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Preface

“Knowledge-based Real-time Control Systems” is a project within the Swedish
Information Technology Research Programme (IT4) that aims to specify and
verify a system concept that allows knowledge-based techniques to be integrated
with conventional programming techniques in future Knowledge-Based Control
Systems (KBCS). The project partners are Asea Brown Boveri AB, SattControl
AB, and The Department of Automatic Control, Lund Institute of Technology.

This report is the documentation of the first phase of the main project. Previ-
ously, a Feasibility Study has been performed (IT4, 1988). The first phase of the
project has concentrated on the specification of the concept and the development
of two prototypes that show some important aspects of the concept. The food
engineering process Steritherm, a process for UHT sterilization of liquid food
products, is used as a demonstrator in project.

The material which this report is based on has been written by the following mem-
bers of the project group: Claes Rytoft, Nicholas Hoggard, Anders Aberg, and
Martin Uneram from ABB; Christer Gerding and Bérje Rosenberg from SattCon-
trol; and Karl-Erik Arzén, Jan Eric Larsson, Mats Andersson, and Thomas
Petti from the Department of Automatic Control, Lund Institute of Technology.
Thomas Petti’s contributions were made while on study visit from the University
of Delaware. The material has been compiled and edited by Karl-Erik Arzén.



Introduction

1.1 BACKGROUND

The most important and valuable asset of an industrial company, the knowledge
capital represented by the expertise of different key-people, has not been a possi-
ble target for computer representation and processing until recently. Knowledge
is mostly qualitative, abstract information which is hard to represent and process
in traditional systems.

Current industrial use of computers is essentially restricted to applications which
can be described formally. The type of information that can be handled efliciently
is restricted to quantitative entities expressed in numeric or alpha-numeric forms.
In a typical computer program for, e.g., accounting, material administration,
technical calculation or process control the computer only handles repetitive and
algorithmic functions such as arithmetics, logic, and sequential operations such
as sorting or merging.

As a consequence, we have been forced to concentrate the use of computers on
well specifyable and repetitive processing of mainly numerical information. This
has resulted in a tremendous improvement in the handling of “quantifyable”
activities and assets in the industry.

New programming technologies, e.g., object oriented programming, knowledge-
based system techniques, symbolic programming, declarative programming lan-
guages, applied artificial intelligence, etc., will in the future make it possible to
represent and process knowledge.



2 Chapter 1 Introduction

The visionary and extremely important potential consequences of these new tech-
nologies are that the knowledge resources of a company will be subject to the
same far-reaching use of computers and increased efliciency as we have experi-
enced in areas suited for conventional computer techniques.

1.2 INCENTIVES FOR DEVELOPMENT

Knowledge handling is of specific importance in process control systems. Control
systems are carriers of a collected but extracted knowledge about the whole
controlled process. A program for how to supervise, control, and activate the
process is the final, concentrated result of a complex processing of knowledge
about

e the controlled process itself,

o the components involved and their ways of interaction,
e the produced products and their properties,

e control theory,

e demands and conditions for service and maintenance, etc.

Significant knowledge is accumulated in the process computer and among the
operating personnel when a process has been operated for a few years. This
knowledge is scattered and neither well represented nor well organized in con-
ventional systems. The reason for this is that today’s control systems are not at
all suited for processing this type of knowledge. The main weaknesses are the
following.

o Incapability to express and implement knowledge-based control functions.

Control functions based on experience, heuristics, fragmentary knowledge, or
qualitative knowledge must today be handled “manually”.

o Incapability to represent and communicate the underlying knowledge of dif-
ferent types of control functions.
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Although there is a lot of knowledge involved in the analysis and design
phases which precede the final programming of the process control system,
only the final algorithmic representation and possibly some verbal explanation
of it is processed by the computer. The control system is a black box whose
content possibly can be explained by the programmers of the system but
often by nobody else. All expertise and underlying reasoning is documented
separately, or in the worst case communicated verbally to the users who need
it in order to improve or extend the process.

e Incapability to visualize a complex process in a user and knowledge oriented
way

Processes, automation, and control systems become more and more complex.
This puts increased demands on operators and other users of the control
systems without giving them any new supporting tools. Today’s systems can,
in an excellent way, visualize the process operation based on process signals,
but cannot transfer this to higher, more knowledge-oriented abstraction levels
suited for the various users of the system.

1.3 PROJECT GOALS

The goal of the project is to define and partly verify a uniform concept for a
knowledge-based real-time control system that later on can be used as a base for
development of commercial products.

A guidance for the work is a visionary goal of a real-time control system

o that supports all the different user categories associated with the process that
is controlled, and

e which uses both knowledge-based and conventional techniques to implement
the control system functions needed.

1.3.1 - Areas of specific importance

As a result of the first phase of this project, we have reached the conclusion that
the solution to the following problems are of fundamental importance for the
development of knowledge-based control systems.

s Integration of conventional and new technologies in one uniform system.
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o Integration of design knowledge into the operational control system.

o The representation of different types of knowledge in one uniform knowledge-
base.

o A uniform interface towards the knowledge in the control system.

o A practical solution of the real-time problem.

1.3.2 Participators

The participators in the project are:

o Asea Brown Boveri AB and SattControl AB, the two leading suppliers of
automation systems in Sweden. ABB is one of the worlds largest electro-
technical companies and belongs to the forefront in many areas. Some ex-
amples are robotics, power system monitoring, and automation. SattControl
is among the world leaders in process control and automation. The com-
pany has a broad competence within information technology in general, and
man-machine communication systems in particular.

e The Department of Automatic Control at LTH, engaged as a consultant, has
an international reputation in research on knowledge-based control systems
and good contacts with most of the important research institutions around
the world working with knowledge-based control systems.

1.4 PROJECT ACTIVITIES

In order to work with realistic problems we have chosen an industrial process as
a demonstrator. The process, Steritherm, is an example of an industrial process
in the dairy industry — a typical branch for which the concept of a knowledge-
based control system could be of interest. Even if the Steritherm process is
not in need of a more advanced control system, it is complex enough for being
useful as a demonstrator for this project. We have collected knowledge about
this process from documentation as well as from designers and we have access to
both operators of a real plant and a lab scale version of the process. A simulation
model of the process has been implemented in order to have an environment to
run protofypes in.

Two prototypes have been built to verify different aspects of our concept. The
primary goals for these prototypes are to test ideas concerning how the opera-
tor’s interface could look and how the knowledge could be structured. The first
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prototype is implemented with the use of the multimedia tool Plus and an Apple
Macintosh II computer. The other prototype, which is the larger of the two, has
been implemented using the real-time knowledge base system tool G2.

In addition to the work done on the prototypes we have looked at what require-
ments the different users may have of a future real-time control system, what the
total concept of a knowledge-based real-time control system could look like and
how the central component in such a system, the knowledge, should be structured
and managed.

The background and motivation for the project have been presented at the Amer-
ican Control Conference 1989 (Arzén, 1989) in Pittsburgh. The current status of
the project will be presented at the American Control Conference 1990 (Arzén,
1990) in San Diego. The project has also been presented at the G2 User Group
Meeting in Tokyo, December 12, 1989, at the IT4 conference in Stockholm Jan-
uary 31 — February 1, 1990, and at the DUP conference in Stockholm, March 14,
1990. At these three occasions, the G2 prototype was demonstrated. During this
phase of the project, we have exchanged ideas with, and received feedback from,
an industrial group from the DUP programme with interest in, and experiences
from, expert system applications in the process industry (mainly the pulp and
paper industry).

1.5 PROCESS DEFINITION

Process control is the sum of the different tasks that interact with a specified
process and the different users of the process. This definition of process control
includes control, monitoring, diagnosis, maintenance, planning, simulation, etc.
The process control system is the system that realizes these tasks. In the context
of this paper a process is defined as a set of operations which perform a physi-
¢al or chemical transformation or a series of such transformations, and includes
transportation of matter or energy and transmission of information (IEC, 1975).

This definition of process includes the process industry, the manufacturing in-
dustry, and telecommunication systems. As pointed out by Dhaliwal (1985),
processes in these domains have a number of common features:

e The complexity of the systems is such that no single individual or small group
of individuals can fully understand them.

o The operations and maintenance manuals may cover several tens of volumes.
Maintenance of the documentation is a particular problem. It is difficult to
access relevant and correct information speedily.
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e Systems are continually changing and evolving since: the process and the
operating environment changes; shortcomings in the original specifications
come to light; bugs are discovered; and, technology advances.

o The rate of change means that old methods of training and retraining staff
are no longer adequate.

o Different users of the systems need markedly different styles of interaction
with the system.

o Speedy and accurate correction of faults is required. The hazards of slow or
incorrect treatment are:

. Faults not treated early enough may propagate catastrophically.

. Dormant faults undetected or left untreated may greatly affect the
overall reliability and maintainability of the system.

. The existing control system may itself be prone to failure and thus may
mask the true cause of misoperation.

- Wrongly identified faults and consequential repair actions may make
matters worse.

. The high reliability of the systems gives problems. Some failures are
so rare that it is difficult to ensure that maintenance staff are appro-
priately predisposed or equipped to handle them

1.6 KNOWLEDGE-BASED CONTROL SYSTEMS

Process industries contains many application areas where knowledge-based sys-
tems (KBSs) have been successfully applied. These includes process and control
system design, on-line monitoring and diagnosis, closed loop control, off-line trou-
bleshooting, planning and scheduling, administration support systems, etc.

The combination of KBSs and control systems has, from the point of implemen-
tation, gone through three different stages:

e separated systems,

o interfaced systems, and
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Figure 1.1 Separate systems

e integrated systems.

1.6.1 Separated systems

In the first systems that arrived in the end of the seventies and the beginning of
the eighties the KBS and the control system were totally separated. The expert
system tools that were used were simple rule-based off-line tools of the EMYCIN
type aimed for applications where the user typically interacted with the system
in a question and answer consultation dialogue. The user, typically the operator,
must manually, upon request, type in all the data the expert systems needed for
its reasoning. The situation is shown in Fig. 1.1.

Clearly this solution has many drawbacks. All applications that require a real-
time response from the expert system are excluded. Also applications with large
amounts of data that must be manually supplied are excluded. However, for
certain applications the solution is feasible. Examples are process and control
system design, off-line troubleshooting, analysis, and some planning applications.

The initiative to systems of this type came typically from the user industries,
l.e., the chemical industry, the power industry, the steel industry, etc. The large
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interest in expert systems in general in the beginning of the eighties made the
process industry aware of the new technique and spawned several applications.

1.6.2 Interfaced systems

The interest among the process industry for KBSs created a market for expert
system tools specially aimed at the process industry. These tools execute as
separate systems that have an on-line interface to the control system as shown in
Fig. 1.2. Through the interface process measurements and events are transferred
to the expert system for analysis. The output from the expert system is advice to
the user, also now typically the operator, and parameter changes to the control

system.

The expert system tools used range from systems that essentially are off-line
tools that automatically take their input information from the control system to
advanced real-time tools with methods for reasoning about dynamic, changing
environments; reasoning about time; reasoning under time constraints, etc. Inter-
faced systems are, at least theoretically, sufficient for most applications, real-time

as well as off-line.
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There are however important problems with the approach. The major problems
stem from the fact that the systems are different. The systems come from dif-
ferent suppliers, require different expertise, use different hardware and software
and above all, in many cases have different end-user interfaces. The interface
between the expert system and the control system is separate from the internal
communication network of the control system and may cause communication bot-
tlenecks. Large amounts of data and information such as process parameters and
schematics must be represented redundantly in both systems causing problems
with consistency.

1.6.3 Integrated systems

Integration has been a major trend in control systems during the last 30 years.
PLC systems and digital control systems have merged. Instrumentation systems
and separate supervisory control systems are merging together. Therefore it is
natural that the control system suppliers take the initiative to merge together
conventional control systems and real-time KBSs to form Knowledge-Based Con-
trol Systems (KBCS). Here the conventional algorithmical methods for control
and supervision are integrated with knowledge-based techniques into one uniform
system intended not only for operator support but also for other user groups
such as process engineers, designers, maintenance personnel, electricians, etc., as

shown in Fig. 1.3.

Integrated systems aim to combine the strong features of real-time expert system
tools, i.e., explicit knowledge representation, support for representing heuristic
knowledge, object-orientation, rule-based reasoning, support for reasoning about
dynamic environments and for temporal reasoning, and user-friendly interfaces
with the strong features of modern distributed control systems, i.e., support for
algorithmic representation of control logic, speed, distribution and communica-
tion, hierarchical control system decomposition, good graphics, and hardware
and software reliability.

KBCSs use a single development and end-user interface. The systems are based
on a common, distributed or centralized, knowledge and database that makes
redundant information unnecessary. In a KBCS, knowledge-based techniques
can be integrated at all levels in the control system hierarchy from the local
control loops to the supervisory level.

1.7 THE CONCEPT

A key issue in the system concept is the representation of knowledge. In the
project the term knowledge is used in a wide sense including what is normally
termed knowledge in the expert system community, control logic, written docu-
mentation, process models, drawings and photographs, dynamic data, etc.
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Conventional control systems contain only the final algorithmic representation
of all the knowledge involved in designing the control system. A KBCS must
also have means for representing other types of knowledge. One example is the
different types of written documentation that are today delivered together with
the process and the control system. The documentation includes user manu-
als; installation, maintenance, and operation descriptions; various checklists and
instructions; component data sheets; flow schematics, mechanical assembly draw-
ings, etc. New hypermedia techniques for, e.g., representing text and pictures
will make it possible to include this in a KBCS.

Another type of knowledge that should be represented in the KBCS is the heuris-
tic, experiential knowledge that different users have about the process and which
today is not made explicit and transferred to other users. The process designer
bases his design of years of experience, rules of thumb, and heuristic considera-
tions. The skilled process operator knows from experience which are the impor-
tant process variables to monitor or what may have caused a certain set of fault

symptoms.
Models in terms of, e.g., quantitative or qualitative equations that describe the
behaviour of the process and its components under various conditions are another

important type of knowledge. Used properly they can be the basis for training
simulators, decision support simulators, and model-based diagnosis schemes.
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Specifying a complete KBCS concept is a major task far beyond the range of
this project. Some important issues are knowledge representation mechanisms,
real-time knowledge-based system issues, implementation and distribution, man-
machine interfaces, and communication. In this project we focus on the knowl-
edge representation issues and on the real-time knowledge-based system issues.

The concept is based on a common knowledge base. This knowledge base can
be centralized or distributed. The knowledge base contains the knowledge of
importance for the application including the issues previously described. The
knowledge base is operated upon by a set of tools. The tools implement the
different functions in the system. The tools can be divided in two groups: design
tools and realization tools. Design tools assist the designers in building up the
knowledge-base. Realization tools provide the different system functions used
during operation. Examples of realization tools are control tools, diagnosis tools,
simulation tools, and planning tools. The task of the realization tools is to extract
the appropriate knowledge from the knowledge-base, possibly convert it to a form
better suited for execution, distribute it to the different processing units in the
system, and set up the communication links and the links to the user interfaces.
The concept is shown in Fig. 1.4.

1.8 DEVELOPMENT SITUATION

Development and research in industrial knowledge-based applications is currently
very intense, with many large international projects. The driving forces are three
different groups: user industries, AI companies, and control system suppliers.
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Among the user industries, it is primarily the manufacturing industry, the chem-
ical industry including oil refineries, the paper and pulp industry, the power
systems industry, the steel industry, and the telecommunications industry that
have started activities. Many systems have been developed and a few also fielded.
Tn the nuclear industry alone, 298 expert systems were reported by June 1989
(Bernard and Washio, 1989). In Sweden, the scene is dominated by the paper
and pulp industry and the power industry.

Small Al consulting companies aimed at the process control market are currently
emerging. Some of these companies also have expert system tools aimed at
the process industries. The best example of this kind is Gensym Corporation,
Cambridge MA with their tool G2. G2 is today the technically most advanced
and also most widely spread tool of the “interfaced system” type. Over 300
licenses have been sold for a variety of applications in different industry branches.
Geveral of these are used on-line. Other examples of companies of this kind are
Cambridge Consultants with their tool Muse, Sagem with their tool Chronos,
and Talarian Corporation with TALOS - R-TIME. Also conventional consulting
companies such as Framentec, PA Consultants, and Stone & Webster Engineering
Corp. are active in the AI — process control area.

The interest is also high among the manufacturers of conventional control sys-
tems. Japanese companies like Hitachi, Toshiba, and Yokogawa are develop-
ing their own expert system tools tightly interfaced with their control systems.
Manufacturers like Honeywell, Fisher, Siemens, ABB, Yokogawa, Allen Bradley,
etc. have interfaces between their systems and G2. Honeywell, Bailey Con-
trols, Foxboro, Siemens, and Combustion Engineering all have active Al research
groups and products on the way. Combustion Engineering has developed the
GDS (Generic Diagnostic Shell) for knowledge-based diagnostics. They have
also developed a system for the pulp and paper industry based on G2. Honey-
well are developing a shell for monitoring of batch processes. Bailey Controls
have a rule-based module that can be embedded in their Super 90 system.

Several large international, as well as national, research programmes concerning
knowledge-based control systems are going on at the moment. The most ambi-
tious effort is found in the European Community’s ESPRIT 1 & 11 programines
with more than 15 large projects (> 40 MSEK) within the Al — process control
area.

With few exceptions, all the activity taking place today concerns interfaced sys-
tems. Integrated systems based on a common knowledge base are still systems
for the future. However, ideas similar to ours are also found in other places. In
order for expert systems to be a surviving technology in the process industry in
the long term it i3 essential that the development of integrated systems take place.
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1.9 OUTLINE OF THE REPORT

This report has the following organization:

Chapter 2: User Requirements. This chapter presents a specification of re-
quirements of the different users of a knowledge-based control system. Examples
taken from the demonstrator, the Steritherm process, are included. The require-
ments may or may not be realistic, but they are suggestions for what the require-
ments on a future control system could look like. These requirements could be
used as a requirements specification for the concept of a future knowledge-based
control system.

Chapter 3: The KBCS Concept. Here, a system concept for the integration
of knowledge-based techniques with conventional techniques is proposed.

Chapter 4: Knowledge Representation. This chapter presents different
techniques for knowledge representation. Besides conventional techniques, ob-
jects, rules, quantitative equations, qualitative equations, causal digraphs, multi-
level flow models, hypermedia, etc., are discussed. Every knowledge represen-
tation technique has its advantages and disadvantages, and which to choose de-
pends on what it will be used for. Many of the different knowledge representation
techniques will probably come to use in a knowledge-based control system.

Chapter 5: The Main Knowledge Base. This chapter presents how the
knowledge in the main knowledge-base could be structured in order to handle
the different uses of knowledge and the different kinds of knowledge represen-
tations that these involve. One fundamental idea is that knowledge should be
non redundant, which entails hard demands on the structuring of the knowledge
and the checking of its consistency. The idea of using a language for knowledge
structuring and representation is put forward and discussed.

Chapter 6: Requirements and Limitations. The requirements and limita-
tions that will arise when our proposed concept is to be implemented are dis-
cussed. Concerning hardware, e.g. CPU power, memory capacity and interface
support, the resources needed are available or will be in a near future. When it
comes to software technology it is harder to predict what will come. It is possible
to implement the concept using current software technology, but it is most likely
that future advances will make it much easier.

Chapter 7: Prototypes. The two prototypes that we have developed are
presented. This has been a major part of the project so far. The prototypes have
been used to visualize some of the aspects in the system concept.

Chapter 8: Technical Survey Update. An updated version of the techni-
cal survey of research and development in the field of KBS for control systems
that was presented in the Feasibility Study (IT4, 1988). The G2 system that
represents state-of-the-art today is described in detail.
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Chapter 9: Further Project Activities. Possible future activities within the
project are presented. Three primary alternatives emerge. Firstly, put together
a requirements specification of a language to describe the common knowledge-
base. Secondly, produce a more detailed specification of the total concept. And
thirdly, do further work on the G2 prototype.

Chapter 10: Summary.
Appendix A: Steritherm. The Steritherm process is described in detail.

Appendix B: Travel Notes. Several visits to companies and universities with
related projects have been made during this phase of the project. To get new
ideas for our system concept and to get an overview of research and development
in the field of KBS for process control we have travelled to the USA and Japan
and participated in the ESPRIT ’89 conference.

Appendix C: Glossary. A short glossary of terms used in this report.




User Requirements

2.1 INTRODUCTION

In order to write specifications for a new system it is essential to be aware of the
future users’ demands and wishes.

The main purpose of this chapter is to try and formulate the users’ requirements
for a future knowledge-based real-time control system. In the Feasibility Study
(IT4, 1988) we tried to analyze and identify the type of knowledge used for
operation, control, and maintenance. This time we go somewhat deeper and try
to analyze the work of different user groups in order to determine their needs.

2.1.1 User categories

A KBCS is aimed at all different user categories that interact with the process.
In this chapter special emphasis is placed on what we believe are the four main
user categories:

e OQOperators
e. Maintenance personnel
e Designers

e Production Engineers

-~
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The operator is the person who is mainly responsible for the day to day operation
of the plant. Maintenance personnel should assist the operators when something
goes wrong. What designers do is obvious, but maybe it is not so obvious that
there are several different designers with quite different demands. Production
engineers is the category responsible for what, how and when things are produced.

There are of course other user categories in a plant. However we have found
them to be either mainly covered by the main categories, or to be unusual user
categories from a traditional process control viewpoint. The categories we have

in mind are:

e Process engineers
e Management

o Sales

o Quality

Process engineers work with redesign of the process and try to find new and more
efficient ways to run the process, in order to optimize the process function. The
demands from this group can, to a large extent, be found in other groups.

Management is interested in general knowledge about how the production is
running, such as goal fulfillment, actual production figures, etc. Most of this
information has been covered by other groups.

The sales department is interested in information such as storage content, delivery
information, production stops, etc.

The quality department is interested in following the product through the process
from raw materials to the end product. These aspects are to some extent covered
by the operator. (A practical example of how a quality support function could
be implemented is shown in Section 7.3.7.) '

The requirements are grouped according to the different user categories. The
different user categories are of course not homogeneous groups — for example,
designers includes process designers as well as electrical designers and designers
of screen layouts for the operator stations, This suggests that there could be
quite different demands for functionality within a user category. Some of the
requirements are the same for different users, and these are only mentioned once
although they belong to two or more of the groups.

For most of the requirements a short practical example from the Steritherm
process is given.

The requirements specified in this chapter basically originate from the common
experience of the project group. To some limited extent interviews have been
conducted with process designers and users. The requirements have also been
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discussed with engineers from the Swedish pulp and paper industry. Ideally, the
requirements should be verified together with real users. This has not been done
due to limited resources and due to the problems of presenting and illustrating
the ideas in a proper manner.

2.2 OPERATORS

The operators are responsible for the day to day operation of a plant. In large
plants there are of course several operators responsible for different sections of
the plant. The operator is the user that works closest to the plant. It is therefore
natural that most of the requirements are listed here although many of them are
also valid for other categories. The main tasks of the operators are:

e Monitoring,
o Diagnosis, and

e Control.

The functions that the control system must provide the operators with are pri-
marily functions related to these tasks. However, there are other activities, e.g.,
training, that must also be supported.

All of these activities require a lot of knowledge about the process and the control
system. Conventional control systems of today do not provide the operators with
this.

2.2.1 Monitoring

Geographical process overview

There should be physically and if possible isometrically correct pictures of the
whole process, e.g., photographs and 3-D drawings. The main function of these
pictures is to find a link to the operator’s reality. The pictures should probably
be organized hierarchically.

Steritherm: A geographical overview of the process could be given in a
picture. Every pertinent pump, tank, valve, sensor, indicator, etc., that
is of interest for the operator is included and positioned as in the actual
plant. A geographical process overview of Steritherm is shown in Fig. 2.1.
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Figure 2.1 Geographical overview of the Steritherm process.

Topological process overview

There should be a topological description of the total system. Process vari-
ables, such as pressures, temperatures, flow rates, levels, flow directions, and
active/nonactive units, should be presented or indicated in, for example, a pic-
ture similar to the one used in the geographical overview, or the form of a process
schematic. This overview should be hierarchically structured. It should be pos-
sible to move between different descriptions in the system.

Steritherm: Sensor values and active components could be presented in,
e.g., a process schematic of the process as shown in Fig. 2.2.

Focusing on a part of the process

There shou'd be a picture for every topological subsystem that is relevant to
the operator. The reason for these pictures is to prune among the available
information in order to make it easier for the operator to concentrate on one
subsystem. In many cases, the subsystems will have to be divided into further
subsystems. In some cases, the lowest level will consist of a single object and a

description of how it functions.

s A B e
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Figure 2.2 Topological overview of the Steritherm process

Steritherm: Examples of topological subsystems are the product flow or
the heat exchangers with relevant information about temperature, pres-
sure, flow rate, etc.

Support for automatic picture selection

It should be possible to choose to have automatic selection of which pictures
to show, i.e., at every moment the system chooses the pictures which are most
suitable with regard to the present state of the process. The user should have an
opportunity to change or add among the conditions that the choices are based
upon. The operator should always be free to not follow the advice of system
concerning the choice of pictures.

Steritherm: An example of automatic picture selection is when the process
enters a phase where the temperature of the product in the holding tube
is very critical. In that case, a detailed picture of the holding tube could
be automatically presented to the operator.
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Highlighting

As a complement to focusing on subsystems, there should be the possibility
to highlight some predefined topological or geographical subparts of the process.
With this solution one would have access to general information at the same time
as extra information about a specific function is presented in the same picture.
While focusing involves a new, specific picture for every subsystem, highlighting
is done in pictures normally used for other purposes.

Steritherm: A subsystem that could be highlighted is the product flow,
which then should be coloured in a more perceivable way, and sensor val-
ues of relevance for the product flow, some of which normally would be
hidden, should be presented in a conspicuous format. Another way to use
the highlighting is to indicate every component and value that, e.g., the
pressure of the heat water flow depends on.

Control logic presentation

There should be a presentation of the different sequences of the process, €.g., as
a sequence chart. This will be a description of the behaviour of the process, e.g.,
the state of the different components in each phase.

Steritherm: A sequence chart could show the status of the controlled com-
ponents in the different phases of the process. It should also be possible
to show the status of the conditions, time, limits, etc., that have to be
fulfilled in order to enter the next phase.

Presentation of process data

There should be a continuous presentation of sensor values or calculated process
values and there should be possibilities to access other values, e.g., alarm limits
and control parameters, such as numbers, meters, etc. Dynamic values should be
updated in real time. All these values ought to be presented in connection with
pictures of the process, .8, the overview pictures or focusing pictures mentioned
above. Historical data should be available, as graphs. Where this data comes
from, e.g., which sensor, and how it is compiled, should be presented.

Steritherm: An example of process data to be presented is an indication
of the degree of burn-on, €.g., the pressure difference in heat exchanger I,
or more fuzzy’ announcements, €.g., ‘small’, ‘rapidly increasing’, ‘large’,
etc. The temperature of the product in the holding tube is another critical
value that ought to be clearly presented.

Presentation of the overall state of the process

Especially to help inexperienced operators to interpret the information from the
control system, there should be a presentation of how things are going with regard
to quality. This could consist of, for example, a Chernoff’s face that smiles when
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Process operation

Figure 2.3 A Chernoff’s face showing the process state.

the process is going well and looks sad when things are going bad as shown in
Fig. 2.3. This information should be available from every picture of the system.

Steritherm: To present the state of the process one could use an icon in
the shape of a Chernoff’s face, that is green and smiling when the process
is ok, but sad and red when the burn-on is getting dangerously high.

Focusing on an event

It should be possible to focus on events, and not only on topological components,
as mentioned above. Depending on the operators choice, a new picture might be
built automatically.

Steritherm: Presentation, in a specific picture, of everything that concerns
the temperature in the holding tube, e.g., the pressure just before valve
V78 and the product temperature, could be a relevant overview of an
important event.

Process alarms

The alarms should be analyzed before being presented, i.e., irrelevant or mislead-
ing parts of the information should be discarded, and conclusions based on what
is left should be presented as alarms of a higher level.

Alarm messages could be complemented with audible and visual signals. How-
ever, one has to be very careful not to overdo it. The messages should require
an acknowledgement, after which only the text remains. The text should remain
antil the cause of the alarm is taken care of or the alarm has become irrelevant.
Alarms could be presented in the following forms:

e Every picture in the control system has a specific box for alarm messages.

o Inoverview and focusing pictures the components relevant to the alarm should

be marked.
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e A special alarm list, where all alarms are shown, including activation time,
value, limits, unit, time when acknowledged, priority, etc.

Tendency alarms should also be shown, e.g., as graphs.

Steritherm: If valve V44 malfunctions, the temperature in the holding tube
may increase and cause burn-on. Alarms should be activated for valve
V44 and the temperature increase. However, the system should primarily
inform the operator about the effect, i.e., about the burn-on.

Process warnings

Warnings differ from alarms as they are activated before something has gone
wrong and it still is possible to avoid malfunctions. The activation of a warning
is normally based on the value or the rate of change of process data. ‘When one
of these passes a preset limit, a warning is given. Warnings are to be handled as
alarms, see above.

Steritherm: A warning should be given when something is about to go
wrong or might go wrong. For example when there is a very rapid increase
in the burn-on or the temperature of the product in the holding cell is just
above 137 C, and therefore easily could drop below this limit. Fast changes
and values near alarm limits are normally the sources for warnings.

Quality monitoring

The system should provide a possibility to monitor the process with regard to
the quality of the product. A list of important product parameters for each unit
or every x minutes could be mapped to a list of important process parameters.
When the product quality deteriorates the system could inspect the correspond-
ing process parameters and in this way get the reason for the problem. Any
deficiencies and the causes for these should be presented automatically to the
operator as alarms or warnings.

Steritherm: When the fouling of the product gets too high the system
should inform the operator and if possible also present the cause, €.8.,
something is wrong with valve V44, causing an excess temperature in the

holding tube.

Condition monitoring

Performance of process components should be monitored, in order to find signs
of wear among the components. This is a complement to pre-scheduled mainte-
nance.

Steritherm: A situation when condition monitoring could be used is when
irregularities are observed concerning the function of the regulator that
controls V44. At this situation the system should propose that the regu-
lator should be replaced.
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2.2.2 Diagnosis

On-line diagnostics

A more or less automatic interpretation of an alarm or warning or a group of
alarms and warnings, should be given. Communication with the operator should
be a part of the analysis.

Steritherm: For example, when the alarm “The temperature of the product
in the holding tube is too low” is activated the system should ask something
like “Check the pressure in the holding cell (pressure indicator, PI-33). Is
it below 3.5 bar?” Depending on the answer the dialogue would continue
until the system had pin-pointed the cause. The system would then present
a remedy.

2.2.3 Control

Operation in normal state.

For every normal state of the process it should be possible to ask the system
what the operator should do next, what should happen when this is done, and
what should remain unchanged. There could be things that are not or should
not be possible to change, depending on the phase of the process.

The answers could be in the form of text and pictures and it should be possible
to have them presented in many different ways. For example, as a complete
instruction manual, by referring to the actual {or a hypothetical) state of the
process, or as answers to specific questions in natural language. The possibility
to get all operational information about a special part of the process should also
exist. It should also be possible to handle explanations to these answers and
hypothetical discussions.

Steritherm: It should be possible to ask the control system what actions
are to be taken in connection with changes from one sequence to another.
For example, what conditions should be fulfilled before changing from
production to aseptic intermediate cleaning and how these can be achieved.

Operation in abnormal state

The control system should be able to start a dialogue by informing the operator
that the process is in an abnormal state.

Steritherm: An example of an abnormal state in the Steritherm process
is when the temperature in the holding cell is under 137 degrees C during
production. If that is the case the operator should be informed about what
is happening and what he should do, e.g., “The temperature in the holding
cell is decreasing. Do this and this”.
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2.2.4 Other functions

Flexible data interpretation, processing and presentation

The exchange of information between the operator and the control system should

be as close to natural language as possible and try to emulate a conversation
with an expert. The control system should be able to handle and analyze fuzzy
or incomplete information. For example, handle approximate input from the
operator or make heuristic analysis of graphs and diagrams.

Steritherm: An example of flexible data interpretation could be if the
operator states the temperature of the product in the holding cell as “just
above 143 degrees C” or “something between 140 and 145 degrees C” and
the system answers “That sounds rather high. You should check the sensor
TT 42 once more and...”.

Product information

Information about how a specific product influences the process, (e.g., with re-
spect to choice of parameters) and vice versa, should be available.

Steritherm: A typical Steritherm product is milk.
Product : Milk.

Parameters:
TSL 44: 137 degrees C.
TSL 64: 85 degrees C.

Operation:

Time between start of production and aseptic intermediate cleaning: 240
minutes.

Time between first and second aseptic intermediate cleaning: 200 minutes.

_ Time between second aseptic intermediate cleaning and final cleaning: 160
minutes.

Duration of aseptic intermediate cleaning: 30 minutes.
Duration of cleaning: 70 minutes.
Duration of sterilization: 40 minutes.

Cleaning program: Amount of acid and lye (e.g., caustic soda) and in
what order to use them.
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Expected values:
TT 45: 137 degrees C.
TT 71: 20 degrees C.
TT 64: 85 degrees C.

Typical errors:

(Burn-on etc)

Knowledge browsing

It should be possible to access in an easy way more knowledge than is automat-
ically presented. There should be explanations available for alarms, warnings,
diagnosis, pieces of advice, trends, etc. It should also be possible to go deeper
into the accumulated knowledge of the system and, e.g., inspect how the sequence
logic of the system looks like or what the production constraints are.

Steritherm: A question that the system should be able to answer is “Why
does the system believe that the decrease in temperature in the holding
cell depends on a heat water leakage?”. Another example of knowledge
about the Steritherm process that should be available is descriptions of
the components, pumps, valves, tanks, etc.

Presentation of historical process data

In addition to implicit use of historical data, as in the case of tendency alarms,
historical process data should be explicitly available, e.g., as text, graphs, dia-
grams, and mean values.

Steritherm: Historical data that it should be possible to access is, e.g., the
variation of the burn-on during the last hour or the logging of the state of

TSL 44 and VT1.

Prediction

Prediction should mainly be done automatically, as in the case of some alarms,
warnings and pieces of advice. However, it should also be possible to ask more
explicitly about the future, e.g., “What will the pressure in this pipe be twenty
minutes from now?”.

Steritherm: The system should be able to answer questions like: “When
will the burn-on reach 10%?”, or “What will the temperature in the holding
tube be an hour from now?”
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Training

A simulator that reacts identically to the process should be available for training.
Tt should be possible to start in the middle of a batch in difficult situations.

Comments and notes

It should be possible to make notes about faults, oddities, questions, etc., in an
easy and convenient way.

2.3 MAINTENANCE PERS ONNEL

Maintenance personnel are obviously very important in order to run a plant
efficiently. The requirements from the maintenance personnel largely overlap
the operators’ requirements. However, there are several demands that are more
closely connected to maintenance. In this section we only deal with requirements
that not have been discussed previously. The main tasks for the maintenance
personnel are:

o Off-line diagnosis

o Maintenance reconfiguration
e Preventive maintenance

e Spare part handling

e Maintenance simulation

As is the case for the operator functions, all these activities require a lot more
knowledge about the process and the control system than is available in the
conventional control systems of today.

2.3.1 Off-line diagnosis

Cause and remedy

When a fault occurs the system should present a cause and a remedy. There
may be more than one cause and if so they should be ordered in accordance
with their probability. The maintenance personnel should be able to make their
own proposals, which the system then evaluates. This off-line trouble-shooting is
more advanced and thorough than the on-line diagnosis that the operators will
have access to.

Steritherm: For example, when the temperature of the holding tube is t60
low the system should make a diagnosis and present a cause and a remedy
for this, e.g., “Replace valve V 78 with a new one. This will increase the
pressure, and the temperature, in the holding tube”.
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Overview of the process regarding faults

The location of the fault should be shown in three different ways (preferably as
pictures):

o Geographical: Which component(s).

o Topological: Which component(s).

e Operational: Which state(s).

Steritherm:

o Geographical: Valve V78,
o Topological: The holding tube.

e Operational: Production, phase P/2.

2.3.2 Maintenance reconfiguration

Tt is often the case that it takes some time to replace or repair a faulty component.
In the mean time, the production may continue using an alternative way of
production, i.e., the process is reconfigured.

Steritherm: For example, if one of two packing machines breaks down,
a solution is to disconnect the faulty one and halve the production by
changing some process parameters.

2.3.3 Preventive maintenance

Maintenance planning

The system should be able to make a maintenance plan that decides when dif-
ferent parts should be tested, replaced, or optimized with regard to cost and
reliability.

Steritherm: An example of a part of a maintenance plan for a Steritherm
plant is “Test the pumps M2 and M3 after x hours in operation. Replace
the following sensors TT 44, TT 71 and TT 64 after y hours in operation

»

Preventive actions

Warnings about when to make tests, replace components, etc., according to the
maintenance plan or based on new data, should be given.

Steritherm: A warning that informs the maintenance personnel that it is
time for intervention could look something like this: “The holding tube
has been in operation for x hours and it is now time to inspect it”.
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2.3.4 Spare part handling

Component information

Information about a component, and its different parts, such as behavioural,
topological, geographical, and functional information, specific for the component

should be available.

Steritherm: A component that the system should have information about
is valve V78. The information that could be of interest is: “It is a pneu-
matic valve of type ARC-SMS-38-30-10; it consists of the following parts
... (perhaps a picture); pressure information ... (perhaps 2 graph); instal-
lation instructions, etc”.

Spare part cat alogue

There should be information about the spare parts available. Information about
whether a component of a certain type could be replaced by one of an other type,
and if this will have any negative effects on the performance, should be available.

Steritherm: For example, the system should be able to give information
on whether there are any Pt 100 temperature sensors in the store and, if
not, is there any substitute, and what does one have to consider if one uses
this instead.

Spare part planning

To optimize the stock of spare parts needed, an estimation should be done based
on, e.g., the number of used parts in the plant, probability of a fault in a part,
price if the part is not available, etc.

Steritherm: The system should propose how many holding tubes would be
needed in storage, based upon fault probability, price, etec.

2.3.5 Maintenance simulation
There should be an opportunity to simulate different maintenance actions.

Steritherm: Something to test in the simulator could be what will happen
if one waits another 100 hours before the rpm of pump M2 is corrected.

