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L. Intredection

Most of the existing control theory assumes that models for
the procoszes to be controiied and their envivorments arc known. In
many praciical situatiéns such assueptions are highly unrealistic
becimse the desired models are often not available., The problem
can be avoided in two different wéys, nsing wodelling and system
identification methods to obtain the modals or by introducing more
sophisticated control algorithms which do not reguire knawledge of
the process models, In.principle, it i=s poséible to genérate suéh
algorithms by considering the problewm of controlling a system with
constant but unknown parameters, The algorithms obtainéd in this
way are optimal. . bub they cannot hevdetérmineﬁ,witg a reazonable
computational effort. It is; however, ﬁossible to determine
subaptiﬁal control strategigs. One strategy of this type called
STUREI wasraﬁalyseﬂ iﬁ Astxémwwittenmark (1973} . It.was shown‘that
Tunder reasonable conditionﬁ.the regulator has the éelf—tuning
proparty. This means that if the parameters of the regqlaior
converge, the regulator obtained in %he Limit will be identical to
thé optimal regulator that c9uld have been designed if’the parameters
had been knowsn,

There are many ways to genexrate éubaptimal si%atégies. - One
possibiléty is toAmakg the assuﬁptioﬁ'that the problem of controliing
va'system with unkﬂowa parameters can be separated into an
identification proble@ and a contrél‘prdblem. This was proposed, fox
example, by Kalman (1958).‘ Algogithms of this type are‘ulso
inveétigated in ?eterkq (19?6) and ﬂieslaﬁderhﬁittenma¥g £1970).

hnalysis.of coﬁvefgén&e of a gneeral class of stoéﬁastic cbntrol

algorithmg, which includes zeveral self-tuning regulators is given in

an,




Iyung (3574)& A detaileqd discussion}of the apﬁliéation off the
geueral copvergence thoorems for the seif~tuﬂing regulator STUREBI
is givan in Liung-Wittormmark (1974},

The self-tuning prerrty of the algorithm STURBI depends on a
dalicate balance of’ths’bias in the least sguares estimate and the
fact that the control lavw is determined from an erronsous model
A consequence of this is that the algorithm STURET has several

Limitotions. Tk will only converge to Lhe optinal regulator when

&

the criterion i

&

3 such that there is no penalty on the conkrol.

Lo

The algovitlm STUREI is not a dual regulator in ?ha sense of
Feldbawn, This means that the regulator does not attemét to
introduce control energy foxr the explicit purpose of reducing
parameter wncertainty. The algorithm cannot easily be modified to
give - a dual control law because any attemﬁt to introduce

perturbation signals will upget the balance hefweén tﬁe bias and.the
modelling erroxr, |

In ﬁhié report the notion of self-tuning regﬁlators is extéﬁde&.
It is shown that it is possible to obtain a self~tuning estimator
for both process and noise'pafameters bésed on ;east‘squaies_
calculations only. Since both procvess and noise parameters are
estimated, it is then possible to obtain selfftuniné_regulatofs
vhere control actions are penalised.énd also requlators with dual
‘contrel features, ‘ |

‘fherrepért is organiséd,as follows . .The recursive estimation
algorithm is given in Section 2. ‘The algoritﬁm is ﬁdéntical to the
one proposed Ey Young (1970} and clésely~iélatgd to one proposed by
.Panuska_(1968}. A first attempt at .analysis is given in Section 3

where it is shown that certain covariances must vanish._ 29




chevactorisation of possible limit p;\ini:sA is giveh in Section 4
whore it is shown that the truve parameter values form a I.imilt point.
;g spacial cases it is ais .shown thalt this is the only limit point.
Sockion 6 deals with_convergence conditions. The analygsis is based
on the difierential equétions introduced by L.jng {1g74)}. The -

relation to other methods like recursive maximum likelihood and

- 5 N . y F
modal reference methods axre hriefly covered in Sections 7 and 8,

Z. The Algoxithm

A system with one input and one output is considered. Ikt is
desirved to obtain a mathesatical model relating the output y to the
input u. The algorithm can be described as follows:

BLGORITHM
At each time N the parameters of the prediction model
- A ~1 o DU S : .
ity = -Alg vty +Bi{g u{n)+l{g e{t), =N~ ... {2.1)
are Getermined in such a way that the prediction error defined by
ele) = y(O-§) - - (2.2)
is as small as possible in the sense of least sguares, that is:

