic self-tuning algorithm was introduced for the
regulator problem. It will now be shown that the self-
tuning algorithm can be modified to handle the servo
problem. The problem of following command signals can

be handled in many different ways. A simple approach

will be discussed in this section. The point of departure
is to incorporate a self-tuning regulator into a standard
design procedure. A simple servo-loop will thus be de-
signed where integrators are introduced in the usual way
and a suitable self-tuning regulator will be constructed.
The self-tuning regulator will be used as an ordinary
compensator, see Figure 8.71. Notice that from the regu-
lator's point of view the reference signal enters the
system in exactly the same way as the disturbances. This
basic idea can, of course, be appliéd in many different

ways for many different design procedures.

e(t)
[PROCESS _}
£

: Alq)
|
|

yrl QZ y

Fig., 8.1 - Block diagram for the systems considered in

Section 8.
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8.1. Constant Reference Values.

The minimum variance regulator will first be modified to
handle constant reference values. This problem is dis-
cussed in [2]. When this problem is solved it is easy to

see how self-tuning can be incorporated in the system.
Consider the system

ACgly(t) = B(glu(t-k) + C(gle(t) (8
where the polynomials A, B and C are assumed known. It is

further assumed that the system is minimum phase. Let the

purpose of the control be to minimize the loss function

Bx(y (t) - y(t))? (8.

where yr(t) is a known time-varying reference value.

Introduce the reference input, ur(t), defined as

u ey = ALY o e (8
r r
B(qg) :

Equation (8.1) can now be written as
ACQ) (y(t) - yr(t)) = B(q) (u(t-k) - u,(t=k)) + Clqle(t)

The loss function (8.2) is minimized by the control stra-

tegy

k

u(t) = u () = - &2 (y(e) -y (1)) (8.

BF

where F and G are polynomials given by the identity

1)

2)

.3)

4)
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0 clq) = A(QIF(q) + 6(q)

The control law (8.4) can be written as

kC “k¥1c
u(t) = - 2 oy(t) + ez yr(t+k+1)
BF BF

To compute the optimal control law it is thus necessary

to know the reference value in at least k+1 steps ahead.

In steady state control it is reasonable to assume that
the reference value is constant for long periods of time.
This will simplify the regulator given above. For a cons-

tant reference value (8.3) is changed to

AC1)
u, = ——t oy
G

If there is an integrator in the system, i.e. A(z) has
at least one zero more than B(z) in z = 1, then u, = 0.
This implies that (8.4) can be written as

utt) = - &8 (ye) -y ) (8.5)

If there is no integrator in the system it is possible
to introduce one by changing the controlled variable from
u(t) to

vu(t) = ult) - ult=-1)
i.e. the control signal is selected as the increment of

the control variable. The equation describing the system

will be changed to
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A(q)(g=1)y(t) = B(q) « g » vu(t-k) + C(g)(q-1)e(t)
and the optimal control law is given by

N g=1)s (

BF

vu(t)

y(t) - v.)

where I and G are the same polynomials as before. The mi-
nimum variance is not influenced through the introduction

of the integrator.

The regulator (8.5) for known systems has the same struc-
ture as the regulator (2.7) which is used in the basic
self-tuning regulator. The only difference is that the
regulator (8.5) uses the signal y(t) - yr(t) instead of
the process output y(t) only.

To extend the self-tuning regulators to the case with
constant reference values it is assumed that the system
contains an integrator or that one is introduced by using
vu(t) as control signal. The following algorithm can now

be proposed:

Step 1: Estimation. Estimate the parameters o,, ..., O_,
1 m
81, N B2 in the model
yv{(t+k+1) - V. t a1(y(t) - yr) + ... * um(y(t~m+1) - yr) =
= BO[Vu(t) + B1Vu(t—1) oo+ B Vult-a)] 4+ e(ttk+t)

using the least squares method. The parameter Bo is as-

sumed known.
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Step 2: Control. Determine the control signal from

,] m
yu(t) = — .Z ai[y(tmi+1) - yr] -

BiVu(tui)
By i=1 i

1

1

where o. and B, are the least squares estimates obtained

in Step 1.

Notice that this algorithm is identical to the basic self-
" and u(t) by
vu(t). The properties of the algorithm will now be demonst-

tuning algorithm if y is replaced by y(t) - vy

rated.