2.4 DESIGNERS

The design of a industrial plant is a complicated task. It involves several design-
ers, e.g. process designers, mechanical designers, control system designers, etc.
The design process includes the problem definition phase as well as the actual
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design of the process and its subprocesses. In practice the problem definition
is often done by a different organization compared to the rest of the design.
For example, the problem definition is done by the customer or a consultant
to the customer, while the design is done by a supply company or a group of
supply companies. Although, the problem definition could be also be supported
by knowledge-based tools, these are not included in our concept. However, we
believe that it is important to have the possibility to interface the output from
the problem definition phase (design parameters, etc.) in some way.

In common for all types of design is that the work, after the problem definition
has been done, can be split up in the following phases:

e Structuring
e Detailed construction
e Verification

e Documentation

The phases above seem to be a reasonable way to structure the functional de-
mands that designers will have on a future supervision and control system.

Redesign of a plant follows the same structure as above but a separate support
function is probably needed to handle modifications in an existing database.

A special case is the situation during the start-up phase of a plant. This situation
is a combination of verification of the original design and redesign. A special
support function is probably needed that partly has the same functionality as
during redesign. The start-up phase is normally not carried out by the designer,
but by a special start-up crew or by production engineers. Demands from the
start-up phase should, of course, influence the design functions.

2.4.1 Structuring

Structuring a plant is not a homogeneous task. It means different things for a
process designer and a control system designer. However, all designers have to
structure their design. A normal way to work is that the process designer lays
out the overall structure of the plant. In the case of Steritherm, this design will
be in terms of a preheater, heater, cooler, etc. This design structure is then used
as an input for the other designers, such as mechanical designers.

The following function is needed by the designers during structuring:
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Structuring support system

The structuring support system should help and guide the designers with knowl-
edge about plant design, control system design, etc. An example of an input to
this function could be that a dairy should produce 80,000 litres UHT milk/day.
The designer should, with the help of the system be able to structure the plant
and decide whether there should be one Steritherm with a capacity of 10,000 1/h
or two Steritherms of 5,000 1/h each, etc.

The function should also help the designer with deciding the level of automation,
whether it should be a distributed or centralized control system, etc.

2.4.2 Detailed construction

When the basic structure of the process has been decided, it is time for the
designers to fill in this structure with design data. This does not necessarily have
to be done by the same designer that did the structuring. In fact, it is more
common that it is done by designers specialized in mechanics, control systems,
etc. During this phase the designers need functions like:

Access to a design library

There should be a library of earlier design solutions, €.g., control algorithms,
available in the system and the designer should have access to this knowledge.
Help should be available to evaluate which solution fits best. In the case of a
Steritherm the task could, for instance, be to design a pre-heater for a tempera-
ture of 75 C and with a flow of 10.000 1/h. The designer should then be able to
find earlier solutions to this problem. If there are no such specific solutions, he
should be able to pick a similar solution and modify it.

Automatic generation of design solutions from specifications

When no acceptable ready-made solution is available there should be a function
that can generate a basic design from requirements in a specification.

Support for making original designs

If everything else fails, it should be possible to design certain parts of the plant
from scratch. This support will probably be very simple and help the designer
only with functions like calculation of capacity, etc.

Access to a knowledge pool

1t is important for a designer to get design feedback. Therefore it is essential to
have access to a knowledge pool with experience from earlier plants. This knowl-
edge pool then follows the plant and is hopefully updated by start-up crews,
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operators, process engineers, etc. In the case of Steritherm it could, as an ex-
ample, be information about a certain component, e.g., a temperature switch,
which frequently has caused problems.

2.4.3 Verification

When the design is partly ready it should be possible to verify it. An example
of such a function is:

Simulation

This function must be very flexible and allow simulation of designs in different
stages of completeness. From the first level of block drawing to the complete,
detailed design.

2.4.4 Documentation

When the design is ready it contains of a lot of documentation. This documen-
tation is used for the assembly of the plant. It should be possible to generate the
documentation from the plant database. Examples of functions in this area are:

Documentation during construction

During the design the system should automatically transfer documentation from
design libraries, etc. In the case of a new design, the system should encourage
the designer to produce documentation. When putting in a new component in a
Steritherm, the system should ask for complementary information such as spare
part lists, maintenance instructions, etc.

Document generation

When the design is ready the system should support the user with all wanted
documents. Note that it should also be possible to generate new types of docu-
ments that have not been foreseen earlier, e.g., a list of all components within a
certain geographical area, etc.

2.4.5 Redesign

During redesign the designer needs access to the complete knowledge base. Func-
tions that can guide and help the redesigner are necessary. It may obviously be a
difficult task to try to alter a complex database. Some of the redesign tasks may
take place during operation, e.g., on-line modifications of the sequence logic.
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Support for design changes

This function is intended to give the redesigner help, e.g., point out consequences
for supply functions when a process part is changed, etc.

In the case of Steritherm, the support could, e.g., be to calculate the consequences
for the steam supply when the flow through the plant is boosted.

25 PRODUCTION ENGINEERS

Production engineers are, in our definition, the persons responsible for the pro-
duction in the plant including what is produced at any moment in time, how
it is produced, and when the next production change should take place. Many
functional requirements of a production engineer, such as monitoring and alarm
handling, are basically the same as for the operator. As these functions are
treated in the description of the user requirements for the operator, this de-
scription will mainly concentrate on the requirements that are specific for the
production engineers.

One way to structure the work of a production engineer is o talk about work

with:
o Future production data
e Current production data

o Historical production data

All the production engineers work can be categorized into one of these three
groups. In the work with current production data, the demands for functions are
nearly identical to the operator’s. In the work with future and historical produc-
tion data there are some demands for functions that are unique for production
engineers. As mentioned in the design section, it is possible that the produc-

tion engineer should have access to some specific functions related to start-up

procedures.

2.5.1 Work with future production data

When a production engineer is working with questions concerning the future it
normally concerns planning or optimization. Examples of functions are:

Production planning

Production planning includes, planning of how much product of a certain quality
should be produced, when it should be produced, etc. In an advanced system the
result of the production planning will automatically be transferred as a produc-
tion order to the operator. The production planning system must have dynamic

Gl
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connections to the control system in order to make recalculations in case of the
failure of some equipment.

Resource planning

The resource planning function should be possible to calculate the amount of raw
material needed during a certain production period. The result of the resource
planning can then be used as an input to the production planning.

Production optimization

The production optimization function makes possible to optimize the produc-
tion capacity, minimize environmental disturbances, minimize the size of storage
capacity, etc. It may involve, e.g., the choice between machines with different ca-
pacity with the aim to minimize the throughput time or the use of raw material.
Possibilities to simulate different solutions should be included in the planning
and optimization functions.

2.5.2 Work with current process data

Although most of the demands here are the same as for the operator, there are
some functions specific for the production engineer, such as:

Goal fulfillment monitoring

The goal fulfillment monitoring function will help the production engineer to
initiate control actions. The control system must have information about the
goals of the process. In the case of a Steritherm, the goal could be to produce as
much UHT-milk as possible without any concern for taste, production economy,
etc. On the other hand the goal could also be to produce UHT-milk with the
best possible taste.

Monitoring of the mass and energy balances

Balance monitoring is used for the same purpose as the previous function. De-
pending on the level of process knowledge this function could also be used by the
operator.

Browser for the knowledge base

The browser should make it possible to navigate between different views of infor-
mation in the database. It could be used, e.g., to find the functional description
for a certain part of the process, find component descriptions, etc. This function
is general and should be accessible by all the different user groups.
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Product treatment optimization

The product treatment optimization function should make it possible to optimize
the process parameters, such as flow temperature, pressure, etc., with the aim
of getting the best possible quality of the product. This function should also
include advice on normal parameter settings, etc.

Product knowledge

General information about the product should be available in the system. This
information could be very valuable during development of new process steps or
when the process should be tuned for new products.

Steritherm:

Product : Milk.

Product characteristics:
Colour: White to yellow
Density: 1.028 - 1.034
Freezing point: -0.54 - -0.59 C
pH: 6.6 - 6.7

Recipe knowledge

If the plant is running with different products, it is essential to be able to get
information about the recipes. In the case of Steritherm, a plant could produce
plain milk one day and chocolate milk the next day.

Process knowledge

As described earlier, there is a lot of knowledge about the plant in the control
system. This knowledge should be accessible for the production engineer. Pro-
cess knowledge includes theoretical information about the process. In the case
of Steritherm, it should be possible to get some basic knowledge about how ster-
ilization of milk is done, the function of the main process, and of the support
systems such as steam, water, electricity, etc.

Start-up function

This function is used during start-up of the plant and it gives possibilities to note
in the knowledge base when a process function is checked and verified. It should
also be possible to include heuristic knowledge from the start up period in the
knowledge base.
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2.5.83 Work with historical process data

In this category, the main interest is to support analysis of the production history,
in order to get information for redesign, etc. This could be done with a function

like:

Data logging

A possibility to specify data to be logged. There should be possibilities to analyze
the data in different ways, e.g., statistically, using graphical displays, etc. The
input to start a log sequence could be a process event, manually controlled, or
time controlled.

2.6 SUMMARY

Above, we have briefly tried to describe rather detailed user functions for some
user groups. As we have seen, many of these functions are shared by several user
categories. Below, we have tried to list what could be called main user functions.
The table also shows which user categories are the main users.

The table indicates that many user functions are of common interest for several
users. Maybe there is a slight difference in how the function is used, but the
basic needs are the same.
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2.6.1 'Table of main user activities ver

Users:

Monitoring
Diagnostics
Control

User assistance
Interpretation
Planning
Simulation
Browsing
Support

for structuring
Design
assistance
Redesign
support
Documentation
Optimization
Logging
Start-up support
Plant knowledge

Operators
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The KBCS Concept

3.1 INTRODUCTION

In the Feasibility Study (I'T4,1988), a KBCS concept was outlined. A hierarchical
object model was presented in which the basic entities were physical components,
e.g., pumps, valves, and tanks, and control functions, e.g., sensors, controllers,
and PLC code. Intelligent tools should operate on this object model, as shown
in Fig. 3.1. The tools should provide different users with different information
about the process and perform the various functions of the system. This concept
has been the base for further work which is presented in this chapter.

The chapter describes a concept for a KBCS based on a common knowledge
base. The chapter includes a presentation of the goals that we aim at and how
we think these goals could be reached, a short description of the knowledge base
that will be the core of our system, an overview of the different kinds of tools
that are used for creating and modifying the knowledge in the knowledge base
and for generating executable code from this knowledge, a short description of
the interface between the knowledge base and the tools, and finally some ideas
about how different implementation configurations may look.

ory
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Figure 3.1 The basic concept.

3.2 OVERVIEW

A total concept for KBCSs is no minor technical issue. The concept has to include
what hardware modules the system should consist of, the network architecture,
communication protocols, software architecture, knowledge base language, user
interfaces, implementation Janguage, etc. As this is outside the scope of the
project, we have concentrated on the software architecture, including the struc-
ture of the knowledge base, and the nature of the tools that operate upon the
knowledge base.

Today, when knowledge-based systems are applied in the process industry, the
pre-dominant solution is the «nterfaced systems” architecture described in Chap-
ter 1. In these systems, the programming techniques or, in expert system termi-
nology, the knowledge representation formalisms in the add-on knowledge-based
systems are different from those in the conventional control system. Typically,
rules and objects are used in the KBS whereas equations and procedures dominate
in the conventional control system. There are many reasons for this separation.
Conventional control systems are primarily designed for the actual control of the.
process. This is normally implemented with boolean, sequential or combinatorial
logic, and with procedures for, e.g., PID control. High computation speed and
inexpensive hardware modules are important design criteria. On the other hand,
knowledge-based techniques such as, €& rules are, typically, time-consuming
and require more powerful hardware.

The interfaced solution also matches the way knowledge-based techniques aré
usually applied in the process industry. Operator support applications such as
supervisory monitoring, diagnosis, and control are by far the dominating appli-
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cation types. The role of knowledge-based systems in the overall system today
is indicated in Fig. 3.2.

This way of using knowledge-based systems will probably dominate also in the
future. However, it should be possible to use use knowledge-based techniques
also on the other levels. KBSs for planning, design, and administration support
are becoming more and more common. In fuzzy and expert control, knowledge-
based techniques are used also on the local control level. It is necessary that a
KBCS can support knowledge-based applications on all levels in the system, as
shown in Fig. 3.3.

In a KBCS, different representation formalisms such as equations, procedures,
rules, etc., can be mixed together. The knowledge base of the KBCS includes,
among other things, the executable units of the system, i.e, rules, equations,
procedures, etc. The knowledge base has information about the distribution of
the units, i.e., in which processing modules the units should execute. In the
ultimate realization of the concept all types of units can be executed on all
hardware modules in the system. This implies that also the processing modules
on the local control level have the capacity to execute rules, with all the hardware
requirements that follows. In a perhaps more realistic implementation, different
hardware modules can execute different types of units. For example, the local
control modules may only be able to execute the conventional units, i.e., equations
and procedures, whereas the supervisory control modules have full processing
capacity.
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Compatibility

As described, the total concept more or less implies a closed system. In the same
time it is extremely important that the KBCS is compatible, and can coexist,
with other control systems. As previously described, the hardware modules of a
KBCS include different processing modules that can execute all, or parts of, the
executable units in the knowledge base. These processing modules constitute the
internal hardware of the KBCS.

However, it must also be possible to use external hardware, €.g., processing mod-
ules from other suppliers, and which are not compatible with the internal hard-
ware. In that case it must be possible to extract the parts that can be executed
in the external hardware from the knowledge base and transform them into a
format that the module understands. PLC code is one such example. It should
be possible to convert the PLC representation in the knowledge base to a format
that can be down-loaded to an external PLC system.

Another possibility 1s that some parts of the control system in a plant are imple-
mented with conventional systems and some parts with a KBCS. In that case the
KBCS must be able to communicate with the other systems. In the knowledge
base the structure of the entire control system is represented, with the non-KBCS
parts indicated as modules whose internal structure the KBCS cannot access.

3.2.1 Concept goals
The goals of the concept of a KBCS primarily are:

o One uniform knowledge base for all knowledge.




3.2 OVERVIEW 41

e The same knowledge may not be described more than once in the knowledge
base.

e The knowledge base should have a uniform interface.
e The KBCS should be as modular as possible.
o The same knowledge should be available to many users.

o It should be possible to distribute knowledge to other processors in order to
achieve necessary run-time performance.

e On-line modifications should be possible.

Our proposal of a concept which tries to attain these goals is based on a KB(S,
which consists of one knowledge base and a set of tools. The tools operate on the
knowledge in the knowledge base, as shown Fig. 3.4. The knowledge consists of
the process knowledge needed in the KBCS and the tools are used for creating
and modifying it, generating executable code from it, and distributing it to the
processing module where it should execute. The management system of the
knowledge base should, with the help of the tools, keep the knowledge updated
and manage redundant information.

3.2.2 The concept

Knowledge about the process and how to control it, i.e., the knowledge needed
by the KBCS, is located in the common knowledge base. This knowledge base
contains a variety of different knowledge types as indicated in Fig. 3.5.

The common knowledge base is divided into the main knowledge base and local
databases. The main knowledge base is a uniform, but possibly distributed,
knowledge base for different kinds of knowledge needed in the control system. It
contains all of the knowledge types defined in Fig. 3.5 , except for the dynamic
process data. The main knowledge base should be accessed in a uniform way
by all the tools. The structure and contents of the main knowledge base are
presented in Chapter 5.

It is not a practical or possible solution to use only the main knowledge base
for all information during run-time. Dynamic process data should reside in local
databases with links and references from the main knowledge base. This is to
avoid an overwhelming amount of communication and transferring of data be-
tween the main knowledge base and the distributed control programs. However,
it is the main knowledge base that should be responsible for delegating the han-
dling of process data to the local databases and for management of the links
between the local databases and the main knowledge base. The local databases
are primarily intended for handling data. However, more complex functionalities
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Figure 3.4 The concept of a KBCS

could be desirable. In that case it would be more relevant to talk about local
knowledge bases.

The tools can be divided into two kinds: design tools and realization tools. The
design tools are used for construction of the main knowledge base, modification
of its knowledge, and for insertion of new knowledge. These tools are of different
complexity. Some are for rather primitive operations like the jnsertion of a text of
an object, while other are more advanced and used for more complex knowledge
that is intended for specific use. An example of the latter is a tool that assists the
designer in defining causal models that are to be used for model based diagnosis:
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Realization tools realize the different functions of the control system. They ex-
tract relevant knowledge from the main knowledge base, put it together into
software modules, and adapt these to the proper operational environment. In
other words, the realization tools generate an executable control program from
the knowledge in the main knowledge base. If necessary, the realization tools dis-
tribute the software modules and set up links for communication with the main
knowledge base. If allowed, it is possible to modify the main knowledge base via
these links. The realization tools could delegate the responsibility for dynamic
process data to local databases and set up links between the main knowledge
base and the local databases. An example of a realization tool could be a tool
that extracts, converts, and distributes knowledge concerning on-line diagnosis.

Although we talk about one main knowledge base, it does not have to be phys-
ically implemented in one place. This means, of course, that neither does the
total KBCS, which includes the main knowledge base, have to be implemented in
one place. On the contrary, the need to distribute the computational burden to
many processors is even higher in KBCSs than in conventional control systems.
A distributed KBCS configuration is shown in Fig. 3.6. The fundamental idea,
however, is that the main knowledge base, from a functional point of view, should
look and function like one centralized entity with a uniform interface towards its
surroundings, i.e., towards the different tools, the control program modules, and
the local databases.

3.2.3 Fulfilment of the concept goals

The concept of a main knowledge base for all knowledge satisfies the goal that
there should be one uniform knowledge base for all knowledge. It also supports
the goal that the same knowledge should be available to many users. How-
ever, some knowledge has to reside in local databases. Due to the links be-
tween the local databases and the main knowledge base, the knowledge in these
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Figure 3.6 A possible KBCS configuration.

databases is always available. Thus, the main knowledge base together with the
local databases constitute one common knowledge base for all knowledge in the

KBCS.

How the main knowledge base complies with the desire to avoid redundant in-
formation is described in Chapter 5. However, redundant information has to
be allowed in the KBCS. The reason for this is the need for local databases,
the contents of which will sometimes have to include redundant information.
However, this should be taken care of by an advanced management system that
manages redundant information and handles modifications of, and accesses to,
this information.

The KBCS should be as flexible with regard to changes, €.8., addition of new
functionalities and tools, changed configurations. This is supported by partition-
ing the KBCS into a main knowledge base, local data bases, and tools. The
strict structure of the main knowledge base and the modularity of the tools are
further support for high flexibility. This is described in Chapter 5 and Section
3.4.3 respectively.

Different users need different interfaces to the KBCS. However, all users should
also have the possibility to inspect the contents of the main knowledge base in
an uniform way. This is solved by including a general browser funiction, which is
presented in Section 3.5.4.

To attain distribution in order to achieve necessary run-time performance dif-
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ferent measures are available. First, realization tools enable distribution of ex-
ecutable code to different processors. Second, local databases are used for dis-

tribution of dynamic process data. Third, it is possible to distribute the main
knowledge base itself to several processors.

On-line modification is a functionality that is critical for control systems in many
process industries. It has to be included in any control system that is intended
for a wide application area. This is also true for a KBCS.

3.3 KNOWLEDGE IN THE KBCS

A short description of different kinds of knowledge needed in the control system
will be given in this section. Where the different kinds of knowledge could reside
and how to handle distributed knowledge will also be discussed.

3.3.1 Different kinds of knowledge

The knowledge stored in the common knowledge base includes not only what is
usually termed knowledge in the expert system sense, but also the control logic,
dynamic process data, different types of documents, drawings and schematics,

etc. An overview of different types of knowledge representation formalism that
can be part of the knowledge base is given in Chapter 4.

3.3.2 The main knowledge base

The main knowledge base is the kernel of the common knowledge base and the
KBCS. It supports the idea that all knowledge should be available for all users of
the control system. The main knowledge base is one uniform knowledge base for
the different kinds of knowledge needed in the control system. All the tools op-
erate upon the main knowledge base. The design tools handle the modifications
of knowledge and the realization tools obtain and convert knowledge into exe-

cutable code. The internal structure of the main knowledge base will be discussed
in detail in Chapter 5.

3.3.3 The local databases

As mentioned above, dynamic process data has to reside in local databases, e.g.,
one local database for every control program module that receives time-critical
or storage-critical process data. The main knowledge base has references to each
of these local databases and information about how to handle their data transfers
and when to update knowledge, if necessary. For example, a process parameter,
that is needed for control purposes in a local program module and for simulation
purposes in the main knowledge base, is measured every other second and stored
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in a local data base. With a 20 seconds interval a mean value is transferred to
the main knowledge base to be used in the simulation.

Tt is also quite possible that a module needs process data from the local database
of another processing module. Tt would be very circumstantial and inefficient
to have to access this data via the main knowledge base. Besides, in order
to provide a reliable system, the processing modules must be able to, at least
temporarily, function without access to the main knowledge-base. This implies
that the process data needed for each module must be directly accessible instead
of being accessed through the main knowledge base. What this could look like is
indicated in Fig. 3.7.

The management of the knowledge distribution could be implemented by having a
cross reference table in the main knowledge base. When a new software module is
generated, the reference or address to its local database is inserted into this table
together with information about what is to be stored there. When a module needs
knowledge that resides in local knowledge base of another processing module, the
realization tool extracts the reference to the local database that is needed. It then
enters into the table that this local database is used by the module. The latter
action is carried out in order to make it possible to inform the module whether the
local database of another module is deleted, blocked, or moved. When the module
executes and has to access process data that reside in another local database it
can be done directly. The cross reference table and the administration of it is
managed by the knowledge base management system.

Databases for dynamic process data are already a part of modern control systems.
These databases, with some extensions, are probably suitable as local databases
in our concept.

3.4 TOOLS

A tool can be many different things, e.g., something that is used to design a
functionality of a system or something that realizes a functionality. Examples
of this are rule editors and a simulation tools respectively. The tools are the
means by which the operations on the common knowledge base are executed, as
is shown in Fig. 3.8.

3.4.1 Design tools

The design tools are used to modify knowledge and insert new knowledge. These
tools should be available for the designers only. There are many different kinds
of designers, e.g., process designers, mechanical designers, and control system
designers. The design tools have to offer the different designers different capabil-
ities, as shown in Fig. 3.9.

O e R
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Figure 3.7 Local databases and their connections to the main knowledge base.

If the knowledge is to be used outside the main knowledge base, for example, if
it is to execute in a local processor, the designers have to tell the system where

the knowledge should be used.

Access of knowledge

In theory, the design tools have full access to any knowledge and full privileges
to modify, insert, and delete. However, it should be possible to protect some or
all knowledge from some or all designers or designer categories. The knowledge
base management system and the structure of the main knowledge base should
support the avoidance of redundant information. The different design tools could
also support this by checking the work done by the designers. The designers
should, with the help of design tools, be able to decide which parts of the main
knowledge base that the other users should be able to modify.
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Figure 3.8 Tools and the common knowledge base.

Design tools for different kinds of knowledge

There are different kinds of design tools for different kinds of knowledge, or
different knowledge representations. E.g., text editors for text, rule editors for
rules, and object editors for objects. Other kinds of knowledge and knowledge
representations that must be handled are for example logic, control strategies,
causal models, information about process components, control algorithms, phys-
ical equations, and photographs.

Design tools can have different degrees of knowledge about their field of applica-
tion. For example, a design tool for text editing does not need to know anything
about the content of the text, only about format, spelling, etc. A design tool for
editing rules and constraints that are to be used for production planning needs
to have knowledge about rule and constraint syntax, but should also have knowl-
edge about the process, the products, and planning. For example, a design tool
should be able to automatically extract the basic constraints that it can conclude
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Figure 3.8 Design tools.

from the process knowledge in the main knowledge base, e.g., that the desired
capacity of a process prohibits the use of a certain pump in a certain place.

The knowledge that the design tools insert into the main knowledge base is some-
times used for many different applications, e.g., quantitative equations describing
the process can be used both for diagnosis, e.g., according to the Diagnostic Model
Processor method described in Section 4.5.1, and in a simulation model of the
process. In other cases, the knowledge is specific for one kind of application, e.g.,
descriptions of relations between symptoms and causes would probably have to
be specific for the diagnosis method for which they were intended.

Interface to the designers

A basic and uniform interface towards the designers should be a part of the main
knowledge base. However, it would be desirable to customize this interface for
different designer categories and different development environments. To do this,
the design tools have to adapt the knowledge they use so that the tools can handle
it and present it in the way the designers prefer. To make these conversions, the
design tools should use their internal capabilities as well as knowledge from the
main knowledge base. Knowledge that may be needed from the main knowledge
base is information about what kind of development environment the designer
is working in, what privileges this designer has, an icon table that is to be used
when making graphical presentations to a certain category of designers, e.g.,
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mechanical designers, etc.

3.4.2 Realization tools

The realization tools are used for supplying the control system with the control
program, i.e., the executable code that does the actual control. This program is
realized by extracting knowledge from the main knowledge base and converting
it so that it can execute in the appropriate processing module.

Generation of executable code

To be able to realize the functions of the control system, the realization tools
extract knowledge from the main knowledge base. This could consist of e.g., logic,
control procedures, diagnosis rules, fuzzy control rules, planning constraints, and

simulation equations.

The knowledge is converted into executable code that, in some cases, will be
downloaded to an operator station or a local control unit for efficient execution,
while in other cases the environment in which the realization tool is located is
sufficient. It is possible that a software module has to be executed together with
a realization tool. For example, a numerical equation solver, that is needed for
a simulator, could be a part of a realization tool. Examples of data conversions
required are graphical data formats for the operator stations and program formats
for the control processors. The steps are shown in Fig. 3.10.

The knowledge that the realization tools have to access for this conversion is of
two kinds. First, the realization tools need information about the configuration
of the control system, i.e., the environment of the processing module(s) in which
a specific unit is to be executed. In this information, demands on formats are
included. For example, logic that istorun ona certain control processing module
has to be converted into the internal code format of this module.

Secondly, the realization tools need knowledge that enables them to do the con-
version. One example of this is a tool that should adapt a product planning
system to be run on a station for production engineers. Among other things,
the tool needs to know what symbols and colours are to be used for presentation
in this environment and for the concerned user category. Another example is
when the graphical presentation for a maintenance planning expert system for
the electrical subsystem of the process is to be generated by a realization tool.
One thing the tool could be in need of are the symbols for electrical components

according to, e.g., an American standard.

The specific knowledge needed for a particular unit, and where the unit is to
be executed, is inserted into the main knowledge base by the designers, using
design tools. This means that the generation and distribution of executable code
could be done automatically by a realization tool, with no intervention by any

personnel.
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Figure 3.10 Generation of executable code

Integration of the control program

The executable units are connected to the main knowledge base via links that
the realization tools automatically set up. In this way, the main knowledge base
will be available on-line, as shown in Fig. 3.11.

It will be possible to inform the distributed units when their domain knowledge
changes or becomes obsolete, as well as bring new knowledge, e.g., a manually
adjusted parameter value, back to the main knowledge base. It should also be
possible to update the distributed knowledge, e.g., when a redesign is made.
Links to other parts of the system, e.g., to different local databases, are also
automatically set up during the generation of the units. Information about these
links are kept in the main knowledge base, and when changes occur, e.g., a local
database is moved to a new location, the units concerned are informed by the
main knowledge base.

To show the different kinds of realization tools that could exist, an example
will be given. For generating a simulator, for example for training operators on
critical but unusual situations, a realization tool extracts a quantitative process
model, rules that are constructed especially for this simulator, general knowledge
about the process needed for presenting pictures, etc. The extracted knowledge
is brought together into a training simulator for operators. If this simulator is
to be executed on the same processor as the tool it has to be adapted to this
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Figure 3.11 Links to the main knowledge base

environment. However, if the simulator is to be executed separately from the tool,
it may have to be adapted to another environment. The knowledge about the
environment, i.e., which format the code should be converted to, which graphical
data format should be used, etc., is found in the main knowledge base. If the
simulator is to be executed in another location it is then distributed. Finally,
links between the main knowledge base and the simulator are established.

General or individual realization tools

There could be different realization tools for different application areas, €.8., tools
for diagnosis, control, and simulation, respectively. However, it is possible that
the realization tools should be classified according to the kind of conversions that
they can handle and not according to what kind of control system functionalities
that they are used for. A realization tool could be general when it comes to the
kinds of knowledge it can handle but specialized on what kinds of conversions it
can perform. e, a tool would only be able to convert knowledge to executable
code for one or a few different operational environments, e.g., an operator station
or a certain kind of processing module. What kinds of conversions the tool can
perform depends on what is included in its toolkits.

3.4.3 The internal structure of the tools

A tool could be divided into several parts. One part is software unique to the
tool, and other parts are toolkits and libraries that are shared by several tools:
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The tools consist of a general interface to the main knowledge base, i.e., an
interface towards the knowledge base management systems. On top of this is a
general toolkit that is included in all, or most, tools. This toolkit is used for
supporting capabilities that are general for the system, e.g., support to give all
process knowledge a certain structure. Finally, unique software, which includes
the tool specific knowledge, is added to give each tool a specific functionality.
The interfaces to the users of the tools could either be included in the toolkit or
in the unique software, i.e., if individual interfaces for some tools are preferred.
This structure is shown in Fig. 3.12.

The important thing is a uniform interface to the main knowledge base. With
this concept we pave the way for an open system that is independent of the
internal implementation of the different tools and make it possible to easily add
new capabilities to the system by adding new tools or modifying old ones.

Examples of the internal structure of different tools

As mentioned earlier, process knowledge should be located in the main knowledge
base. However, the design tools definitely need to have information about how the
knowledge in the main knowledge base should be handled. E.g., how rules ought
to be structured when used for a particular purpose or what kind of planning
strategy is to be preferred under certain circumstances. The realization tools
might need to have some knowledge about the different implementation methods
to enable them to collect the right knowledge and put it together into effective
units.

To give a feeling of what the internal structure of the tools could look like, three
somewhat simplified examples are described here:
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o A design tool that supports the Diagnostic Model Processor method of Section
4.5.1 could consist of the following software: general software for interfacing
with the main knowledge base, a general rule editor, tool specific software for
generating model equations and dependencies, etc.

o A realization tool for adapting knowledge to a certain processing module
should have general software for interfacing with the main knowledge base,
general software that supports knowledge extraction, a translator for con-
version into the internal code format of the processing module, and general
software for establishing and maintaining links between the main knowledge
base and the control program unit.

e The last example is a more advanced realization tool that would be able to
generate and execute simulators. The tool could consist of general software
for interfacing with the main knowledge base, general software that supports
knowledge extraction, a compiler that converts the knowledge into executable
code, and software for executing the simulator, e.g., 2 numerical equation
solver.

3.5 KNOWLEDGE BASE MANAGEMENT

3.5.1 Interface

Tt may well be that knowledge used in one control program module is gathered
from different parts of the main knowledge base with several different represen-
tation forms. However, the main knowledge base will have one common uniform
interface that can handle all the different representation forms. The tools, the
use of which will be the only way to interact with the main knowledge base,
would not have to concern themselves with how the knowledge is represented in
the main knowledge base. Neither do the tools have to be aware of how the con-
version to and from the internal knowledge format of the main knowledge base
is done.

3.5.2 Redundant information

Redundant information should be avoided in the main knowledge base and the
system should support this. This is necessary as many different tools, control
program modules, and users use the same knowledge in many different places,
and for many different purposes, and often at the same time. This entails that
one and the same piece of knowledge theoretically could be used and modified
in many places at the same time. A critical case when it comes to concurrent
handling of knowledge is on-line modifications of the control program, a thing
that has to be possible in a future control system.
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Redundant, duplicated knowledge may occur for two reasons, F irst, knowledge
that is duplicated because the system requires it. Second, knowledge that is
duplicated because the users accidentally or through laziness input the same
knowledge in more than one place. The basic idea, is that each piece of knowledge
should only exist in one place. The idea is supported by the fact that knowledge
as far as possible is stored in one place, the main knowledge base. However, in a
few cases, the system makes it impossible to avoid redundancy, e.g., in the local
databases. The second reason for redundancy is avoided by providing the users
support with unique naming of objects, having a hierarchical structure of the
main knowledge base, and including a powerful browser.

3.5.3 The knowledge base management system

To complete the concept, the main knowledge base should be equipped with a
uniform management system, a knowledge base management system, as shown
in Fig. 3.13. The management system should compile or translate the knowledge
into the internal representation format of the main knowledge base; possibly
performing syntax checking, and checking the knowledge to avoid redundant
and contradictory information. The knowledge should then be available for the
different tools via this management system.

Where the line should be drawn, i.e., where the different functions of the knowl-
edge base management system should be placed, is not a question with a simple
answer. To decrease the processing load on the processor on which the main
knowledge base is implemented, as much as possible of the functionality of the
knowledge base management system should reside in the different tools. How-
ever, to decrease the amount of communication between the tools and the main
knowledge base, as much as possible of the functionality should be placed in a
central position, i.e., tied to the main knowledge base.

3.5.4 Browser

The possibility to browse through the main knowledge base should be available to
all user categories. In this way, the users should be able to inspect all knowledge
in the main knowledge base. All users should have the knowledge presented in
the same way and access to the same browsing functionalities. Some examples of
browsing functionalities are graphical presentations of the different hierarchical
structures of the knowledge, to be able to get all references to a chosen object,
and to have all knowledge used in a particular control program module presented.
The browser could be implemented as a part of the knowledge base management
system, as it offers a function that should be available for all users, and it could
be desirable to access it from many or all design and realization tools, or as a
separate tool. '
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Figure 3.13 The knowledge base management system.

3.6 THE KNOWLEDGE BASE LANGUAGE

The contents of the main knowledge base is described in terms of a language.
The language components, i.e., objects, procedures, rules, equations, etc., are

described in Chapter 5. The knowledge base language has three representations:
esentation, an external representation, and a graphical repre-

sentation. The internal representation consists of the low-level data structures

that implement the language, i.e., pointers, references, etc. The external rep-
resentation consists of a textual, ASCII representation of the language. In this

an internal repr
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representation the language can be manipulated with ordinary text editors. Fji.
nally, the graphical representation is what is seen when the knowledge base is
viewed through the knowledge base browser.

The external representation makes it possible to transfer or copy knowledge from
one main knowledge base to another, When the knowledge is collected from the
main knowledge base of a KBCS it is translated from the internal representation
to the external representation. After some minor conversions, that may be nec.
essary, it should be possible to compile and load this into the main knowledge
base of another KBCS. The translation from internal to external representation
and vice versa should be done by a translator that could either be a part of the
knowledge base management system or a separate tool.

3.7 POSSIBLE CONFIGURATIONS

We have presented a concept for an integrated knowledge-based real-time control
system, and how it could be structured. However, we have not mentioned how
it should be implemented or in which environment. Implementation details for
such a system is too large a subject to discuss in this report. But some possible
configurations for the system are discussed below.

We have been talking about an integrated control system and a uniform common
knowledge base. However, this is only from a functional point of view. When
it comes to implementation and the environment in which the system is to be
executed in, the actual configuration is determined by many different parameters.
Some of these are: complexity of the control system; the amount of knowledge
that is to be placed in the main knowledge base; the kind of process that the
system is to be used on and its physical structure; and the hardware and software
that are to be used for the control of the process. In other words, the configura-
tion of the system should be independent of the concept of the control system.
The KBCS, and even the main knowledge base, could be distributed to many
processors or executed on one single processor.

A likely configuration for a small or medium system would be one processor for
the main knowledge base, and a handful of processors, in the form of engineer and
operator stations, for different tools. The placing of the different tools depends
on the environment they have to run in and the different users’ need for access
to them. Some parts of the control program are to be run on the same operator
stations as the tools, while others are to be run on local control units. The hard-
ware and software needed for the different control programs to execute, should
be available in the respective nodes. All these processors, engineer stations, op-
erational stations as well as local control units, should be able to communicate
directly or indirectly with each other. The reason for this is, of course, the ne-
cessity to keep the system integrated and its knowledge available and updated.
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Figure 8.14 Examples of simple configurations.

E.g., a control unit would need to be able to send a new parameter value back to
the main knowledge base if the parameter would influence the rest of the system.
The most elementary configuration would be to have all the different processors
connected to a bus. Another solution is to connect the processors of the main
knowledge base and the engineer stations to the bus, and then connect each less
sophisticated processor, i.e., those in which only control program modules reside,
to the processors on which the relevant realization tools are. These two possible
configurations are shown in Fig. 3.14.°

For a major KBCS it could be necessary to increase the numbers of processors.
An example is shown in Fig. 3.15. The reason for this increase is the need
for more numerous and more capacity demanding tools, more numerous and
more advanced control program modules, and a larger, and thereby also a more
complex, main knowledge base. The major difference, regarding configuration,
between a minor and a major KBCS is that the latter will probably have 2
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Figure 3.15 An example of a more advanced configuration.

physically distributed main knowledge base. However, the functionality of the
main knowledge base is the same and from the outside it looks and acts like
one single knowledge base. This will be possible due to the knowledge base
management system, which will supply the main knowledge base with a uniform
interface.

3.8 REAL-TIME ASPECTS

As the control system is meant for process control, the real time aspects of the
system are very important. The possibility to distribute the system more or less
extensively is a necessary support for real-time performance. Another support
is given by the real-time constructs in the knowledge base language. These are
discussed in section 5.4.

The tools do not have to reside on the same machine as the main knowledge base,
but can run on different computers and in this way increase the performance of
both the particular tools as well as the total control system.

The excutable knowledge base units can be distributed to many processing mod-
ules. The units do not have to be executed on the same processors, or in the same
kind of operating environment, as the tools that were used to generate them.

There are two types of distribution to improve performance: partitioning of the
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main knowledge base and distribution of knowledge (typically real-time data)
from the main knowledge base to local databases. By partioning the maln
knowledge base and placing it on different processors, the computational bur-
den is decreased. The partitioning of the main knowledge base can be governed
either by geographical and logical constraints, i.e., the partitions mirror the ge-
ographical and logical structure of the process, or by the type of knowledge. In
the latter case, several techniques such as object-oriented databases, multimedia
databases, and relational databases are used to implement different parts.of the
main knowledge base.