N 9 .
v o= z £ (k) minimic . B (2.3}
=l '

in eguation {2.1) {u{t), t=R8-1,8-2,...} denotes the sequence

- 3 -




‘of inputs that are applied to the system, {v(t), t=N,N-1,...} thea

©sequence of obsérved outputs and {E{t}, t-W-1,089-2, ...} the

srediction errors obtained in the previous steps. Farthamiore
I F 2

A, Bx) and C(x) denote polynomials

. . 1.
A =%+ ... 45w
1 1t

- Bx) = Bx + ... + B‘{,_xﬂ

CUxy = v.ooe 4+ ... 4 v %
() }l im

. -1,
wvhose coefficients are the unknown parameters and - is the

bockwaxd shift operator, Notice that there is no constant {erm

in either of the rolynomials which wmeaus that (2.1} i8 a true

prediction model,

i

In order to write the equations for  tha least’ sgquares

estimates of the parameters in a compact form the following

notation is introduced

0= [o

. . T : R
g BB Y ey T (2.4)
G {t-1) =.f~y(t*1},...,My(twm},u{t~1L...,u(taﬁ),E{t~1},...,£(t—m)3
(2.5}
The prediction ¥ given by.{2.1) can then be written as
§it) = $e-1)0 (2.1)*
The prediction errox defineg by (2.2) becomes
E(E) = y{t)-¢ (£-1)0 (2.2)" -

and the criterion (2.3) can be written as

-4 -




) . _ :
vN(e) = ¥ [y(t)-o {t~1)@]2 ' : {2.3)¢
t—1 ' .

. L
The least squares estimate is the value of the parameter uhich
mintuises (2.3)7. It is casy to show that the estimate is given hy

the normal eguations

U
ot ey ey -¢ (=130 I = 0 © o (2.5)

=1
vhich can also bz vwritten as

N N
U] ¢ e=nge-niom = § o5 -1y (e
t=1 £=1

It is well known that the estimate satisfies the following recursive

equatioﬁs

O{t+1) = QL)+ (t+1)r§:’r'(t)£yct+ii-é{t}@(t)] {2.6)
vhere .

Beel) = PO -PE0e (O 6EPI6T )1 0 @r ) (2.7

Notice that ¢{t} is a function of the previocus estimates 0{t),
Q{e-1), ... Because the residuals e{t), e{t-1}, ... depend on these

estinates. Compare eguation {2.5).

Remark

It follows from equations {2.1) and {2.2} that




a -1 ) " . i -1 - -
FLe)y = ~Afg HIFEIB (g 1.‘au(t)-*{(- (g "y-Alg 1)}£(t)
T -1 ~1
= —Ag VB (g Ta{t)«C (g “relr)
The algoritive is thercfore in eséence eguivalent to fitting the

parasivters of the polyvnomials A, B and ' of the model (2.8} by

least sguares. This is the approach taken in Witteamark (1974).
4 OF

3. Limiting Proparties

Jfhe properties of the algorithm described in the previous
section will now be analysed. It will first be assumed that the
estimated parameters converge as W goes to infinity.and that.

]|¢(t)ll’ is bounded. Eguations (2.2)'. and (2.5) give
N N ’
1 T . 1 . -
=7 ¢ (e-1)e e+ ) ¢T(t~1)¢)(t—l}{@(t~1)~8(m] = 0
M~ | )
t=1 t=1
If the parameter estimates converge, that is
Oty -+ Gﬁ as t > w
then the second term in the equation can be bounded by

N -
=7 0% 1) (-1 [0 (6) -0 () ]|
£=1 -

< %{Nl sup ¢ (=D (e-1) |0 -0an |}

ISt
i N T kj :
+ ﬁz ¢ {e-1¢(L-1) sup [0~ 00| e,y
=N, E>N,

-G -

2.8)

(3.1}




wheroe kl and k2 are constants and €4 can be made arbitrarily small
by choosing Nl sufficiently large. If it is assumed that g{t) is
bounded it is thus found thab the second texm in (3.1} will go to

c#ero as N+ o, The following rosult can now be obtained,

Theorem 1

Assume that the parameter estimates of the algorithm converge
- . . 0 .. . N
to such values that the polynomial 140 () has all.its ZOTOS
cuiside the unit dize.  Let the sequences {v ()} and {ut) ]} be
bounded and assume that the limiis
.