Example 8.1. Let the system be

y(t) - 0.9y(t=1) = u(t-1) + 0.2(e(t) - 0.5e(t-1))
The system does not contain any integrator and the control
signal is therefore changed to Vu(t). The minimum variance

regulator is

Tult) = - 0.4(y(t) -y ) + 0.u(yCe-1) - y ]

Part of the output (t 400 - 600) is shown in Figure 8.2
when controlling with m = 2, 2 = 0, By = 1 GT(O) = =0.5
and uz(O) = 0.5. At time t = 500 the reference value is
changed from 2 to 4. The accumulated loss is shown for

1000 steps of time in Figure 8.3.

It is clear from the figures that the regulator has an
acceptable performance. The step increase in the loss at
t = 500 is, of course, unavoidable due to the structure

of the problem.
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Output

I
400 500

Time

600

Fig. 8.2 - The output of the system in Example 8.1 for

t = U000 - 600 when the reference valge is

changed from 2 to 4 at time t = 500.




loss

Accumulated
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50

|
0 500 1000

Time

Fig., 8.3 - Accumulated loss for the system in Example 8.1. m

In the example above the parameter estimates were not
much influenced by the single change in the reference
value. How much changes in the reference value influence
the parameter estimates depends on how often the changes

occur and how well the estimates have converged.




108

8.2. Time-Varying Reference Signals.

The servo problem will now be considered. To simplify it
is first assumed that there are no disturbances. Integra-
tors are introduced in the system to make it possible for
the output to follow reference signals of different types
in the usual way. The conventional regulator ic then re-
placed with a self-tuning regulator in analogy with the

cagse of constant reference values.

One class of regulators for sampled data system is the

one which makes the error zero as quickly as possible. The
regulators which achieve this will depend on the reference
signals. For impulse changes the regulators are dead-beat
regulators. There seems to be no accepted name for this
class of regulators for other reference signals. These
regulators will here be called generalized dead-beat re-

gulators.

Dead-beat regulators are the deterministic correspondence
to the minimum variance regulators. When there are no dis-
turbances and the reference signal is time=-varying it can
thus be expected that the self-tuning regulator converges
to a generalized dead-beat regulator. That this assump-

tion may be true can be seen from the following example.

Example 8.2. Consider the system

(1-1.5q"140.79" %) (1-¢" 2y (t) = (1+0.5¢  Hult) (8.
which contains two integrators. Let the reference value
be a triangular wave with amplitude 4 and a period of 50
steps. The system is controlled by a self-tuning regula-
tor with m = 4 and ¢ = 1. The initial covariance matrix

was P(0) = 10 x I and the exponential forgetting factor
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8.4 ~ Output of the system in Example 8.2. The re-

ference signal is a triangular wave and is
indicated by the thin line.
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was A = 0.99. The output from the system at different
periods of time is shown in Figure 8.4. From the figure
it is seen that the self-tuning regulator‘converges to

a regulator with the property that the error is zero af-
ter one step after a change in the reference value has
occured. The regulator obtained after 2000 steps (80

changes in the reference signal) was

-1 -2 -3
W(ty = 2:00 - 4.009” " + 2.83q 0.7097° (4

1 + 0.50q" ©

This is almost the same as the generalized dead-beat re-
gulator of the system (8.6) when the reference signal is
a triangular wave. The generalized dead-beat regulator

is in this case

(1“1.5q“1+0.7qm2)(2—q_1

1 + o.5qf'1

u(t) )

(t)

e
which gives the closed loop system

y(t) = <z—q“1>yr<t~1>

For the system (8.6) the self-tuning algorithm converges
to the same controller independent of the amplitude and
period of the triangular reference signal as long as the

system has time to settle between the changes. B

Simulations have shown that the self-tuning algorithm
converges to a generalized dead-beat regulator when the
noise is equal to zero and the reference signal is a
square or a triangular wave. The period of the reference
signal must, however, not be too short. It has not yet

been possible to give a rigorous proof, but simulations




clearly indicates that the self-tuning really converges
to a generalized dead-beat regulator which depends on the

Properties of the reference signal.