3.9 THE KBCS AND ITS USERS

As stated in Chapter 1, an important goal is to develop a control system that
fulfils the requirements of the different user categories. In Chapter 2 we presented
our ideas about future user requirements. The concept that has been presented
in this chapter aims at a flexible, powerful, and user friendly control system.

Some fundamental ideas when it comes to user friendliness that this concept
supports are:

o It should be easy to add new capabilities to the control system.
e All knowledge should be available for all users.

e The users should get powerful support when it comes to advice and explana-
tions.

As an example, consider a situation where a fault has occurred in the Steritherm
process, e.g., an early and rapid burn-on. An alarm analysis is performed and
the operator is informed that burn-on is occurring. This could be done by an
audible alarm, an indication on the screen marking heat exchanger I and finally
a text string that pops up on the screen. The text informs the operator that
he should stop the production and start intermediate cleaning. The operator
acknowledges the alarm, stops the production and starts intermediate cleaning.
Next a diagnosis system starts to run. After a short time, which could include
some questions to the operator, the cause is found and presented. Valve V44 has
stuck open. A remedy is proposed: clean the valve and get it replaced at next
plant stop.

The operator could now ask how the malfunction of valve V44 could cause rapid
burn-on. This should be explained by the built-in explainer of the diagnosis sys-
tem. (Valve V44 controls the amount of steam that is injected into the water
line, and thereby the temperature in the water line and in heat exchanger I.)
He could also mark valve V44 and demand information about this process com-
ponent. This activates the browser, which enters the main knowledge base for
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collecting the information asked for. With the help of the browser the operator
could now ask for general information on the type of valve that V44 belongs to,
about what components V44 is connected to, how the state of V44 influences the
performance of the process, information about the regulator PI44 that controls

V44, etc. In other words, the operator could browse through all, or a selected
part, of the main knowledge base.

3.10 CONCLUSIONS

We have presented a concept for a knowledge-based real-time control system.
The control system is an integrated system with a common knowledge base for
all users. This makes it possible for knowledge to be available for all users
and removes the need for redundant information. Distribution of knowledge to
other processing modules, in order to achieve necessary run-time performance, is
possible while still adhering to the concept of a common knowledge base.

The control system is also integrated in the sense that knowledge-based tech-
niques are used combined with conventional techniques. Designers use the de-
sign tools to modify the main knowledge base. Realization tools are used to
automatically extract knowledge from the main knowledge base and convert it
into executable code. To facilitate a modular and flexible system where new

tools, and thereby new capabilities, should be easy to add, the main knowledge
base has a uniform interface.



Knowledge
Representation

4.1 INTRODUCTION

A key issue in a KBCS is the representation of knowledge of various kinds. In our
project the term knowledge is used in a wide sense covering both what is termed
knowledge in the expert system community; what is found in conventional control
systems today, e.g., control logic; and information in the form of text, drawings,
and photographs. The motivation for this chapter is to give examples of the
types of knowledge representation formalisms that may be used in a KBCS and,
hence, the main knowledge base should support.

A good knowledge representation technique has the following characteristics. The
representation should

o make important things explicit,

e suppress unimportant details,

e allow for completeness,

e be concise and efficient,

e support modifications,
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e be transparent,
o facilitate storage and retrieval mechanisms, and

e have associated computation or deduction procedures that can ‘execute’ the
knowledge representation and use it to conclude new knowledge.

Selection of knowledge representation is often a tradeoff between expressability
and derivability. Consider the two extreme cases of predicate calculus and natural
language text. Predicate calculus has a limited expressability. The derivability
is, however, very high. Resolution is a computational procedure operating on
predicate calculus through which theorems can be proved. Text has a very high
expressability. What can be expressed in natural language text is unlimited.
Written text has, however, a built in incompleteness and ambiguity that makes
formal derivation procedures impossible. Although some research is performed
on automatic story understanding, the computational procedures that exist for
text are limited to search methods for matching, alpha-numerical patterns.

An important issue to have in mind when discussing knowledge representation is
that “A single uniform all-purpose knowledge representation technique does not
ezist”. Each technique has its strengths and weaknesses and is more or less suited
for a certain purpose. Knowledge representation and use cannot be separated.

In this chapter, commonly used knowledge representation techniques are de-
scribed. The techniques described range from basic knowledge representation
formalism such as rules, objects, etc., to more specialized methods such as
the Grafcet method for representing sequential actions and the MFM (Multi-
level Flow Model) methodology for representing functional process models. The
amount of text describing each representation form does not reflect its relative
importance. Representation techniques normally associated with expert systems
such as rules and objects are described in more detail than conventional, well-
known representation techniques such as procedures and equations even though
the latter techniques are equally important. Also, techniques used explicitly in
the prototypes such as the Diagnostic Model Processor method for model-based
diagnostics and the MFM formalism are described in more detail than other
techniques.

Emphasis is given to how the different techniques can be structured and imple-
mented in an object-oriented system and to the hierarchical nature of the different
formalisms. The graphical presentation of each formalism is also shown.

4.2 OBJECTS

Objects are the basic and most general knowledge representation formalism used
in the project. Objects may represent general, physical as well as abstract con-
cepts. A major strength of objects is that they represent a concept with its
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associated characteristics as a single entity or “knowledge chunk”. The charac-
teristic properties of an object is represented by its attributes. Attributes may
contain constant values of different types, variables, lists of items, other objects,
procedures, icons, pieces of text, references to pictures, etc.

Through the distinction between class and instance objects, generic knowledge
common to all objects of a class can be separated from specific knowledge per-
taining to a single individual object. A class can have subclasses that represent
different specializations of the class. The subclasses inherit the properties of the
superclass as well as include their own specific properties.

4.2.1 Inheritance, views and composite objects

The superclass — subclass relation in combination with inheritance mechanisms
make object-oriented representation compact and natural. Inheritance schemes
where each class has only one superclass are called single. This leads to a hierar-
chical inheritance tree. In multiple inheritance a class can inherit attributes from
more than one superclass. Multiple inheritance is natural when an object, at the
same time, can be seen as an instance of more than one class, i.e., it belongs to
more than one inheritance hierarchy. Through multiple inheritance, the prop-
erties are described as the combined properties of all the object’s superclasses.
The second reason for multiple inheritance is for structuring purposes. Proper-
ties that are common to many different classes but which cannot be naturally
structured into a single class that may have instances can instead form a miz-in
class. Mix-in classes are used to add a specific behavior or set of attributes to
other classes and are never instantiated on their own.

Multiple views or multiple perspectives are used for the case when a single object,
at every time, can be seen from more than one perspective, having different
properties in the different contexts. In the different views the object may inherit
from different superclasses. Multiple views can be seen as a version of multiple
inheritance where the behavior and attributes from the inherited classes are kept
separated in the object instead of being combined.
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The name composite object is used for an object whose attribute values are other
objects. Composite objects is one way to achieve hierarchical object structures
where a sub-object of an object represents a more detailed description of a part
of the object as shown in Fig. 4.1.

4.2.2 Graphical representations

The natural graphical representation for an object is an icon. If the object is
used to model a physical entity, such as a pump or a heat exchanger section, the
icon usually has some resemblance to the actual entity. In some cases, e.g., for
electrical circuit objects, standardized symbol libraries exist.

Objects have relationships to other objects. Some types of relations are natural
to show as graphical connections between objects. This is obvious in the case
of physical connections among physical objects such as flow pipes connecting
together process components in a flow schematic or electrical wires in an electri-
cal schematic, but it can also be very useful to show certain relations between
abstract objects. Examples of this are connections representing the caused-by
relation in a network of event ob jects or connections representing influences in
an influence diagram.

Connections may be typed, i.e., defined in terms of connection types, or classes,
with associated attributes. Connections that have attributes may be used to
represent structured connections, e.g., an electrical cable consisting of a number
of electrical wires. Connections may also have directions.

For multiple view objects, one can think of a situation where an object has
different icons and different connections in the different views as shown in Fig.
4.2

The inheritance tree or network also has a graphical definition. Here, class
definitions have associated icons, the interconnections of which represent the
superclass-subclass relation and the instance-of relation as shown in Fig. 4.3.

4.2.3 The different roles of objects

Objects can serve three different purposes in a knowledge-based control system.
o Representing knowledge about some concept of interest.
© As a programming paradigm in the KBCS.

® As a programming paradigm in the implementation of the KBCS.

The first case has already been discussed. In the second case, object-orientation
is used as a programming paradigm within the knowledge-based control system.
In an object-oriented programming language, an object is a self-contained entity
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Figure 4.2 Multiple view, or perspective, object with different icons and connections

which has its own private data and a set of operations to manipulate that data.
The set of operations defined for an object constitutes a uniform external interface
to the rest of the system. Interaction with an object occurs through requests for
the object to execute one of the operations in its interface. New objects can be
defined as extensions of existing ones with the use of inheritance. When object-.
orientation is used for programming purposes, objects will also comprise several
other knowledge representation techniques. For example, rules, procedures, and
equations can all naturally be seen as objects.

The last case contains the situation when a conventional ob ject-oriented program-
ming language such as C++ or Eiffel, is used as the implementation language for
an object-oriented knowledge-based control system. In this case, you have two
levels of classes and objects, the classes and objects in the implementation lan-
guage which are only visible to the system developer and the classes and objects
in the knowledge-base visible to the designer and users of the control system.
There is not necessarily a direct mapping between the two types of objects. On
the contrary, it is likely that they have very little connection.
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4.2.4 Steritherm Examples

Here, some examples of what might be represented in terms of objects in the
knowledge-based control system for the Steritherm process are given.

Process components: Process components such as pumps, valves, tanks, heat
exchanger sections, pipes, etc., are naturally represented as objects. Associated
attributes may contain operating status, physical parameters, component infor-
mation, maintenance status, time in operation, inferred fault diagnosis informa-
tion, equations describing the components quantitative or qualitative simulation
models, etc. Larger parts of the process composed out of several individual com-
ponents can be described as composite objects. Some examples are the heat
exchanger consisting of the different sections, the balance tank including asso-
ciated valves and pumps, the homogenizer, etc. In the same way the entire
Steritherm process can be described as an object.

Sensors and control signals: Sensors can be described as objects with at-
tributes such as measured value, reliability, noise range, internal models, or other
information about the validity of sensor readings. Control signals may contain
attributes such as operating range, saturation limits, etc.
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Control system components: Control system hardware and software com-
ponents such as CPUs, I/0 boards, A/D converters, internal variables, and vari-
ous types of function blocks such as combinatorial logic blocks, timers and coun-
ters, selectors, arithmetical blocks, comparators, alarm blocks, and different types
of predefined controller blocks are also natural to view as objects. They can have
associated creation date, validity intervals, expiration time, time history, informa-
tion about normal and abnormal signal values, etc. Associated with the control
blocks are attributes containing information about execution period, parameters,
the procedure which implements the control block, etc.

Rules: Rules for, e.g., monitoring and diagnosis can be compared with control
function blocks and be seen as objects in a similar way. They may have informa-
tion about inference chaining, information to what rule groups the rule belongs,

etc.

Steps: Sequential control is naturally expressed as sequences of states, or steps,
and transitions in a Grafcet style. These elements can be seen as objects. A
step may have associated information about initial and final conditions, control
variable settings pertaining to that step, abnormal conditions that may occur in
that step, possible substeps that the step is made up of, etc.

Tivents: FEvents that occur in the process are naturally represented as abstract
objects. Alarms and operator warnings can be subclasses of events that have
information of what caused the alarm, time of occurrence, alarm explanations,

advice on countermeasures, etc.

Faults and symptoms: Ina fault diagnosis system it is natural to view faults,
fault hypotheses, and symptoms as objects. Faults may be physical faults or
functional faults. Symptoms may be expressed as constraints on sensor values,
the timing of events, and their order of occurrence.

Product information: Raw products can be seen as objects having attributes
about chemical characteristics, processing characteristics, and what recipes it
is used in (a recipe can also be seen as an object), etc. Final products may
contain information about production data, production date, order and customer

information, etc.

Various: In a wider perspective, the examples of what might constitute an
object are infinite. Some further examples are production orders and production
plans, maintenance plans, the parts of the electrical and hydraulical subsystems,

etc.
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Figure 4.4 Hierarchical rules
4.3 RULES

Rules is the knowledge representation formalism usually associated with expert
systems. The basic structure of a rule is

If conditions then conclusions.

The condition part represents a set of conditions on, e.g., process variables, that
must evaluate to true in order for the conclusions or actions to take place. The
rule conditions could be general logical expressions or patterns that must match
the database that the rules operate upon. The way in which the rules are invoked,
i.e., selected for evaluation, is determined by the inference strategy. The stan-
dard methods in conventional expert systems are forward chaining and backward
chaining. For on-line systems it is useful to be able to associate a scanning in-
terval with rules that determine how often they should be invoked. Explicit rule
invokation through, e.g., meta-rules that invoke other rules is another possibility.

In the case of rules that operate on an object oriented database, two types may
exist: rules that operate on instance objects and rules that operate on class
objects. The latter, generic, rules correspond to a set of rules where each rule is
specific to one instance of the class.

In an object-oriented system, rules can be described as objects that have at-
tributes for the rule conditions, actions, scanning interval, chaining details, etc.
Rules can either be individual objects or objects associated with the instance or
class that they describe. The former alternative is necessary when the rule refers
to several objects, as in the following case:
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Figure 4.5 Graphical rule representations

for any tank
if the status of the tank is not normal
and
the status of the valve connected to
the tank is not normal
then
conclude that the possible-fault-cause of the
tank is valve-error
and
conclude that the status of the valve is suspect

This rule refers both to valves and tanks. In fact, what it refers to is a pattern
of interconnected objects. Therefore it is not natural to associate this rule with
cither the tank class or the valve class.

Tierarchical structures are not common for tules. However, a meta-rule that
determines the applicability of its associated rules, or sub-rules, depending on
some condition, can be seen as a composite rule that has an internal structure of

rules. This is indicated in Fig. 4.4.

4.3.1 Graphical representations

Rules can have several different graphical representations. In G2 a rule is rep-
resented by a rule icon where the icon is the textual representation of the rule.
It would be useful if the user had freedom to define the rule icon. Special icons
could be used for generic rules, and for different rule groups. Graphical connec-
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tions might be used to indicate the chaining between the rules as shown in Fig.
4.5,

The chaining and relations between rules are normally described graphically using
tree and network structures. In Nexpert Object a graphical rule network is
automatically generated and can be used to browse through the rule base as
shown in Fig. 4.6.

CRT_and_KDU Is AGREE

task is FLUID-TRANSFER

Yes ALERT
Rule.s ——<e-

=» Show action_4
Yes tanks_equal
=> Retrieve TANKS Yes alarm_tank_was_high Rule.18 —

=> Retrisve Ext_tank => Show ORS_1_8

=> Show CONTACT_MCC_1

Figure 4.6 Nexpert Object rule network

Rules of the backward chaining type can be seen as an alternative way of realizing
a decision tree with the obvious graphical representation shown in Fig. 4.7.

Enterobacteriaceae

%\ Rule 095

Site = Gram = Portal = Locus =
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Rule 021
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Significant
Rule 054
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Rule 095 ollection Organtams e

If The site of the culture is blood, and
the gram stain is positive, and
the portal of entry is gastrointestinal tract, and
(the abdomen is the locus of infection, or
the pelvis is the locus of infection)

Then
There is strongly suggestive evidence that
Enterobacteriaceac is the class of organisms
for which therapy should cover

Figure 4.7 Rule and corresponding decision tree example taken from EMYCIN

Rules that operate directly on process variables can be compared with ordinary
control function blocks. In that case it is natural to have the same graphical
representation as function blocks have. This is shown in Fig. 4.8.
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Figure 4.8 “Function block” rule

4.3.2 The double role of rules

As in the case of objects, rules may serve several purposes. The most natural
purpose for using rules is to represent associations between, e.g., causes and
effects. Rules of this kind often express heuristic, experiential knowledge. The
knowledge is explicitly represented in well-defined rule modules. In some systems
explanations ¢an be automatically generated from the rule chaining. Rules can,
however, also be used to represent other types of knowledge. Deep model-based
knowledge can, e.g., be implemented in terms of rules that describe the generic
behaviour of classes of components.

Rules, specially of the forward chaining, pattern-matching type, can also be used
for general programming purposes implementing arbitrary algorithms. The ac-
tion part of a rule can be seen as a procedure whose applicability is determined by
the rule conditions. Using rules as a substitute for procedural programming can,
in some cases, lead to code that is very difficult to understand and that would
be better expressed in a conventional procedural high-level language. However,
in other cases the modularity and flexibility of the rule and the non-sequential
activation is an advantage.

4.3.3 Steritherm examples

In the Steritherm process rules have several applications. Some examples are
supervision of burn-on, alarm analysis, and selection of cleaning procedure.

The cleaning to remove burn-on is usually done on a pre-scheduled basis where
the time intervals depend on the actual product being processed. For processes
equipped with differential pressure transmitters on the heat exchanger sections
excessive burn-on may be detected by the control system. Rules that monitor
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the time history of the differential pressure may notify the operator when the
rate of change is too large, or when the magnitude exceeds a certain threshold
value. Another way to detect burn-on is by monitoring the control signal of the
PID regulator controlling the valve of the steam injector. Burn-on causes the
heat transfer coefficient in the heat exchangers to decrease. Hence, the controller
needs to increase the valve opening to maintain the temperature at the set-point.
Monitoring of the control signal can be a secondary means for detecting burn-on
if the pressure transmitter should fail. Examples of this kind of rules are given
in Section 7.3.4.

Fault trees for helping the operators and service personnel to find the original
fault that has caused an alarm are today normally not used in the plants. They
can, however, be obtained from process designers and start-up engineers. These
fault trees can relatively easy be transferred into a set of alarm analysis rules
that give advice on fault localization. This is further described in Christiansson

and Ericsson (1989).

The selection of cleaning procedure is an operation that requires a large amount
of heuristics. The sequence, amounts, and cleaning time of the cleaning liquids
depend on the type of product and how the process has been cleaned previously.
It is possible to express this as a set of rules for how to select a proper cleaning
sequernce.

4.4 LOGIC

Standard logic systems such as propositional logic and predicate calculus are an
often used formalism within the AI community. The advantage of using logic for
knowledge representation is that it has a firm theoretical basis and well defined
reasoning methods, e.g., resolution. The disadvantage is that the logic systems
have restrictions with respect to what they can express and therefore can be
quite rigid. To solve this problem several non-standard logic systems have been
developed.

4.4.1 Propositional logic

The language of propositional logic consists of proposition which are either true or
false. Propositions are combined into clauses using the ordinary set of logical con-
nectives, i.e., AND (&), OR (V), NOT (—), IMPLIES (=), and EQUIVALENCE
().

The basic rule of inference is Modus Ponens. This simply says that whenever a
fact A is known to be true and thereis a clause A = B, it is permitted to conclude
that B is true. Propositional logic, as well as predicate calculus, is monotonic.
If the logical statement A can be proved from a set of initial axioms, additional
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axioms or information must not cause the negation of A to be provable. If this
was the case, the logical system would be inconsistent. Due to the monotonicity
property, the beliefs of the system are considered to be always true and the system
monotonically draws new conclusions from the existing ones. Unfortunately,
monotonic systems cannot handle three kinds of situations that often arise in real
problem domains: incomplete information, changing situations, and generation
of assumptions during the problem solving process.

4.4.2 Predicate Calculus

Predicate calculus or logic is based on predicates that are either true or false.
Predicates have arguments that could be either constants, variables, or functions.
Predicates are combined with the standard logical connectives together with the
universal quantifier (“for all”, V), and the existential quantifier (“there exists”,
3). Example of clauses in predicate calculus are:

V(x) man(x) = human(x)
J(x) father(john,x) & female(x)

The inference method of predicate calculus is resolution. The inference problem
is stated as a set of axioms A and a theorem T which we want to check if it follows
from the axioms. This done be showing that the set —T U A is unsatisfiable, i.e.,
that it leads to a contradiction. Resolution in its simplest form is a procedure that
involves translating all logical formulas into clausal form, selecting two clauses,
and unifying those and creating the resolvent clause. This procedure is continued
until a contradiction is found in which case it has been shown that T follows from
A.

Resolution can be mechanized and is the basis of the so called theorem provers. A
special form of resolution is also the basis for the inference mechanism in Prolog
(Clocksin and Mellish, 1981). Prolog is based on the Horn subset of predicate

calculus.

4.4.3 Non-standard Logic Systems

Several non-standard logic systems have been developed. These include modal
logics, temporal logics, fuzzy logics, etc. Several of these are surveyed in the
Feasibility Study. For a good overview see (Turner, 1984).
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4.5 EQUATIONS

Equations of different forms naturally represent relations and constraints among
process variables. Equations can be quantitative or qualitative. Quantitative
equations operate on numerical or boolean variables. Qualitative equations usu-
ally operate on the signs of numerical variables. Quantitative equations on as-
signment form are what is normally used in conventional control systems.

4.5.1 Quantitative equations

Quantitative equations include, e.g., algebraic equations, differential equations,
difference equations, and differential-algebraic equations. Equations have many
usages both in conventional control systems and in KBCSs.

Ordinary, boolean or real-valued, expressions for representing control logic can
be seen as quantitative difference equations on assignment form.

Quantitative equations are the normal way of representing simulation equations
used in, e.g., off-line training simulators or on-line predictive, decision support
simulators. The simulation equations can have different resolution. Equations in
simple simulation models may only cover the static behavior of the process. More
detailed simulation models may contain important dynamic modes, and discrete
events describing, e.g., mode changes. If the simulation is performed on-line and
in real-time, simulation equations can be used as an alternative to procedures for
implementing arbitrary dynamic filters. These could be used in state observers,
as low-pass or band-pass filters, for model-based sensor validation, etc.

Quantitative equations are also used to represent constraint equations that dur-
ing normal operating conditions should hold between different process variables.
Examples of constraint equations of this kind are mass and energy balance equa-
tions. These could be used for diagnostic purposes in which case the diagnostic
engine checks for violated constraints and uses that to infer possible faults.

Equations can be seen as objects with icons as their graphical representation in
a similar way to rules. They can be internal to, e.g., objects, giving the actual
value of some object attribute, or global. In some cases also other graphical
representations are possible. Consider a normal boolean equation. It can be
represented on equation form, as interconnected function blocks, or as a ladder
diagram according to Fig. 4.9.

Simulation equation examples

As a part of the G2 prototype a real-time, numerical simulation model of the
Steritherm process has been derived (Christiansson and Ericsson, 1989). The
model contains algebraic and differential equations simulating pressures, flows,
temperatures, levels, etc., in the various process components. In Chapter 7, the
equations for the plate heat exchanger are shown.



76 Chapter 4 Knowledge Representation

X Y
X Al
Y D Z
(X AND Y) OR Z : on —
Equation form Function blocks Ladder diagram

Figure 4.9 Different representation for boolean equations

Although the simulation equations are not a part of the control system knowledge-
base in the G2 prototype, it is clear that in a real KBOS they should be a part
of the objects describing the process components. The Steritherm simulatinn
model is interesting from many aspects. The equations for calculating the prod-
uct and water flows are not local to any process component. Instead global system
equations are used to calculate the flows. In a hierarchical, object-oriented rep-
resentation these equations would belong to a composite process object which,
in this case would be the object representing the entire Steritherm process.

The differential equations modeling the heat transfer are described by generic dif-
ferential equations describing the behavior of all instances of the heat exchanger
class. In an object-oriented decomposition these equation would belong to the
heat exchanger class.

The diagnostic model processor

An example of a model-based diagnosis method based on quantitative constraint
equations is the Diagnostic Model Processor method (DMP) (Petti et al, 1990).
The method has been implemented in the G2 prototype and the implementation
is described in Chapter 7.4.6.

The diagnostic model processor is a method of using deep or model-based evi-
dence to arrive at the most likely fault conditions of a process. The method was
invented to rectify some of the problems associated with rule-based knowledge-
based systems. These problems include lack of generality, poor handling of novel
situations, and the tendency to fail suddenly. The main problem addressed by
the method is that of generality. Traditional knowledge bases become invalid in
the event that the target process undergoes changes. It is also difficult to apply
the knowledge bases to other processes. It is therefore desirable to structure the
fault analyzer such that the process specific knowledge (model) is maintained
separate from the task specific knowledge (methodology). The architecture of
the diagnostic model processor achieves this separation under the requirement
that the process is represented in the format discussed in the following section.

The diagnostic model processor works under the premise that during fault free
operation, the actual process and process model equations should produce similar
outputs when driven by the same inputs. By examining the direction and extent
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Assumptions:

Flow sensor is OK

Diff. Pressure sensor is OK
No burn-on

No piping leaks

2
p* FT1

¢’

e = DPI1 -

Tolerance: T < e <7

Figure 4.10 Example of the formulation of a model equation with its associated
assumptions.

to which each model equation is violated and by considering the assumptions on
which they depend, the most likely failed assumptions (faults) can be deduced.
Redundancy which is available in the system leads to better performance be-
cause an assumption which is common to many violated equations is strongly
suspect; whereas, satisfaction of equations provides evidence that the associated
assumptions are valid. The formulation of the process model is very important
to ensure the competence of the analyzer. Care must be taken to include all the
applicable assumptions with the model equations so that the associated faults
can be diagnosed.

Model equations: The process model is listed as a series of simple governing
equations which describe the process. The model equations which can be used
are dependent on the instrumentation of the target process. Associated with
each model equation are tolerance limits which give an indication of when the
equation is no longer representative of the process. Fach model equation is
written in a form such that it ideally equals zero. Process noise, modeling error,
and faults prevent them from equaling zero; the discrepancy is called the residual.
The tolerance limits are the expected (fault free) upper and lower values of the
residual for which the equation is considered satisfied. Also associated with each
equation is a set of assumptions which if satisfied, guarantee the satisfaction of the
mode] equation. A simple example of an equation formulation and the associated
assumptions is shown in Fig. 4.10. Notice that some of the assumptions are
explicit in the model equations, such as correct sensor readings, and some are
implicit such as the fact that there are no piping leaks.
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The diagnostic methodology begins with the calculation of a vector of model
equation residuals, e, from the process data P. The residual of the jth model
equation,

ej = cj(P;a) (41)

where a is shown to indicate that each equation is dependent on the satisfaction
of a vector of modeling assumptions.

Since the residuals of the model equations are not uniform in magnitude, they are
transformed into a metric between —1 and 1 which indicates the degree to which
the model equations are satisfied: 0 for perfectly satisfied, 1 for severely violated
high, and —1 for severely violated low. These values constitute the satisfaction
vector, sf, which is calculated using the model equation tolerances, 7. For the
7th model equation,

(e5/m5)"

T 14 (ei/mi)"

The value of sf; is given a positive value for a positive residual, e;, and a negative
value for a negative residual. The curve is a general sigmoidal function with the
steepness determined by the constant n. The curve is shown in Fig. 4.11. If the

sfj (4.2).

tolerances are not symmetric about the origin, the upper tolerance is used for a
positive residual and the lower tolerance is used if the residual is negative.

Relationship between equations and assumptions: A matrix of sensi-
tivity values, S, which describes the relationship between each model equation
and assumption is computed to weight the sf values as evidence. The ijth ele-
ment of §, which represents the sensitivity of the jth model equation to the ith

assumption is calculated as:

e;

8a;

55; ] (4.3).

The larger the partial derivative of an equation with respect to an assumption,
the more sensitive that equation is to deviations of the assumption. Similarly,
equations with large tolerances 7, are less sensitive as they are more difficult to
violate. Many model equations are non-linear in some assumptions; these par-
tials are estimated by linear approximations. Assumptions which are implicit
with respect to an equation (i.e., pump operation) are arbitrarily given a par-
tial derivative equal to 1, unless experience suggests otherwise. Also, equations
independent of an assumption have an associated sensitivity of zero.

Calculation of failure likelihoods: Conclusions about the satisfaction of
each assumption (fault state) can be made by combining the evidence from the
model equations, sf, with consideration to the sensitivity matrix S. We desire a
method of combination which results in a normalized measure of the satisfaction
of each assumption, a;, and allows for direct contradiction of evidence which
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st 0

Figure 4.11 Satisfaction value as a function of equation residual. High and low
tolerance is indicated. n = 4.

suggests failures in opposite directions (high and low). A combination which
satisfles these requirements is the calculation of a vector of failure likelihoods, F,
such that

_ Yoo (s of5)
E;‘V:I lSiJ'I

where N is the number of model equations. It is evident that this method of
combination allows the sf values of those equations which are most sensitive to
deviations of assumption a; to be weighted the most heavily in the calculation
of F;. The failure likelihood is interpreted as indicating a likely condition of
assumption a; failing high as the value of F; approaches 1, while an F; tending
toward —1 indicates a likely failure low.

(4.4)

Example: A simple but realistic example is used to demonstrate the operation
of the methodology. A series of temperature sensors are shown in Figure 4.12.
The configuration is similar to that in the holding tube of the Steritherm process.
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135.60 137.50 137.70

' TT42 TT44] TT45

Figure 4.12 Example schematic showing three temperature sensors measuring a
similar quantity

The three model equations can be written as follows:
c1: ep = TT42 — TT44, where 7, = -1y =1
cp: e3 = TT44 — TT45, where 7, = —m1 =1
c3: e3 = TT45 — TT42, whererp, = —n =1
and the assumptions to be considered are

TT42is OK
a= | TT44is OK
TT45is OK

Using the sensor values shown in figure 4.12 and Equation 4.2 (with n = 4), the
vectors e and sf are calculated.

-1.9 —0.929
e= | —021], and sf = | —0.002
2.1 0.951

The partial derivative of the equations with respect to the assumptions are all
constant so the sensitivity matrix § is calculated using Equation 4.3 as

1 0o -1

Tt is obvious that the equations are not linearly independent; however, this re-
dundancy helps improve the diagnosis.

Using Equation 4.4 the failure likelihoods can be calculated. The vector
—0.940

F =1 0464
0477
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clearly indicates the failure of the TT42 sensor and in the proper direction (low).
This is the correct diagnosis as is obvious by examining the sensor readings in
this simple example (two of the three sensors agree).

Advantages: The major advantage offered by the diagnostic model processor
is a true separation between the process model and the diagnostic procedure.
This allows for easy changes to the process knowledge to include altered plants
or improved equations. Additionally, new processes can be handled by using the
design equations associated with them. The separation discussed is shown in
Section 7.4.6 to have a positive impact on an object-oriented implementation of
the diagnosis method.

Another advantage of the methodology is the use of a non-Boolean measure for
the classification of the model equations. This approach is superior to Boolean
reasoning in that stability problems are avoided which may result if the equation
residuals are bordering near the tolerances. Choice of tolerance levels are also
less significant and a failure can be monitored as a degradation rather than a
Boolean event.

The method of combining evidence in the procedure allows for direct contradic-
tion of high and low failures; and, the evidence is weighted according to a measure
of the sensitivity. Additionally however, because the method assigns zero sen-
sitivity to relationships between independent equations and assumptions, there
exists the ability to detect multiple fault situations if they are not competing in
their influence. The methodology does not demand a single explanation of the
evidence. This may present some difficulty, however, in that often more than one
assumption has a failure likelihood which is indicating a possible failure.

4.5.2 Qualitative equations

Qualitative equations are in many aspects very similar to quantitative equations.
The major difference is their domain. Quantitative equations operate on real-
valued variables whereas qualitative equations operate on signs of variables, i.e.,

{‘70,+}'

The work in the area of qualitative equations and models was initiated by Pat
Hayes in the ‘Naive Physics Manifesto’ (1979). The motivation was to pro-
vide a physics that is closer to our everyday experience rather than the precise,
mathematical approach of conventional physics. Three theories have emerged
representing different views of qualitatively describing complex systems. Using
the notation of R. Leitch (Leitch and Horne, 1989) these are called Qualitative
Physics, Qualitative Engineering, and Qualitative Mathematics.

In Qualitative Mathematics as derived by Kuipers (1986), a qualitative model
is abstracted from the structure of an underlying quantitative model. The ab-
straction is obtained using qualitative primitives such as monotonic increasing or
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decreasing, qualitative derivatives, etc. A propagation algorithm (QSIM) is used
to obtain a qualitative simulation of the system. The system produces a set of
possible ordered sequences of events (envisionments) rather than a true, unique
temporal simulation.

In Qualitative Engineering, structure is imposed by identifying physically distin-
guishable subsystems or components. Each component is described by a qualita-
tive differential equation, or confluence. The components are connected together
and a constraint propagation algorithm is used to determine an overall consis-
tent set of qualitative values. A differential equation describing an endothermic
chemical reaction and its corresponding confluence equation is shown below.

d
Ah—(g = Fy(T; —T) — Q/pey

§T = [F][T: — T] - [Q]

where
A = area

h = level

T = reactor temperatur

F; = input volumetric flow

T; = input temperature

Q = effect removed through cooling
p = density

¢p = heat capacitivity

Here, §T represents the sign of the derivative of T, i.e., it has the values increasing,
decreasing or stationary, and [Q)] represents the sign of Q.

In Qualitative Physics the basic representational primitive is a process, e.g., a
flowing liquid, a dropping solid, an expanding gas, etc. The processes are defined
and combined to represent an overall system under different operating conditions.

As in the case of quantitative equations, qualitative equations have many uses.
The two most usually mentioned are simulation and diagnosis. In simulation,
qualitative techniques are used to give a set of possible futures for the process.
The simulation could be used as a predictive operator support simulator. The
technique can be of value when an exact numerical simulation model is not avail-
able. The price to be paid is the ambiguity of the method.

In diagnosis, a qualitative model is compared with process measurements. In the
qualitative model, fault assumptions are introduced in order to find a fault which
is consistent with process measurements and thus can be the true fault in the
process. Unmeasurable or ambiguous variables also receive assumed values. An
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Figure 4.13 Alarm tree

Causes

assumption-based truth maintenance system combined with a constraint propa-
gation algorithm are used to record, and withdraw assumptions and to propagate
qualitative values through the process (Arlabosse et al, 1988).

4.6 TREES AND GRAPHS

Trees and graphs are general representation structures with several uses in a
KBCS. Inheritance trees or networks describe the relations between classes, sub-
classes, and object instances as shown in Fig. 4.3. Relations among rules are
naturally described as a rule network or a decision tree as shown in Fig. 4.6 and
4.7. The Diagnostic Model Processor method previously described is based on
a graph consisting of model equations and fault assumptions connected together
by dependencies.

The natural graphical representation for trees and graphs is a set of graphically
interconnected nodes. In an object-oriented system a tree or graph could be seen
as an object that has an internal structure of node objects that have different
relations to other nodes. In some cases it is natural for a node in a tree or a
graph to be hierarchical, i.e., have an internal structure of other nodes.

4.6.1 Alarm trees

Trees are a convenient representation form for tasks that involve searching for
solutions to some problem or causes to some failure. An example is alarm trees
where the root node may represent an alarm, the non-leaf nodes represent faults
on some function of the process, and the leaf nodes represent physical faults in
the process components according to Fig. 4.13. A tree of this type may assist
the operators or the service personnel in off-line troubleshooting, i.e., help them
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FAULT
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Faults

CONDITION
FT-1> 50
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State=abnormal

TT10 > 140 TTi2 < 120

% Symptoms
Figure 4.14 Fault tree

to locate the physical fault that has caused an alarm. Instructions and advice
can be associated with the nodes.

4.6.2 TFaultl trees

In a fault tree the root node represents a possible fault, e.g., that a certain
variable is above some limit. The other nodes represent symptoms in the form
of conditions on measured process variables which if fulfilled will cause the fault
as shown in Fig. 4.14. Both AND and OR logic can be used in the tree.

Fault trees can be used for on-line diagnosis. By successively generating and test-
ing fault hypotheses against sensor readings according to the fault trees, alarms
or warnings may be generated to the operator. Backward chaining rules match
the fault tree structure well and can be used to implement it. However, in that
case the inherent graphical structure of the tree is lost and replaced with a set
of rules which quite often can be difficult to overview.

4.6.3 Digraphs

A digraph (directed graph), or an influence graph, is a set of nodes and connect-
ing edges. Nodes in a digraph represent variables. If one variable affects another
variable, a directed arrow or edge connects the independent and dependent vari-
ables. The directed edge may either be a normal edge which indicates that the
relationship is normally true, or a conditional edge which indicates that the rela-
tionship is true only when another event (or condition) exists. Edges connecting
a given pair of nodes are mutually exclusive; only one edge relationship is true
at a given time.

The number 0,+1,—1, when placed on the directed edge represents the gains
(i.e., relationships) between the two variables. A gain of +1 from node X to
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'f@ T = Temperature

M = Mass flow

Figure 4.15 Heat exchanger example

node Y indicates that variable Y increases (decreases) when variable X increases
(decreases). For —1 the opposite situation occurs.

Digraphs can be used as a basis for creating fault trees. Fig. 4.15 shows a heat
exchanger where the hot stream enters at location 1 and leaves at location 2.
The cooling stream enters at 3 and exits at 4. The digraph for the temperature
of the output stream 2 is shown together with the corresponding fault tree. More
or less automatic methods for creating fault trees exist (Allen and Rao, 1980).
Special care must be taken for feedback loops.

Signed digraphs show the causal relations among variables and are commonly
used as one way of expressing deep, model-based process knowledge. The main
usage for digraphs is diagnosis. Faults are either associated with the HIGH and
LOW states of the variable nodes or introduced in the digraph as separate nodes
with edges to the other nodes. Faults may also remove some of the edges in the
graph. The diagnosis is performed by locating the nodes which, if disturbed,
would give a measurement pattern corresponding to the net. A drawback with
digraphs is that they usually have no notion of time. The time it takes before
a change is noticed in a variable is not represented. Also, digraphs only cover
situations where the process is at an equilibrium point and faults show up as
variations from this equilibrium. Transient behavior, start-up sequences, and
running in different modes are normally not covered.
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Figure 4.16 Event graph consisting of alarm events
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Figure 4.17 Burn-on fault tree

4.6.4 Event graphs

In event graphs, nodes represent events, €.8. alarms, and the edges represent
different causal dependencies among the events. Possible dependencies could be
always causes, may cause, never causes, etc. An example of an event graph is
shown in Fig. 4.16. An event graph could, e.g., be used as the basis for an alarm
filtering system that tries to find the primary alarm that has caused a set of
secondary alarms.

4.6.5 Steritherm examples

An alarm tree for the high temperature alarm has been implemented in the
G2 prototype described in Chapter 7. The Steritherm alarm trees are further
described in Christiansson and Ericsson (1989).