1
1im ¥~z n{trTiu(t)
tre Ts=]1

exist. -Then the limiting values of the parameter estimatoes are such

N, ' .
Yim L ET Ty (E) = 1dm 5 ey () = 0, 1=1,2,...,k
| . Myor gt

R g N o
lim ﬁ’z € (L+r)uft) = iim E—Z e{t+riult) = 0, 17= 1,2,...,2
Noo t:—;i Nyoo ==

W ' N

lin %-X EO(t+T)EO(t) = 1im é-z ef{trrde({t) = 0, 1= 1,2,...,m

N30 ] . [ SN e | )
’ ’ (3.2)

Se

0 - . ‘ .
vhere € (L) are the prediction errors computed using the limiting estimate
The sccond equalities.are already proven, They follow directly from
the normal eguations for the least squares estimate. %o complete the

* proof the following lemma will first be shoun,




Lewmma 1

Consider the seguencss

L : T .
b hit,s)uls), =(t) = k ki{t,s)uls)
:1 g=1

o] of

yie) =
5

I

whare the seguence {u(e)} is bounded arndd the weighting functions

.}1 and k have the proparty,
Ihe,s)-h (es)] < ¢ olue]
0 t

where Ci: + {0 as L+ =, Then

€ t

1 e 1
Lim — } yv{tyz{t) = lim % I yg(t}zg(t}
e T ' pror g=l

where

€ :
vy (&) = } n {t-s)u(s)
0 s=1 ¢ '

. t
ZO {t} -:: :«:Z—.

]}:O {t—-3yu{s)

if the limit of the richt hand side exists.

Proof of lemna i

Tirsl consider

: i
lytey-y ] = | )

) !jh{t,s)-ha(t~s)3u(s‘)l
s=1 .

C

< - sup 1u {5) ‘

1-e *i<s<t

Since € goes to zero as t -+ o y{t) will thus converge to yo(t)«

Now consider




-,i ‘(; - =3 .~ ‘ ™) —
E'% iy(a)&{s)*yoib)da(g)J =

1

L
Pog o .
= E'k fy(s}z{s)~y0(s}z(s}+ya(s)z(s)nyo{s)zg(s)}

=i

. 17 -
= -{:-S;Zl[.y (S)‘"}fu {s) 1= {s) '{*{;*S:}i:iya {s) [ (S)HZ(.) ()7

But:

=

[

i ) I{Y(S}—YD(S}3Z(S)1_E
g=l

f_%{n'sup [(y(s}—?c(s))z(53‘+(t~n) sUp ](Y(S)*YO(S})"Z(;}[}
1<s<n n<s<t

An
<=+ gln
£t em
whers e{n) can be made arbitrarily smallAb? choosing n sufficiently

large, because z is hounded énd y(s) + yD{s) as s > ®.  The

statement of the lemma is thus provern. # _ .

- Under the asswmptions of the theorem the'sequences-{u{t}}
. ¥

- and {y(t)} are bounded. It_fbllows from equations (2.1) and (2.2)

that

elt) = y(£)-§1t) = y(0)+hia Dy () -Big ufe)~Cig e i)

Henee

[1+C(qﬁ1)left) = [1+A(qh1)]y{t)—B{qgigu{y)

The coefficients of this difference equation will depend. on time

since the estimates ave time dependent.. For sufficiently large t

e




the equabtion will, however, he arbitrarily close to the zeros of
] 0 . = .
the polynomial 1#C {x). The asswnptions of the lesma thus hold and

the theoram is proven.