Let the system to be controlled be described by the mo-
del

(g=1)A(q)y(t) = B(glult-k)

If the reference signal is a square wave the generalized

dead-beat regulator is

k
ult) = ML y ()
B(gq) (g +q Fo.0.+1)

The closed loop system will then be
y(t) = yr(tnk—1)

If the system to be controlled contains two integrators,

i.e. it is described by
(g~1)%A0q) = B(q)ult-k)

and if the reference signal is a triangular wave then the

generalized dead-beat regulator is

“ACq) ((k+2)a = (k+1))
B(q)(qk+2qkm1+...+kq+k+1)

u(t) y_ ()

The closed loop system will be
y(t) = (k + 2 - (k+1)q_1)yr(twkc1)

Simulations have shown that it is not necessary that the

system to be controlled contains any integrators. If the




self-tuning regulator has enough parameter the integra-
tors will appear in the B-polynomial. The convergence
rate i1s, however, very much slower compared to the case
when integrators are introduced. From a practical point
of view it thus seems desirable to include a priori know-
ledge of the gross features of the reference signals by

introducing integrators.

It is well-known that dead-beat regulators as well as mi-
nimum variance regulators can be very sensitive to changes
in the regulator parameters if the system is nonminimum
phase. To investigate the sensitivity of the regulator ob-
tained when using the self-tuning algorithm it is for
simplicity assumed that the reference signal is a square

wave. Let the system be

(q=1)A°(q)y(t) = B°(q)ult-k)

Assume that the regulator is

k
wit) = q A(g) (v, (t) = y(©))

B(a) (a®+q V.. 41y

The closed loop system will be

(8°Bg"" + (AB®-A°B))y(t) = AECy ()

If A = A° and B = B®° the characteristic polynomial reduces

+o qqu AOBO and the factor ACRC cancels. Tor small perturba-
tions in the parameters the poles of the closed loop sys-

tem are close to the zeroes of qk+1AOBO, 1f A°B® has any ze-
ro outside the unit circle the system will be very sensi-
tive for variations in the parameters of the controller,
compare [1, p. 181]. The generalized dead-beat regulator

will thus be sensitive if the system is nonminimum phase




and also if the system is unstable. This is also veri-
fied by simulations with the self-tuning regulator. The
difficulties with nonminimum phase systems can be handled
in the same way as in Section 6, i.e. increase the number
of time-delays used in the identification. Unstable sys-
tems can be stabilized using a fix regulator. The self-
tuning algorithm can then be used to control the stabi-

lized system.

It is difficult to analyze the servo problem when the re-
ference value varies with time and disturbances are in-
cluded. Since the algorithm converges to the minimum va-
riance regulator when the reference value is constant and
to a generalized dead-beat regulator when the noise is ze-
ro it can be conjectured that the algorithm will converge
to different controllers depending on the relative magni-
tude of the noise and the variation in the reference sig-

nal. This is illustrated in the following example.

Example 8.3. Consider the system

y(t) = 1.9y(t=1) + 0.9y(t-2) = u(t-1) + oce(t)

Let the reference signal be a square wave with amplitude
4 and period 400 steps. The system is simulated for dif-
ferent values of the standard deviation of the noise, o,
and with m = 2 and & = 0. The results of simulations are

shown in Table 8.1.

The regulator changes from the dead-beat regulator (u1 =
= =1.00, a, = 0.90) to the minimum variance regulator
(ay = =1.90, a, = 0.90) when the intensity of the noise

is increased.

The example shows that different types of exciting signals

will make the algorithm converge to different regulators.
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Loss per step Loss for one unit

5 3 N divided by o2 when change in the ref.
1. ;2| the.ref. value is .| .value when the
‘ 1 constant =@ ‘Tno1ise '1s "Zero
0 =-1.,00 0.90 5.26 1.00
0.1 -1.09 0.89 2.85 1.03
0.2 -1.20 0.88 1.89 1.098
0.5 -1.51 0.90 1.18 1.31
1.0 | =1.71 0.90 1.04 1.52
2.0 | -1.83 0.91 1.00 1.69
4,0 -1.87 0.91 1.00 1.76
“able 8.1 - Parameter estimates for the system in Example

8.3 when having different noise amplitudes.