A fault tree for burn-on in heat exchanger section Iis shown in Fig. 4.17.
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4.7 SEQUENCES

A special case of graphs are those which represent sequences of states. The
sequences could, e.g., represent the sequential control logic in a process or a plan
of production activities. Several special knowledge representation formalisms
for representing sequential information exist. Some examples are Grafcet, Pert-
diagrams, Gantt schemes, scripts, action plans, etc. The graphical representation
and the object-oriented realization of these formalisms are similar to the case of
trees and graphs.

4.7.1 Grafcet

Grafcet is a Petri-net based formalism for representing sequential and parallel
activities (GREPA, 1985). Steps and transitions build up a sequential flow chart.
A step represents a certain state of the process in which certain actions are
performed. A transition contains a condition that determines when the process
changes state. A sequence can be split up into parallel branches. Alternative
paths can exist in the flowchart. Steps can have an internal structure of substeps
and transitions, thus creating a hierarchical Grafcet structure.

Grafcet is a standard for representing sequence logic. It can, however, also be
used as a graphical representation for more general algorithms.

4.7.2 Scripts

Scripts is a specialized knowledge representation formalism usually used to rep-
resent common, stereotyped sequences of events or activities. The method was
developed by R. Schank (Schank and Abelson, 1977) to understand and rea-
son about situations in the context of automatic story understanding. A usual
example is a script that describes the normal sequence of activities and events
that take place when a person visits a restaurant, i.e., entering the restaurant,
ordering, eating, paying the bill, leaving, etc.

A script can be seen as an object that has the following set of special attributes.

Entry conditions Conditions that must, in general, be satisfied before the
events described in the script can occur.

Result Conditions that will, in general, be true after the events described in
the script have occurred.

Props Attributes representing objects that are involved in the events described
in the script.
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Roles Slots representing people who are involved in the events described in
script.

Track The specific variation on a more general pattern that is represented by
this particular script.

Scenes The actual sequences of events that occur.

Scripts have several usages. In the Eurohelp project (Breuker et al, 1989), scripts
are used as the basis for a plan recognition system that monitor operator actions.
In (ihs) (Larsson and Persson, 1987), scripts are used for a plan recognition
system that monitors the commands given by an interactive user of a package
for system identification.

4.7.3 Action plans

Plans can be represented as sequences of actions. The sequences may contain
parallel parts. Associated with the actions are pre-conditions that must hold for
the actions to applicable, post-conditions that will hold when the action is com-
pleted, and prevailing conditions that must remain fulfilled during the duration
of the action. Several planning methods exist which use similar representations

(e.g., Sandewall, 1988; Manna and Waldinger, 1987)

4.7.4 Steritherm examples

Grafcet has been used to represent the sequential logic for the Steritherm process
in the G2 prototype. This is shown in Fig. 4.18. Each major operating mode
consists of substeps. Fig. 4.18also shows the internal structure of the Steril-
ization step. The internal structure of the Heating-sterilization substep is
shown in Fig. 4.19. In the heating substep water is heated until it reaches the
sterilization temperature, 137°C. This is the transition condition for entering the
sterilize substep. This substep has two transitions. If the time elapsed since the
substep was entered exceeds a specified sterilization time then the sterilization
is finished. If, during that time, the temperature drops below the sterilization
temperature the heating step is entered anew.

4.8 PROCEDURES

Although declarative representations are normally associated with knowledge-
based systems, ordinary high-level language procedures are necessary to represent
certain types of knowledge. Control algorithms are normally expresses as proce-
dures. More advanced problem solving methods, such as planning algorithms, or
constraint propagation algorithms, are best expressed in terms of procedures.
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Figure 4.18 Main sequence in Steritherm process

In an object-oriented system a procedure can be seen as an object that has some
kind of iconic representation. The statements allowed in the procedures should
be the ones existing in languages like C, ADA etc., i.e., assignment statements,
conditional statements, iteration statements, loops, etc.

4.9 FUNCTIONAL MODELS

A process such as the Steritherm can be modeled and described in several different
ways. An operator, as well as a service engineer, and even the designer, very
often reasons about the process in terms of its goals and the functions available
for achieving those goals. The standard way of presenting the process for the
operator is, however, with a process diagram, i.e., a formal description of the
process topology. Therefore it is highly desirable to provide the operator with
functional models of the plant, in addition to the topological ones. Multilevel
flow modelling is one technique for making functional models of processes like
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Figure 4.19 Heat and sterilize subsequence

Steritherm, and will be more closely described in the rest of this section. Other
techniques also exist, see, e.g., the Travel notes from Japan in Appendix B.

4.9.1 Multilevel Flow Models
The Multilevel Flow Modeling technique, (from now on called MFM), has been

developed from the analysis of the functional structure of complex systems such
as nuclear power plants and chemical processing units. An early motivation can
be found in Rasmussen and Lind (1981), while the basic principles and definitions
of the graphical language are found in Lind (1987). In this section, we will only
give a brief overview of the possibilities of using MFM techniques in the current
project, together with a small example of a heat exchanger.
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4.9.2 Basic Abstraction Principles

In MFM, there is a distinction between (at least) two different views of a process,
with three discernible levels, see Fig. 4.20. The functional view represents the
goals of the process and the functions provided. The goals describe the oper-
ational objectives of running the process, e.g., achieving production, efficiency,
and safety. The goals are achieved by functions or networks of functions, and
connected to these via means-end relations; thus, the goals and functions form a
hierarchy of such relations.

The physical component view describes what components are present in a system
and how these connect into subsystems. The relations between objects in this
view are connection relations and the relations between systems and subsystems
are part-whole relations. They all describe the topological structure of the physi-
cal system. The components are connected to the functions via realize relations.
It should be noted that both achieve and realize relations may be of a complex
and many-to-many correspondence nature, which makes the connections between
the functional and the topological models non-trivial.

The main idea of multilevel flow models is to provide a formal way of representa-
tion goals and functions, i.e., the functional structure, of processes consisting of
mass and energy flows. The MFM language has a formal syntax and can provide
for several different formal semantics, e.g., schemes for knowledge-based diag-
nosis, However, the concept of a function is limited to that of a flow function.
Many other functions are not treated. This is not as severe a limitation as it may
seem, though. Most industrial processes can be described with flows of matter,
energy, and information, all of which is captured in MFM.

Goals

Functions

Components

Figure 4.20 A process is modeled in three functional abstraction levels.
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Figure 4.22 A heat exchanger system from Steritherm.

4.9.3 The Graphical Language

The basic MFM representation is one of objects such as physical components,
connections, goals, flow functions, control goals, etc., and relations between these
objects, e.g., connection of and aggregation into sub systems of components and
achieving a goal by a certain function. A graphical language has been developed
for describing different types of objects and relations. In Fig. 4.21 there is an
example of flow function symbols. It should be noted, however, that the basic
MFM idea is not specifically connected to any certain graphical representation;
the symbols may vary, as long as the syntax remains the same. In fact, a new
set of symbols is currently being developed in the SIP project, Lind et al (1987).
The symbols in Fig. 4.21 is only a selection of all symbols. More symbols are
seen in the examples below. These symbols all adhere to the older standard of
Lind (1987).

OS2 AW 12}

Source Transport Barrier Storage Balance

Figure 4.21 The basic flow function symbols.

4.9.4 A Heat Exchanger Example

In order to give a general idea of the expressive power, (and the limitations), of
MFM, we will show a simple model. The target process used is, more or less, a
small part of the Steritherm process, see Fig. 4.22.
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4.9.5 An MFM Model of the Heat Exchanger

The MFM technique enables a graphical description of the physical structure of
the heat exchanger process with its components, and of the material and energy
flows in the process, in this case the water and product flows and the thermal
energy flow from hot water to product. The resulting model is shown in Fig.
4.23.

Heat product
Heat transfer
Water 1
HTX
Steam Product
Injector r j
Water available Product available
( : : :: Water flow ( Product flow

Water  Pump

(O

Steam  Valve  Injector HTX Cooli Tank  Pum HTX Packin
nj 00 1ny \ p gj

Figure 4.23 An MFM model of the heat exchanger system.

4.9.6 Comments on the Model

As an MFM model is used to describe how a process is functioning, the modeling
decisions to a large extent depend on the view of the designer. This is even
more the case than for other types of models, e.g., mathematical models such as
differential equations and transfer functions.

o The level of detail may be arbitrarily chosen. In the above model, the piping
has been completely ignored, while the steam valve is treated as a separate
function. The packing is modeled as a single sink function. This reflects
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the belief that the valve is more important than the piping and the packing
machine. Such considerations will, of course, have a large impact on the level
of detail of different parts of the process.

Only parts of a process may be important. In the actual model, the control
system for the steam valve has been completely ignored.

The model obtained will depend on its assumed use. The demands for func-
tional description, error diagnosis, measurement validation, and planning are
quite different and may lead to the development of very different MFM mod-
els.

4.9.7 Uses for MFM Models

Basically, MFM models are nothing more than a description of structural and
functional relations between objects, normally expressed in one of two graphical
languages. But this representation may be used for several different tasks.

Functional modeling. In order to describe a process in a systematic way,
MFM can serve as a tool for documentation. This is very close to the original
function of the MFM graphical languages.

Error diagnosis. The classical use of knowledge-based systems in process
control is to aid the operator of the process or plant to diagnose and remedy
errors. This also was the original motivation for the development of MFM
techniques. Here, the functional dependencies are explicitly represented, so
when a certain control goal fails, i.e., an error occurs, the MFM model will
provide information on which functions may be in error, and thus, in which
component sub-systems the reasons for the failure can be found.

Measurement validation. If all measurements are propagated into the net
of flow functions, any inconsistent values of mass or energy flows can easily
be found. Through back-propagation of consistent information, a subset of
singularly inconsistent measurement points can be found.

Planning. When the operator is planning different operations, he may use
the MFM models to find out which goals depend on the function he plans
to change or delete. If these goals may not be violated, something has to
be done before the proposed action is performed. In this way, MFM may be
useful in planning future control and reconfiguration actions.

Presentation. As an alternative to process schematics that only shows the
components of the process and their interconnections, the functional MFM
language can be used to present process information to the operator with an
emphasize on the process’ goals and function.
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Above, the most obvious uses for MFM modeling are described. These tasks have
explicitly been mentioned in the development of the flow modeling technique. Of
course, there may be other tasks that MFM can also handle well.

4.9.8 Diagnostic strategies

A MFM model gives a formal and explicit representation of the functional struc-
ture of a process. Thus, the relations between violated goals, functions no longer
provided, and failed physical components are already represented in the data
structure. Several diagnostic strategies may be defined, that work on this struc-
ture of relations. We will give two examples.

e Once a certain flow function fails, (a primary failure), the functions further
down the flow will also fail, (secondary failures), as will the goals depending
on that part of the function network. If the steam valve in the heat exchanger
should get stuck, the heat exchanger water transport would also fail, as would
the heat exchanger energy transport and, thus, the main goal of the model,
This is an example of a consequence propagation strategy.

e If a certain goal is violated, it is possible to follow the achieve relations to
the supporting function network, and check whether any of the functions in it
have failed. If so, an explanation of the fault has been found, Also, the reason
for a function’s failure may be further investigated via any condition for its
operation, i.e., by following the condition’s relation to a subgoal and diag-
nosing that subgoal further. This is an example of the more or less standard
causal ezplanations diagnosis scheme, as used in backward chaining diagnosis
systems. Within the MFM framework, however, the search is governed by an
explicit structure and not hidden in a maze of interacting rules.

4.9.9 Unclear Areas

However well developed MFM may seem, several questions arise after a thorough
reading of the literature. Once one tries to build a few models, even more trouble
comes up.

e The early MFM papers mention two kinds of goals, control goals and configu-
ration goals. The control goals mean that certain constraints should be met,
e.g., that a specified level of water in a tank should be held. The configura-
tion goals mean that a certain function must be taken care of, but this may
be done by one of several sub-systems. However, the problem of configura-
tion and reconfiguration has largely been skipped during the latter stages of
MFM development. Here, basic theoretical and practical contributions can
probably be made.
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e TItisnot uncommon that a goal may be achieved by a combination of functions.
For example, it is possible that there is a decision tree structure among the
conditions, i.e., a combination of and and or alternatives. The current MFM
definition does not allow for this, and an extension is certainly needed.

o The MFM techniques do not demand any specified implementation, but ob-
viously lends itself to graphical descriptions on a computer workstation. The
whole problem of implementation and incorporation in an operator support
tool must be looked into. In fact, the question of how the functional models
shall be presented to the user is probably the most crucial question of all.

e The functional and topological structures of a process will usually be quite
different. Thus, there exists a clear correspondence between flow functions
and networks on one hand and physical components and subsystems on the
other, only in certain cases. Generally, the realize relations are quite com-
plicated and no one-to-one correspondences exist. This makes it necessary
to provide the user with good facilities for navigating between the different
functional and topological descriptions of the process.

4,10 TEXT AND PICTURES

Textual information, photographs, and drawings are important sources of knowl-
edge that it must be possible to represent. In the Steritherm case the documen-
tation consist of several volumes of information that it would be useful to have
on-line access to. Some example are the Dairy Handbook, the Heat Exchanger
Handbook, the Steritherm Instruction Manual, component data sheets, etc. Pic-
ture information considering Steritherm may consist of geographically correct
drawing of the process, photos of the process and its components, mechanical
assembly drawings, etc.

4.10.1 Hypermedia

Hypermedia techniques provide a possibility to include text and pictures in
KB(CSs. Hypermedia is a way of linking information using associative links.
A hypermedia system can be likened to a database system with a graphical user
interface. But instead of the typical database record and file structures, the in-
formation is freely structured and connected with a network of associative links.
Nor is the data limited to text and figures, but can be graphics, photographs,
sound, or video.

Hypermedia has shown itself to be an ideal method of accessing large amounts of
information and hypermedia technology is developing hand-in-hand with optical
disc technology to give cheap and easy to use information and documentation
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systems. Documentation can be produced in hypermedia format from scratch or
transferred to optical disc with document scanners. The documentation can then
be easily integrated into a process control system with an advanced hypermedia
user interface to help the operator to find relevant information.

Other words for hypermedia are hypertext and multimedia, although these are
not strictly the same thing. Hypertext is for text only. Multimedia does not
necessarily have associative links.

Good examples of hypermedia based on-line manuals with excellent browsing
facilities are Symbolic’s Document Examiner (text only), and DEC’s CDA.

In an object-oriented setting a hypermedia unit (e.g., a HyperCard card) con-
taining a text, a photo, or a drawing can be seen as an object.

4.11 CONCLUSIONS

Several commonly used knowledge and information representation formalisms
have been described. It has been shown that most of the formalism can in some
way be described in terms of objects and thus fit well into an object-oriented
representation.

There is a strong interplay between the knowledge representation formalism cho-
sen and what the knowledge should be used for. There is also an overlap among
different formalisms in the sense that more than one formalism can be used to
implement the same functionality. For example, a certain task can sometimes
be solved both with rules and using procedures. Which formalism is used may
depend on the personal preferences of the designer, performance considerations,
etc. The KBCS language should provide the necessary flexibility and be rich
enough to allow this.
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5.1 INTRODUCTION

The goal of this chapter is to describe the main knowledge base of the system
concept. The chapter will concentrate on process knowledge structuring and
the nature of the knowledge base language with a special focus on the class —
object structure. The structuring of process knowledge will be exemplified on
the Steritherm process. The class — object structure and the knowledge base
language will be described in a tentative, discussive fashion. The description will
focus on the most important design considerations and discuss the implications
of different alternatives. Several references to and comparisons with G2, the
current state-of-the-art in real-time expert system tools, will be given when the
knowledge base language is discussed. The reader who is not familiar with G2 is
referred to Chapter 8 for a thorough description.

5.1.1 Axioms

In order for the main knowledge base to be practically useful it must fulfill a set
of basic requirements or axioms.

e It should be possible to store all necessary knowledge about the process in
the knowledge base.
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e The knowledge base should support different knowledge representation for-
malisms.

¢ Knowledge concerning one concept or object must be kept as a separate,
localized unit in the knowledge base.

e Knowledge should not be duplicated.

o The knowledge base should allow a separation between knowledge that applies
to classes of objects and knowledge that is unique for one object.

o The knowledge base should allow multiple, coexistent, hierarchical represen-
tation forms.

e The knowledge base should be flexible and support modifications.

As shown in the previous chapter, objects provide a flexible way of representing
knowledge. Objects also encompass other representation forms such as rules,
equations, procedures, etc. Therefore the main knowledge base uses objects as
its main representational form. The requirement that knowledge concerning one
object should be stored as a separate, local unit enforces modularization and
makes it easier to avoid redundant knowledge. The separation between class and
instance objects makes it possible to store all information needed about a concept
in a class library from which instances can be created.

5.1.2 The contents of the knowledge base

The knowledge-base contains a variety of knowledge and information about the
process and the control system. It may consist of objects, rules, equations, proce-
dures, Grafcets, MFM models, photographs, drawings, text manuals, data sheets,
etc., according to the description in Chapter 4.

The knowledge can be structured according to several criteria. According to one
criterion the knowledge can be structured into

e application independent knowledge, and

e application dependent knowledge.

By application independent knowledge is meant the basic, general knowledge
about the process and the control system that is needed for the normal operation
of the process. It includes information about the process and its components and
how they are interconnected; the control logic of the process (including continuous
controllers, combinatorial logic, and sequential logic), drawings and photographs
of the plant, etc. The application dependent part includes knowledge that is
specific to some special application such as alarm-analysis, diagnosis, planning,
simulation, etc. The application dependent knowledge contains both parts which




100 Chapter 5 The Main Knowledge Base

are process specific and parts that are generic. In some cases and for some
applications, as discussed in Chapter 3, the generic parts are contained in the
tools and in some cases they are stored in the knowledge base.

As an example consider the case of diagnosis according to the Diagnostic Model
Processor method described in Chapter 4.5. The method is based on application
dependent knowledge that consists of one process specific and one generic part.
The process specific part is the network of interconnected model equations and
fault assumptions. The generic part is Equations 4.2 — 4.4 that compute the
satisfaction values of the model equations and the failure likelihoods of the fault
assumptions. These equations make no assumptions at all about the nature of
the model equations or the fault assumptions and, thus, apply to any type of
process. It is natural that these equations are stored as a part of the knowledge
base

The distinction between application independent and dependent knowledge is
not always clear. One might argue that it is strange to include the control logic
in the application independent part. After all, the control can also be seen as an
application. The difference is that the control is necessary for the operation of
the process.

Another criterion for partitioning the knowledge base is how specific the knowl-
edge is to a certain process. Using this partition we get

o process generic knowledge, and

e process specific knowledge.

Process generic knowledge includes everything that is not unique for a specific
process, for example methods for implementing specific control system function-
alities such as different diagnosis and planning methods, component information
and general product information.

Process specific knowledge is specific for a certain process. It encompasses process
data, drawings, performance, components, process configuration, logic, etc.

The partitioning between specific and generic knowledge can be further extended.
For example, also within knowledge that is specific to a certain process it is
sometimes possible to structure this into generic and specific parts. In this case
we get

e object specific knowledge, and

e object generic knowledge.

The specific knowledge contains things unique to an individual object. The
knowledge may consist of object attributes, rules, procedures, simulation equa-
tions, photographs, drawings, etc. Knowledge of this kind is stored in connection
with the object to which it pertain. Knowledge that is common to several objects
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is described in connection with the class definition for these objects. The classes
make up a library from which the designers can select appropriate objects.

5.1.3 Graphical knowledge base interfaces

The common knowledge base has two major types of graphical interfaces. These
are

e the browser, and

e the user interfaces.

The browser

The interactive browser is available to all users and provides a means for them to
navigate in, and inspect, the knowledge base. Through the browser, the graphical
representation of the knowledge base language is seen. Objects are represented by
graphical icons. Relations among objects also have a graphical representation.
The browser should have built in operations for scrolling, panning, zooming,
viewing an object in another context, etc.

A key element in the concept is that the contents of the knowledge base should
be available not only to the designers but to all user groups. Operators, process
engineers, etc., should have the possibility to go beyond their pre-defined user
interfaces and browse through the contents of the knowledge-base. The browser
constitutes a base interface that is the same for all users.

The user interfaces

The user interfaces constitute the users’ individual interfaces to the KBCS. Dif-
ferent user groups need different information from the knowledge base. Different
user groups also may need to access essentially the same information from the
knowledge base but want it presented in different ways, e.g., on different ab-
straction levels. Finally, individuals within the same user group have personal
preferences considering the way information is presented to them. This may in-
clude the look of the icons, colours, presentation form for numerical values (e.g.,
readouts, bar graphs, trend curves, meters, etc.), picture layout, the actions of
the interaction objects, etc.

Descriptions of what parts of the knowledge base that should be presented for the
different users, and how they should be presented are included in the common
knowledge base. The descriptions can be seen as set-up files that have parameters
that describe the interfaces.

The definitions of the user interfaces are a part of the common knowledge base.
They include information of
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Knowledge representation and presentation

The current trend in control systems such as Sattline, or real-time expert sys-
tem shells such as G2 is that the representation of knowledge is integrated with
the presentation of the knowledge. In Sattline objects are actually presentation
objects that combine the attributes and behaviour of the object with how the
object is presented for the operator. The G2 system has the same philosophy.

The integration of representation and presentation has many advantages. The
object becomes a module that includes its own presentation. However, the re-
quirement that knowledge about an object should be stored only in one place
and that it should be available to several different users makes it necessary to
separate the representation of the knowledge from the presentation. The user
interfaces are defined independently from the representation of the knowledge
that they present. The only exception from this separation is the browser. The
graphical presentation of the knowledge base contents that is seen through the
browser is the same for all users. It is also defined together with the knowledge,
i.e., it is integrated with the representation.

5.1.4 Knowledge base distribution

The common knowledge base is not physically implemented in one place. As
discussed in Chapter 3, e.g., real-time data can be stored on the local processing
units where it is measured or calculated. The distribution that takes place are
of two main types:

e distribution of real-time data, and

e distribution of the executable parts of the knowledge base language.

Distribution of real-time data is what takes place when certain parts of the com-
mon knowledge base are localized in local databases. This applies to real-time
data, i.e., variables in the knowledge base whose values are computed and up-
dated in, e.g., a local processing unit.

By distribution of executable code is meant the procedures, equations, rules, etc.,
that are extracted from the main knowledge base, converted into executable code,
and distributed onto the processing units where they should actually execute.

Apart from these types, distribution also occurs in a few other cases. As discussed
in Chapter 3, the main knowledge may itself be distributed. It is also possible
that the user interface parameters are stored on the processing units where the
user interfaces reside.

The knowledge distribution is defined in the main knowledge base. The distribu-
tion is determined by the designers. For example, PID controller object has an
attribute that decides in which processing unit it should execute. Objects repre-
senting variables are physically in the local database of the processing unit where
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Figure 5.1 Distribution of generic rules: Alternative 1

they are measured or calculated. Rules have an attribute that determines where
they should execute. For generic rules the situation becomes more complicated.
Consider the following example of a rule.

for any tank T

if the level of T > the high-limit of T

and the status of the level-sensor connected
to T is normal

then

This generic rule implicitly corresponds to a set of specific rules, each matching
one occurrence of a tank with a connected level-sensor. By specifying a processing
unit for the generic rule all the specific equivalents will be executed there. This
is, however, not always desirable. One might want to spread out the specific
rules on local processing units. In that case, this has to be done automatically
by the realization tools based on the process schematic and the processing unit
attributes in the tank and level-sensor objects on this schematic. The differerit
possibilities are shown in Fig. 5.1 and in Fig. 5.2.

It is not always the case that a single object representing, e.g., a process com-
ponent, resides completely in one local database. The object attributes might
be spread out on different processing units. Consider the previous example.
The level attribute of the tank object should be calculated from a level-sensor
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Figure 5.2 Distxibution of generic rules: Alternative 2

value that is measured on a local processing unit. Hence, it is natural that this
attribute resides locally. It is, however, also possible that the tank has a fault-
status attribute whose value is calculated by a set of diagnosis rules that reside
on a supervisory processing unit. Hence, it is natural that this attribute resides
in the latter processor. The situation is shown in Fig. 5.3.

5.2 PLANT KNOWLEDGE STRUCTURING

In order for the common knowledge base approach to be practically useful, it is
important to find a basic structure in which various types of knowledge about
the process naturally fit in. This basic structure should be general enough to fit
different types of processes, e.g., paper & pulp processes, dairy processes, power
plants, chemical processes, manufacturing processes, etc., which could be either
continuous, batch-oriented, or discrete in nature. The basic structure should
also be flexible enough to allow the process to simultaneously be described from
different aspects or views and allow different knowledge representation formalisms
within an object-oriented environment.

The structure described here consists of two major elements: systems and views.
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Figure 5.3 Distribution of a tank object

5.2.1 Systems

In general, a process can be decomposed into a set of systems. The systems
correspond to the different flows of material, energy, or information in the process.
The most important system is the main product system. In a pulp process this
would correspond to the pulp system that describes how wood chips are converted
to pulp, flowing through the process from the impregnation vessel, through the
continuous digester, oxygen bleacher, diffuser bleacher, etc. In the Steritherm
case the main product system corresponds to the product flow system.

The main product system is the raison d’étre for the process. In order for this
system to function properly a number of support systems must exist. Examples
of support systems are the electrical system, the steam system, the pneumatic
system, the hydraulic system, the control system, etc. In a pulp process the
support systems would also include the white liquid system, the black liquid
system, etc. In the Steritherm case the support systems are the warm water
system, the cold water system, the steam system, the pneumatic system, the
electrical system which consists of one 380 Volt system and one 220 Volt system,
the control system, and the cleaning liquids system. This decomposition of the
main knowledge base is shown in Fig. 5.4.

The reason for structuring process knowledge according to system is mainly that
it reflects the situation of today in the process industry. Different user groups
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Figure 5.4 Steritherm systems

work with different systems in the process. For example, the main product sys-
tem, the electrical systems, and the control system are the responsibility of the
operators and process engineers, electricians, and the instrument engineers, re-
spectively. Furthermore, different systems are documented separately.

A process component is often part of more than one system. A centrifugal pump
may be a part of the main product system. However, the pump has a power
supply and is therefore a part of the 380 Volt electrical system. The pump is also
indirectly a member of the control system through the contactor that appears
both in the 380 Volt system and in the control system. In the same way a simple
pneumnatic on-off valve is both a member of the main product system and the
pneumatic system. It is also indirectly a member of the control system through
the magnetic valve in the pneumatic system. A heat exchanger section that heats
up the product using warm water belongs both to the main product system and
to the warm water system.

A system may be hierarchically organized, i.e., it may be composed out of sub-
parts which in turn are composed out of interconnected components.

5.2.2 Views

An object in the knowledge base such as the entire Steritherm object, a system in
the Steritherm process, or a process component such as a centrifugal pump object
can be described from different views. Describing an object from several views
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Figure 5.5 Geographical view described by a photograph

is a way of structuring the knowledge about an object into “natural” parts. The
views in the knowledge base should not be confused with the user views defined
by the user interface parameters.

Which views that are used to a large degree depend on the application. There
are, however, a set of more general views that probably apply to processes in
general, independently of the application. The standard views presented here
can be seen as guidelines for how it might be wise to structure the process. The
standard views are

e the geographical view,
e the topological view, and

e the functional view.

One should have in mind that these views are not always applicable, and that
others exist.

The geographical view: The geographical view describes a physical object
in a geographically and isometrically correct way. The description could be 3-
dimensional or 2-dimensional. The description may consist of coordinate, size,
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Figure 5.6 Geographical view of the main product system

and shape information that is the basis for automatically generated drawings;
photographs possibly taken from different angles and with different degree of de-
tail; various types of drawings about the process such as mechanical assembly
drawings, etc. The geographical view has an internal structure. By selecting a
part of, e.g., a drawing or a photograph a more detailed description of this sub-
part is shown. The geographical view associates the objects representing various
parts of the process with their physical reality. A photographical description of
the geographical view of the Steritherm process might look like Fig. 5.5. A ge-
ographical view of the main product system in terms of a 3-D drawing is shown
in Fig. 5.6.

The topological view: The topological view contains the internal structure
of a physical object, e.g., a system. Unlike the geographical view, the topological
view has no geographical resemblance to the real process. The layout and con-
tents of the topological view reflect in a sense the logical structure of the process.
The topological view is closest to the way information is structured in today’s
control systems. The topological view is probably also the most important and
general view needed.

The topological view of the entire Steritherm process consists of its different
systems. The topological view of the main product system contains the balance
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Figure 5.7 The topological view of the main product system

tank, the feed pumps, the heat exchangers, etc. The topological view is closest
to a normal process schematic, although in a process schematic the topological
views of several systems may be shown together. The latter is the case in the
Steritherm process where the flow schematic consists of the topological view of the
main product system, the warm water system, and the cold water system. The
topological view also applies to other systems such as the electrical, pneumatical,
and control systems. For example, the topological view of the electrical system
consist of the electrical circuit drawings. The topological view can usually be
decomposed into subunits. The topological view of the main product system at a
high abstraction level is shown in Fig. 5.7. By zooming in on the subparts, more
details in the view are shown, e.g., the heat exchanger sections that are part of
the heating section, or the balance tank and valves of the product supply.

The functional view: The functional view describes the process in term of
the goals that it should fulfill, the functions that are needed in order to fulfill
these goals, and the process components that realize these functions. As indicated
in Chapter 4, alternative formalisms for representing goal — function structures
exist. Which one that is used is probably not so important. In the project
we have chosen the MFM formalism described in Chapter 4.9 to represent the
functional view. In the Steritherm process it is natural to have a functional view
of the entire Steritherm process as well as functional views of some of its systems
such as the main product system, the electrical system, the water system, etc.
As in the case of the other views, the functional view has an internal structure.
The functional views of the different Steritherm systems typically are subunits
in the functional view of the entire Steritherm process. The functional view of
the entire Steritherm process is described in Chapter 7.4.7.

A simple example

As an example, consider a simple electrical circuit consisting of one battery and
one electric bulb. This can be seen as an object representing an electrical system
that have all of the three described views. The geographical, topological, and
functional views of the system are shown in Fig. 5.8.

The battery and the electric bulb are both objects. FEach of them take part
in more than one view. In the different views the objects have different iconic
representations, are connected to different objects, and have different attributes.
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The situation for the battery object is shown in Fig. 5.9. An object can be seen
as the sum of all its different views according to Fig. 5.10.
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5.2.3 Steritherm examples

The Steritherm process can be decomposed as described in Fig. 5.11. The
topological view of the Steritherm process in a composite object that consists of
the different systems, i.e., main product system, warm water system, electrical
systems, steam system, pneumatic system, control system, etc. FEach of the
systems can be described according to one or several of the standard views. The
possible views are shown in Table 5.1.

The functional views of the Steritherm systems are parts of the functional view
of the entire Steritherm process. The control system of the Steritherm process
can be described from several points of view. The topological view of the control
system shows how the knowledge-based control system is decomposed into pro-
cessing units, operator stations, knowledge bases etc. For each processing unit
the topological view shows the inputs and outputs of that unit and what they
are connected to, e.g., contactors, magnetic valves, circuit breakers, etc. The
topological view of the processing unit itself contains the function blocks, PLC
code, and rules that execute in that processing unit. The topological view of the
control system in various degrees of detail could look like Fig. 5.12.

The control logic such as PID controller, PLC code, rules, etc., is described in
the control system. It is, however, also natural to represent it in the topological
views of the different systems. For continuous controllers it is also natural to
have a special control loop view. The situation is shown in Fig. 5.13.
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5.2.4 Other systems and views

The described systems and views are not enough to describe all the knowledge
that we are interested in. Some structures that have no natural belonging are
fault trees, influence digraphs, graphical representations of various production
plans, maintenance planning, production, economy, etc. In order to handle these,
new views and/or systems have to be created. If the new structure naturally
apply to the existing systems, a new view can be added that perhaps only exist
for one system. If the existing systems are inadequate, a new system may be
created that can be described by already existing views or by newly defined
views. If a new system is created, it is not necessarily so that this system has a
physical correspondence, as is the case with the usual systems such as the main
product system, the electrical systems, etc.

Fault and alarm trees can be seen as separate views that either describe the
Steritherm as a whole or only exist for a certain system. Production plans can
be described by a separate view for the Steritherm process as a whole. The plans
in this view may be a subpart of the planning view of the entire dairy. The
extension of the views and systems is indicated in Table 5.2.
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Table 5.1 Steritherm systems and their views
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5.2.5 User interface parameters

The systems and views together and the various types of knowledge associated
with them make up the core of the common knowledge base. The user interface
parameters determine how this knowledge base contents should be presented to
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the different users. This is indicated in Fig. 5.14.

The user interface parameters defines the different user interfaces in terms of how
the contents of the main knowledge base should be presented. The complexity
of the user interfaces ranges from very simple interfaces consisting of, e.g., a few
dynamic data and some explanatory text shown on an alpha-numerical terminal
to a full graphical interface with pan, scroll, and information zoom possibilities
with multiple windows showing different information about the process.

In some cases the information in a user interface may have a direct mapping to
the systems and views. For example, an electrician may want to see the electric
circuit diagram which is represented by the topological view of the electrical
system. In other cases a user wants to see several views in the same picture.
This could be the case with the operator who perhaps would like to see a process
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schematic of the Steritherm extended with some dynamic displays. The standard
Steritherm schematic consists of the topological views of the main product system
and the water system. In this case the user interface parameters should define
that the information in these views should be combined together and presented
to the operator.

Tt is also possible that a user wants information from different views in different
pictures or windows and that different user wants information from the same
system presented in different ways, €.g., in different level of detail. A production
engineer is perhaps only interested in the status of the different substeps of the
process in his process schematic, whereas the operator wants information about
every process component. In this case the users want information about the same
view, the topological view, but they want it presented at different hierarchical
levels.

Furthermore, the user interface parameters should make it possible to specify
how dynamic information should be presented, i.e., as dynamic readout displays,
bar graphs, meters, gauges, trend curves, using colour changes, by animation, by
changing the amount of information presented, etc. It should also be possible
to specify that the presentation of the views and systems in the individual user
interfaces should be different from how they are presented in the browser. The
user may have preferences on icon shape, size, colour, and layout. Perhaps he
wants the zooming between different hierarchy levels to behave in a special way,
e.g., to skip certain levels. The actions of the various interaction objects in the
user interface should also be defined. Interaction objects may be touch or mouse
sensitive areas or buttons on the screen, type-in fields where the user may enter
numerical, symbolical, or textual information, etc. The actions of the interaction
boxes may affect the user interface itself, e.g., determine what picture that is
presented, or affect the contents of the common knowledge base, e.g., change
certain parameters, execute a certain part of the knowledge base language, ete.

5.3 THE KNOWLEDGE BASE LANGUAGE

In this section the structure of the knowledge base language will be discussed.
The existing language that today is closest to a real-time, object-oriented lan-
guage that combines rules, procedures, and equations is the language of G2.
Therefore, G2 is used as a staring point in the discussions. Several references to
and comparisons with G2 will be given.

5.3.1 Object structures

The system and view structures described previously can be implemented in an
object-oriented system that has support for multiple views and composite objects.
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The object instances can be of two different types: single-view objects and multi-
view objects. The single-view objects include objects that are predefined in the
language such as the basic data structures, rules, equations, procedures, etc., and
user-defined ob jects.

Multi-view objects represent objects that show up in more than one view or
context. In each view the multi-view object can be seen as an ordinary single-
view object, i.e., the entire multi-view object is the sum of a set of single-view
objects. Each single-view object within a multi-view object describes the multi-
view object from a specific point of view. The single-view objects have unique
attributes and attributes that are shared among several or all of the views of a
multi-view object. Each single-view object of a multi-view object can have an
associated icon and be connected to other objects. In that way, one view of a
multi-view object can be a part of another composite object. In fact, each view of
a multi-view object can be a part of a composite object. The situation is shown

in Fig. 5.15.

Multi-view instances are instances of multi-view classes. A multi-view class def-
inition describes a multi-view object according to

e the different objects that it should consist of,
e the attributes that should be common to all views in the object, and,

e if appropriate, the icon representation, attributes, and connections for the
object as a whole.
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The views in a multi-view class definition are defined in terms of the classes that
the views should be instances of. These, single-view, classes define the attributes,
behaviour, icon, and internal structure of the different views in a multi-view
object. The situation is shown in Fig. 5.16.

In the Steritherm example shown in Fig. 5.11, the entire Steritherm object is a
multi-view object. The topological view of this object has an internal structure
composed out of the different systems, i.e., the main product system, the warm
water system, the electrical systems, etc. Each of these systems is a multi-view
object, according to Fig. 5.17. The topological view of the main product system
has an internal structure composed of interconnected process components such as
the balance tank, pumps, heat exchanger sections, etc. These process components
are single-view objects that show how the multi-view object representing the
process component shows up in the topological view of main product system.
This situation is shown in Fig. 5.17.

Inheritance

Both multi- and single-view classes inherit from their super classes. Whether
multiple inheritance should be allowed or not is an open question. In a sense
multiple inheritance is already used when a multi-view class is defined in terms
of a set of single-view classes. However, one might also allow a single view in a
multi-view object to inherit attributes and behavior from more than one super
class. For most practical purposes it is probably sufficient to only allow single
inheritance combined with multiple views.
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A multi-view class can inherit from another class. The specializations that can be
made of a multi-view class only involve the attributes common to all views and the
views the class should consist of, e.g., a multi-view subclass could add or delete
attributes or views from its super class. One might think of the situation where
the internal attributes of the different views also are affected by a specialization
of a multi-view class. This functionality is probably not necessary. An exception
from this are the attributes that should be shared between views and which not
are shared by all views. The definition of which views an attribute should be
visible in is included in the multi-view class definition.

Attribute inheritance: It is important to be able to control the nature of
the inheritance that takes place from classes to subclasses and from classes to
instances. For example, in G2 the class definition specifies what attributes an
instance of that class should have. The attributes are the sum of the attributes
that are specific to the class and the inherited attributes. Upon creation, an
instance automatically receives its own set of attributes according to the class
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Figure 5.18 Class attributes and instance attributes

definition and with appropriate default values.