4. Possible Limiting Foints

"""" |
In the previcus section a characterisation was given of t?e

I
properties of the estimates wmder the strong assumpiion that thé

i
estimabes converge, The characterisation did not require specific
assumptions on the input output relation. In this section il will

be assunmed that the input output data used in - the experiment are

generated by the systom
—-1 o I R o
Alg dy{t) = Bl{g Du(t)+Clg “lelt) : {4.1)
-_where Afx}, Bix) and C{x]) are polynomials

I {x)

il

: n
ta x+...+anx

R
B{x) = blhj..%nnx

Cix) ite ®m.. .40 Xn

1 - n

i

and qii is the backwerds shift operator. It is shown in Astrom (1970)

that the one step predictor for the process (4.1} can be weitten as

-1 ~1, -
Alg ) Alg ")
- 10 -




[ShN

A TN ~ 7 " - —
gy = Ll-alg "YI9 ) +B (g l)u(ti-f-LC {q l}v-fa (q I}}a{t)

nsorving thatl

3
i

vk} = $(t)+e(t)

it is easy to show that the equation above can be. rewrilien as

b

gy = [1-a (qhi) Jvit)+n (th)u({:)ﬂi{C tq~i}Hlje {r) (4.2}

It thus follows that

B el(tti)y(t) = 0, 7 = 1,...,ﬁ,...

i
o .
-~}

!

E elt+Thult} = 3, e {4.3)

E elttr)e(t) =0, ¢ = | S
Summing up the following result is obtained,

Lomma 2

Let the algo?ithm of Section 2 be applied to é system
described by {4.1) and let k¥ > n, £ > n and m é_n- ~Assume that
thm'ﬁérameter estimates converge to values such that the polynomial
1+C(g) hag all its zeros . ovlside the unit ciréle. Thén é possiblé

T limit point is given by

- 11 -




0, = a i =1.2,...,n
= b, i=1,2,...,n 1,49
Bl i IR r {4 i)
., = i= 1,2 DR
"}l 3 iy r

It will now be lnvestigalted whether there can possibly be i
other limit points. It is again assumed that the parametes

estimates converge. “he linmiting propurties will now be investigated.’

Faguations {Z.1} and {(2.2) give

F14C (@ I8 = [0 DAtg™) Iy ()8 (g Ly ()

Q3 i
By = &_'5_ 7 {4 ‘ E,gﬂ ' . . ' . [
vty = o y (s u(e) _ _ : {(4.5)

- -
where {g ) has been deleted in the polynomial notation Alg 1) in

order to save writing. Furthermore equation (2.2) gives.

ef{t) = y()-§) = é—:% y(t}- ‘i'%‘:- u{t) E {4.6)

If the input-output seqnéncewere generated from the system {4.1}

then

y{t) = % u{t)+ % E(ti

and the equation above can he written as

- 12 -




Sy = GMMC o ABr(1sA)e -
C e e e v .7

Ths copditions of Theorem 1 now give k + £ 4 1 tonditions to
determine the k¥ + £ + m paraneters of the polynomials., The
conditions are obtained in terms of a set of nonlinear alychraic
equations. It is in generxal not trivial to analyze these
equitions. Some spzeific examples will therefore be invastigated.

Brample 4.1

Consiider the gystom

yvit+idtay (t) = bu(t)+e (t+1)t+ee (L) (4.8}
. ) i _ .- o
vhere the inpubt u is assumed to he a sequence of uncorrelated random
variables which are also uncorreclated with {e{t)}. ret la] < 1 and
Ici < 1 and assume that the algorithm of Section 2 is applied using

the prediction model
F{t+1) = ay (L) +Bfu (L) +ye (L) : T (4.9)

Furthermore assume that: the pbarameter estimates converge. Since

0 . . ‘
@}, vy} ana {&” ()} are stationary stochastic processes the
time-averages appearing in Theorem 1 will be ensemble averages.

The conditions of Theorem 1 can then be written as

¥ (1) = 0
N

r. o) =0 ‘ _ . (4.10)




whore {Eo(t}} denobes the residuals ealeoulated using the limiting
valuss of tha parameier esbimates. The subseript in £ will be

suppressed in the following in order o avoid wmesay notation.

It follows from equation (2.2) that

cov Lefesi),uls)] = cov Dy (tt1)-F(t4+1) ,ut) ]
= cov Ly{t+3),n{t)}] ~ cov [§(t+1),u(t)]

Since ul(t) and u{s) are wncorrelated if t # 5 and since ul{t) is

uncorrelated with e(s) V s it follows that

i

cov Ly b1y, uit)] = cov Leay (£)+buit) +o (e +ee (B) ,ule)

hi

b cov [uft),n(t)]

i

cov [H{t+1),0{t)] = cov [~ay{t}+3u{t)+¥€{t){u{t}}

i

B cov fult),ul{t)]
. The condition (3.2) then gives
£

r_u(l} = (b-B) cov [u(t),ut)] = 0

Hence-

B=b . : (4.11)

..1/1._.