The parameter values ay, = ~-1.00, Ay = 0.90
correspond to the generalized dead-beat and

ay = ~1.90 and 0y = 0.90 correspond to the
minimal variance regulator. The table also
shows the loss that would be obtained for the
different regulators when only having noise

or a time-varying reference value is acting on

the system. B

Simulations show that self=-tuning regulators can be used
to tune controllers both for the regulator and the servo
problem. The simple structure that is used here to take
care of the reference signals has, however, some drawbacks
for the servo problem. One drawback is that it is diffi-
cult to influence the transient behaviour of the closed
loop system. Consider for instance the case when the re-
ference signal is a square wave. The self-tuning regula-
tor used makes the output equal to the reference signal
delayed as many steps as there are time-delays in the sys-
tem. It can, however, be desirable that the step response

is a more smooth signal. This can for instance be arranged




by using a model which has the desired step response.

The difference between the output of the model and the
output of the system can then be used as the input sig-
nal to the self-tuning controller. This solution has the
drawback that the controller only gets information about
changes in the reference signal via the model. A better
performance can be obtained if the controller also gets
direct information about changes in the reference signal.
This can be taken care of by a feedforward signal from

the reference value.

The self=-tuning algorithm has the property that it adapts
its parameters depending on the environment. The regula-
tor will converge to a generalized dead-beat regulator if
the changes in the reference signal are dominating and to
a minimum variance regulator if the noise is dominating.
This adaption in the parameters can also be regarded as an
adaption in the performance criterion in the sense that
the controller changes from a controller for transient

control to a controller for steady state control.
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AN INDUSTRIAL APPLICATION OF A SELF-TUNING REGULATOR.

U. Borisson ' B. Wittenmark

ABSTRACT.

An implementation of a self-tuning regulator is described.
The regulator algorithm consists of two steps. Firstly

the parameters of a model of the process are estimated in
real time using the method of least squares. Secondly a
minimum variance regulator based on the estimated parame-
ters is computed at each sampling interval. Implementation
of the algorithm on a process computer is discussed. Ques-
tions concerning program structure and storage requirements
are considered. Results from the moisture content control
on a paper machine are presented. The experiences are very
good concerning the start-up behaviour as well as the sta-

tionary behaviour of the self-tuning regulator.
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1. INTRODUCTION.

More and more industrial processes are controlled by pro-
cess computers. The computers make it possible to use more
complex regulators than the conventional PID-regulators.
The administration of the data handling and the computa-
tion of control signals are generally done by a special
program package (DDC package). The program packages con-
sist of a collection of standardized regulators and data
handling routines that can be used for different control
loops. Often it is also possible for the user to include
his own subroutines. The regulators are mostly discrete
time versions of PID-regulators, sometimes with addition
of dead-time compensation based on the idea originally
proposed by 0.J.M. Smith. These standardized regulators
have simple structures which are characterized by few pa-
rameters. In many applications it is, however, desirable
to have more complex regulators, but these seldom are
implemented since they are difficult to tune. A badly
tuned complex regulator can make a poorer control than

a well-tuned simple regulator. It is thus desirable to
have some kind of automatic tuning of the regulator para-

meters.

One way is to use an adaptive controller that automatical-
ly can adjust its parameters depending on the changing en-
vironment in which the regulator works. One special type

of adaptive controllers are the self-tuning regulators,

which are discussed in [2], [3] and [6]. The regulator
tunes its parameters on-line. It is assumed that the pro-
cesses to be controlled have constant but unknown parame-
ters. Further, it is assumed that the processes have one
single input and one single output and that they are mini-
mum phase. The algorithm of the self-tuning regulator can
be divided into two steps, identification and control. The

algorithm performs a real time identification of the para-




meters in a model of the process using the method of
least squares. The control law is a minimum variance re-
gulator based on the estimated parameters. The regulator
can be used to tune parameters in feedback as well as
feedforward loops. Other types of self-tuning regulators

are discussed e.g. in [4] and [5].

The theoretical aspects of the self-tuning regulators,
considered in this report, are thoroughly discussed in
[2] and [61. The main result is that if the parameter es-
timates converge, certain covariances of the output and
cross=-covariances between the output and the input are
equal to zero. Further, if the number of parameters of
the regulator is large enough and the process to be cont-
rolled can be described by a linear finite dimensional
model the regulator will converge to the minimum variance
regulator that could be obtained if the parameters of the
process were known. In practice, the algorithm has shown
good convergence properties. Experiments on laboratory as
well as industrial processes have shown that self-tuning

regulators are well suited for industrial applications.