It is extremely important to also be able to specify that an attribute should
be common to all instances of a class, i.e., be a class attribute. In that way
information that is common to all objects of a class are only stored once, in the
class definition. Examples of information that is common to many objects are
installation and operation descriptions for a certain process component, fixed
component data, etc. For these attributes, every instance contains references to
its class definition according to Fig. 5.18.

Furthermore, it is important to be able to modify the exact nature of the inher-
itance of an individual attribute. One may want to specify that a class should
inherit some but not all of the attributes of its superclass. Similarly, one may
want to add an attribute to an instance that is not defined in its class definition.

Composite objects

The internal structure of a composite object is defined in its class definition.
The “composed-of” relationship specifies that an object component should be of
a specific class or of a subclass of that class. In the case of multi-view object
components, the “composed-of” relationship also specifies the particular view of
the corresponding multi-view object that the composite object should consist of.
The definition also includes the local names for the object components and their
interconnections.

Composite classes form a flexible way of specifying objects or functions which
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can be realized by replacing the class or parts of the class by a more specific
class. For example, during design of an installation a composite class “constant
flow function” can be defined and inserted into a structure, see Fig. 5.19. This
class does not in itself define the particular implementation of the constant flow
function and must, at a later stage in the design, be replaced by a composite
class that does. The constant flow function may consist of several objects, for
example a pump function, a sensor function, and a regulator function. Any one of
these function classes may be replaced by a class derived from it (and so inherits
the characteristics of the class). For example, the pump function class may be
replaced by a class which specifies a particular pump, giving the manufacturer
and model number. The completely specified “constant flow function” is shown
in Fig. 5.20. This method allows changes later on in the design process. A
particular implementation of a process function may be easily replaced by another
implementation of the same function.

Predefined object classes

The objects in the knowledge base are either of a predefined, built-in class; of
a class that belongs to a standardized, class library consisting of, e.g., standard
process components, control blocks, etc.; or of a class specific to a certain process
or application within the process.

The predefined classes are single-view classes that make up the basic primitive
classes in the system. Examples are predefined classes for rules, equations, vari-
ables, etc.
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Figure 5.20 Completely specified constant flow function

G2 solution: In G2 everything is an item. Examples are rules, class def-
initions, objects, messages, equations, graphs, text boxes, etc. The items
form a tree structure. G2 objects are part of this tree structure. The
object part is the only part of the tree structure that the user has any con-
trol over, i.e., can specialize into subclasses, can reference in expressions,
etc. Among the objects, a few are prespecified in the G2 language. These
include object the root class in the inheritance tree, and classes for the
different types of variables (quantitative, symbolical, logical, and text).

The separation between items and true, first-class objects in G2 is a problem.
In the knowledge base language this separation will not exist. Everything is a
first-class object and can be specialized and referenced to as appropriate.

The pre-defined classes will include

o rules,
e equations,
e procedures, and

o classes for the basic data structures in the language (which these are will be
described later).
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Static versus dynamic objects

The majority of the objects in the knowledge base will probably be static during
run-time, i.e., the objects will be created during the design stage. It is, however,
also necessary to be able to dynamically create and delete objects. An object
representing an alarm may be created when an alarm has occurred. This object
may have attributes representing the immediate cause of the alarm, the time
of the alarm, whether the alarm has been acknowledged or not, etc. Similarly,
objects representing operator actions may be created when an operator intervenes
in the process.

Object location

The non-constant parts of an object may be distributed out to a local database
during execution. This is specified for each variable. It should, however, also be
possible to specify this at the object level, i.e., that the non-constant parts of the
object should all reside on the same machine.

5.3.2 Connections and relations

Objects in the knowledge base have relations to other objects. Relations can
represent a physical connection between objects such as a pipe between two flow
objects or an electrical wire between two electrical components. Relations can
also represent an abstract relation between two objects such as a cause-effect
relation between a fault object and an alarm object, a dependence between a
model equation and a fault assumption in the DMP formalism, or an influence
between two nodes in an influence digraph. Relations can have a graphical rep-
resentation. For physical connection relations, graphical representations are very
natural. However, in other cases a graphical representation of the relation might
not be relevant.

G2 solution: In G2 a distinction is made between connections and re-
lations. Connections always have a graphical representation and may rep-
resent physical as well as abstract relations. Relations have no graphical
representation. Furthermore, connections are defined in terms of a connec-
tion class hierarchy where attributes can be associated with a connection
class. Connections can be unidirectional or bidirectional. Connection type
checking is performed to allow only connections of the same class to be
connected together. Relations have no corresponding relation hierarchy
and cannot have associated attributes. A relation can be specified as be-
ing one-to-one, one-to-many, many-to-one, or many-to-many. The inverse
relation of a relation can be defined, as well as whether the relation should
be symmetric (in which case the inverse relation is the same as the rela-
tion) or not. Both connections and relations can be used in expressions.
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Connections are created manually by the designer by graphically intercon-
necting objects. Relations can only be created and deleted dynamically
through an explicit rule action.

The distinction between connections and relations in G2 is unwise. The knowl-
edge base language will only contain one concept: a relation. Relations are de-
fined in a relation hierarchy and attributes may be associated with the relations.
The relation definition specifies whether the relation should have a graphical rep-
resentation or not, what the graphical representation should look like, what the
name of the relation should be, the type of the relation (one-to-ome, etc.), the
name of the inverse relation, whether the relations may be created dynamically or
not, whether the relation is symmetric or not, whether the relation is transitive,
etc.

In a way similar to pre-defined object classes, the knowledge base language also
contains a set of pre-defined relations. Some of these have already been described
such as the “composed-of” relation, the “nstance-of” relation, the “subclass-of”
relation, and the “view-of” relation.

Relations is also the way in which references to an object will be handled. The
multi-view object is an attempt to gather all knowledge about one object into a
single unit. Even with this concept it is impossible to avoid the situation where an
object is referenced ifrom some other object. The simplest case where this occurs
is when an object is a component of another composite object. The composite
object must be able to reference its component objects as well as vice versa. It
must also be possible for arbitrary objects to reference each other. One object
could, e.g., be the value of an attribute in another object. This can be treated
as a relation between the two objects. The situation is shown in Fig. 5.21.

In order to maintain the modularity of the knowledge base, it is important that
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it contains tools that can show all the relations that an object has, and that
inverse relations are established automatically. With this the designer has the
possibility to check all the places where a certain object is used or referenced.

5.3.3 Basic data types
The basic data types needed in the system are

real-valued variables,

e symbolic variables,

e logical variables, e.g, boolean variables,
e text variables,

e lists,

o vectors, and

o external data types.

The basic data types are available as pre-defined classes. Symbolic variables can
be compared to the enumeration type of ordinary programming languages. Text
variables contain text strings. Lists and vectors may be restricted to contain only
objects of a certain class or subclass of that class. The external data types are
used to represent objects that normally are outside the scope of the language.
These may include pixel bit-maps to represent pictures, hypertext cards, pro-
grams written in external languages, etc. Associated with the external types
should be information about how they could be referenced and manipulated.

The pre-defined classes contain a set of attributes that are common for all vari-
ables. These includes the current value of the variable, the specification of
whether a history should be saved for the variable or not, the default update
interval that determines how often a new value should be computed for the vari-
able, the validity interval that determines how long the current value of the
variable will remain valid (this will be further commented later), the data unit
of the variable, the processing unit where the variable should reside, etc.

5.3.4 Logical systems

The underlying logical system that the knowledge base language is built upon
is important. For boolean variables, the language can either be based on binary
logic, three valued logic, or fuzzy logic. In binary logic the variable has either
the value true or false. In three valued logic, the variable can also take the
value unknown, or none. Fuzzy logic uses real-valued truth values between 0
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and 1 where 1 means that the variable completely is described by a certain fuzzy
statement such as Very High and 0 means that the variable is not at all described
by the fuzzy statement.

G2 solution: In G2 the user can choose between different logical sys-
tems. This is determined for the individual variables by the value of the
validity interval attribute. The validity interval can either be indefinite
or specified by a time expression. If the validity interval is indefinite the
variable will always have a valid current value. This is similar to what
you have in an ordinary programming language. Variables with indefi-
nite validity intervals are called parameters and form separate classes. For
example, the possible values for a boolean logical parameter are true or

false.

The possible values for a non-indefinite boolean logical variable are true,
false, or none. Similarly, the possible values for a non-indefinite quanti-
tative variable are any real number or none. The value is none when the
last current value has expired. Any references to an expired variable will
force G2 to try to establish a new value for the variable. This could be
done by evaluating a formula for the variable, or by finding and invoking
a rule which concludes a new value for the variable. Variables with non-
indefinite validity intervals is an important way to solve the problem with
non-monotonic reasoning and will be further discussed in that context.

In G2, fuzzy truth values are partly supported. Truth values can range
from -1 to +1, where -1 indicates complete certainty that something is
false and +1 indicates complete certainty that something is true. A fuzzy
expression is defined by a logical “hysteresis” band such as

. tt-45 > 137 (+- 10)

The above expression defines a band of truth values that ranges from -1
to +1 as the value of tt-45 ranges from 127 to 147. In rules, conclusions
assume the truth value of the antecedent provided that the truth value is
higher than a specified truth threshold that lies between 0 and 1. When
fuzzy truth values are used in a logical expression, the logical operators
and, or, and not are equivalent to the minimum truth value of its operands,
the maximum truth value of its operands, and -1 times the truth value of its
operand. Using this fuzzy logic, simple, piece-wise linear fuzzy membership
functions can be constructed as shown in Fig. 5.22.

In the knowledge base language all three logical approaches are needed. One can
discuss if the selection between logical system should be done per variable basis
as in G2 or on some higher level.

According to what is common in the fuzzy area, fuzzy truth values should range
between 0 and +1 instead of between -1 and +1. In a complete fuzzy logic system
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Figure 5.22 Fuzzy membership functions in G2

there must also be support for the fuzzy implication or fuzzy relationship IF A
THEN B. This means that the rule system must be able to handle fuzzy conclusions
in a correct way.

5.3.5 Rules

The internal nature of real-time inference engines can differ quite substantially.
The nature of the inference engine also has a strong influence on what the rules
look and, hence, on the knowledge base language. Among the commercial ex-
pert systems available that are used for real-time applications, two approaches
dominate: the pattern-matching approach and the static link approach.

Pattern matching inference engines

Pattern-matching inference engines can be of two types: forward chaining pro-
duction systems and Prolog type backward chaining systems. Among real-time
systems the forward chaining solution is the usual. Examples of systems of this
type are Chronos, Nemo, ART, and Muse, though in Muse a forward chaining
production system can be used together with a Prolog style backward chaining
system.

The antecedent part of a forward chaining production rule contains patterns that
must match the contents of the database for the rule to be fulfilled. Variables
in the patterns can match arbitrary symbols. When the same matching variable
occurs in more than one place it must match against the same symbol in all
occurrences. Matching variables can be used for several purposes. One example
is for implementing generic rules that apply to all instances of some object class.
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The reasoning is performed in a recognize-act cycle that has three phases. During
the match phase, all rules that are fulfilled are collected into a conflict set together
with the corresponding matching database elements. During the select phase,
one rule is selected for execution according to some conflict resolution strategy.
During the act phase, the right hand side of the selected rule is executed.

Conflict resolution strategies either select rules according to some pre-defined
rule ordering or according to the state of the database. The most common of
the latter bases the selection on the recency of the matched database elements.
Rules matched by more recently added information are favoured.

Pattern matching is time consuming. Production systems usually use some incre-
mental, network-based matching algorithm that saves information about partially
matched rules. The most famous algorithm of this kind is the RETE algorithm
(Forgy, 1982). High-speed pattern matching is a substantial research area within
Al and several alternative algorithms, e.g., the TREAT algorithm, have been
developed as well as parallel implementations of the algorithms.

Pattern-matching expert systems are event driven. The inference engine is ac-
tivated when a new element is added to the database. This causes rules to be
matched and selected for execution. During the execution, database elements
are added, removed, or modified, causing new rules to be matched. In a process
control system, the rule execution might be invoked by incoming process data,
or by operator intervention.

Inference engines based on static links

Inferences engines that are based on static links do not perform any pattern
matching. Instead, static links or references are maintained by the inference
engine. The static links internally connect the variables and objects that the
rules operate upon with the appropriate rules, and rules with other rules. During
the inferencing, the inference engine follows the appropriate links to determine
which rule should be tested next. The static link approach is used in G2. The
static links are set up when an object or rule is created or modified.

(32 solution: G2 maintains the following links. A variable has links to
all the rules that mention this variable in their antecedents. Therefore,
if the variable receives a new value, all these rules will be tested through
forward chaining. Similarly, a variable has links to all the rules that may
conclude a new value for the variable. Hence, if a value is needed for
the variable those rules will be tested, through backward chaining. A
class definition has links to all the instances of this class. Using these
links, generic rules are substituted by a set of specific rules; one for each
instance.
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Inference engine selection

Comparing the efficiency of the different types of inference engines is difficult.
The lack of pattern matching in the static link approach gives reason to believe
that this approach is the most efficient. It is probably also the one that is easiest
to implement. Both approaches are general and can be used for all applications
including diagnosis, design, etc.

Ease of implementation and execution speed are important considerations since
the inference engine will execute on various processing units ranging from local
processing units to supervisory control units. The static link approach is therefore
what is preferred in the knowledge-based control system concept.

The distribution of rules to different processing units creates interesting aspects.
One such aspect is the links that must exist between rules and variables that
reside on different processing units. For example, changes in some variable in a
local processing unit may cause rules to be tested through forward chaining in
a supervisory unit. For implementation purposes, one may want to restrict the
forward and backward chaining to only take place within a processing unit.

Fuzzy rules: In addition tothe G2 style, static link, inferencing, it is important
that the user has the possibility to define that certain rules should behave as fuzzy
rules. As mentioned earlier, this affects the underlying logical system. However,
it also affects the inference engine.

Consider the following example. Two fuzzy rules both give a value to a fuzzy
variable.

Fuzzy If X is High
Then Conclude that U is Zero

Fuzzy If X is Normal
Then Conclude that U is Large-Negative

The fuzzy antecedents of the two rules may both have fuzzy truth values, le.,
both rules are fulfilled to some degree. Zero and Large-Negative are defined as
fuzzy membership functions. The result of the two rules is that the value of U is
determined by a new fuzzy membership function. This new membership function
is calculated from the membership functions of Zero and Large~Negative based
on the fuzzy truth values of the rule antecedents, i.e., they are weighted together
with the fuzzy truth values as weights. The fuzzy inference engine must also have
a way to de-fuzzify U, i.e., to calculate a non-fuzzy number from the resulting
membership function.
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Certainty factors

1t is an open question if certainty factors should be a part of the inference engine
or not. If so, there should be built-in possibilities to associate a certainty value
with every variable and with every rule, and to have these values propagated
during the inference process.

(2 does not support certainty factors. However, many rule-based, off-line expert
system tools use them. Systems with certainty factors usually allow a variable
to have several values at the same time, each with a different certainty. This
further complicates the inference engine. It is unclear if and how this can be
incorporated into a real-time, distributed, static link inference engine.

Rule invocation

Except from forward and backward chaining it should be possible to invoke rules
with a regular time interval, asynchronously when a certain event occurs, and
explicitly.

G2 solution: By associating a scan interval with a rule in G2, the rule
will be regularly tested. The events which may trigger an asynchronous
rule, or a whenever rule, are

e when a variable receives a new value,
e when a variable fails to receive a new value,
e when a relation is created or deleted, and

e when an object is moved.

In G2 explicit rule invocation can be done in various ways. Rules can be
associated with one or several classes and objects, and with user-defined
categories. All rules associated with a class, an object, or a category
may be explicitly invoked and tested. With this type of invocation the
rules are only tested once. It is also possible to explicitly activate and
deactivate rules and thereby start and stop their invocation. This is done
by activating and deactivating the workspace upon which the rules are
stored.

The above G2 functionality is almost sufficient. In addition to it one would like to
be able to catch when an object is created, modified, or deleted; and to explicitly
invoke rules on a specific processing unit.
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Rule objects

Rules should be a pre-defined class with certain default attributes. The default
attributes include the antecedent part; the conclusion part; the scan interval; the
classes, objects, and categories that the rule is associated with; the rule priority;
and the processing unit where the rules should execute.

It should be possible to define icons and relations for rules and to further spe-
cialize the pre-defined rule class.

Rule actions

The actions that should be available in the conclusion part of a rule should be
actions for concluding new values for a variable; creating and deleting objects and
relations; explicitly invoking other rules; calling functions or starting procedures;
and for enabling and disabling various parts of the knowledge base.

These rule actions are similar to those in G2. In addition to this G2, has several
rule actions that are used to affect the user interface. These actions include chang-
ing the colours of objects; revealing and hiding windows; moving and rotating ob-
jects; and writing information messages to the operator. In the knowledge-based
control system these functions will be defined by the user interface parameters.

5.3.6 Syntax considerations

The syntax of the knowledge base language could be of the natural language style
or of a conventional programming language style. Both approaches have their
advantages. A problem with natural language syntax is that expressions tend to
become very long and thus cumbersome to manually type in.

G2 solution: G2 is based on a natural language syntax. Expressions in

G2 look like

- the status of the pump connected to V-44 ..

- the status of any pump ..

- the rate of change per minute of tank-d4 between
1 hour ago and 3 hours ago ..

The user is supported by a syntax-oriented, mouse-driven editor which
prompts the user for the syntactically correct possibilities and lets him
select among those with the mouse. In that way the user does not have to
type in the expression.

An advantage with natural language style syntax is that it, for short expressions
such as rules, feels very natural. However, in larger expressions such as procedures
a programming language syntax that, e.g., uses dot notation to refer to attributes,
is more compact. Instead of the natural language style syntax
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Tf the level of tank-4 >
the high-level of tank-4
Then conclude that the status of tank-4 is high,

one would like to be able to say

If tank-4.level > tank-4.high-level
Then tank-4.status := high.

Therefore, it is probably wise to have the possibility to choose between both
syntaxes.

References to object and attributes

The language must provide possibilities to reference objects and their attributes
either by their names or through their relations with other objects. For multi-
view objects it must be possible to specify which view of the object should be
referenced, as an alternative to referencing the object as a whole.

Language expressions

Expressions in the knowledge base language are phrases that have a value which
is either a number, a truth value, a symbol, or a text string. The language
must support a large variety of different expressions including arithmetic expres-
sions, symbolic expressions, logical expressions, text string expressions, relational
expressions, fuzzy expressions, conditional expressions, history expressions, €X-
pressions over sets of objects, list and vector expressions, formatting expressions,
etc. The history expressions will be commented further in the section on real-time
aspects.

5.3.7 Languages versus meta-languages

One may consider having a knowledge base language with meta-language prop-
erties. For example, this would mean that the language and the syntax of the
language could be defined in the language itself and modified in the language.
This is something which is possible in, e.g., Lisp based expert system languages.
Considering the desire to write interpreters for the language that may execute
also on quite small local processing units this functionality is probably unwise.

A related issue is the question of how complete the language should be. Should it
be possible to easily implement all things that a user needs within the language
or should there be hooks in the language so that external languages such as, e.g.,
C-++, may be called? The latter is probably the case. If so, the interface between
different languages is an important issue.
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5.8.8 Functions and procedures

The language will have a set of built-in functions. These includes the standard
arithmetic functions, functions that convert between different time expressions,
string conversion functions, etc.

User-defined functions should be defined by the user. They include analytic and
tabular functions. Tabular functions makes it possible to define, e.g., non-linear
functions between variables as a table of numbers.

Analytic functions should be defined in terms of procedures that return values.
Procedures should be defined in terms of a block structured, sequential program-
ming language. Procedures could either be called as subroutines or started as
parallel execution tasks. It should be possible to associate procedures with ob-
jects and to call them using message passing, i.e., the procedures can be used
to implement methods. Procedures should be able to have attributes, local vari-
ables, and they might call or start other procedures. The language constructs
that are needed are the usual ones found in any conventional programming lan-
guage. Examples are

e iteration statements that iterate over numbers, lists, vectors, all instances of
an object, etc.;

e conditional statements such as if-then-else, case, etc.;
o loop statements such as while-do, repeat-until, etc.; and

e statements for waiting a certain time or until a certain condition is fulfilled.

Rule actions may be executed as statements in procedures.

G2 solution: G2 includes the above functionality for procedures and
functions. For historical reasons they distinguish between functions and
procedures. Procedures can only be stated explicitly. Functions can only
be called by the inference engine when evaluating a language expression
in, e.g., a rule condition, a formula, or a conclusion statement. Further,
functions may only contain one, possibly conditional, statement.

The above division between functions and procedures should be avoided.

It should be possible to associate a scan interval with a procedure. In this way the
procedure will be called or started at a regular time interval. Procedures should
have an attribute that determines in which processing units that the procedure
should execute. If a procedure is started explicitly through, e.g., a rule action it
should be possible to specify in which processing unit it should execute.
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5.3.9 Eguations

Equations should be a pre-defined class similar to rules. Instances of this class
may be used as the value of other object attributes. Attributes of equations could
be the type of the equation, i.e., differential equation or boolean; the different
parts of the equation; etc.

54 REAL-TIME LANGUAGE CONSTRUCTS

State-of-the-art commercial real-time expert system tools such as G2, Talos, and
Chronos contain different methods for partially solving the problems that exist
when an “intelligent” system should reason in time about a changing environ-
ment. The problems, which were discussed in the Feasibility Study, include
non-monotonic reasoning, temporal reasoning, reasoning under time constraints,
and handling of asynchronous events. A KBCS needs to combine the expert
system methods for solving these issues with conventional methods such as, e.g.,
fast sampling.

5.4.1 Validity intervals

A problem with reasoning about dynamic environments such as processes is that
measured sensor data is only valid for limited time. This time is basically de-
termined by the dynamics of the process. Hence, dependent variables computed
or concluded from these data will also have a limited validity,. When the data
changes, dependent variables may no longer remain valid and their values have
to be retracted, i.e., the system must have a non-monotonic behaviour.

The conventional solution to this problem is to sample everything as fast as pos-
sible and to recompute dependent variables each sampling interval. The solution
applied, e.g., in G2, is to associate a validity interval with measured variables
and to propagate this validity interval to dependent variables. When the validity
interval of a variable has expired the variable looses its value. References to a
variable that has a valid value will return that value. References to a variable
whose value has expired will cause a new value to be computed either by per-
forming a new measurement or by recomputing the value for the variable. The
method is exemplified in Fig. 5.23.

If, for some reason, measurements cease to arrive to the system, all time depen-
dent variables will eventually expire. Validity interval is one way to partially
solve the non-monotonicity problem which can be reasonably easily implemented
also in real-time systems, as shown by G2. A drawback with the approach is that
it does not maintain explicit dependencies between a concluded variable and the
variables that it depends on. Instead, only timeouts are propagated between the
variables. It is impossible to represent that a particular conclusion is dependent
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Figure 5.28 Validity interval based truth maintenance

on the specific value of some variable, and that it should be retracted immediately
if the variable changes its value.

A truth maintenance system (TMS) is a system that automatically maintains
dependency links between concluded variables. TMSs operate as huge book-
keeping systems that keep track of everything that is being done in the system.
Large hybrid expert system tools such as KEE and ART have TMS {facilities
built-in. To add them to a real-time system is, however, not realistic.

Therefore, the validity interval method is the only viable method apart from the
usual fast sampling. However, it has been pointed out by (Pavek, 1990) that if
the inference engine is fast there are indications that it may be more efficient to
recalculate the conclusions every time they are needed instead of caching them.
Validity intervals can be seen as a way of caching information. Maintaining the
cache may cause more overhead than is saved by a fewer number of calculations.
If so, validity intervals should be used only on measured variables or on variables
that are transferred over the network in order to reduce communication.

5.4.2 Timed actions

In the G2 system, actions in rules or procedures are executed at the time when the
rule or procedure is executed. It may be useful to have the additional possibility
to perform an action after a certain delay or at a certain time according to the
following example.

If ...

Then after 2 minutes
conclude that the status of pump-4 is normal

or
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Figure 5.24 Symbolical time history
If

Then at 3.00 PM
conclude that

5.4.3 History-based reasoning

Reasoning about old values of variables and over the time history of variables is
important. By monitoring rates of changes and variations, a skilled operator can
gain much knowledge about the process operation.

Old variable values

It should be possible to store histories for all variable. The processing unit in
which the history is actually stored is determined by where the variable executes.
The language should have built-in functions for referencing old variable values.

Numerical history functions

The language should have built-in functions operating on time histories of numer-
ical variables. These should include functions for the minimum and maximum
values of a variable over a certain time, and the standard deviation, rate of
change, and integral of a variable over a selected period of time.

5.4.4 Time intervals

Reasoning about how a variable behaves over a time interval is important. Sym-
bolic variables in combination with validity intervals makes it possible to reason
about the state of a variable at a certain time. Consider the following example.
Assume that a symbolical variable state has been defined. This variable can
take three possible values, normal, caution, and emergency. State has a
certain validity interval and is recalculated regularly. The time history for the
state variable is described by Fig. 5.24.
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Using references to old values of the variable it is possible to reason about the
state of the process at a certain past time. However, it is also necessary to be
able to reason about the time intervals during which state has had a certain
value. For example, during the interval between t1 and ¢2 the state was caution,
during the interval between t1 and t8 the state has been emergency two times,
etc.

Two possible alternatives for representing time intervals exist. First, one can base
the representation on time histories and provide them with a set of appropriate
symbolic history functions. Second, intervals can be represented as separate
objects.

In the time history solution, some of the appropriate functions are exemplified
below.

the number of times that state has been emergency
between 2 hours ago and 1 hour ago ==> 2

when did state first become emergency
between 15.00 and 17.00 ==> 15.23

the time when state received its valus
as of 1 hour ago ==> the start of the time interval
for state as of 1 hour ago

the time when state lost its value
as of 1 hour ago ==> the end of the time interval
for state as of 1 hour ago

etc. .

In the second alternative, advocated by Pavek (1990), special time interval ob-
jects are defined. A time interval object is created dynamically when the start
condition for the interval is true. The object has default attributes for its starting
time, ending time, and duration. When the end condition for the interval is true
the ending time is given a value. Interval objects are deleted when, e.g., current
time - the ending time > 4 days. As with all objects it should be possible
to define new interval classes with extra properties.

One can further extend the idea of support for reasoning about time intervals by
considering the following types of expression in the language.

If ever(X = 0) before time T
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1f always(X = 0) after time T
If ever(X > 5) during time [L,R]

If always(X > 5 & voltage = low) during time [L,R]

5.4.5 KEvents

Events are important entities in a temporal reasoning system. A true temporal
reasoning system must support reasoning about events and sequences of events.
Language support for the expressions exemplified below are important.

1f (X > 0) before (¥ < 10) in last 10 minutes

1£ (X = 1) after (Y > 5) in last 10 minutes

1f (X = 2) while (Y > B) in last 10 minutes

If (X > 0 & Y = 1) before (Z = 0) in last 10 minutes

etc.

Similarly to intervals, it is possible to represent events as objects that are created
dynamically and which can be referenced in language expressions.

5.4.6 Priorities

1t should be possible to associate priorities to rules, rule groups, procedures, etc.
The priority determines the relative importance of the corresponding activities
in time critical situations.

5.6 SUMMARY

Knowledge about a process is available in a variety of different forms. The main
knowledge base should be able to represent this knowledge in an as structured
and in the same time flexible way as possible.

This chapter has discussed two major issues: how to structure knowledge about a
process, and the nature of the language needed to represent this knowledge. Two
ways of decomposing a process has been described. The systems of a process
corresponds to the different flows of material, energy, or information. In the
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Steritherm process the systems are the product system, the warm water system
the cold water system, the pneumatic system, the electrical system, etc.

3

The views represent different ways in which an object, e.g., the entire process, a
system in the process, or a process component, can be described. Which views
that are used depends on the application. However, three views are of a more
general nature. The geographical view describes an object in a geographically
correct way. It may consist of 3-D, or 2-D descriptions, photographs, etc. The
topological view describes the internal structure of an object and is close to what
we today mean by a process and instrumentation diagram or a flow schematic.
The functional view describes an object in terms of the goals that it should
fulfill, the functions that are needed to fulfill these goals, and the components
that realize these functions.

A language for describing the main knowledge base has been discussed. The
language is heavily influenced by G2. In comparison, the language has a more
complex object structure that includes multi-view objects, has extended support
for reasoning about events and situations, and can be executed in a distributed
environment.

Several issues are still unclear. The separation between knowledge representation
as described in the knowledge base by objects representing systems and views
and how this knowledge should be presented for different users is one such area.
Distributed inference engines are another.




6.1 INTRODUCTION

This chapter describes the requirements for implementing the KBCS concept and
the limitations of current technology. In some areas, current technology is not
advanced enough to be able to implement the concept, but future development
of technology can be foreseen to a certain extent.

In order to implement the KBCS concept, certain hardware requirements must
be fulfilled, for example - CPU power, primary memory capacity, mass storage
capacity, and user interface hardware. We must also consider various aspects of
software technology.

6.2 REQUIREMENTS

The technology requirements can be divided up into the following points:

o Hardware technology
o Distributed or parallel processing

e CPU power
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e Primary memory capacity
o Mass storage capacity

e User interface hardware

e Software technology
e Programming Languages
e Operating Systems
e Software Standards
e Graphical User Interface Software
¢ Language technology for structuring knowledge
e Object-oriented Databases
e Al Technology

e Computer Aided Software Engineering
6.2.1 Hardware Technology

Distributed or Parallel Processing

It is not unlikely that KBCS concept will be implemented on distributed and/or
parallel computers.

Distributed Processing Distributed computer technology is well developed
from a hardware point of view. To a certain extent, one can increase the comput-
ing power available by adding more computers to the network. However, some
functions cannot easily be distributed, and therefore require a certain minimum
CPU power in a single computing node. From another point of view, the more
powerful the single CPU nodes can be, the simpler the network can be.

One must also take into consideration that the network will be heterogeneous, i.e.
it will contain many different computers with different CPUs, different instruction
sets, etc. The computers may even run different operating systems. Also to be
taken into account in the configuration of the network is the amount of primary
and mass memory available at each node, the presence of file servers, compute
servers, and specialized high-level servers such as inference engines, etc.

Parallel Processing There are many types of parallel processing hardware.
The type that is relevant to the KBCS concept is called Multiple Instruction Mul-
tiple Data, or MIMD. (Single Instruction Multiple Data or SIMD, such as vector
processors used for number-crunching in super-computers, are not suitable).
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MIMD processing is a less well developed area of technology than distributed
processing. There are a number of different approaches to MIMD parallelization,
from coupling together conventional microprocessors on a bus architecture, to
a point-to-point network architecture of microprocessors specially designed for
parallelization (such as transputers) with the associated problems of optimal
network topology.

CPU Power

Judging by the performance of current knowledge-based systems on state of the
art workstations and guessing the requirements of the KBCS concept to be sig-
pificantly higher, one comes to the conclusion that today’s microprocessors do
not have adequate performance. The typical CPU power of a state of the art mi-
croprocessor today is about 20 MIPS. It would not be unreasonable to estimate
that roughly 10 times that (about 200 MIPS) is required for the KBCS concept.
Further increases above that will certainly be beneficial because they will enable
simpler computer configurations to be used.

Increases in CPU speed must of course be matched by corresponding improve-
ments in primary memory a.Ccess speed, etc.

Primary Memory Capacity

Primary memory capacity of today’s computers is inadequate for the KBCS con-
cept. The complex software of the KBCS will require large primary memory in
order to execute effectively, both for the program code and for large amounts of
data that need to be in primary memory. In addition to the KBCS software,
there is a large memory requirement for the standard software for the graphical
user interfaces.

Typical primary memory capacity of a state of the art workstation today is about
20 megabytes. It would not be unreasonable to estimate that an increase of about
10 times (about 200 megabytes) is likely to be needed for the KBCS concept.

Mass Storage Capacity

The Main Knowledge Base integrates all of the knowledge about a complete
installation, and therefore requires a large mass storage capacity.

Typical storage capacity of a state of the art hard disk today is about 600
megabytes. The mass storage capacity required for a KBCS, that will store
all of the data for a complete installation, could easily be about 10 gigabytes or
more.

User Interface Hardware

The hardware necessary for the user interface is available today, i.e., megapixel
colour displays and interaction units such as keyboard and mouse.
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6.2.2 Software Technology

Software technology is very difficult to predict. It is possible to implement the
KBCS concept using existing software technology (for example with Unix and
C++), but it likely that future advances will make it very much easier.

Different aspects of software technology are discussed below:

Programming Languages

It is much more difficult to implement distributed systems than to implement
systems with a single CPU. This is one area where improvements in programming
languages can have a large impact on the implementation. The ideal language
for implementing the KBCS concept would have the following features:

o Object-oriented

e Parallelism and multi-tasking and distributed processing built into the lan-
guage.

Examples of these individual features exist today. For example, C++ is an ef-
fective object-oriented language. Occam is a language with parallelism/multi-
tasking/distributed processing built into the language in a natural way, and
there are also similarly capable versions of C available that have been inspired
by Occam. As yet there is no language which combines object-orientation and
parallelism/multi-tasking/distributed processing, but the most likely develop-
ment is that a new variant of C will emerge to meet this need. It is better to
have a variant of a mature language that is as far as possible compatible with
the original language than to have a completely new and immature language. It
is nevertheless very difficult to predict when a suitable candidate will appear.

Operating Systems

When using multi-tasking/parallel/distributed programming languages and par-
allel and/or distributed hardware, it is essential to have an operating system
that is specially designed to handle multi-tasking, parallelism and distributed
processing and effectively utilizes the hardware.

As with programming languages, it is better to have a variant of a mature operat-
ing system rather than a completely new operating system. The most interesting
alternative in this case is the Mach kernel from Carnegie Mellon University. This
is a Unix kernel which is specially designed to handle both parallel and distributed
processing and is hardware-independent.
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Software Standards

Standards lead to portability, increased market competition, lower prices, and
better system performance. Examples of recent standards that are relevant to
the KBCS concept are Unix standards (POSIX, X /Open, OSF, AT & T System
V version 4), graphics standards (X Window System, Display PostScript), and
networking standards (Ethernet, NFS).

Graphical User Interface Software

Graphical user interface software is currently maturing, and a number of industry
standards are becoming established: For example, window systems (such as the
X Window System), graphics standards (such as PostScript), and “look and feel”
definitions (such as OSF/Motif).

Language technology for structuring knowledge

Language technology is quite old but nevertheless still immature, as it is a difficult
technology. There are, however, a number of tools available for building compilers
(such as the Unix programs “yacc” and “lex”). With the current explosion of
object-oriented programming languages, object-oriented versions of these tools
should soon become available, and these should be easier to use.

Object-oriented Databases

The new technology of Object-oriented Databases is likely to prove very useful
in the KBCS concept. There is currently a considerable amount of research in
this field, and it is likely to increase enormously in commercial importance over
the next 5 years.

AT Technology

There was a great deal of interest in Artificial Intelligence and Expert Systems
at the beginning of the 1980’s. Interest declined when it proved difficult to inte-
grate the technology with conventional systems. Since then, the technology has
improved, particularly with the introduction of model-based expert systems and
the influence of object-oriented techniques. Object-oriented technology makes it
much easier to integrate Al techniques with conventional software technology.

Computer-Aided Software Engineering

CASE technology has been much talked about, but has not yet matured. The
CASE tools available are usually very specific to particular languages and oper-
ating systems, which has limited their use.
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6.3 FUTURE OF HARDWARE TECHNOLOGY

Some aspects of the development of hardware technology can be predicted with
reasonable accuracy. Thus we can estimate when the technology will be mature
enough to implement the KBCS concept.

6.3.1 CPU Power

Future development of microprocessor speed is reasonable predictable, partly
being a question of semiconductor technology, which is improving all the time.
Additionally, there are advances in CPU design, such as RISC, which further
increase the speed of CPUs, but which are less predictable.

Typical CPU power today: 20 MIPS.
Desired CPU power: 200 MIPS.
Current rate of increase: 10 times every 5 years.

Technology available: 1995.

6.3.2 Primary Memory Capacity

Primary memory capacity is largely a question of price, which is in turn deter-
mined by the size of memory that can be accommodated on a single chip. It is
therefore less meaningful to talk about when the capacities required are available,
and more meaningful to discuss when they will be not unusual.

Fortunately, the future development of technology in this area is fairly predictable
for next few years, being almost entirely a question of improvements in semicon-
ductor technology.

Typical capacity today: 20 megabytes.
Desired capacity: 200 megabytes.
Current rate of increase 10 times every 6 years.

200 megabytes not unusual: 1996.

6.3.3 DMass Storage Capacity

Like primary memory capacity, mass storage capacity is largely a question of
price, which is constantly decreasing as technology advances.

Rewritable optical disk technology has recently come onto the market. This tech-
nology promises to give the disk capacities required by the real-time knowledge-
based control system concept. Current optical disks are relatively slow, but are
expected to improve rapidly in the next few years.
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Typical capacity today: 600 megabytes per drive.
Desired capacity: 10 gigabytes.
Current rate of increase of disk capacity for a given price: 10 times every 7 years.

10 gigabytes not unusual: 1997.

6.4 CONCLUSIONS

Hardware-wise, the critical factor is CPU power. The other hardware factors are
mainly a question of price.

Software-wise it is very difficult to come to any conclusions. Today’s software
must be considered adequate for the KBCS concept because one can, in principle,
program anything with existing software technology. To look at it another way,
it is not possible to say that any particular technology (for example, a parallel
version of C++) is an absolute requirement to implement a KBCS.

What one can say is that future developments in software technology can make
the programming task much easier, and it is also possible to a certain extent
say what functionality future software technology will have. It is nevertheless
difficult to say when this functionality will be available. Software functionality
is a very much complex subject than hardware functionality (which is often just
a question of price and performance).

If one knows that a particular breakthrough will come in five years time, then
one could suggest waiting until then. But because software technology is unpre-
dictable, one cannot usually tell whether a breakthrough will come in 20 years
time, or in one months time. Such unpredictability means that it is probably
best to proceed with the software technology that exists today, rather than wait
an unpredictable period of time for something that may not come.




7.1 INTRODUCTION

A major part of the first phase of the project has been the implementation of two
prototypes. The prototypes are used to visualize some of the different aspects in
the system concept.

In the first prototype, the hypermedia tool Plus (1989) has been used to visualize
the functionality of a future operator station in a knowledge-based control system.
The prototype uses drawings, scanned-in pictures, graphics, colours, and sound
on a Macintosh II computer. The prototype was implemented as a master thesis
project by Peter Hojerback (1989).