Equations {(4.8) and (4.9) give

cov [e(tt1),9 (i) ) = oo (DB (Uavr (1) = 0

%

Farbhermore it follows from eguation {4.10) thatg

'
i

cov Lelet1),§ ()] cov [e(tri), vy (E)-£{1)T = 0

But

cov Le {t+1),5 ()]

n
“

iy

cov [y {tr1), 91 - cov L9 (t+1), () ]

Since

cov Ly (6+1),9 (£33

i

‘cov [~ay(t}+bu{t)+e(t+l)+ce(t),?(t)] = .
~a cov [y(t),$(t)]
and
cov [§(t+1),5(6)] =
cov L-ay (t)+Bult)+ve (L), 9(e) ] =

~t cov Ly(t),y(t)]

it follows from eguatien (4,10} that




<
]

(~a) cov [y (1), $(£) ] = (o-a) cav ey, gyl

Hance

Subtracting equations (4.8) and (4.9) and using {4.11) and (4.12)

gives
E(Erl)ve(t) = e{ttl)tce () : {4.13)

The. covariance of the process {c(t)} at lag 1 is given by

Cx (1) = et L;Y@
£ 1ey?

The conditioﬁ.{4.10) givés

oxr

Y = /¢

It is thus found that the cond;tions {4;10} hnplf that o and
- B ayxe givon untiguely and that there are two possible values for Y, Y = C
and y = 1/c respectively, Since‘fcl<1 the valh; T&iféiﬁériésponds to a polynomi;
1+C{K},: 34xfc with zeros, inside the unit disc. The equation {4.13)
is thus.unstable for this vaiue of ¥ and the conditions of Theorenm i

are violated. It is thus found that there is only one set of

parameters which satisfy the conditions of Theoren 1.

-1 ~




Ewample 4.2

Conaider the systan

L}

A<q—1}yft) = C(th)e(t)

(4.14)
-1 -1 th . i
where Alg ) and Ci{g "} are n order polynomials in the backward
-1 .
shift operator ¢ . It ig assumed that the polynomials A(x) and
C{x) bhave all their zeros oulside the wnit disc. Bssume that the
algorithm of Scction 2 is applied using the prediction model
~ -1, -1 ' . "
Fey = ~Alg Dy(thlig le(r) . {4.15)

Azmsumirtgy thal the parawmster estimabes converge}it follows from

Theorem 1 and Lemma 2 that one posaible stationary point is given by

it

Ay = a1

C {Cfl ) !

Clg )=l

Al

Tt will now be investigated whether this is the only statiohary point.
To do so it ie observed that the residuals are given by eguation

{4.7) which in this particular case reduces to

. £1+A{q”1>1ctq"1)

€ (L) 3 T é(t) ‘ (4.16)
L4Ciq yidatas ™)

Introduce the stochastic Process {v(e)} defined by

-1
ult) = Gla ) e(t}

. £1+C{qwl}3A(q”1)'

- 17 -
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Than
elt) = flﬂﬁ(qniklutt) (4.17)
viE) = P10 ) To (e
Tarthermore
r_ {T) = cov {E‘.(td«’r},[:1%(:((1‘?1)]{){{:)
ey
= {1+C(q)]rEU(T}
1
am‘:}

'
i

r A1) = cov {€(t+f},E1+A(qhi}JU(t}

it

[14A (c_l).JrgU ey

The conditions (3,2) thus imply

It
o

reU{IH{xlrEU(ZH. . .wzkrau (x41)

i
<

T2y o0 T :
Iaq( 3 alreu{3) +(>.R:L€U(}f+2)

e
-

-

- +0, X + veed O tm) =
Yot (m}) wiwi {m431)4 ! akrEU(Hm) 0

Ty {1 }n'AYIrE:U(z)—%. . .+‘;’mxa) {m+l) = O
raO{Z)_‘s-erw(BM..7.4-\,'mr€u (m+2) = Q