In this report it is discussed how the self-tuning regu-
lators can be implemented on process computers and re-
sults are given from control experiments on a paper ma-
chine. The algorithm which is quite general can be app-

lied to many types of processes.

In Section 2 it is discussed how the self-tuning regula-
tors can be used and how program structure and data bases
can be organized. Moisture content control on a paper ma-
chine is described in Section 3. Results from experiments
on a paper machine at the Gruvén Mill of Billerud Company
in Sweden are given in Section 4. Experiences of the ex-

periments are summarized in Section 5.
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2. IMPLEMENTATION OF SELF~-TUNING REGULATORS ON PROCESS
COMPUTERS.

2.1, The Use of Self-Tuning Regulators.

Sometimes i1t is necessary to use a regulator with many

parameters. This is for instance the case when:

® the process has several time-delays,

® feedforward compensation is used.

In these cases it can be favourable to use a self-tuning
regulator, because it is difficult to do the tuning ma-

nually.

The theoretical results concerning the self-tuning regu-
lators are obtained under the assumption that the parame-
ters of the process controlled are constant but unknown.
In [6] it is discussed how the algorithm can be modified
to follow slowly time-varying parameters by introducing

a weighting factor, A, less than one.
The self=-tuning regulators can be used in different ways:

® A self-tuning regulator can be used at the installa-
tion or retuning of a regulator loop. It can be re-

moved when a proper parameter set is obtained.

® The self-tuning regulator can be installed among the
other system praesvaas inm: the computer and periodically

serve different control loops.

® If the process has time-varying parameters, it may be
desirable to have the self-tuning regulator connected

to the regulator loop all the time.




2.2. Program Structure.

When implementing the algorithm on a process computer it
is sometimes advantageous to divide the algorithm into

two parts, one for the estimation and one for the cont-
rol. If the algorithm is implemented on a computer having
a DDC package the control part in many cases can be imple-
mented using the standard set of regulators defined in

the DDC package. The estimation or tuning part then de-
livers the regulator parameters to the data base used by
the DDC package. If a regulator structure is used that is
not available among the standard routines it is necessary

to write a special routine for the control part.

The tuning part must be specially written and included in
the system programs. This routine can be used for many
different loops if special care is taken concerning the

storage of data.

If the routines are written straightforwardly using stan-
dard FORTRAN, the program length will be about 31 state-
ments for the tuning part and about 28 statements for the
control part. When compiled on an IBM 1800 with floating
point hard-ware the storage requirement will be about u4hu8
memory cells for the tuning part and about 310 memory cells
for the control part. The storage requirements can be con-
siderably reduced if the structure of the estimator equa-

tions is utilized.

The data needed for the self-tuning algorithm can be di-
vided into three types: state variables, dummy variables
and constants. The state variables are input-output sig-
nals, parameter estimates and their covariances. The dum-
my variables are temporary variables used at only one in-
terval of time. The constants define the regulator struc-

ture.




Let the number of parameters of the regulator be r and

assume that there are k steps of time-delay in the pro-

cess. The data storage of the two routines together will

be
State variables 0.5142 + 2.5 + 3k + 6
Dummy variables r
Constants 5

It has then been utilized that the covariance matrix is

symmetric. The control routine needs 4 constants and 2v

state variables. If the tuning algorithm serves

only one

loop at a time it can use the same data area for all loops.

2.3, Selection of Parameters and Start-Up Procedure.

Simulations and experiments have shown that the
parameters in the algorithm is not crucial. The
‘meter that must be chosen with some care is the

time-delays, k. An under-estimation of k can be

choice of
only para-
number of

serious,

while an over-estimation of k with one or two sampling in-

tervals is not serious. The choice of parameters is dis-

cussed thoroughly in [61.

The start-up procedure can be made in different

is always suitable to limit the control signal.

ways. 1t

Such a 1li-

mit test is included in most DDC packages. The initial

values of the parameters can be arbitrary. It is suitable,

however, to limit the control signal comparatively much

in the beginning. After a short period of time the para-

meter estimates are good enough to give successful cont-

rol, and the limit of the control signal can be eased.

Another way to start up 1s to use good initial values of




the parameters. For instance, these values can be obtained
by letting the control routine work as a simple PI-regula-
tor for a short period of time with fixed parameters, while
the tuning routine is running. The estimates of the regu-
lator parameters and the value of the covariance matrix
obtained in this way generally work very well as initial

values when the real tuning starts.