The second, and largest, prototype uses the commercial real-time expert system
tool G2 from Gensym Corporation (Moore et al, 1987) for experimenting with
the structure of the main knowledge base. The areas of the two prototypes with
respect to the system concept are shown in Fig. 7.1.

G2 has been used to build up a model of a KBCS that controls, monitors, and
diagnoses a real-time, quantitative simulation of the Steritherm process which
also has been implemented in G2. The connection between the prototype and
the simulation model consists only of sensors used in the process and through
control signals to valves and pumps. This structure is shown in Fig. 7.2. The

KBCS contains

¢ PID controllers,
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Figure 7.2 The G2 prototype architecture

o sequence logic implemented using the Grafcet formalism,
e combinatorial logic,
e simple rule-based burn-on monitoring,

e model-based diagnosis according to the Diagnostic Model Processor method
developed by Thomas Petti,

o alarm tree based alarm analysis,




7.1 INTRODUCTION 149

The usual way of using G2 G2 in the prototype

Operator

Operator

f

G2 Interface

Figure 7.3 Different ways of using G2

o MFM (multi-level flow model) based diagnosis, and a

e product flow following system.

The core of the prototype was developed as a master thesis project by Michael
Christiansson and Pir Ericsson (1989). The prototype has since been contin-
uously extended. The system was originally implemented on a monochrome
Symbolics Lisp machine and has since been ported to, and further extended on,
a colour Sun Sparcstation.

It may seem strange that the expert system tool G2 has been used for imple-
menting the prototype. G2 represents the on-line expert system architecture
of today where an external expert system is used on top of a conventional dis-
tributed process control system with all the problems of multiple user interfaces,
communication bottlenecks, and redundancy previously pointed out. However,
even if not intended to be used in this way, G2 is powerful enough with respect
to representation to also allow the implementation of the conventional controllers
and logic. In that way G2 is a good system for experimenting with integration
along the lines of this project. The way we use G2 and the usual way of using
G2 are compared in Fig. 7.3. The G2 prototype has another interesting prop-
erty. It can, with moderate effort, be modified to control and monitor an actual
Steritherm process instead of the real-time simulator.

The two prototypes were developed before the system concept had stabilized.
Therefore, the terminology in the following description differs somewhat from
the system concept. This is specially the case with the term view. In the Plus
prototype, view refers to the user views defined by the user interface parameters.
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In the G2 prototype, the views correspond closer, though not exactly, to the
concept,

7.1.1 Outline of the chapter

The Plus prototype is described in Section 8.2. The various parts of the G2 pro-
totype are described in Section 8.3. The general conclusions from the prototypes
are summarized in Section 8.4.

79 A HYPERMEDIA OPERATOR INTERFACE

An important aspect of the real-time knowledge-based control system is the user
interfaces. There are many potential user interfaces to the system: interfaces for
designers, operators, maintenance personnel, and administration personnel. In
order to explore the user interface aspect, it was decided to make a prototype of
an operator interface to a KBCS.

7.2.1 The hypermedia tool “Plus”

The pre-prototype was made using the hypermedia tool “Plus”, which runs on
the Apple Macintosh. Plus has the two advantages that it offers the freedom and
possibilities of hypermedia technology to integrate text, pictures, and sound in a
free-form structure, and it has good tools for building programs.

Programs produced by Plus are structured as a number of full-screen pictures,
called “Cards”. The cards are linked together by associative links, which are in
turn coupled to icons called “Buttons”. By clicking a button with the mouse, a
new card is displayed with new information and graphics.

Plus contains an interactive graphics editor, and can import graphics and sounds
from other Macintosh programs. Plus also contains a powerful language called
HyperTalk for animating the graphics and coordinating the display of pictures
and use of sound.

The lack of windows or of pictures smaller than a full screen limits the flexibility
of Plus, but it was judged to be the tool at the time that would give the best
results in the prototype considering the limited time available.

7.2.2 The prototype

The prototype was designed to show as many aspects of the operator interface
of a KBCS as possible. Using the capabilities of the hypermedia program “Plus”
the different aspects were to be emulated in order to demonstrate the possibilities
of different ways of interaction and to evaluate their usefulness.

The aspects of the operator interface to be shown were:
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Figure 7.4 Organization of screens in the hypermedia prototype.

Operations information Economics
View View View

o Process flowchart

e Product information

o Economic information

o Process design information
e Process simulation

» Sequence control

o Expert system diagnosis

e Information zooming

o Different abstraction levels (What, How, Why)
e Alarm handling

e Operator advice

e Animation

o Visual effects

o Sound effects

In most cases only one example of each aspect was implemented. As in the rest
of the project, Steritherm was chosen as the demonstrator process.

Views

The interface screens are organized in a structure that is basically hierarchical,
but with extra associative links that cut across the hierarchical structure directly
to relevant screens. There are five main screens:
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Figure 7.5 The Main view

e Main View

e Operations View

e Information View
e Fconomics View

e Knowledge-base View

In addition to these five main screens, there are a number of other screens further
down in the view hierarchy. The organization of the main screens is shown in

Fig. 7.4.

Main View: The main view shows the highest level of abstraction. In the
centre of the screen is a Chernoff’s Face, which indicates the general health of
the process. In addition there is a number of icons which are linked to the other
four main screens, the Operations View, the Informations View, the Economics
View and the Knowledge-Base View, and to other important screens. The Main
View is shown in Fig. 7.5.

Operations View: From this screen it is possible to start and stop sequences
such as sterilization, production, rinsing, etc., and to check alarms. There are
also several icons which are linked to further information on the sequences, ¢.g.,
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Figure 7.8 The Operations view

flow charts and adjustment of process parameters, such as temperature, pressure,
and sterilization time. In short, one is in control of the dynamics of the whole
process from this view and its subviews. The Operations View is shown in Fig.

7.6.

Information View: The Information View gives access to static information
about the process. From a screen showing a card register, one is able to pick the
subview one is interested in. The Information View is shown in Fig. 7.1.

One of the subviews of the Information View is a flow schematic of the process,
which can be animated to show active pumps and colour-coded temperature
indications. The Flow Schematic View is shown in Fig. 7.8. From this subview,
further subviews show 3-D perspective views of the physical construction of the

process and individual components. The 3-D Perspective View is shown in Fig.
7.9.

Other subviews of the information view give component information, electrical

diagrams and product information.

Economics View: The Economics View indicates with the aid of charts how
efficiently the production runs.

Knowledge-Base View: The Knowledge-Base View emulates an interface to
the knowledge browser of the main knowledge base.
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Figure 7.7 The Information view

Sound effects

Sound effects have been introduced in many places in the program. The sound
effects available have been limited, so the ones used are not always the most rel-
evant, but are used to demonstrate the principle that sound can be an important
means of conveying information to the process operator.

Alarm Simulation

The alarm area is located at the top of the screen. There is an alarm simulation
button on the Main View which causes an alarm message to be flashed across
the top of the screen, accompanied by an audible alarm signal. The alarm also
affects the appearance of Chernoff’s Face on the Main View. The alarm signals
continue until the alarm is acknowledged by the operator. The simulated alarms
are motor faults.

Expert System fault diagnosis

There is a button on the Main View for the operator to activate expert system
fault diagnosis in order to find the possible causes of an alarm. This function is
not implemented in the prototype.
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Figure 7.10 Detailed view of pump

Zooming

From the 3-D Perspective View of the process, under the Information View,
individual components, such as pumps, can be selected and “zoomed” in order
to examine them in detail. Information about the components, such as pump
charts, is also available in the zoom views. There are several zoom levels showing
different levels of detail. Fig. 7.10 shows an example of a detailed view of a pump
which has been “zoomed” from the 3D Perspective View.

7.2.3 Conclusions

The hypermedia technology made it possible to quickly develop a “mock-up”
of an operator station. The prototype makes strong use of scanned-in draw-
ings, colours, and sounds, in order to visualize the possibilities that exist. The
prototype is not so deep. Most of what is seen predefined, static screens.

7.3 THE G2 PROTOTYPE

The main purpose of the G2 prototype is to examine the inner structure of the
knowledge-base. In order to do this, a G2 prototype of the main knowledge
base in a KBCS has been developed. The prototype controls and supervises a
numerical real-time simulation model of Steritherm that also has been developed
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within G2. Those readers that are not familiar with G2 are referred to Chapter
8 which contains a thorough presentation of G2.

The G2 prototype began as a master thesis project. The contents of the master
thesis are described in subsections 7.3.1 to 7.3.4 beginning with a description of
the real-time simulator in subsection 7.3.1. The main hierarchical structure of
the control system is described in subsection 7.3.2. This subsection also includes
the process schematics and the PID controllers. The Grafcet implementation of
the sequence logic is described in subsection 7.3.3. The monitoring and diagnosis
parts of the thesis project: the rule-based monitoring and the alarm tree based
alarm analysis are described in subsection 7.3.4. The model-based diagnosis is
described in subsection 7.3.5. Subsection 7.3.6 is devoted to the MEFM model of
Steritherm and its implementation in G2. Subsection 7.3.7 contains the product
following system as well as some other more or less implemented ideas.

7.3.1 The Simulation model

The Steritherm real-time simulator is based on G2’s internal simulator. The
simulator is object-oriented with objects representing the process’ components,
i.e., heat exchanger sections, valves, pumps, balance tanks, sensors, etc. The
simulation schematic composed of the interconnected simulation objects is stored
on a separate G2 workspace. This is shown in Fig. 7.11.

Each object has numerical attributes representing flows, pressures, temperatures,
simulation constants, etc. The flow and pressure simulation is static and the tem-
perature and level simulation is dynamic. The heat transfer partial differential
equation in the heat exchangers is approximated by a set of ordinary differential
equations by discretizing the space variable into three equally sized segments on
the hot and cold side of the heat exchanger respectively. The burn-on that occurs
in the heat exchangers is also simulated. The basis for the simulation models of
pumps, valves, and heat exchangers has been taken from Astrom (1974; 1989).

The mechanical regulators, such as constant pressure and constant flow valves,
that are part of the Steritherm are simulated. Various sensor faults can be
introduced in the simulator. The simulation consists of around 80 simulation
objects and 400 algebraic and differential equations which have been statically
tuned against real process data.

The main operation phases of Steritherm, i.e., production, sterilization, etc., are
made up of several subphases that sometimes can differ a bit from plant to plant.
The activation chart that shows the phases that are simulated in the model is

described in Appendix A.5.
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STERITHERM PROCESS

Figure 7.11 Steritherm simulation schematic

The structure of the simulation model

The objects that are part of the Steritherm model are pumps, valves, heat ex-
changers, tanks, a steam injector, indicators, transmitters, pipes, sources, and
finally a packing machine. The objects are organized into three class hierarchies:
one for the process components, one for the indicators and transmitters, and one
for the pipes. All of the classes and objects connected to the simulation model
have the prefix s- o distinguish them from the declarations of the corresponding
classes in the control system. The root classes in the hierarchies are s-process-
equipment, s-indicators, and s-connections. The class s-process-equipment is the
most interesting. It has the subclasses s-plate-heat-exchanger, s-pump, s-valve,
s-balance-tank, s-source-and-sink, and s-steam-injector.

The simulation objects have various different numerical attributes related to the
simulation. In common for all simulation objects are attributes representing
flows, pressures, and temperatures. The equations and attributes for the heat
exchanger sections will be described in detail.
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Figure 7.12 S-plate-heat-exchanger

S-plate-heat-exchanger: The icon of this class and its attributes are shown
in Fig. 7.12. The suffixes 1 and 2 are used to differentiate the two sides of a heat
exchanger. The suffixes 1, 2, and 3 in dtm, th, and tc are used to split the heat
exchanger into three sections which is necessary for the temperature equations
in the simulation.

The attributes concerning temperature, pressure, flow, density, heat capacity,
heat-area, and fluid-volume are rather self explanatory. In the rest of this section
only the attributes that may be difficult to understand will be explained.

The cv attribute corresponds to the flow resistance, i.e., the corresponding valve
equivalent of the heat exchanger. The delta — p attributes are the pressure drop
across the heat exchanger. The heat-transfer attributes are the total heat transfer
coeflicients from one side to the other. The attributes th, tc, dim, ah,ac,bh, and
bc are used in the temperature equations for the heat exchangers. The simulation
equations for this class are generic and can be found in its subworkspace.
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There are three subclasses of s-plate-heat-exchanger. The reason for this is that
some heat exchangers have water connections at both sides, some have product
connections, and some have one of each type of connection. These subclasses
have no attributes of their own but they inherit the attributes of the superior
class.

With respect to pressures and flows the heat exchanger is modelled as a valve,
i.e., the flow through the heat exchanger depends on the pressure drop across the
heat exchanger and a constant, the cv-number. The simulation formula for the
pressure drop is identical to the pressure drop of a valve, that is

2

Pq
P — Pout = =5
n [ 03

The simulation formulas for the temperature in the heat exchangers are a bit
more complicated. A dynamical model for counterflow heat exchangers taken
from Astrom (1989), described by the following equations has been used.

oT, oT, -
TS + ahm + apbp(Th —Tc) =0
o071, 8T,

-—5{— + ac—‘“—‘-‘—a(mc/l) + acbc(Tc - Th) =0

where
a=q/V inverse residence time

b= == npumber of heat transfer units
gpe

q = flow, m®/s
V = fluid volume
A = heat transfer surface

k — total heat transfer coefficient

p = density, kg/m®

¢ = specific heat capacity

[ — the length of the heat exchanger

@ = the space variable
The indices ¢ and h correspond to the cold and the hot side of the heat exchanger.

To simulate the model with reasonable effort the partial differential equation is
approximated by a set of ordinary differential equations by discretizing the space
variable. The discretizing is done by segmenting both the hot and cold side of
the heat exchanger into three equally sized parts. The heat exchanger in Fig.
7.13 shows the hot and cold side and how the segmentation is done.
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i)

Figure 7.13 Heat exchanger discretization

The approximation now becomes

dTh;
dj}: = @hi(3(Th(ir1) — Thi) — brsAT);)
chi
o7 = ei(~3(Tei — Te(iz1)) — bei AT ;)
where AT AT a
ATm,’ chi ch(i—1)

- In(ATchi/ AT hgio1))
ATchi = Thiiv1) — Tei

Finally, the last part is further approximated as
AT.,m' = 0.5(ATch,i + ATch(:'—l))-

The index i refers to one of the three segments that the heat exchanger is divided
into.

When implementing the equations in G2 the following notation was used.

ap; = Ah
G, = Ac
by; = Bh
b = Be
ATy = Dtmi
Thi = Thi
T, =Tc

i=1,2,3
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state variable : d / dt (the Tc-1 of any s-
plate-heat-exchanger PHE) = the Ac of
PHE * (3 * (the intemp1 of PHE - the
Te-1 of PHE) + the Be of PHE * the
DTm-1 of PHE), with initial velue 300

state varinble : d / dt (the Th-1 of any s-
plate-heat-exchanger PHE) = the Ah of
PHE * (3 * (the Th-2 of PHE - the Th-1 of
PHE) - the Bh of PHE * the DTm-1 of
PHE), with initial value 300

state variable : d / dt (the Tc-2 of any s-
plate-heat-exchanger PHE) » the Ac of
PHE * ( 3 * {the Tc-1 of PHE - the Te-2
of PHE) + the Bc of PHE * the DTm-2 of
PHE), wilh initial value 300

state variable : d / dt (the Th-2 of any s-
plate-heat-exchanger PHE) = the Ah of
PHE * (3 * {the Th-3 of PHE - the Th-2 of
PHE) - the Bh of PHE * the DTnr2 of
PHE), with initial value 300

state variable : d / dt (the Te-3 of any s-
plate-heat-exchanger PHE) = the Ac of
PHE * (3 * {the Tc-2 of PHE - the Te-3
of PHE) + the Be of PHE * the DTm-3 of

state varisble : d / dt (the Th-3 of any s-
plate-heat-exchanger PHE) = ihe Ah of
PHE * (3 * (the in-temp2 of PHE - the Th-
3 of PHE) - the Bh of PHE * the DTmr3

Prototypes

of PHE), with initial vaiue 300

PHE), with initial valug 300

Figure 7.14 G2 generic heat exchanger temperature equations

Notice that there are no indices in the first four lines. This is because the volume,
the heat transfer surface, the flow and the heat transfer coeflicient are the same
for all segments of one side. The above equations are represented in G2 as generic
simulation equations that apply to all instances of s-plate-heatexchanger. Some
of the above equations are shown in Fig. 7.14.

It may seem to be a rough approximation to divide the heat exchangers in only
three parts, but it proved to be sufficient to give a realistic behaviour of the tem-
perature in the heat exchangers. Reducing the load on the simulator is another
reason for having as few segments as possible.

When the flow on one side of the heat exchanger is zero, the temperature on the
other side is the same in all three segments, i.e., the heat exchanger is inactive
when simulating the temperature.

When tuning the heat exchangers with respect to the temperature, the flow and
the pressure, the heat transfer coefficient (k) and the cv-number were adjusted
until the simulated temperatures agreed with “real” values. This was a rather
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cumbersome and time consuming procedure. One reason for this was that the
temperature equations easily turned unstable. The equations are only tuned for
the production phase because it is the most interesting phase to simulate. This
means that in the other phases, the temperatures may not agree fully with the
correct temperatures.

A solution to the problem of the equations turning unstable would be to include
a set of equations for each phase. Each set of these equations can be tuned for
one particular phase and they would agree with the correct temperatures in every
phase. There are two reasons why we have not done this. First, the deviation
from the correct temperatures is rather small and does not affect the simulation
in any important way. Second, the number of equations would be very large.

Other simulation objects: The other important simulation objects are s-
pumps, s-valves, and s-balance-tanks.

The s-pump class has two subclasses: centrifugal pumps and positive displace-
ment pumps. The centrifugal pumps are simulated with a predefined increase of
pressure which is assumed to be flow independent. The displacement pumps are
modelled as constant flow sources. Neither of these pumps affect the temperature

of the liquid.

S-valve has three subclasses: s-1-to-1-valve, s-1-t0-2-valve, and s-2-to-2-valve. S-
1-to-1-valve is a valve that has one inport and one outport. The flow through the
valve can either be regulated manually or automatically. S-1-10-2Z-valve is a valve
with one inport and two outports. It is used to control the direction of the flow.
The incoming flow is directed to one of the two outports. S-2-to-2-valve is a valve
with two inports and two outports. This valve also controls the direction of the
flow. The two outports can be connected with either one of the two inports.

The s-1-to-1-valve class has the following three subclasses: s-constant-flow-valve,
s-constant-pressure-valve, and s-regulator-valve. S-constant-flow-valve is a regu-
lator valve that tries to maintain a constant flow through the valve. This valve
has the attribute flow-ref which is the reference flow. S-constant-pressure-valve
is a regulating valve that tries to maintain a constant pressure at the inport. It
has the attribute p-in-ref which is the reference pressure. S-regulator-valve is a
valve where the throttle that controls the flow through the valve is controlled by
an external regulator.

The regulator valves are modelled as ideal valves with a pressure drop that de-

pends on the flow through the valves. The model for the pressure drop is given
by

2
£q
P’in“‘Pout:-C',‘g“

where C, is the flow coefficient. The flow coefficient corresponds to the flow
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resistance, R, through a valve. The flow coefficient is given by:

By changing the cross area of a valve you change the flow coefficient (i.e., the
flow resistance) and thereby the flow and pressure drop across the valve.

The s-balance-tank class describes the two tanks that are used in the process.
The model of the balance tanks includes dynamic simulation of the tank levels
and the mechanical controller that controls the inlet flow.

Implementation of the simulation model

The Steritherm process consists of two main lines. The water line is used for
heating and cooling of the product. The product line is where the product flows
during the production phase. The lines contain several valves that have different
positions in the different phases. This means that the flow goes through different
objects depending on the current position of the valves. Furthermore, there are
some valves that sometimes are active and control the flow or pressure in the
lines, and sometimes are inactive and act as if they were not there. These are
some of the reasons why the simulation equations are difficult to write.

When simulating flow and pressure some problems arise. To calculate the flow
one has to look at the process from a global point of view. One must know all the
different objects that are involved in a particular line (compare with resistances
and currents in an electrical circuit), which objects increase the pressure, which
objects decrease the pressure, and so on. To be able to handle these problems,
a few global functions that calculate the flow in the different lines and during
the different phases have been implemented. By computing the flow (through a
call to a global function) at the first object in a line, for example the out-flow
attribute in the product tank in the product line, the flow can be propagated
together with the calculated pressure and temperature through every object in
the line. With this approach, the components in the lines can easily calculate
their pressure drops which also means that the pressure at different points in
the process can be calculated. The different lines in the process can be seen as
lines where the pressure at at both ends are known, with pumps that increase
the pressure and valves and heat exchangers that decrease the pressure. If the
pressure at both ends and the total flow resistance in the line is known the flow
can be calculated.

Burn-on simulation

The burn-on is only simulated in heat exchanger I, because the effect of the
burn-on is most observable there. The burn-on simulation is only active in the
production phase. The burn-on is simulated in two different ways. First, through
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manipulating the heat transfer coefficient of the heat exchanger, and second,
through manipulating the cv-number.

The heat transfer coefficient is manipulated through subtracting a state vari-
able, temp-burn-on-state-variable, from the coefficient. The state variable in-
creases with time. The increase rate is given by another variable, temp-burn-on-
characteristic. The value of this variable depends on the actual product in the
process. For a product that causes fast burn-on, this characteristic variable has a
greater value than for a product that causes slower burn-on. Decreasing the heat
transfer coefficient will require a higher temperature on the heating side of the
heat exchanger to keep the temperature on the other side of the heat exchanger
constant.

The cv-number of the heat exchanger is manipulated in the same way as the heat
transfer coeflicient (except that the variables now are called pressure-burn-on-
state-variable and pressure-burn-on-characteristic). Decreasing the cv-number
is the same as if the cross area of the pipe in the heat exchanger gets smaller,
which is what actually occurs during burn-on. This will result in an increase in
the pressure drop.

As mentioned before, the burn-on is only simulated in the production phase; but,
in all phases after the production phase the effect of the burn-on remains. The
effect is still there until the process has been cleaned. There are two different
kinds of cleaning in the Steritherm process, an intermediate cleaning (AIC) and
a final cleaning (CIP). After an intermediate cleaning the effect of the burn-on
is reduced by 50%. This is managed in G2 by using a whenever rule that tests
when the current phase is intermediate cleaning. After a final cleaning the effect
of the burn-on has vanished.

7.3.2 Hierarchical levels and views

Hierarchical levels are used to represent knowledge about the Steritherm process
at different degrees of resolution. The highest level in the hierarchy represents
the whole plant, which in this case is assumed to be a dairy. The lowest levels
represent the basic entities of the process, e.g., pumps. valves, heat-exchanger
sections, etc. With hierarchical levels, knowledge can be stored at the most
appropriate level in the knowledge base.

An object, e.g., the entire Steritherm process or a pump, contains knowledge
and information of different kinds that belongs to the object. This knowledge or
information can be the internal structure of the object, a description of the object
in terms of its functions and goals, a photo of the process, or textual information
about the process. These different types of information about a single object are
stored in different views.
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Figure 7.15 The dairy object and its view menu

The object-oriented model of Steritherm

At the highest level in the hierarchy there is a single object representing the
whole dairy. On top of the icon representing this object there is a button named
“yiews”. When clicking on this button a graphical view menu appears on the
screen. When clicking on the icon, outside the button, the attribute table of
the object appears. This table could contain attributes which are common to all
views of the object. Fig. 7.15 shows the dairy object and its view menu.

The view menu contains menu choices for the different views of the dairy object.
The menu choices are represented as icons with a button on top of them. When
clicking on the button, the view that the icon represents pops up. When clicking
on the icon, outside the button, the attribute table of the view object shows up.
This table contain attributes concerning this particular view only. The attribute
table of an object contains references to the different view objects associated with
the object.

On every view (except the top level view) there are two buttons. Clicking on
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the “Superior view” button is equivalent to moving up one level. Clicking on the
“Superior menu” button causes the view menu of the above object to be shown
and from this one can move around horizontally between different views of the
same object.

The menu of the top level object (the dairy) consists of the following menu
choices:

o Structural: This view gives a more detailed description of the inner structure
of the dairy. The structural view is equivalent to what is called the topological
view in the system concept.

e Production: This view may show information concerning raw product con-
sumption, production of the different end products, process or line utilization
and status, historical statistics, production plans, etc.

o Economy: This view may show the economical aspects of the dairy, e.g.,
return on investment, profit, down-times, consumption of electricity, steam,
water, etc.

o Physical: This view may show photographs and drawings of the plant, room
and floor layouts, etc. This view is similar to the geographical view in the
concept.

e Functional: This view will give a functional description of the plant using the

MFM formalism.

Of these views, only the structural view is fully implemented in the system.
The other views are only present to show the possibilities. The structural view
consists of a number of different objects, that give a more detailed description of
the dairy. Fig. 7.16 shows the structural view of the dairy. The objects at this
level are briefly described below.

e Administration: This object consists of information regarding the staff of the
dairy, e.g., employments, shifts, names, addresses, wages, etc.

e Silo tanks: In this object, there is information about the different raw prod-
ucts used in the dairy.

o Spare part inventory: This object represents a database about all spare parts
that are available in the dairy.

e UHT line: This object represents the production line for UHT treated prod-
ucts.

o Pasteurizer line and cream line: These two objects represents two other kinds
of production lines in the dairy.
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Figure 7.16 The structural view of the dairy object

e Computer system: This object contains information about the whole com-
puter system used in the dairy, e.g., networks, terminals, process control
units, operator consoles, etc.

o Store house products: This object consists of information about the end prod-
ucts.

Of these objects, it is only the UHT-line that has further internal structure. The
menu of the UHT-line contains the same type of views as the dairy menu. Of these
ment choices it is only the structural view that is implemented. The structural
view of the UHT-process consists of a silo-tank, the actual Steritherm process,
and the packing machine. Again it is only one object, the Steritherm process,
that is implemented. This object has the same views as previously described and
the additional menu choice operation.

The Steritherm structural view: The Steritherm structural view contains
the process schematic. The schematic, shown in Fig. 7.17, contains intercon-
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Figure 7.17 The Steritherm structural view

nected objects representing the process components and the control system com-
ponents (PID controllers and guards). The process component objects may con-
tain various kinds of information such as qualitative information about the state
of the components, textual information, data sheets, maintenance information,
etc. Some of the process components have an internal view structure in the same
way as previously described. The Steritherm structural view in the G2 proto-
type is roughly equivalent to the sum of the topological views of the main product
system, the warm water system, the cold water system, and the steam system.

Animation is used to indicate current valve position, tank levels, and whether the
pumps are in operation or not. Colours are used to indicate the current media
in the product line (water or product). Pipes that are not active in the current
phase, i.e., they have no flow, are hidden. The use of animation in the knowledge
base does not agree with the system concept. The graphical interface to the
knowledge base in the G2 prototype corresponds to the knowledge base browser.
In the concept, animation should only be used in the different user interfaces.
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The sensors have graphs showing their history values on associated workspaces.
The PID controllers are implemented as generic discrete simulation equations
which are executed by the G2 simulator. G2 version 2.0 allows the use of pro-
cedures to represent the PID algorithm. This would give a more realistic imple-
mentation for the code of a PID controller. The regulators have different views
for showing the trend curves of the controller, inspecting the controller code, and
changing the controller parameters.

The Steritherm functional view: The functional view will contain the MFM
model of the Steritherm process described in Section 7.3.6. At the moment the
MFM model has not been integrated with the rest of the G2 prototype.

The Steritherm production view: The production view contains a graph
showing the different process phases during the last 24 hours.

The Steritherm operation view: The operation view contains a menu choice
for selecting between the sequence net view, the alarm tree view, the model-based
diagnosis view, and the product following view. These views are further described
in the rest of the chapter.

7.3.3 Sequential logic using Grafcet

The sequence net view contains the sequential logic portion of the control system.
The sequence net is implemented using the Grafcet formalism (GREPA, 1985).

The Grafcet formalism consists of steps, transitions, and parallel bars. The steps
contain the actions that should be performed in a certain phase, i.e., opening and
closing of valves, starting and stopping pumps, etc. Steps could be structured,
i.e., consist of an internal step-transition sequence. Transitions contain the con-
ditions for going from one step to the next. Parallel bars are used to split up
a sequence into parallel branches and to subsequently join them together again.
Markers are moved around in the sequence net indicating the current active step.
The Grafcet net for the Steritherm process is shown in Fig. 7.18. The sequence
net contains the four major phases of the plant: sterilization, production, in-
termediary cleaning (AIC), and final cleaning (CIP). It also contains the phase
Sterile-w, where the process waits for the operator to decide the next phase
after sterilization. Each of the major phases contain several substeps.

G2 implementation

The Grafcet implementation is based on G2’s activatable subworkspaces. Steps
have subworkspaces containing either an internal structure or rules that decide
the actions that should be performed in the step. The workspace is activated
when the step begins and deactivated when the transition following the step
is true. Actions that should only be executed once when the step is started are
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Figure 7.18 The sequence net

implemented as G2 initially rules. Actions that should be performed continuously
when the step is active are implemented as scanned rules. Since rules that are
executed immediately before a workspace is deactivated are not available in G2,
there is no possibility to specify actions that should be executed before the step
terminates.

Transitions also have activatable subworkspaces. Each transition subworkspace
contains one rule that tests the transition condition. The rule is scanned every
second. A transition is only active, i.e., its rule is scanned, when it should be so
according to the Grafcet standard. A rule condition can test on the time spent
in the previous step.

The Grafcet net is executed by means of 12 generic rules, mainly of the whenever
type. The rules can be divided into two categories. Rules in the first category
are activated when the transition condition of a transition becomes true. The
second category is invoked whenever a marker object is moved. A rule in the
first category performs the following actions.
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1. The marker is moved from the current step to the next step after the transition

that just has been fulfilled.
2. The subworkspace of the “old” step is deactivated.

3. The subworkspace of the “new” step is activated.

Additional actions are required for structural steps and parallel bars. The rules
in the second category performs the following actions whenever a marker has
been moved.

1. Sets the time-of-enter attribute of the step that has received the market to
the current time.

9. Deactivates the subworkspaces of all transitions connected directly after the
step from which the marker was moved.

3. Activates the subworkspaces of all transitions connected directly after the
step to which the marker was moved.

As before, additional actions are required for structured steps and parallel bars.

The small numbers of generic rules that are needed to implement the Grafcet
formalism show the power of G2’s generic rules. The Grafcet formalism has
many applications apart from the pure sequential control for which it is mainly
used here. It could, e.g., be used to structure monitoring and diagnosis rules
after which process phases they should be active in. This is partly done in the
prototype. The rules for burn-on monitoring are placed on the subworkspace of
the production step. Thus, they are only active in that process phase.

Additional features

It is desirable to be able to connect other types of knowledge and information
to steps and transitions. To the steps it should be possible to associate textual
descriptions of what is happening in that step, information about normal condi-
tions or constraints that should hold in the step, information about faults that
may occur in the step and which the operator should be prepared for, etc. This
has not been implemented.

7.3.4 Monitoring and alarm analysis

Within the master thesis project two monitoring and diagnosis style applications
were implemented: a simple rule-based system for on-line monitoring of the burn-
on and a more advanced alarm-tree based alarm analysis system.
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Burn-on monitoring rules

if the integral in seconds of diff-press-
transmitter during the last 1 minute > 82
and confirmed is false then show the
subworkspace of burn-on-alarm

if the rate of change per hour of diff-press-
transmitter during the last 5 seconds >
100 and confirmed is false then show the
subworkspace of bum-on-alarm

if the rale of change per hour of the block-
output of controk-44 during the last 10
seconds > 13 end confinned is false then
show the subworkspace of burn-on-alanm

Figure 7.19 Monitoring rules

Rule-based burn-on monitoring

The burn-on that occurs in the heat exchanger sections cannot be directly mea-
sured. In a real Steritherm process the time between cleanings is predetermined
depending on the product. Products that are more sensitive to burn-on or for
which the burn-on rate is high have shorter production times.

The motivation behind the rule-based burn-on monitoring is to continuously
monitor the trend curves of variables that indirectly give indications of burn-
on. The two variables used are the differential pressure on the product side of
heat exchanger section I and the control output signal of PID controller P1-44
that controls the sterilization temperature in the heating tube. Burn-on causes
fouling on the inside of the heat exchanger pipes which decreases the cross section
area and thus increases the pressure drop over the heat exchanger. Burn-on also
decreases the heat transfer coefficient in the heat exchanger. To maintain the
sterilization temperature, the temperature of the hot water must be increased.
PI-44 achieves this by opening the steam valve V-44,

The supervision is performed by three rules. Two rules supervise the differential
pressure, one using the mean value and the other using the rate of change. The
third rule supervises the controller output using the rate of change. The action
of the rules causes a workspace to appear which contains a recommendation to
the operator to manually stop the production. The rules are shown in Fig 7.19.
It would have been natural to also include a rule that warns the operator when
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the production time exceeds a certain specified maximum-allowed-continuous-
production-time parameter.

The rules are stored in the production step of the Grafcet sequence net. Alter-
natively or additionally one would like to store the rules in a rule block on the
process schematic with graphical connections to the differential pressure trans-
mitter and to the controller output.

Alarm-tree based alarm analysis

The motivation for the alarm analysis system is to assist the operators and ser-
vice personnels with finding the physical fault that has caused an alarm. The
Steritherm process control system generates alarms to the operators when, e.g.,
the temperature in the holding cell is lower than the sterilization temperature,
137°, or when the level in the product balance tank falls below the low level limit.

The most serious alarm is the low temperature alarm in the holding tube. The
control system has built-in alarm logic that ensures that no unsterile product is
packed in the packing machine. The alarm logic includes a sequence that involves
closing valve V71 and thus recirculating the product to the balance tank. This
alarm logic has been implemented in the G2 prototype. When the process is back
in a safe state it is the task of the operators and the maintenance personnel to
find out what might have caused the alarm.

The fault localization in the alarm analysis system is based on alarm trees origi-
nating from the Steritherm designers at Alfa-Laval. The low temperature alarm
part of the tree which is the only part that has been implemented in G2 is shown
in Section A.5.

The alarm tree is made up of a number of nodes, where the top node represents
the alarm and where the leave nodes represent either a physical fault, e.g., a
broken pump rotator, or a functional fault, e.g., the steam boiler is not working.
The intermediate nodes describe only functional faults. These functional faults
differ from the physical faults in the leaves in the sense that it is possible to
further encircle the fault from these nodes. There are two kinds of functional
faults.

In the first case, the system knows for sure that the fault must be found in the
subtree of this functional node. A node like this can represent the fact that
the pressure in the holding tube is too low. This in turn is a consequence of a
question to the user, e.g., “Is the pressure in the holding tube low?”. By knowing
this, it is possible to prune all other parts of the tree and only concentrate on this
subtree. If it turns out that no fault could be found, this does not mean that the
fault may be found in another part of the tree. Instead this subtree is incomplete
and has to be reconstructed if it should be able to locate the real fault.

The second type of functional fault in the intermediate nodes is used to divide
the analysis into smaller and smaller parts. In these nodes, the system cannot
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know if the fault is in the subtree of the node. The system tries to verify the
fault hypothesis of the node using backward chaining. If it fails, the system will
try to locate the fault in other nodes in the rest of the fault tree.

To verify whether a specific leaf node represents the fault or not, a question is
asked to the user. In the question, the possible fault is described. If the answer is
positive, the fault analysis is over, otherwise the analysis continues. The order in
which the nodes are examined is determined by depth-first traversal. The nodes
are arranged so that the nodes representing the most probable fault are examined
first.

The questions in the leaf nodes differ from the questions in the intermediate
nodes. The questions in the intermediate nodes are used to lead the system in
the right direction, and by that, exclude the other parts of the tree. The questions
in the leaf nodes are used to verify whether the node represents the actual fault
or not.

The alarm analysis is implemented with fault objects and rules. The objects
represent the nodes in the tree, i.e., the alarms, the functional faults, and the
physical faults. The fault objects are graphically interconnected to form the
alarm tree shown in Fig 7.20. The rules are used to traverse the alarm tree,
ask questions to the user, and take appropriate action when an answer has been
given. The rules are invoked using a combination of explicit invocation, backward
chaining, and forward chaining. The analysis is started on demand, when the
operator clicks on a button.

Extensions: Several extensions to the alarm analysis are possible. The rules
that traverse the alarm tree are not general. They build up a structure parallel to
the fault tree. It is desirable to combine these structures. Animation and colours
could be used to show the status of the alarm tree traversal. Explanations to
the questions asked by the system have not been implemented. The physical
faults are associated with process components, e.g., they represent some fault in
a specific valve or pump. This connection is not explicit in the knowledge-base.
Establishing the connection would make it possible to go between the fault object
in the fault tree and the process component in the process schematic. It would
also be possible to, using, e.g., colours, dynamically indicate the possible fault
areas in the process schematic as the physical faults are encircled and finally
localized.

7.3.5 Model-based Diagnosis

After the master thesis project was finished, Thomas F. Petti from the University
of Delaware joined the project and added a G2 implementation of his approach
to model-based diagnostics — the Diagnostic Model Processor method (DMP)
described in Section 4.5 — to the G2 prototype.
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Figure 7.20 A part of the alarm tree

Object and Formula Definitions

The diagnostic model processor is implemented in G2 using three basic objects.
The first is the model equation, the second is the assumption, and the third
is a dependence which characterizes the relationship between the equations and
assumptions. Figure 7.21 shows the object icons and their relationships; the
dependence object is the connection between the equations and assumptions.
The table for the model equation object is also shown. The atfiibutes for this
object include the name of the equation, a formula used to calculate the residual,
a formula to calculate the tolerance limits, and the satisfaction value (sf). As
described in the figure, the value of sf is calculated using Equation 4.2 for all
model equations through a single generic formula. This generic equation is shown
in figure 7.22; the equation is written so as to perform the calculation for all
instances of the object “model-equation”.
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Figure 7.21 G2 objects and their relationships.

let the satisfaction-value of any model-
equation M = (if the residual of M > 0
then (the residual of M / the tol-high of
M) A n /(1 + (the residual of M / the tol-
high of M) * n) else -1 * (the residual of
M/ the tol-low of M) A n /(1 + (the
residual of M / the tol-low of M)  n))

Figure 7.22 Example of a generic formula, calculation of sf.