-

-

rtuﬂ;}ﬂ'lrw (k+l}+“‘+¥mr£u (mik) = 0O

o~ 18 -




These eqguations can be writteon as

[ - . B R
i ml R dn rau\l}
! al ' an rEU{Z}
A .. Y, = A4
1 0-,1 . nk 0 (4.18)
1 Yy SRR
' Y1 Ym
4
L (U T Fey letm)

Since reU{TT is alse a function of'thé‘parameters mi and Yik
the equations are nonlinear. Hotice, however, that the determinant
of the matrix on the left is a resultant.. Ii then follows that if
the pélynomial$‘1+A(X) and ifc(x) are ielatively prime then the .
matrix is nonsingular and the.equation !4716) implies that.

r,W) =0, T = L2, ke ' o (4.19)

Since € and U are outpuats at a dynamical system of order nim it

follows from (4~18) #nd the Yule-Walker equation.that
T} = v )
reu( 1= 09T

TAif k i_n. The equation (4.17) then implies that

- 19 .
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b , ‘ {4.20)

whiare € is given by {4.16). It then follows that

FL1A G 30 A% 00y Je oy (x) =

240 60y T0™MC% () Ta (30) A% {o0)
where A% is the reciprocial polynomial, that is

A% () = 0 n ()

Since it was postulated that 1 + C(») and C{x) have alt

zeros outside the : wnit disc and since & (x) and C(x) are relétively
prime it follows from (4,21} that

Clx) = cla)-1 ' _ (4.21)
Since the residuoals are linear in the coefficients of the velynomial
A,it then follows that the solution of the least sguares problem is
unique and it is found that

Afx) = a(x)-1 o . {4.22)
It is thus found that if the'algor}thm is applied to a stationary time

sexies then there is only one stationary point which satisfies the

"conditions of Theorem 1.

- 20 -




i Remark

The analysis of this example is in essence equivalant. Lo the

proof of Theorem 2 in Astrbm-Wittenmark (1973).

Example 4.3

Consider the syvstem
-1 ' -1
Alg Dy {t) = B(g ult)+e{r)

-1 -1 \ . ' .
where A{g ") and Blg ~) are polynomials in the backward shift
operator qw - Bssume that the algorithm of Section 2 is appliecd
using the prediction model

g(t) ¥-—A{qwllytt)+3(qh1)u(t)

and thal the parameter estimates converge. ‘The residuals

associated with the limits of the parameters

A ‘ ‘-1 S I
sﬂ(t) = y(t)—yo(t) = E1+A0(q }]y{t}*BO(q yu (k)

are then linear in the parameters. The eguations (3.2) reduce to

15 0 :
1im E'X eIV (E) = 0, T = 1,...,k
wreo Mgy

N .
lim i—X Eo(t+T}u(t) =0, T=1,...,E

LM

These linecar equations can be writken as




I .
1w LT
Ciim ﬁf) b (L1 (£)1(O-6) = 0
Brow T ped

The wmatrix on the 1eft hand ‘side is positive definite if k = £ =
and If the dnpur signal is perzistently exciting of order 2n. ‘fhe

solution to (3.2} given by Lewma 2 is then uhique.

The algorithm of Section 2 is a special case of the stochastic
algorithms analysed by Lijung (1974} . Convergence conditions can

therefore be obtained by the methods developed by Liung. To apply

"these methods it is first assumed thal the input u{t) is such that

the sums
g N ~ :
lim 7 ) uledt)ult)  exist for all T (5.1)

Moo Th=l
This assumption is necessaxy.beéause the results in Lijung t1§74)’
are based on stationarity assumptions. It is also nedessary to
impose a stability condition. This condition can be formulated as
Assume that The polynomial I + Ci%) has its zeros ' outside

the wnit disc infinitely often or that the algorithm is

, , (5-2)
modified in such a way that the polynomial 1 + C{x) will
always have its zeros ' outside the unit disc.
Introduce the functions £ and G defined by
£{O) = Ee(t;0)d(L;0) , : (5.3}
GO) = B {300 (£30) (5.4)




et ‘ k4L
where the domain is taken as the subssb of R - on which the

polynomial 1 + C{x} has all the zeros outaide the unit dise. The
scalar £(8;0) is defined by eguations (2.1) aﬁd {2.2; and the
vector $(;0) is defined by equation {2.5).