3. MOISTURE CONTROL ON PAPER MACHINES.

One of the control problems when producing paper is to
keep the moisture content of the paper on a desired le-
vel. The moisture content is influenced by many variables
e.g. the basis weight, the degree of refining and the qua-

lity of the pulp.

The moisture content control loop at the Cruvdn Mill will

now be described. The experiments in the next section were
made on a machine producing fluting. The production is app-
roximately 130 000 ton/year. The basis weight range of the
fluting is 112 - 150 g/mQ. The paper machine as well as the
refiners and the digesters are controlled from an IBM 1800
computer. A DDC package, PPCP (Process and Production Control

Package), is available on the computer [1 ].

The moisture content of the paper is controlled primarily
with a feedback loop from a capacitive moisture gauge, to
the steam pressures of the drying cylinders of the last
two drying sections. See Figure 3.71. The moisture gauge
is kept in a fixed position. No averaging of the moisture

content over the machine width is done.

The moisture content is influenced by several process va-
riables and it is advantageous to use feedforward compen-
sation. The thick stock flow, which influences the basis
weight, or the reference value of the refiners are sig-
nals that can be used for feedforward control of the mois-
ture. On the paper machine used in the experiments a feed-
forward signal from the couch vacuum was used. This has
the advantage that disturbances from the refiners as well
as basis weight fluctuations originating from the head

box and the wire are taken intc account.
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Fig. 3.1 - Schematic figure of the drying sections and

the moisture content regulation at the Gruvdn

Mill when the self-tuning regulator was used.

It is desirable to have a certain drying profile, i.e.

to have a certain relationship between the pressures of
the different drying sections. Therefore, a special prog-
ram which is able to adjust the drying profile is inclu-
ded in the system. The pressure of the fourth section is
allowed to vary in the interval 0 - 1 kp/cm2 below the
pressure of the third drying section. The drying profile
program changes the pressure of the third section if a
pressure outside the limits of the fourth drying section

is required.

The reference value of the fourth drying section thus can
be influenced by the moisture and couch vacuum signals and

the drying profile program.

When the self-tuning regulator was used to control the
moisture content the sampling interval was 16 seconds. The
moisture and couch vacuum signals were measured and fil-
tered every 8th second. The filter used for the moisture
signal was part of the DDC package and had a short time

constant.
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4. EXPERIMENTS AT GRUVON.

Several experiments with the self=-tuning algorithm

were made using different regulator structures. The num-
ber of regulator parameters and the number of time-de-
>lays were varied. The regulator was tested under diffe-
rent operating conditions including great process dis-
turbances. Basis weight changes and machine speed adjust-

ments were also investigated.

Two examples will be discussed, where the self-tuning
regulator controlled the moisture content of the paper
machine. The structure of the regulator was different

in the two cases.

Example 1. The number of regulator parameters was 6. Four
parameters were used in the feedback loop and two in the
feedforward loop. The regulator had the structure

ult) = ayy(t) + a,y(t=1) = B vult=1) - Bovu(t-2) +

+ Y,]V\/('t) + YQVV(t“'I)

where
yu - incremental control signal
y = moisture contentdeviation
yv - increment in coach vacuum signal.

The time-delay in the process, k, was assumed to be four

sampling intervals.

The following process variables were registered during

the experiment:
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® moisture content (the set point is indicated by a

line) [%]
e incremental control signal (Vu) [engineering units]

® steam pressure of the fourth drying section (u)
r 2
[kp/cem”]

® steam pressure of the third drying section (reference

value) [kp/cmz]

e couch vacuum signal [.m H,0]

The experiment started by letting the tuning algorithm
run for about ten minutes having a PI-regulator with

fixed parameters to compute the control signal. The es-
timated parameters obtained were used as initial values
when the self-tuning regulator started to control. The

results obtained are shown in Fig. 4.1 - 4.8.

Changes in refiner energy often are possible to observe

in the couch vacuum registration.

At 21.42 the refiner energy was decreased by the process
operator. This adjustment can be observed in the moisture
content and couch vacuum registrations (Fig. 4.1 and 4.5).
The self-tuning regulator compensated for the change by
decreasing the steam pressure, which best can be seen in
Fig. 4.4,

At 22.28 the process operator increased the refiner ener-
gy. After that the couch vacuum variations were rather
small until about 24.00. Then some disturbances influenced
the process, and the variations in the moisture content

were increased.