The other object types have similar tables which describe the attributes associ-
ated with the object. The dependence object (connection) has attributes which
characterize the type of relationship (implicit or explicit), a formula to calcu-
late the partial derivative of the equation with respect to the assumption, and
a sensitivity attribute which is handled by a generic representation of Equation
4.3 for each dependence. Each assumption object has a name and a failure like-
lihood attribute. The failure likelihood is calculated for each assumption by
another generic equation (Equation 4.4). The G2 representation of this equation
is shown in Fig. 7.23. A significant feature of the implementation is the fact
that the process model can be examined and maintained through these objects
with no concern for the underlying methodology, which is handled by the generic
formulas. ‘

A variation of the model equation object described above is also used which allows
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Calculation of failure-likelihood

let the failure-likelihood of any assumption
AS = (the sum over each dependence D
connected to AS of (the sensitivity of D
* (if there exists a model-eg-type at an
end of D and the status of the model-eq-
type at an end of D is active then the
satisfaction-value of the model-eq-type at
an end of D else 0))) * (if the sum over
each dependence D1 connected to AS
of (abs (the sensitivity of D1)) /= 0 then
(1 7 the sum over each dependence D2
connected to AS of (abs (the sensilivity
of D2))) else 0)

Figure 7.23 Example of a generic formula, failure likelihood.

for operator interaction with the methodology. Since in the Steritherm process
there are many sensors which are not connected to the control computer, these
values could be used if the operator supplied them. A type of model equation
which can be activated when certain quantities are supplied is therefore also
available. These can be used as additional evidence when a failure is detected
and further discrimination between faults is necessary.

A total of 18 model equations are used on the Steritherm process with connections
to 17 assumptions. Additionally, 7 model equations which are activatable with
supplied values are available. Some of the assumptions which could be applied to
these equations were not considered (e.g., piping leaks); it should therefore not
be expected that the analyzer be capable of diagnosing these failures.

The model equations and fault assumptions are stored on a model-based diagno-
sis subview under the operation view of the Steritherm process. The graphical
dependence connections are normally hidden. Model equations and fault as-
sumptions have menu choices that by which the dependencies of that object can
be shown and hidden. The workspace is shown in Fig. 7.24 with most of the
dependencies hidden.

Presentation of Faults

Failure conditions are indicated on the process control schematic through the
creation of a dynamic object called a fault alert. A fault alert is created when
the magnitude of any failure likelihood exceeds 0.5. The fault alert appears as an
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Figure 7.24 The model-based diagnosis workspace

exclamation mark on the schematic near the possible fault occurrence. The fault
alert is orange if I is between 0.5 and 0.8 in magnitude and red if it is greater
than 0.8. Associated with each alert is a source (the assumption it is indicating
a problem with) and a menu access to a graph of the F value. Figure 7.25 shows
a schematic with an indication of a failure of the temperature sensor TT42 near
the pointer, also shown is a graph of F for the TT42 assumption.

Improved fault discrimination

As previously discussed, the diagnostic model processor allows for the detection
of non-competing multiple faults. This often leads to several assumption’s failure
likelihood exceeding the 0.5 presentation limit when a single failure has occurred.
This is illustrated by the simple example in Fig. 7.26. If a; is the true fault, and
all sensitivities are similar, both equations, ¢; and ¢; would have large values of
sf. This would lead to high failure likelihoods of both a; and aj, simply due to
the connection scheme. More complicated, but similar, cases often occur.

To limit the number of faults presented to the operator and to direct attention
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Figure 7.26 Equations and assumptions illustrating discrimination problems.

to the most probable conditions, a procedure is used to check the causal re-
lationships between the assumptions. The procedure basically assumes a fault
condition and checks the expected behavior of the model equations to see if other
failure likelihoods should exceed 0.5. If this is the case, the assumption is said to
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“explain” the appearance of the other assumptions.

The procedure call is made with two assumptions as arguments (a1 and a»)
whose F' values exceed 0.5. The purpose is to try to establish the relation a; is
“explaining” a;. The procedure uses the most sensitive model equation which is
connected to a; to estimate the magnitude of the deviation of a,, assuming that
the deviation of the equation is caused solely by a deviation of a;.

€j

-DEV(al)est =

Q:LQ;
2}

ar

where c; is the most sensitive equation connected to a;. Using this estimate of
the deviation and the partial derivatives of the connections surrounding a;, the
residuals and satisfaction values of all equations connected to a; can be estimated.
The residuals are estimated based on DEV (a)es::

Jc;
€jer = DEV(a1)est gjl‘

and from these values, Equation 4.2 is used to estimate satisfaction values, sf.,;.
Finally, the vector sfe,; is used to calculate a failure likelihood of a; using
Equation 4.4. If the calculated value of F, is close to the actual value of F
(|Fo — F3,,,| <0.2), then a; is said to “explain” a,.

If any assumption is not “explained” by any other assumption, it is considered
top-level and is marked by a green rectangle around its fault alert. Also, if
assumption a; “explains” ay and a, also “explains” a;, they are both considered
top-level and are indicated as such. Finally, if any assumption cannot “explain”
itself, then presentation of this failure is suppressed completely (no fault alert).

Relating this procedure to Fig. 7.26, if a; is the actual failure (all sensitivities
being about the same), the procedure would identify assumption a; as “explain-
ing” the appearance of assumption a;. a; would not be able to “explain” ay back,
so only a; would be considered top-level and marked with the green rectangle.
Conversely, if a; were failing, the failure likelihood of a; may exceed the 0.5 pre-
sentation threshold. Since, model equation ¢; would remain satisfied, assumption
a; would not be able to “explain” the appearance of itself, and presentation of
its fault alert would be suppressed.

This procedure limits the number of fault alerts on the schematic and the green
rectangles show the most likely fault conditions, although not necessarily the only
conditions. This approach to the problem improves the discrimination between
faults without discarding any information (we still have the original F values for
all assumptions). There are cases, however, where perfect discrimination is still
not possible. In these cases the use of operator input and the activatable model
equations can greatly improve the diagnosis.
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Results from Steritherm

Many of the failure possibilities in the Steritherm process were examined to
determine the effectiveness of the diagnostic model processor. The method is
quite capable of identifying the correct fault condition. Only in a few cases is the
correct result accompanied by the possibility of failures which are not occurring.
These cases, however, are as expected because the model equation relationships
are identical for a few of the assumptions.

Two types of fault simulations are included in the Steritherm simulation to allow
for step and ramp changes of certain values. Some of these failures do not affect
the process, such as non-controlled sensor values, and others do, such as controller
or pump failures. Figure 7.97 illustrates the various equations and assumptions
considered in the Steritherm process and the relationships between them. Within
G2, the various connections can be made visible and hidden on command so that
relationships between the objects can be easily handled and inspected.

Table 7.3 shows the ultimate results from the various experiments that were
performed on the process. The table is arranged such that each row represents a
different simulated fault, and the columns show the response of each assumption
considered (also refer to figure 7.27). If the box is blank, this indicates that the
F value for that assumption remained less than 0.5. If the failure likelihood is
greater than 0.5, but no fault alert is presented, then the approximate value is
recorded in the box. If a fault alert is presented then an exclamation mark is
recorded in the box (open for orange and filled for red). If a green rectangle is also
presented, then the exclamation mark is shown with a box around it. None of the
activatable model equations were used in these experiments, so these represent
the worst case results.

All of the failures were identified with proper emphasis (red exclamation mark,
and green box). Some results show cases where other possible failures are also
indicated; but, the correct failure is never omitted.

Advantages of the G2 Implementation

The advantages gained by using G2 to implement the diagnostic model processor
are discussed in contrast to a procedural language implementation.

Object-oriented representation: Because G2 relies on an object-oriented
knowledge representation, the model equations, assumptions, and their relation-
ships are easily visualized and manipulated. All objects are graphically repre-
sented (see Fig. 7.21) and therefore construction and maintenance of the model
can be clearly handled. As previously discussed, the diagnostic methodology can
be ignored after the initial programming, as it is handled through the use of
generic formulas which perform the calculations for all instances of the classes of
objects.
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Figure 7.27 The model equations and assumptions used in the Steritherm process.

Another advantage of the graphical object environment is the ease with which
methods can be developed to present (to the operator) the results from the ana-
lyzer. This work uses a dynamic object called a fault alert (see Fig. 7.25) to draw
attention to possible fault conditions. Other methods, however, can be used and
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Table 7.3 Failure test results from the Steritherm experiments.
easily programmed.

Real-time aspects: The ability of G2 to update values asynchronously allows
all the important quantities to be calculated independently. In a procedural
implementation each calculation is made at a regular time interval. In G2 each
quantity is updated according to its own schedule. This schedule can be easily
adjusted to improve the analyzer’s performance after it has detected an event.
In this manner, real-time performance can be assured with the ability to focus
attention when necessary. This ability also allows for easy implementation of
activatable model equations using asynchronous operator input.
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Additionally, the procedural call to refine the diagnosis is made only after the
value of F' for some assumption exceeds 0.5 in magnitude. Although this can
be handled in a procedural language, it fits in G2 very naturally using a rule.
The idea of detection followed by refinement is an important concept in real-time
applications. Since G2 is built for real-time use these concepts are easily handled.

As previously mentioned, G2 allows the use of rules in the knowledge base. This
ability can be used as a further refinement device, if certain heuristic knowledge
regarding the possible fault conditions of the process is available. Rules can
easily be included to constrain the fault possibilities which are presented to the
operator.

We see that the advantages of using the G2 environment are primarily important
from an ease of use standpoint, and although many points discussed could be
duplicated in a procedural language, it would require much greater effort.

Extensions

The implementation of the DMP method could be extended in various directions.
The fault assumptions should have links to the process components to which
they refer. If the control system contains simulation equations for the process
components, which is not the case in the prototype, it is plausible that some of
the model equations could be, at least, semi-automatically generated from the
simulation equations and the process schematic.

7.3.6 A Multilevel Flow Model of Steritherm

In Chapter 4.9, the basics of MFM techniques were described, together with an
example of a heat exchanger system. The Steritherm process is, of course, much
more complex. Still, it is a good target system for testing MFM, for the following
reasons:

o The Steritherm process is of moderate size. It is large enough not to be trivial,
and at the same time small enough to allow it to be modelled in its entirety.

o Steritherm is a rather typical matter and energy flow process, and there is
even a barrier function, that of not allowing the treated medium to come in
contact with the environment. MFM was designed for describing precisely
such things.

o Steritherm can be configured and reconfigured in many ways. Thus, it may
well be an ideal process on which to develop theory and practise for the
configuration goals in MFM.
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An MFM Toolbox in G2

In order to provide computerized support for the building and utilizing of MFM
models, a set of definitions, rules and procedures has been written in the G2
language. These aids are intended to be developed into a toolbox for functional
modelling in the near future. A first sketch of models of the Steritherm process
have already been produced, together with facilities for a primitive consequence
propagation.

The flow functions, conditions, goals, and networks have all been implemented
as G2 objects, and models are built by cloning new MFM objects and connecting
them in the standard G2 way. According to the MFM syntax, there are no
connections between flow functions and conditions; this has been handled by
making the particular type of connection invisible when execution is started.

The connections between objects in different views are handled with lists. Every

‘flow function has a list of corresponding objects, e.g., in the functional model of
the steam injector, (a transport function), there is a list containing a reference to
the topological representation of the injector. In the same way, the topological
objects have lists of the corresponding flow functions.

The functions provided by the MFM toolbox have been implemented with gen-
eral rules, and thus, they are all available once the flow function symbols have
been connected into systems and the lists of corresponding objects have been
initialized. Currently, the toolbox performs two kinds of actions; it transfers the
working status between corresponding objects in different views and it can per-
form a consequence propagation. The status of an MFM object is shown with
colours; it is in this way the results of the consequence propagation are shown.
The number of rules in the implementation is shown in Table 7.4. The initial-
ization rules are used to give values to the lists of corresponding objects in other
views. Thus, their number depends on the size of the flow model.

Consequence propagation 22 rules
Graphics 8 rules
Topological view connections 3 rules
Initialization 80 rules

Table 7.4 Number of general rules in the MFM toolbox.

An MFM Model of Steritherm

The following models were developed mainly for the purpose of testing the G2
toolbox. However, they also point to what a more conclusive functional model
of the Steritherm might look like. The specific details of the models should be
seen in light of this. It is very likely that the descriptions will change, generally
as well as in detail.
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Figure 7.28 The first top-level goal of Steritherm is to sterilize the product.
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Figure 7.20 The second top-level goal is to keep the product sterile.

The Steritherm process was modelled in the production phase only. In this phase
there are two main goals. The first is to sterilize the product, something which
is ensured by keeping the temperature of the product in the holding tube above
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137° C, see Fig. 7.28. In the topmost network, the bacterial content of the
product is modelled. The first transport function represents llife-giving’ and
the second killing of the bacteria through heating. On this level, there are no
clear correspondences of the flow functions to physical components. The goal
of heating the product is provided by the thermal energy flow network, see Fig.
7.30.

The other, equally important, main goal is to keep the product sterile during
cooling, transportation, and packing. Most of the barrier functions of Fig. 7.29
correspond to a physical object, a heat exchanger or valve that must not leak.
The tubes have been gathered into one barrier, however.

The Steritherm is quite cleverly designed when it comes to reuse of heat, as can
be seen from the thermal energy network in Fig. 7.30. There are two explicit
thermal feedback loops, via the heat exchangers HTX 2 and HTX 3. In this flow
diagram, the media at different temperatures are modelled as energy storages,
while the heat exchangers and steam injector are described as transport functions.

The energy enters the Steritherm system via the hot steam, used to heat the
secondary (water) flow. The hot water transfers its energy to the product, but
some of it remains in the water flow, and another part leaves the system via the
ice water cooling in heat exchanger 6. Energy also leaves the system when the
product is cooled by ice water, in heat exchanger 4. Both these energy exits
have been modelled as sinks. Energy is also lost via packing of the product and
radiation and transfer to the environment. Every heat exchanger, e.g., gives off
heat to the surrounding air. These sinks have, however, all been ignored.
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Figure 7.31 The thermal energy flow network with conditions shown,

In the model presented, the product and water media have been modelled as being
in either ‘normal’ or ‘hot’ condition. It would be possible to make a finer grading
and describe the product in more phases, such as, e.g., ‘normal’, ‘pre-heated’,
‘fully heated’, and ‘pre-cooled’. This would give finer detail at the expense of a
more complex diagram. Choices like this are good examples of the decisions that
must be considered in the construction of MFM models.

In Fig. 7.30 only the flow functions appear, but. of course, the transport func-
tions all depend on other subsystems. In Fig. 7.31 the conditions are shown
too, together with the subgoals necessary for the energy flow to work. It is via

these subgoals that the functional dependencies continue down into the mass flow
networks.

The primary flow in the production phase is that of the product itself. The flow
network is shown in Fig. 7.32. The product goes through a lot of pumps, valves,
tanks, and heat exchangers, thus this network has been given a hierarchical de-
composition. The heating, cooling, and recirculation steps are modelled as single
transport functions, each with an inner structure. There is no physical motiva-
tion for this kind of decomposition, instead it is a matter of using hierarchy to
provide an better presentation of the model.

The water flow network is somewhat simpler than the primary flow, and so may
be shown in a single network, see Fig. 7.33. It should be noted that steam and
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Figure 7.32 The (hierarchical) product flow network.

liquid is not separated, but treated as a single medium.

In the secondary flow, water is heated to above 137° C. The water must be cooled
before it is recirculated to the balance tank, and this cooling is done by HTX 6.
The small flow of ice water necessary for this is modelled in Fig. 7.34. The valve
V64 is the same valve that can be found in the second control system network.

The product must also be cooled before it is packed. This cooling is done with
HTX 4, which uses a small flow of ice water, shown in Fig.7.35. This flow is not
actively controlled, but governed by a two-way valve, V27, which can be in either
bypass or active position. The latter has the effect that the valve is modelled as
two transport functions.

The Steritherm process has only two active control loops. The most important
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Figure 7.833 The water flow network.
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Figure 7.835 Ice water flow for cooling of product before packing.

one is used to keep the temperature of the holding tube at approximately 137
degrees Celsius. The temperature is measured by the sensor T44 and the valve
V44 is used to control the flow of steam to the steam injector, as shown in Fig.

7.36.

The second loop controls the temperature of the return water by adjusting the
flow of ice water through HTX 6. The temperature is measured by the sensor
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Figure 7.38 Steam injector control system.
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Figure 7.37 Return water temperature control system.

T64 and the ice water flow is controlled with the valve V64, as can be seen in

Fig. 7.37.

Connecting MFM to Other Models

The project uses several modelling techniques to present the same process to
the user. This makes it necessary to give the user help in navigating in and
between the different models. The problem is acutely visible in the case of MFM’s
connections to the standard topological representation, because a large part of
the functional structure does not have a clear physical equivalent. Instead, each
function may be realized by several different components, and each component
can be used to realize several functions.

In order to remedy this, development has been started on the following presen-
tational possibilities. First, there is a possibility to select a physical component
or a flow function, and highlight all its corresponding representations. For exam-
ple, selecting the valve V27 in the process diagram will highlight both transport
functions in Fig. 7.35. In the same way, selecting a flow function will highlight
the physical components that realize it. Secondly, the mass flow networks can be
highlighted in the process diagram.

It is possible that parts of the MFM models on the topmost levels will be con-
nected to other models, e.g., alarm trees and model-based diagnostics. This is a
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subject for further research, however. It is also important to observe that some
of the properties of the Steritherm process is clearly shown only in the flow mod-
els, e.g., the thermal energy flow with its feedback. In these cases, new ways
of presentation must be developed. Possibly, the MFM graphical language can
serve as a base for this.

Preliminary Conclusions

In conclusion, MFM is an interesting modelling technique, and the Steritherm
process seems to fit quite well in the basic ideas and representations used in
MFM. A functional model of the process should most certainly be at the heart
of any knowledge-based control system. ;

7.3.7 Other features of the G2 prototype

The Product following system

A simple product following system has been developed. Tts intended use is qual-
ity follow-up. The idea is to associate bulks of product with the treatment with
regard to different process parameters such as temperature and flow, that it has
been exposed to during the processing. Product slice objects are dynamically cre-
ated at the inlet to the product balance tank, with the creation rate depending on
production. The product slice objects have attributes concerning temperatures,
etc., which originally have no values. The product slice ob jects are graphically
moved along the production line and their attribute values are recorded from the
actual values of the sensors. The attributes which are used are:

e The temperature before the pre-heater.

e The product flow

e The temperature in the holding tube.

e The production time and date.

o The time since the last cleaning of the process.

o The differential pressure over the final heat exchanger section. The last two
measurements give indications on the burn-on.

o The temperature before the packing machine.

It would have been natural to also record the serial number of the packing and
the order number. In a realistic setting the product slices would finally be stored
in a relational database.
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Figure 7.38 Product following system

The product following system, shown in Fig. 7.38, uses a simplified process
schematic. This is stored under the quality control subview of the Steritherm
operation view.

The current implementation assumes constant product velocity throughout the
production line. This is obviously not true. The system could, however, easily be
extended to accomplish different velocities in the different parts of the process.

Multiple systems

Topological views of the 380 V power supply system and of the control system
have been partially implemented. It is possible to move between the process
schematic description of the product pumps, M2 and M3, and their electrical
descriptions as shown in the power supply system shown in Fig 7.39. It is also
possible to move from the contactors and circuit breakers in the power supply
system to their appearance in the control system.
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Figure 7.39 Part of the topological view of the 380 V power supply system

7.4 CONCLUSIONS

The G2 prototype is one of the most important results of the first project phase.
Also the Plus prototype has helped highlighting some of the features of the con-
cept. However, with the arrival of version 2.0 of G2 most of the features of the
Plus prototype can also be implemented in G2. The major exception is scanned-
in pictures.

Both prototypes were developed before the system concept had stabilized. There-
fore there are some discrepancies between the prototypes and the concept.

The multi-view object structured cannot be directly implemented in G2. Also
the structuring of the knowledge base into different systems and views does not
follow the concept. Animation and colours are used in several places in the G2
prototypes, e.g., in the DMP implementation; in the product following system;
in the process schematic to indicate valve positions, tank levels, and pump op-
eration, and to indicate the media in the product line pipes. These are things
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that should be placed in the user interfaces of the various user groups. The G2
interface should only implement the knowledge base browser.

The knowledge included in the prototypes only cover a small part of what is
needed. Knowledge about raw products, recipes, process components, etc., is
not included at all. Due to restrictions in G2, knowledge is also duplicated. For
example, the fault assumptions in the DMP method and the fault objects in the
alarm tree are separate objects even though they are very closely related to each
other. Furthermore, the objects are also separated from the objects representing
the process components. In a KBCS all information about a process components
including its possible faults should be kept as one unit.

The major contribution of the prototypes is the role they play in visualizing
the concept. For example, the G2 prototype shows how both conventional and
knowledge-based techniques are integrated together in one knowledge base.




Technical Survey Update

In the Feasibility Study (IT4, 1988) a chapter was devoted to a survey of some
of the techniques that are essential for KBCSs. Also, the study contained a
chapter on international research programmes relevant for KBCSs. This chapter
is an update of those chapters that reflects the development between 1988 and
1990. Special attention is given to the commercial real-time expert system tools
available now.

8.1 EXPERT SYSTEM TOOLS

The market for expert system tools specially oriented towards real-time, on-
line applications within the process industry, and the aerospace industry has
increased substantially since 1988. Several commercial tools have emerged, with
G2 from Gensym Corporation as the most mature and widely spread. This
section contains an overview of some of the most interesting real-time tools.
Since G2 has an important role in the project, a more detailed description is
given. Plexsys, an off-line tool from Intellicorp, is also described.

Apart from the systems described several tools have been developed within the
European Esprit projects. However, these tools are not yet of a commercial
nature. Also during the last quarter of 1989, two Japanese real-time tools were
announced from Meidensha and Toyo Information Systems. According to the
information we have, both of these tools are modelled on G2.

197
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8.1.1 G2

G2 from Gensym Corporation in Cambridge, MA, is the most widely spread and
technically most advanced real-time expert system tool available on the market.
The number of licenses sold is over 300, with at least 50 of them including on-line
licenses.

Gensym Corporation

Gensym Corporation was founded in 1986 by the group at Lisp Machine Inter-
national which previously had developed the PICON system. By January 1990
the company had grown to 42 employees. Of them the development team con-
stitutes 5 to 7 persons. The rest of the company is divided between applications
development, training, G2 consulting, and administration. G2 consulting is an
area that is expanding.

The quarterly revenue of the third quarter 1989 was 1.2 MUSD. The company has
opened three additional offices in USA, and are planning its first European office
for the end of 1990, possibly located in Germany or the Netherlands. Gensym
has also value-added-resale contracts with several companies.

Market situation

G2 has established itself as the de facto standard for real-time expert systems in
the process control area. One symptom of this is that standard interfaces have
been developed between G2 and the major process control systems. The initiative
to this has come either from Gensym, external consulting companies, or from the
control system developers themselves. Gensym also has many applications in the
aerospace industry, network management, manufacturing, etc.

USA is the largest market for Gensym with Du Pont as their most important
customer. Japan and Europe are about equal in market size. In Sweden G2
is available at Lund Institute of Technology, ABB, Uppsala University, STFI,
Linképing Institute of Technology, Forsmark II, and The Army Technical School.

During 1989, several interesting research projects have selected G2 as their expert
system developing tool. Space Biospheres uses a network of G2s to monitor
artificial biospheres. The French oil company ELF will use G2 for a project
where they plan to totally automate their North Sea oil platforms during the
pumping phase. NASA is using G2 for space shuttle monitoring. The Japanese
nuclear energy research centre NUPEC has chosen G2 for a large project on
nuclear safety.

Availability

G2 is implemented in Common Lisp and runs on Sun 3 and 4, HP, Apollo,
Vaxstation, Decstation, VAX 8600, TI Explorer and MicroExplorer, Symbolics,
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Compagq 386, and Mac II. For most machines, 16 MB RAM memory and X-
Windows is required. The price ranges from $ 18,000 to $ 36,000 depending on
computer.

Technical Description

The main parts of G2 are: the knowledge-base, a real-time inference engine,
a procedure language, a simulator, the development environment, the operator
interface, and optional interfaces to external on-line data servers.

Classes and objects: In G2 everything is an item, i.e, rules, objects, proce-
dures, graphs, buttons, text boxes, etc., are all items. The items are organized
into a hierarchy. All items have a graphical representation through which they
are manipulated by mouse and menu operations. Operations exist for moving an
item, cloning it, changing its size and colour, displaying its attribute table, etc.
One part of the item hierarchy is the G2 objects. The object is the only part
of the item hierarchy that the user has full control over, i.e., can specialize into
subclasses, can reference in expressions, etc.

Objects are used to represent the different concepts of an application. They can
represent arbitrary concepts, i.e., both physical concepts such as process compo-
nents and abstract ones. The objects are organized into a class hierarchy, i.e.,
only single inheritance is allowed. The class definition, or using G2 terminology,
the object definition defines the attributes that are specific to the class and the
look of the icon. Icons can be created with an interactive icon editor. The at.
tributes describe the properties of the object. The values of an attributes may
be

e constants,
e variables,
e lists, or

e other objects.

Constants can be numbers, symbolic values, i.e., the G2 correspondence to the
enumeration type, logical values, i.e., true or false, and text strings. Under run-
time, constants can only be changed explicitly by the user. Variables are used
to represent entities whose values change during run-time. Variables are defined
from four basic predefined classes:

® quantitative variables, i.e., real-valued variables,
e symbolical variables,

o logical variables, and
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e text variables.

The predefined variable classes can be specialized by the user. With the pre-
defined variable classes come a set of default attributes. These include attributes
that determine whether a history should be saved for the variable or not; the
current value for the variable; what should be the source of the variable’s value,
e.g., the inference engine, the simulator, or some external data server; the validity
interval of the variable, e.g., how long the current value of the variable should
remain valid; etc. The validity interval could be specified to be indefinite, given
by a fixed time interval, or dependent on the validity intervals of the variables
that were used to calculate the value of the variable. Variables with indefinite
validity interval are called parameters and form separate classes. Parameters
always have a current value and their initial values can be specified.

Lists may contain arbitrary values. The allowed values in a list can be specified.
It is possible to have objects as the values of attributes in other objects. In that
case, the attribute objects have no iconic representation.

Objects can be static, i.e., they are explicitly created by the developer, or dy-
namic, i.e., they are created dynamically during run-time. Dynamic objects can
also be deleted during run-time. The G2 language contains actions to move, ro-
tate, and change the colour of an object. Using this, animations can be created.

Composite objects, i.e., objects that have an internal structure composed of other
objects, can be created using objects as the value of attributes. It is, however,
not possible to at the same time have a iconic representation for these objects.
If such a representation is desired this has to be implemented using the sub-
workspace concept. In G2 each object and most items may have an associated
subworkspace. In this (sub-)workspace arbitrary items may be positioned. The
internal structure of an object can be represented on its subworkspace. It is also
possible to connect together objects on the subworkspace with object connected
to the subworkspace’s superior object. It is, however, not possible to define that
an object should have an internal structure of this type in the class definition.

Connections and Relations: G2 has two ways of defining relations between
objects: connections and relations. Connections are primarily used to repre-
sent physical connections, e.g., pipes or wires. It is, however, also possible to
let connections represent abstract relations among objects. Connections have a
graphical representation and may have attributes. They are defined in terms of
a connection hierarchy. Both unidirectional and bidirectional connections are al-
lowed. Type checking is performed to allow only connections of the same class fo
be connected together. Connections can be used in G2 expressions for reasoning
about interconnected objects in a variety of ways. A connection is attached to
an object either at a pre-specified location, a port, or anywhere on the object.

Connections are static. They cannot be created during run-time. In order to
make possible relations also between dynamically created objects, relations are
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used. Relations can only be created at run-time and have no graphical representa-
tion. They have no corresponding relation hierarchy and cannot have attributes.
Relations can be specified as being one-to-one, one-to-many, many-to-one, and
many-to-many. The inverse relation of a relation can be specified, as well as
whether the relation should be symmetric or not. In the latter case the inverse
relation is the same as the relation. Relations can be used in G2 expressions in
a similar way as connections.

The inference engine: G2 rules are used to encapsulate an expert’s heuristic
knowledge of what to conclude from conditions and how to respond to them.
Five different types of rules exist.

e If rules

e When rules

e Initially rules

e Unconditional rules

e Whenever rules

When rules are a variant of ordinary ‘If’ rules that may not be invoked through
forward chaining or cause backward chaining. Initially rules are run when G2 is
initialized. Unconditional rules are equivalent to ‘If* rules with the rule conditions
always being true. Whenever rules allow asynchronous rule firing as soon as a
variable receives a new value, fails to receive a value within a specified time-out
interval, when an object is moved, or when a relation is established or deleted.

The rule conditions contain references to objects and their attributes in a natural
language style syntax. Objects can be referenced through connections with other
objects. G2 supports generic rules that apply to all instances of a class. The
G2 rule actions makes it possible to conclude new values for variables, send alert
messages, hide and show workspaces, move, rotate, and change colour of icons,
create and delete objects, start procedures, explicitly invoke other rules, etc. G2
rules can be grouped together and associated with a specific object, a class of
objects, or a user-defined category. This gives a flexible way of partitioning the
rule-base. The following is an example of a G2 rule,

for any water-tank

if the level of the water-tank < 5 feet and

the level-sensor connected to the water-tank is vorking
then conclude that the water-tank is empty

and inform the operator that
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"[the name of the water-tank] is empty"

The real-time inference engine initiates activity based on the knowledge contained
in the knowledge base, simulated values, and values received from sensors or other
external sources. In addition to the usual backward and forward chaining rule
invocation, rules can be invoked explicitly in several ways. First, a rule can be
scanned regularly. Second, by a focus statement all rules associated with a certain
focal object or focal class can be invoked. Third, by an invoke statement all rules
belonging to a user defined category, like safety or startup, can be invoked. The
scanning of a few vital rules in combination with focusing of attention is meant
to reflect the way human operators monitor a plant. It is also an important way
to reduce the computational burden on the system.

Internally the G2 inference engine is based on an agenda of actions that should
be performed by the system. The agenda is divided into time slots of 1 second’s
length. After execution, scanned rules are inserted into the agenda queue at the
time slot of their next execution. Focus and invoke statements causes the invoked
rules to be inserted in the agenda at the current time slot. Rules being invoked
by forward chaining is treated in the same way.

A rule is invoked by backward chaining if the rule actions of the rule includes a
conclude statement that gives a variable a new value, and if a new value for the
variable is needed, i.e., the variable has a default update interval that specifies
that the value should be recalculated regularly, the value is needed in a rule
condition, or the value is needed in a display. Depth or breadth first backward
chaining may be specified as well as the precedence order of the rules.

Simulation: G2 has a built-in simulator which can provide simulated values
for variables. The simulator is intended to be used both during development for
testing the knowledge base, and in parallel during on-line operation. In the latter
case, the simulator can be used, e.g., to implement filters for estimation of signals
that are not measured.

The simulator allows for differential, difference, and algebraic equations. The
equations can be specific to a certain variable of apply to all instances of a vari-
able class. Each first-order differential equation is integrated individually with
individual and user-defined step sizes. The numeric integration algorithms avail-
able are a simple forward Euler algorithm with constant step size and a fourth
order Runge-Kutta algorithm, also with fixed step size. GSPAN, an interface be-
tween G2’s simulator and external simulators is available as a separate product.

Procedures: G2 contains a Pascal-style procedural programming language:
Procedures are started by rule actions. Procedures are reentrant and each proce-
dure invokation executes as a separate task. Procedures can have attributes and
return one or several values. Local variables are allowed within a procedure.
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The allowed procedure statements include all the rule actions, assignment of val-
ues to local variables, If-then-else statements, case statements, repeat statements,
for loop statements that can either be numeric or generic for a class, i.e., they
execute a statement or set of statements once for each instance of the class, ezit
if statements to exit loops, go fo statements, and call statements to call another
procedure and await its result. Procedures can be temporarily halted with a wait
statement. A wait statement causes G2 to stop executing the procedure until
either a specified amount of time has passed or a condition is met. It is possible
to specify that two or more statements should be executed in parallel and that
all iterations of a loop should be done in parallel.

Procedures are executed by G2’s procedure interpreter. The procedure inter-
preter cannot be interrupted by other G2 processing, i.e., the inference engine
or the simulator. Other processing is only allowed when the procedure is in a
wait state. A wait state is entered when a wait statement is executed, when the
statement allow other processing is executed, and when G2 collects data from
outside the procedure for assigning to a local variable.

Real-time issues: Unlike the majority of expert system tools, G2 is designed
for real-time operation. This shows in a number of different ways. The inference
engine is based on the link approach described in Chapter 5 instead of using
pattern matching. The inference engine automatically sends out requests for
variables that have become invalid and waits for new values without halting the
system. Priorities and scan intervals can be associated with rules.

Regular scanning of rules and thus updating of information in combination with
variables with time-limited validity gives a partial solution to the problem of
non-monotonic, time-dependent reasoning. The validity interval of a variable
specifies how long the current value of the variable should remain valid. By the
possibility to propagate validity intervals to dependent, concluded variables their
values will also eventually expire if for some reason sensor values cease to arrive

to G2.

Whenever rules can be used to catch asynchronous events such as the arrival of
un-requested sensor data from a passive sensor, e.g., representing some alarm
in the underlying control system, or that a requested sensor value has failed to
arrive to G2 within a specified time-out interval.

G2 has some facilities for temporal reasoning. It is possible to save histories of
old values for all variables. Functions for referencing old variable values are avail-
able. G2 also has built-in statistical functions operating on quantitative variable
histories. These are functions for computing the integral, standard deviation,
rate of change, maximum, and minimum values over some time interval.

G2 also has possibilities for reasoning about whether a variable has a current
value or not, and can refer to the time when a variable received its current value.

%
%
:
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To avoid garbage collection, G2 takes care of the dynamic memory allocation
and reallocation internally during run-time.

Development interface: G2 has a nice graphics-based development environ-
ment with windows (called workspaces), popup menus, and mouse interaction.
Input of rules, procedures, and other textual information is performed through a
structured grammar editor. The editor prompts all valid next input statements
in a menu. Using this menu the majority of the text can be entered by mouse-
clicking. It is, however, also possible to use the keyboard in an ordinary way.
The editor has facilities for Macintosh style text selection, cut, paste, undo, redo,
etc.

The Inspect facility allows the user to search through the knowledge base ior
some specified item. The user can go to the item, show all matching items on a
temporary workspace, write them out on a report file, highlight them, and make
global substitutions.

G2 has facilities for tracing, stepping, and adding breakpoints. The internal
execution of G2 can be monitored using meters.

End-user Interface: G2 has facilities for building end-user interfaces. Colours
and animation can be used. An object icon is defined as a set of layers whose
colours can be changed independently during run-time. The meta-colour trans-
parent makes it possible to dynamically hide objects. Different user categories
can be defined and the behaviour with respect to which menu choices that are
allowed can be set for each category. It is also possible to define new menu
choices.

G2 contains a set of predefined displays such as readouts, graphs, meters, and
dials that can be used to present dynamic data. G2 also has a set of predefined
interaction objects that can be used for operator controls. Radio buttons and
check boxes can be used to change the values of symbolical and logical variables
by mouse clicking. An action button can be associated with an arbitrary rule
action which is executed when the button is selected. Sliders can be used to
change quantitative variables and type-in boxes are used to type in new variable
values.

External interfaces: G2 can call external programs in four different ways:
using foreign function calls, and using GFILE, GSPAN, and GSI. On some plat-
forms, external C and Fortran functions may be called from within G2. GFILE
is an interface to external data files that allows G2 to read sensor data from the
files. GSPAN is the interface between G2 and external simulators. GSIis Gen-
sym’s standard interface. It consists of two parts; one part written in Lisp that
is connected to G2 and one part written in C to which the user can attach his
own functions for data access. On the same machine, the two parts communicate
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using interprocess communication media such as pipes or mailboxes. On different

machines, TCP/IP — Ethernet is used.

GSI is the base for several off-the-shelf interfaces between G2 and conventional
control systems, PLC systems, relational databases, etc. The Travel Notes in
Appendix B contains reports from User Group Meetings where details about the
existing interfaces are presented.

Networking: Several G2s can be used in a network exchanging data over Eth-
ernet. Telewindows is a separate product that allows multiple users to access
the same G2 system, giving each user his own window into the application. It is
also possible for one Telewindows user to simultaneously access several G2s in a
network.

Drawbacks

The main problems with G2 stem from the fact that G2 is a closed system. G2 can
only be interfaced with other program modules through the predefined interfaces.
The G2 environment in itself is also a quite closed world. It is impossible to
modify the that G2 operates internally. If what G2 provides in terms of, e.g.,
graphics, class — object structures, etc., is insufficient nothing can be done about
it.

G2 can not be modularized. Hence, it requires quite powerful computers even if
only a small subset of the functionality is used within an application.

Although G2 is fast compared to many expert system tools, it can be too slow for
certain applications. The smallest time unit is one second. For applications that
require faster response, G2 is inadequate. Gensym claims that G2 is capable of
running between 300 and 500 medium-sized rules per second depending on the
machine that is used. These figures are difficult to verify. If the simulator is used,
the speed decreases substantially. Gensym are currently developing a run-time
version that uses compiled rules and procedures instead of interpreting them, as
is currently done.

G2 versus the KBCS concept

G2 is one of the main sources of inspiration in the project. The knowledge base
language discussed in Chapter 5 has borrowed many features from G2. However,
there are some important differences.

Although it is possible to use networks, G2 is in essence a centralized system
without any distribution. The G2 knowledge base executes only on a single
processor. G2 can be seen as having three realization tools: the inference engine,
the procedure interpretor, and the simulator, which all operate on the knowledge
base as shown in Fig. 8.1. The tools have one module in common, the expression
evaluator.
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Figure 8.1 G2 realization tools

The interactive interface to G2 is basically equivalent to the knowledge base
browser. The only thing similar to design tools is the editor.

In G2 the representation of knowledge is integrated with the presentation. If
an object should be presented differently to different users, e.g., using different
icons, two G2 objects have to be used. It is also impossible to have multiple
views of an object in the knowledge base. If an object has to be represented in
two different contexts with different connections and slightly different attributes,
two G2 objects have to be used. All relations between these two objects have to
be defined explicitly through, e.g., G2 relations.