It was shown in the previous section ﬁhat the function £

vanishes for the true parvameters, that is

Q=0 == [Hai,.g.,—an,b

--.D
8] r nte

1 1,...,cn}

. Bxamples were also given when © = 0 is the only zero of £. It

0
follows from the results of Lijung (3974} that the estimate will
converge to OF 1if (0%,S*) is a globally asymptotically stable

solution of the differential eguations

W©D _ Sire,
a = S{rIf{S(TY)
gs(t) 3(1)-5{T}G§9(T})S{T}

dt

such that 5% is positive definite.

Example 5.1

Consider the first order moviﬁg aﬁerage process
yit) = e(t)+ce (t-1)

The equation {4.16} gives

ett) = iﬁﬂ; e (E)
dyg ¢

| {5.5)

{5.6)




Heonews

i
w
=)
e
!
[y
I
i,
o
0

G{Y)

¥Wo have

(o) = -1

2
N IV
i-y"

The solution of T’L'é is therefore an asymptotically stable solution

to the equation {5.5).

6." . Relations to Other Recursive RBstimation Schenes

The aigorithm discussed in Section 2 is closely related to
‘severél other recﬁrs;ve estimation schemes. 9he relations to
stochastic apprcximationé and recursive ﬁaximnm likelihgod
_estimatipn and the ﬁodel reference method %re discussed briefly

in this section.

Stochastic. Approximations

The stochastic approximation scheme is obtained by replécing
the matrix P in equation (2.6) by a scalar which goes to wero as i/t

with increasing t. %he algorithm then becomes

O+ = OE)(0)¢T () [y (e+D) -0 (1)0 ()] (6.1}
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Thig inéa a 51gﬂlflcant reduction in the numb?r sf
computations ltqullﬁﬂ bacau““ it is no 1on9er necessary o iterate
the matrix equation {(2.73. :The aléorithm (6.1} is iﬁeqtical ta the
algorithm proposed by Panuskai{iQGS}.A A sultable Noxmalisation

of the coefficient$ Y is

. -L:. T
Y =AY e x) (6. 2)
R

I the estimates given by fguaticn {6.1) with Y{E) ~ i/¢ converge
they will convergs to values such that the equations {(3.2) hold.
In this resp&ct the stochastic approximabion algorthm is thus
simijar to the alaorlthm of Section 2, The converg;nce conditions

are, howeaver, different.

‘Recursive Maximum Likelihooﬁ.

estimator for the parameters of the model ( 1) can be wﬁibten as

QALY = O(e)-P (L41)¥ (e41) & fria) o ' (6. 3)
where
8 = coifa ,...,a 31,...,3 '61"'7'6n] : {6.4)
~ 1 . S | . Ay ) ) .
Cl@ dete) = aly dy(e)-Big Juft) - _ (6.5)
N BE{t} C ey Be(t)' aam JE(L) de (k)
Fle) = corlm T RS R 3%,
n n n
' (6.6)
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Segly BEte) | :
Clg ) 331 = y{t~i) ‘ - {6.7)
E(QHI) QF:;{-E} =0 (f‘"“) ‘

L' § QBI P § ' (6.8)
o~ e (1 '
cah AHY - ey (6.9)
. i

= T

P =LY YOV ()] (6.10)

=2

This algorithsm reduces to the algorithm of Section 2 if it

observed that equation (6.5) implies that
e{t) = y(£)-$(L}0

vhere CI)“is given by (2.5} and if the equations {6.7), (6.8). and
(6.9) ‘are approximated by
2e )

1 ’

%g_@) 2 o-u(E-i)
i .

&
o

= {t)
1

3 jé (t-1)

kg
e

Then

Y(t) = -¢{t-1)

and the equation (6.3) becomes identical to {(2.6).

- If the recursive ML algorithm converges the dimiting values

of the parxameters arce such that

- 26 -




]

3 -1, -1

Tim = poe {(E4T)C 7 {y vty = 0 T=1,2,...,n
] 0 0 .