The self-tuning regulator was able to change the steam
pressure fast enough to maintain good control. The esti-

mated standard deviation of the moisture content in Fig.
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4.1 is about 0.37%. This result is quite good when using
a moisture gauge kept in a fixed position and without
averaging over the machine width. In the Figures 4.6 -

- 4.8 the regulator parameters are shown.

When the parameters have converged, and if the structure
of the regulator is the same as of the minimum variance

regulator of the system, then [2]

ry(T) = 0 T 3 kt+1

Pyu(T) = 0 T 2 k+1

where k is the number of time-delays. In Fig. 4.9 the es-
timated covariances ry(T) and Pyu(T) have been plotted.

The dashed lines indicate a 95% confidence interval for
T 4 0,

10

Fig. 4.9 - The estimated covariances of the data in Fig.

4.1 and 4.2, The covariances have been norma-

lized.

In this example the covariances are expected to be zero

A

for T 2 5. In Fig. 4.9 there is only one point, rvu(S)a

that is outside the 95% confidence interval.
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Example 2. In this case the regulator contained nine pa-

rameters. The regulator had the structure
Tu(t) = agy(t) + a,y(t=1) + a,y(t-2) -
= BqVult=1) - g,vu(t-2) - ggvult-3) - B vult-4) +

oy, Uv(t) o+ YZVv(tQT)

The parameter k was given the value 3.

In Fig. 4.10 there is a registration of the moisture con-
tent for about 20 hours. The set point was 8.5% until
08.30. Then it was increased to 8.7%. The self-tuning re-
gulator managed to keep the moisture content near the set
point all the time. The estimated standard deviation of
the first four hours is 0.39%. Later in the experiment it

was even smaller.
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5. EXPERIENCES.

The self-tuning regulator has been used in experiments
of different lengths to control the moisture content of
paper. The experiences are very good both concerning the

start-up phase and the steady state control.

In the experiments on the paper machine it turned out
that the choice of parameters in the regulator was not
crucial. The number of parameters in the regulator could
be chosen in different ways without influencing the stea-

dy state performance drastically.

When the disturbances acting on the process were small,
the experimental results were in accordance with the
theoretical results. See for instance the estimated co-

variances in Figure 4.9. At paper breaks the self-tuning

routine was stopped and a special program ##=: P e dee de-
crease the steam pressure of the drying sections. When

the process was started up again the same program increased
the steam pressure. Then the self-tuning regulator took
over the control using the same parameters as before the
paper break. Generally the parameters were not influenced

very much by the paper breaks.

In most experiments a start-up procedure with an identifi-
~cation phase was used as described in Section 2. In the re-
gistrations of the parameters it can be seen that the tran-
sient period of the parameters has been about 10 minutes,
which corresponds to about 40 sampling intervals. There may
be a slow trend after the first transient before the sta-
tionary values are reached. Since it is desired that the
stationary values should be reached as quickly as possible
it can be convenient to use an exponential weighting fac-
tor, A, which is time-varying. The weighting factor also

makes it possible to follow slowly varying parameters. When
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the value of X is determined there is a conflict between
the demands on the ability of parameter tracking and the
quality of steady state control. This is the dilemma that

always exists when designing adaptive controllers.

From the registrations of the moisture content and the
couch vacuum it can be seen that the disturbances do not
always seem to be stationary. The disturbances can be
small for a long period of time but suddenly large dis-
turbances may occur in the process. However, the self-
tuning regulator does not seem to have any difficulty to

handle this type of disturbances in practice.

The self-tuning regulator had the same structure as the
moisture controller used on the paper machine, i.e. a
feedback loop from the moisture gauge and a feedforward
loop from the couch vacuum gauge. The ordinary control-
ler sometimes had difficulties to compensate for drift
in the couch vacuum which originated mainly from varia-
tions in pulp quality and the degree of refining. Using
the self-tuning regulator it was possible to follow the
reference value better. The balance between the feedback
and feedforward loops was improved by the self-tuning re-
gulator. The performance of the ordinary controller was
then improved by adjusting the parameters in accordance
with the estimates obtained from the self-tuning regula-

tor.
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