M@ T
N S NS

lim w) e (E+TIC, " (o “Julk) = 0 T=1,2,...,n

N 0 O .
e D=l

Iim 1 é{ i 1
10 - -
— L_a_ d o =
W 1 téf@ (3TIC g ey =0 T

i

,2,...:n
'i' Compare with the eqguations (3.2).

The Model Reference Method

The model reference methaod introduced by Whitaker (1959} iz

based on the following idea: to adjust the parameters of a model

its output is compared with the output of the System. 'The

model. paramelers are then adjusted in such a way that their rate

of change is proportional fo.the gradienl: of the norm of the model

= -

error. See . Pigure 6.1.

ult)

system SN

..V(s:)

criterion

model
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Fig. 6.1 Schematic Diagram of Whitakers Model Reference Hethod

—————— T e e e e e e e e e et e et o et Pt S e . 8 Pk ot mes 1 ooy

(6. 10}




It will now be shown that the recursive estimation schemes
can be interpreted as model reference arguments. To do o
consider the system (4.1) and let the model in Figure 6.1 be a

prediction model

St hew = g((;1)5,{;)*;‘3({1)“&)
Let the criterion be

v#{a) = 52 Ft}
Wh;iakerb rgle-then gives

3. (e+1} = 8, (L) -K-2{1) —a—iﬁ“—)
i i da .,

A app}icﬁtion of Whitakers:rulé.Fﬂus'lééds to equations similar.to
thosé obtqincdifr§ﬁ éhe recursive maximum likelihood method if the gain
K is prépe#ly selected. Compare the above equégion witp equations’ (6.3}
and (2.6).. |
5. Conclusions

Xt has been shéwn that it is poséiblg,to derive éstimation
algorithms based on 1eastisqdares reﬁﬂrsive estimatiﬁn:which have
good-ésymptotic prOpertiés even for systems with correlated-
resi@pals. These algcrithms can be exploited to conéfruct'
pradictors and self-tuning regulétbrs which‘can be used in cases

wvhere the algorithm STUREI is not approﬁfiate.

- 28 _




8. Reforences

<y .. . N .
Astrom, K.f., (1970}, "Introduction to Stochastic Control Theory”,
Acadenic Press, MNew York. ’

o . . -
Astrom, J.X. and Witteowark, B., (1973), “On Seilf-Tuning
Regulators”, Automatica 9, 185-199.

Kalman, R.E., {1858}, "be%icw of g Self-Optimising Control System",
Trans. ASME 80, 468-478, also in Oldenburger R.. (Bd.} "Optimal
and Selif- OleWlSJDg Control", MIT Press {19 66}, AA(-A49 . !

Ijuig, L., (1974}, "Convergence of Recursive Stochastic Algorithms?,
Report 7403, Division of Antomavlc Control,. Lund Institute of
Tecnnology .

Ljunﬁ, Y,. and Wittenmark, B., (19?4}, “qumptotzc Propext:es of
Self-Tuning Regulators", Reporb 7404, Division of Butomatic Control,
Iamd Iastitute of Technolgy.

Panuska, V., (1868}, "B :Stochastic Approximation Method for
Idnetification of Linear Systems Using Adaptive leterlng“ JACC
1968, Ann Arbor, Michigan, '

Peterka, V., (1970), "Digital Adaptive Regulation of Noisy Systems®,
2nd IFAC symposium on ¥dentification and Process Parampter
Lstlmatlon, Prague, Preprint &, 2.

Soderstrdm, T., (1973), "An On-Line Algorithm for Approximate
Maximum Likelihood Identification of Linear Dynamic Systems®,
Report 7308, Division of Automatic Control, Lund Institute of
Technology. '

Whitaker, P., (1959}, "The MIT Adaptive Autopilot™, Proc. Self-
Adaptive Flight Controls Symp., Wright Air Development Lcnter,
erght~PatterSon AFRB, Ohio, Jan. 1959.

Wieslander, J, and Wittenmark,'B,, {1971}, “An Approach to Adaphive
Control Using Real Time Identification", Automatica 7, 211-217.

Witttenmark, B., -{1874), "Bdaptive Prediction" submitted to IEEE
Trans. AC, -

Young, P.C., {1970}, "An Extension to the Instrumental Variable
Method for Identification of a NWolisy Dynamic Process", Report CcN/T0/1,
DepL of Eng., University of Cambridge.