The support for composite models and information zooming is limited. For ex-
ample, it is not possible to define that an object should have an internal iconic
structure on its subworkspace in the class definition.

G2 is a closed system. It is impossible to include external data structures such
as, e.g., pixel bit-maps, or hypermedia cards.

8.1.2 Talos—R*TIME

R*TIME is a set of modules for real-time data acquisition, data analysis, data
distribution, and message/data display from Talarian Corp., Mountain View,
CA, announced to be released in the first quarter of 1990. Talarian Corporation
was founded in October 1988 by a group from Lockheed and Stanford University
that previously had developed Lockheed’s L*STAR, a distributed knowledge-
based architecture designed for real-time applications. When R*TIME first was
announced it was called Talos. For some reason the name has changed since
then. The intended applications for R¥*TIME are intelligent real-time monitoring;
analysis, display, and control of complex systems. The system includes a real-
time inference engine which is claimed to be “at least an order of magnitude
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faster than its nearest competitor” and capable of executing “thousands of riles
each second, working with very large rule sets”, a colour graphic man-machine
interface, and data acquisition and management modules.

The three main modules in R*TIME: the inference engine, the man-machine
interface, and the data acquisition module, operate independently, can be dis-
tributed across processors on a LAN, and communicate via message passing using
standard protocols.

The major application so far for L*STAR ~ R*TIME is the NASA Hubble Space
Telescope monitoring system.
Availability

R*TIME will be available on DEC, SUN, and 386 workstations and have inter-
faces to IBM PCs for data acquisition and control. Each R*TIME module is
designed so that it is possible for it to be embedded within other existing hard-
ware and software. R*TIME allows rules to call out to procedures written in C,
Fortran, and ADA. Furthermore, hooks are supplied so that external procedures
can archive and retrieve data from R*TIME’s real-time database.

The data acquisition module supports data archiving to permanent storage de-
vices such as disk or tape. Data collected can be played back into R*TIME.,

Knowledge Representation

Knowledge representation in R*TIME is based on frames and rules. Rules can
be invoked in three different ways:

e at a fixed time interval, i.e., using scanning
e by forward chaining, and

e by backward chaining.

The below scanned rule is used to detect a power battery anomaly in a satellite
application.

RULE :"Inadequate battery voltage"
CONTEXT :{ Maneuver };
PRIORITY : 100;

TEST INTERVAL : 10 seconds;
IF voltage 7B < 27.5
THEN status 7B := abnormal;
ALERT (NODE,MADMAX, "7B",
"Current voltage of battery ?B inadequate");
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7B is a matching variable that allows the rule to be applied to any battery in the
application.

R*TIME’s frame representation language (FRL) supports inheritance and has
been extended in the temporal dimension by allowing slots to point to ring buffers
where a series of values and their associated time tags are kept. A variety of
methods for trend analysis such as linear and nonlinear regression analysis, least
squares, moving averages, rate of change, mean, standard deviation, minimum,
maximum, correlations, and exponential smoothing are available. It also possible
to define new methods.

Real-time Aspects

R*TIME has facilities for reasoning about past, present, and future events. It can
compare current data with past as well as reason about the sequence in which
the events occurred. Event sequences are reasoned about using the operators
BEFORE, AFTER, and DURING. Reasoning about future events is achieved by
asserting values into the frame database at some upcoming time. A rule condition
using the sequence operators looks as the following.

IF DURING( (voltage 7B > 35.5),
(temperature 7B < 40),
10 minutes )

AND ..

The condition checks if the voltage of a battery is > 35.5 at the same time its
temperature < 40 in the last 10 minutes.

R*TIME provides focus of attention capabilities through
e changing the set of sensors the system is currently investigating,
e bringing a new set of rules to bear, and

o changing the sampling rate or compression scheme of the data being analyzed.

Similar to G2, R*TIME ensures a garbage free execution.

End-user Interface

The man-machine interface receives sensor data from the data acquisition module,
derived data and text messages from the inference engine, updates its graphical
display in real-time, and acts as the interface to the operator. The user is supplied
with a DRAW program to develop his displays and define their interactions. The
DRAW program has built-in graphic primitives (line graph, strip chart, dial, bar
chart, etc.). Relationships between displays and hierarchies of displays can be
defined. Animation facilities are available,
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Communication

The communication between R*TIME modules or between R*TIME and user-
defined processes is built on a user-extensible set of message primitives (Info,
Alert, Warning, Numeric_Data, etc.). Messages may be sent to a particular
process, to all processes of a given type, to all processes on a given node, to all
processes receiving messages from a certain datagroup, and to all processes who
know about a given object.

Comments

The open architecture and real-time support in R*TIME are promising. Since it
is not released yet it is difficult to evaluate it any further.

8.1.3 Nexpert Object

Nexpert Object, which was described in the Feasibility Study, has gained in-
creasing popularity for various applications including on-line, process control
applications. Not really a real-time tool, the main reason for its popularity is the
excellent facilities to embed Nexpert within other programs, i.e., to call-in Nex-
pert routines from other programs and to call-out to external procedures from
within Nexpert. Another reason for its popularity is the wide range of machines
that it is available on, also including smaller machines such as the Macintosh.

Nexpert has interfaces to data presentation programs such as Dataviews and
Ease+ and to Hypercard programs with which end-user interfaces easily can be
built up.

Within Sweden, Nexpert Object is being used in two process industry appli-
cations. At Skoghall in Karlstad, Stora Teknik and The Karlstad Institute of
Technology cooperate in a DUP project concerning monitoring of a continuous
digester. Here Nexpert Object will be used together with Dataviews, Oracle, and
Matlab. The Royal Institute of Technology (Produktionsteknik) has a Nordic
project together with, among others, SSAB where Nexpert Object will be used
together with relational databases for monitoring and control of blast furnaces.

SHERPA

BHP Central Research Facilities in Newcastle, Australia has developed SHERPA,
a facility that integrates modules for knowledge base development, signal process-
ing, operator displays, on-line numerical models, and data base storage.

SHERPA is an open architecture tool that simplifies the integration of commer-
cially available software into one framework. Presently SHERPA can integrate
Nexpert Object , Dataviews, and Oracle. SHERPA includes SHERPATALK, a
high level interpreted language including simplified calling sequences for the more
tommon routines in the different programs and over 200 numerical routines for,
e.g., data pre-processing and recursive identification.
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SHERPA has been applied to different operator guidance applications mainly
within the Australian steel industry and is currently being used in the Skoghall

project.

Comments

Also here, it is the open architecture that is the strong feature. Nexpert Ob-
ject can easily be embedded with conventional software on a range of different

machines.

8.1.4 Chronos and Nemo

Chronos and Nemo are two French rule-based expert system tools developed by
Sagem and Euristic and by S;O respectively. Since they have similarities, only
Chronos, the most real-time oriented of them, will be described.

Availability

Chronos is written in ADA and runs on IBM PCs, VAX, and UNIX machines.
The system costs between 60.000 and 120.000 FF. Chronos can be used as a
stand alone system or as an ADA package that can be embedded into an existing

ADA application.

Knowledge Representation

In Chronos knowledge is represented as facts and rules. Facts are represented
as object—attribute—value triplets. To handle time, four dates can be associated
with a fact: creation time (the time when the fact is entered in the database),
starting time (the time when the fact becomes valid), ending time (the time
when the fact ceases to be valid), and the obsolescense time (the time interval,
beginning at the ending time, after which the fact is removed from the database).
The dates can be given in absolute form, i.e., in terms of day and time, or be
relative to, e.g., the current time.

Chronos has two main rule types: “as soon as conditions then actions” and “as
long as conditions then actions”. The first type is equivalent to an ordinary
If rule. In the second type, a link is created between the time stamps of the
conditions and the time stamps of the conclusions. Any modification of the time
stamps of the conditions is propagated to the time stamps of the conclusions.
This leads to a way of handling non-monotonic reasoning.

The rule action part consists of a structured procedural language with conditional
branching and loops. Within the actions, facts can be manipulated, rules can be
explicitly fired, and external functions can be called. All actions can be postponed

for a defined time period.

Chronos is a strict forward chaining production system based on a modification
of the RETE pattern matching algorithm. Priorities can be associated with rules.
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Real-time aspects

The different dates that can be associated with a fact give interesting possibilities
to represent temporal facts. For example, it is possible to assert that a fact should
not become valid until some future date.

An example of a rule using some of the features is shown below.

rule name_1;
priority := 4;
uninterruptible;

as soon as
tx:=100;
temperature(!reactor) >= !x [!t1,1t2];
clock >= !t1 + 30;
no(exists associated_valve(!reactor)=!valve [1£3,1t4] such
that state(!valve)=opened, !t3 =< '$1+45.0, !'t4 > clock);
then
put_line("Warning problem with reactor"); put(!reactor);
call "action_1.exe" (!reactor:in,!tl:in);
end rule;

The rule expresses that as soon as the reactor temperature is greater or equal to
100 degrees for the last thirty seconds and none of the valves associated with the
reactor were opened within the five following seconds, then the operator should
be informed and the external procedure action_1 be executed. Pattern matching
variables are preceded by an exclamation mark. Clock returns the current time.
The notation [¢1,2] denotes the starting time and the ending time of the fact
validity.

Chronos also supports the notion of situations (événements). A situationis a way
of grouping together facts that are true over subsequent time intervals. Consider
the following example:

state(process) = normal [100,200]
state(process) = normal [200,300]
state(process) = normal [300,400]

state(process) = normal [400,500]

This constitutes a situation that begins at time 100 and ends at time 500. The
beginning and end of the situation that a fact belongs to can be referenced using
the following syntax.

state(process) = normal [1%1,1%2] {1¢3, 144}
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with 143 and !t4 referring to the beginning and ending time of the situation.

Development Interface

The development interface is based on multiple windows and mouse and menu
interaction. It allows for rule editing and display of the rule flow chart with zoom
and scroll possibilities.

During execution four windows are used to display acquired and deduced facts,
justifications of deduced facts, and execution trace. The command window allows
an interactive dialogue during execution.

Comments

Chronos is a purely rule based system and, thus, has limited applicability. The
real-time constructs are, however, interesting as well as the possibility to embed
Chronos in other ADA systems.

8.1.5 Cogsys

COGSYS (Cognitive System) is a real time expert system product aimed at
the process industry. COGSYS is supported by a collaborative club which
was launched 1987 in the UK. COGSYS is a continuation of the Alvey project
RESCU. The club consists of about 40 members. The members are mainly from
the process industry, and suppliers of process control equipment. ABB Automa-
tion is one of the members of the club. System Designers - Scicon is the system
contractor.

COGSYS is divided into a generator system and a run-time system. A knowledge
representation language has been developed. COGSYS is a frame based system
with inheritance of attributes. The rules can be generic and the rule scheduling
can be controlled in real time. The knowledge base can be divided into blocks to
support real time scheduling. High targets for speed benchmarks have been set
up — the goal is to develop a fast system. COGSYS currently runs on VAX/VMS
in POPLOG.

The base development of COGSYS is nearly finished. Two test site installations
are under commissioning. The next step is to establish a marketing organization
and to work with the support and future development of COGSYS.

8.1.6 Domain-specific tools

Expert system tools specially developed for a single type of application such as;
on-line diagnosis, are beginning to emerge. These systems are often based on 2
single knowledge representation formalism, e.g., fault trees. This can make the
systems quite inflexible. They often run on smaller hardware such as IBM PCs.
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RES-D2

RES-D2 (Real-time Expert System Shell — Diagnostic Domain) from ARS in
Italy is one example of a small on-line diagnosis tool. RES-D?2 is based on two
concepts: fault trees and observables. The fault trees describe the possible faults
and their interrelations. Observables represent the entities that the system can
measure, €.g., analog process values, digital bit values, etc. Associated with each
observable is a measurement procedure that is fired when it is necessary to get a
new value for the observable.

RES-D2 runs on IBM PC/AT and has been developed in Golden Common Lisp.

GDS

Combustion Engineering, Inc, has developed GDS, “Generic Diagnostic Shell”,
a software shell for real-time diagnosis (Neuschaefer et al, 1987). GDS includes
a module for automating knowledge acquisition through an automated fault tree
construction tool. Both heuristics and fault trees that describe critical safety
functions are used. Critical safety functions are defined as high-level process
functions that must be maintained to ensure safety. GDS operates in two stages.
First, it uses heuristic knowledge to interpret plant data for symptoms of casualty.
If one exists, the affected critical safety functions are identified. Then GDS
examines the fault trees of those safety functions to identify the cause of the
casualty.

8.1.7 Plexsys

The Plant Expert System (Plexsys) development tool is an add-on to KEE from
Intellicorp specially designed for off-line power plant applications. Plexsys has
been developed in cooperation with EPRI (Electric Power Research Institute).

Plexsys is designed to aid the electric power utilities in the development of
knowledge-based application for specific nuclear applications. In addition to the
facilities of Plexsys, the user has full access to KEE and Lisp. Plexsys is built
around the idea that the understanding and description of processes is centered
around graphical forms such as Piping and Instrumentation diagrams (P & IDs)
and electrical diagrams. Such diagrams define a graphical “model” of the plant
knowledge that is cormmon to many applications such as analysis of system relia-
bility, the evaluation of valve and component configurations during maintenance,
and the predictive analysis of operational transients and accidents.

The basic components of Plexsys are described in terms familiar to plant per-
sonnel: valves, tanks, motors, pipes, pumps, etc. These elementary components
are more than just simple pictures on the screen — they also encapsulate the
knowledge that describes the constituents of an actual component and, more
important, how it behaves as a part of a functioning system. Plexsys supports
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composite components, i.e., the process can be hierarchically decomposed into
components, units, etc.

The Plant Model Editor

The major component of Plexsys is the Plant Model Editor. This is a graphical
editor for creating a model by creating, moving, grouping, and deleting compo-
nents using a mouse and window interface. Components are selected for addition
to the model from graphical menus which display libraries, groups of devices,
and components. Relations between components are modeled as graphical con-
nections. Schematics are used to group components together in order to break a
diagram into conceptually more manageable parts. The functionality of a group
of components can also be represented by a single component called a composite.
A composite has ports that allows it to be connected to other components or
composites, and provision for equations to model the relations between its ports.

Plexsys allows multiple views in the knowledge base. Components that have
functions in several different contexts can be represented as a single object, but
with distinct properties, icons, and interconnections in the different contexts.

The Plexsys Browser
The Plexsys Browser is designed to assist an end-user in

e determining what diagrams that contain specified components or component
classes, and display those diagrams,

o displaying the associated working area or canvas of those diagrams,

e determining what components and component classes are viewable in any of
those diagrams and list them, and

e determining and indicating the name of a component from its picture.

The Network Inspector

The Network Inspector is a tool within Plexsys to assist the user in interrogating,
validating, and analyzing the plant model. It allows the user to search the plant
network starting at a given component, then moving along connections between
components. The Network Inspector is used to answer questions such as:

e “What are all the paths, or the optimal path, from one component to an-
other?”

e “Are all the components along a path operable, or available?”
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o “What is the hydraulic isolation boundary for performing maintenance of a
component?”

From a technical point of view Plexsys contains several interesting ideas which
are very similar to ours. For example, Plexsys is one of the few systems that

" support multiple views. Plexsys is, however, not intended as an on-line tool, one
of the reasons for this being KEE which is difficult to apply in real-time. To our
knowledge Plexsys has not had any commercial success. A few electrical utilities
have tried it and also some oil refinieries.

8.2 PROCESS CONTROL

The technical development of process control systems is too large and diversified
to be described in a single chapter. Here, a small selection of some trends and
new systems that we believe are relevant for the development of KBCSs will be
presented.

8.2.1 Intelligent process components

There is currently a trend towards more intelligent process components. The
trend is most observable for sensors. “Intelligent sensors” combine the actual
measuring with basic numerical pre-processing of the measurements.

However, also other process components have built-in intelligence. Pumps that
include local monitoring systems for condition monitoring and detection of ab-
normal operating conditions is one example.

8.2.2 Distributed control systems

New generations of distributed process control systems are beginning to adopt
programming techniques, e.g, object-orientation, similar to what is found in
KBSs. A good example of this is Sattline from SattControl AB.

SattLine

SattLine is a distributed control system from SattControl AB. It consists of both
hardware and software with integrated communications. The Sattline software
has a uniform graphical language, using a common programming environment
and distributed execution. It is hardware independent and uses distributed in-
telligence linked by transparent communications. The system software is object
oriented, supports module libraries so that control solutions can be reused, and
is self-documenting. The operator interface supports information zooming and
windowing and is created along with the control software.
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Object oriented programming: SattLine includes a uniform graphical ob-
ject oriented programming language, which reaches from the simplest local con-
troller to the plant supervisory level.

Modules in a program correspond to physical objects in the plant: valves, pumps,
or complete subprocesses. Each module contains everything which relates to the
object, including control program, operator interface, management information,
and diagnostics.

Modules can be duplicated if more than one object of a certain kind is needed.
These copies, or instances, are related to each other in the way that when a
modification is done in one of them, the same change occurs in all of them.
However, there is no superior instance or class definition, and therefore no sub-
/superclass structure. However, a module can consist of one or more submodules.
In other words, SattLine does not support class structures and inheritance, but
does support “consists-of” structures.

A module instance can be “decoupled” from the other instances of the same
definition, and thereby a new definition is created. After this operation, modifi-
cations in this instance does not any longer affect the other instances.

When sequential functions are required, for example for the control program of a
module, these are represented using the Grafcet notation, which is especially pow-
erful when displayed with dynamical status on the operator station. Interlocking
and logical functions can be specified using ladder diagrams and/or functional

blocks.

After the modules needed have been created, the control program is constructed
using cut and paste operations on these modules. Modules are connected graph-
jcally with a link that can pass any type of data - single bits, numerical values,
recipes, batch data, production parameters, etc.

Conirol program language: As mentioned before, each module can have
its own control program. This control program can be implemented using the
Grafcet notation, where each transition and state is an equation block. The
control program could also be implemented as a single equation block.

An equation block is a list of statements. There are four kinds of statements:
equations, if-equations, procedures calls, and comments. Equations have a left
hand part that must be a variable, and a right hand part that is an expression,
IF-equations are used when different sets of equations are conditionally valid.
An if-equation may contain any number of branches. Predefined procedures can
be called from equation blocks. Procedure calls consist of a procedure name,
followed by a parameter list enclosed in parentheses.

On evaluation, an expression will yield a simple value: boolean, integer or real.
Operands may be variables (local or global), or literal values. Operators available
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are boolean (AND, OR and NOT), arithmetic ( 4, -, * and /), and relation
operators ( =,<>, >, >=, < and <= ).

All variables used in a program must be declared. In the declaration the variable
is given a name, and is associated with a data type. Optionally, an initial value
may be specified.

The language supplies the predefined simple data types boolean, integer, and
real. Variables of these types may be used in expressions. The data types string
and timer are also predefined. In addition to these, the user can create his own
data types, as records. A record is an aggregate of variables. It can contain any
number of components, and each component can be either of a simple type or of
another, previously defined, record type.

Libraries: A large amount of standard modules exist. These are grouped into
libraries based on functionality, for example communication, control, calculation,
I/0, and report libraries. The users can use these modules by duplicating them
or define new modules by customizing them. The users can create libraries of
their own, with standard as well as user-defined modules.

Operator interface: SattLine employs the SattGraph operator interface. The
software in a SattLine system consists of modules, each of which has its own
operator interface, i.e., graphical representation and interaction ob jects.

“Information zooming”, one of the basic features of SattGraph, together with
window techniques give the operator split vision - the ability to monitor detailed
operations whilst keeping watch on the plant overview. By pointing at an object
it can be zoomed in. The size of the object is chosen as large as possible while
still being contained in the window. Any part of a window can be zoomed in in
the same way. It is also possible to zoom up or down a whole window. When
objects are enlarged, hidden information is shown and icons are replaced by more
detailed graphical information. There can be many layers of information on top
of each other in the same module.

Distributed environment: A Sattline system may consist of several control
systems, personal computers, and minicomputers. But there is only one software
program, “the global program”, for the whole system. After the software is
developed the designers tell the system were different parts of the software should
execute. The system then automatically carries out the down-loading of the
software and sets up communication links between the different parts. If the
system is reconfigured, new instructions can be given and a new, and different,
distribution will take place.

As a true distributed system, SattLine is always in control. Should, for example,
a supervisory system fail, then the plant controllers continue their local operation
unaffected.
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Communication: Communication is an integral part of the SattLine system,
with conformity to international standards throughout. At the heart of the sys-
tem is a carrier-band MiniMap network (the real-time implementation of the
MAP protocol). At higher levels Ethernet is used for communication with VAX-
stations and other computers.

Open system: SattLine is based on an open architecture. There is a well de-
fined interface which allows integration with other software. E.g., for connection
to relational databases, SattLine provides a SQL interface.

8.2.3 Intelligent controllers

A clear trend towards local control units with increased abilities for automatic
tuning, adaptation, and diagnosis can be seen. The research area of expert control
uses KBS techniques to implement the knowledge involved in these systems. ECA
400 is a good example of a commercial controller along these lines.

ECA 400

ECA 400 from SattControl is a PID controller with relay-based auto-tuning,
continuous adaptation, adaptive feedforward compensation, and the possibility
to have gain-scheduled controller parameters based on the set-point, measured
variable, or the control signal. The relay method automatically finds a set of PID
parameters for the process. Three different sets of parameters can be stored in a
gain-schedule, each set obtained through tuning in a different operating region.
If, e.g., the process is non-linear, the controller changes parameters depending on
operating region. For processes that have time varying dynamics, the continuous
adaptation makes it possible to continuously adjust the parameters in accordance
with the changes in dynamics.

8.3 OBJECT-ORIENTED DATABASE SYSTEMS

Object-oriented database systems (OODBSs) is currently a very active research
area (Atkinson et al, 1989). OODBSs aim to combine the strong features of con-
ventional, e.g., relational, database management systems (DBMS) with object-

oriented ideas.

Conventional DBMS provide support for data persistence, disk managemen,
sharing of data between multiple users, data reliability and security, and simple
ad hoc query languages such as SQL. In OODBS this is combined with sup-
port for complex object structures; encapsulation of both data and behaviour,
i.e., code, into objects; classes or types; inheritance; extensibility; etc. Several
first generation OODBS products have been released during the last few years
including Gemstone, G-base, and Statice.

é
|
!
!
|
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Gemstone: Gemstone from Servio Logic was released as a product in 1988. It
target markets are office automation and CAD. Its is implemented in C and uses
Smalltalk as its method language.

G-base: G-base from Graphael, France, allows multi-media applications and
has a user interface with hypertext facilities. G-base has a set of optional tools
including a graphical browser, a menu-based query interface, and a PROLOG-
like programmable query language. G-base is implemented in Lisp and available
on Sun, Apollo, and different Lisp machines.

Statice: Statice from Symbolics, USA, allows database management facilities
for object-oriented applications on Symbolics machines. Statice is implemented
in Lisp.

Prospects

Although commercial products are emerging, OODBSs should still be considered
as a research area. The available products follow no accepted standards and
are, to a large degree, still prototype systems. Most of them require powerful
computers and several are implemented in Lisp on Lisp machines.

OODBSs are important for the development of knowledge-based control system
since they can be seen as one possible future way of implementing the common
knowledge base concept. However, there is still a long way to go before this may
come true. Up to now, OODBSs have not been focussed on real-time applica-
tions. For this project distribution is a specially important criterion. Here, the
technique is not yet mature even for conventional relational databases.

8.4 OMOLA

Omola is a general language for representing models of dynamic systems. The
language is based on ideas from object-oriented programming and the name is
short for Object-oriented MOdelling LAnguage.

Omola is one of the outcomes from a larger project in computer aided control
engineering — CACE (Mattsson, 1989) - that is performed at the Department of
Automatic Control, Lund Institute of Technology. In this project it was realized
that models play an essential role in engineering and in particular in the design
of control systems. Most simulation languages and model representations used
in various design tools are too specialized and inflexible to be used as a general
modelling language. Omola has been designed to overcome these deficiencies.

One of the main goals of the CACE project was to design an integrated environ-
ment of cooperating tools supporting the various stages in process and control
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system design. Omola contributes as a common ground, or a core model represen-
tation, around which the tools may be arranged. The core model representation
serves as a common database and a communication channel between the tools.

The design of Omola reflects the following important properties of a modelling

language.

o The language should support a number of mathematical and logical frame-
works for representing model behaviour. For example, differential algebraic
equations (Mattsson, 1989b), transfer functions, state space descriptions, dis-
crete events, and qualitative behaviour.

o It should include concepts for structuring of large models, for example, hier-
archical submodel decomposition as in Dymola (Elmgqvist, 1978).

e It should be modular in order to support reuse of parts of models i1 other

models.

o It should be possible to include “redundant” information in models for the
purpose of documentation and automatic consistency check.

o It should be generally useful as an input language for different control design
tools and simulators. It should also be useful for model documentation and
as a standardized exchange language between users and tools. This means
that it must fit within an interactive CACE environment.

8.4.1 Data modelling in Omola

Omola is designed to describe structure and behaviour of dynamic systems. How-
ever, it is based on a few very general concepts of object-oriented data structuring,

This makes Omola generally useful as a data modelling language.

The basic entity that can be defined in Omola is called a class. A class defines a
data type which has a name and a number of attributes. The attributes defines
the properties of the class and they can be ordinary named variables of a defined
type (real, integer, string, etc.) or they can be other class definitions, so called

components.

Classes are arranged in a hierarchy such that every class has one super-class. A
class will inherit all attributes present in its super-class. An inherited attribute
belongs to a class in the same way as if it was defined locally in the class. Ifa
local attribute is defined with the same name as an inherited attribute, the local
definition will override the inherited one.

The general form of an Omola class definition looks like:

<name> IS A <super class> WITH
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<body with local attribute definitions>
END

where the class bode may contain other class definitions or variable definition on
the following format.

<name> TYPE <type name> := <binding expression>

The binding expression in a variable definition is optional. It binds the variable
to a specific value or an expression.

Let us now regard a few examples of how Omola can be used to represent struc-
tured data. Suppose we want to represent cars and start by defining the Omola
class Car:
Car IS A Class WITH
parts:
body IS A Car_body;
engine IS A Combustion_engine;

properties:
prize TYPE real;
fuel TYPE string := "gasoline";
END;

The super-class of Car is Class which is predefined in Omola. The Car defines
four attributes: body and engine which are components and prize and fuel
which are variable attributes. The words ‘parts:’ and ‘properties:’ are key-
words dividing the attributes into categories. Categories are used to structure
the attributes into groups according to their different roles in the model. For
example, in this case we can ask questions to the data base like: “What are the
parts of a car?” and “What are the properties of a car?”.

Now we can use inheritance and specialize the Car class into a class representing
a special type of cars (a subclass) called Mercedes:

Mercedes IS A Car WITH

fuel := "diesel";
parts:
stereo IS A Car_stereo;
END

The Mercedes class rebinds the fuel attribute inherited from Car and adds
another component called stereo.

Composition and specialization are two most important concepts for structuring
process models and other kinds of data. In the examples we have seen how these
concepts are supported by Omola. Composition is accomplished by classes that
have other classes as attributes. Specialization is accomplished by subclasses and
inheritance.
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8.4.2 Model representation in Omola

We will now see how models of dynamic systems can be represented in Omola.
The discussion is based on a basic set of concepts for model structuring covered
in more detail in (Mattsson, 1988) and {Andersson, 1989).

A model is the main structural entity. A model contains a description of its
interface to the environment, its dynamic or static behaviour and its parameters.
Models can be developed and tested, saved in libraries, and reused as submodels
in different contexts.

A model is an encapsulated module where the interaction with the environment
is limited to certain variables called terminals. A model can have any number of
terminals. Very often a model represents a physical component such as a pump,
a valve, or a regulator, and the terminals represents physical quantities like mass
flow, electric voltage, etc. Models can be parameterized in order to make them
more flexible and adaptable to different circumstances.

Here follows an example of a simple model definition in Omola. It defines a tank
model with two terminals and two parameters.

Tank IS A Model WITH
terminals:
inflow IS A Terminal;
outflow IS A Terminal;
parameters:
tank_area := 5.0;
outlet_area := 0.05;
END

The tank model is defined as a subclass of Model with the terminals and pa-
rameters defined as local attributes. The terminals are component attributes;
i.e., they are classes defined as subclasses of the predefined class Terminal. The
parameters are variable attributes bounded to some default values. A parameter
default value can be changed in a subclass of Tank or in an instance involved in
a simulation. Because these attiributes are defined in the parameter category, a
tool using this model (e.g., a simulator) may assume that they are time invariant.

The Tank model defines only the model interface and not the model behaviour.
Behaviour definitions are considered as model components called realizations.
Inheritance is used when defining a new tank model with non-linear behaviour

specified as two equations:

NL_tank IS A Tank WITH
realization:
Re IS A Primitive WITH
variable:
level := 0.0;
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equations:
tank_area * dot(level) = inflow - outflow;
outflow = outlet_area * sqrt(level);
END;
END;

This new tank model will inherit the terminal and parameter attributes from Tank
and add a realization component. The realization is a subclass of Primitive,
which is another predefined class, and it has a variable and two equations as
attributes. One advantage of separating the tank model into two different classes,
one defining the interface and one defining the behaviour, is that we can define
alternative tank models with different realizations but with identical interfaces.
When a tank is used as a part of large plant model, it is easy to exchange tank
models with different realizations. This is a good example of how the object-
oriented approach achieves both modularity and reusability of models.

The NL_tank was an example of a primitive model, i.e., it had a realization that
was based on differential equations. Models can also get their behaviour definition
from a set of connected submodels. Such a model is called a structured model.
For example, we can define a new model composed of two connected tanks:

TankSystem IS A Model WITH
terminals:
inlet IS A Terminal;
outlet IS A Terminal;
realization:
TankStructure IS A Structure WITH
submodels:
tankl IS A NL_tank;
tank2 IS A NL_tank;
connections:
inlet AT tankl.inflow;
tanki.outflow AT tank2.inflow;
tank2.outflow AT outlet;
END;
END

The realization of this tank is a class with two categories of components: sub-
models and connections. The submodels are subclasses of the previously defined
NL_tank, while the connections are written in a special syntax relating terminals
of the submodels and of the tank system.

We have seen Omola used for representing models in a modular way. Models can
be defined as classes which can be specialized in various directions and used as
_ Somponents in other models. Also terminals can be structured in a similar way.
The terminals used in the examples here have been on the very simplest form. We
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can also define terminals with additional attributes defining the physical quantity,
unit of measure, range, etc. Interaction between model components involving a
set of quantities can be represented by structured terminals. For example, a
terminal modelling a pipe connection may have pressure, temperature and flow
as component terminals.

8.4.3 An interactive environment

Omola is intended as a textual format for models represented in a core data base
in an environment of cooperating tools for control systems design. The environ-
ment will include tools for manipulating models graphically, and for browsing
libraries of models and model components. Most of the time the user of such
modeling tools will not have to write or modify Omola code directly, but rather,
he defines and modifies the models incrementally by using mouse and menus and
graphical editors.

Simulation is only one way to use a model represented in Omola. Other tools in
the environment may use the models for other purposes. Here are some examples:

o (enerating a graphical picture of the system structure, for example, a block
diagram.

o Generating text descriptions of the system for documentation or user infor-
mation.

o Generating special purpose code, for example, regulator code or simulation
code in other simulation languages.

o Generating standardized system descriptions in order to communicate with
other control engineering packages.

e Derivation of different kinds of systems properties like stability margins, loop
gains, etc.

e Asinput to various control design tools.

8.5 INFORMATION PRESENTATION SYSTEMS

Graphical information presentation systems have two possible architectures, as

shown in Fig. 8.2.

The most common alternative today is to have a user interface toolkit and a
number of user interface tools. The other alternative, which is more advanced and
less common, is to have a user interface management system. Both architectures
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User Interface

Tools User Interface

Management System

User Interface
Toolkit

Window System Window System

Graphical Interdface Graphical Interface

Figure 8.2 Two alternative architectures for graphical information presentation systems

have a graphical interface and a window system. The architectural components
are discussed below.

Also relevant to real-time systems are interactive editors for editing dynamically
updated pictures. These are also discussed below.

8.5.1 Graphical Interface

There are a wide range of standards for the graphical interface to display termi-
nals. The standard interfaces give access transparently to many different hard-
ware devices. The same application code can use different devices.

The most important graphics standards are:
o Graphics Kernel System (GKS)
o Programmer’s Hierarchical Interactive Graphics (PHIGS)

o PostScript, from Adobe Systems

8.5.2 Window System

The most important window systems today are network-based, which allow dif-
ferent windows on one terminal to be simultaneously connected to different com-
puter nodes. Some network window systems allow different types of operating
systems and hardware to be used in the same network.

The most important window systems are:
* X Window System, from M.LT.

® NeWS, from Sun Microsystems

Of these, the X Window System is more widely accepted, although NeWS is
technically more advanced.
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8.5.3 User Interface Toolkit

User Interface Toolkits are program libraries for programmers to build user inter-
faces. This area of technology is not yet mature and there are many products with
different approaches and varying degrees of sophistication. They can be roughly
divided into object-oriented and non object-oriented. The object-oriented toolk-
its are designed to be used with object-oriented languages such as C-++.

The most important non object-oriented user interface toolkits are:
e OSF/Motif, from Open Software Foundation

e Open Look, from Unix International

Object-oriented user interface toolkits exist (for example, InterViews from Stan-
ford University, CommonView from Glockenspiel and NextStep from NeXT Com-
puter Systems), but it is too early to say which will become the most important

standards.

8.5.4 TUser Interface Tools

User interface tools are not the same as user interface toolkits. A toolkit is
program library to be linked with the application. Tools are separate stand-
alone programs to be used in conjunction with a toolkit. User interface tools are
not essential, but they can reduce program development times.

Examples of user interface tools are:

e Bitmap editors

Interactive graphical editors for designing icons.

e Presentation Editor

A visual tool to interactively build screen layouts containing dialogue boxes, scroll
bars and other interactors or widgets. For example, Interface Builder from NeXT

Computer Systems.

e Presentation Description Language

Also for building screen layouts, but using a language instead of a visual editor.
An example is User Interface Language (UIL) from DEC.

o Dialogue Description Language and Interpreter

A language to describe the dialogue paths in the user interface and an interpreter
to execute the description.

. e T A A S s R i s
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8.5.5 User Interface Management System (UIMS)

A user interface management system is more advanced than the toolkit/tool
approach because the application and the user interface are more completely
separated. The connections between the application and the user interface are
described by an Application Interface Model. UTMSs also contain Presentation
Description and Dialogue Description tools.

There are very few commercially available products that use the UIMS technology
(separation of UI and application functions). Many manufacturers call their
products UIMS, in the same way as many products some years ago was called
DBMS, although they were not real DBMSs.

An example of a UIMS is TeleUSE, which is recommended by the Open Software
Foundation. There are no standards for UIMSs yet.

8.5.6 Editors for Dynamic Pictures

There are a few products in the market for implementing full graphics pictures
that are dynamically updated from application data.

The reason why the products are called editors is that there is normally an
interactive editor in the products. In some products there is also a philosophy
that the application uses the same "interactive” commands to define and update
pictures.

Examples of editors for dynamic pictures are EASE+, DataViews, and Sherrill-
Lubinski Editor. There are no standards in this area yet.

8.6 FUZZY CONTROL

As pointed out in the travel notes, the activity in fuzzy control is currently very
high in Japan. LIFE (Laboratory for International Fuzzy Engineering Research)
was started last year with 48 of Japan’s largest companies as sponsors. One of the
main focuses of LIFE is fuzzy control. In J apan over 100 industrial fuzzy control
application have been reported including coordination control of elevators, brake
control systems for subway trains, etc. Several large international conferences on
fuzzy techniques have been announced lately.

Special chips for execution of fuzzy rules are becoming available. One example
is DFP (Digital Fuzzy Processor) FC110 from Togai. FC110 is single chip, VLSI
co-processor that can be added to IBM PCs, Suns, and Apollos. FC110 has a
capacity of over 100.000 fuzzy rule evaluations per second. DFP also allows fuzzy
logic rules to be compiled into portable ANSI C code.
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8.7 RESEARCH ON KBS AND PROCESS CONTROL

The research and development concerning knowledge-based applications within
the process industry is concentrated to four different sources: the process indus-
tries, Al companies, control system suppliers, and academic institutions. Much
of the activity going on is taking place within some of the national research pro-
grammes such as DUP in Sweden or within the international research programmes

such as ESPRIT.

8.7.1 Process industries

The interest among the process industry for KBS applications continues to be
high. Examples of industry branches where the activity is high are the chemical
industry, the steel industry, the pulp and paper industry, the power industry,
and the manufacturing industry. Within the nuclear industry alone, 298 expert
systems were reported by June 1989 (Bernard and Washio, 1989). Which industry
branch that dominates varies from country to country. In USA, the chemical
industry has a strong position with Du Pont (Rowan, 1989) as the leader in
KBS applications. In Japan, the power industry and the steel industry have the
highest activity. In Sweden, the pulp and paper industry dominates.

8.7.2 Al companies

AT consulting companies specially directed towards process industries continue to
emerge. Most of them also develop their own KBS tools with G2 from Gensym
as a good example. Other examples of Al companies are Cambridge Consultants,
Framentec, PA Consultants, Infologics, Epitec, Stone and Webster, Scicon, and
SIRA Ltd.

8.7.3 Control system suppliers

All major control system suppliers are active in the field. So far, the work being
done is restricted to “interfaced solutions”. However, Japanese companies like
Toshiba, Hitachi, and Yokogawa have gone one step further. They develop their
own expert system tools with a tight interface to their existing control systems.
In some cases the systems share end-user interfaces.

Honeywell: Around 1986, Honeywell was involved in the Cooker project, see
the Feasibility Study, a knowledge-based system for monitoring of batch pro-
cesses. According to the information we have this has been further developed
into a commercial product with the possible name of “Conchshell”. The sys-
tem was supposed to be released last autumn. The group at Honeywell doing
KBS research consists of around 40 persons. Honeywell has also implemented
the forward chaining system OPS83 within TDC 3000.
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Foxboro: As described in the travel notes of the Feasibility Study, Foxbors
have made it possible to include Personal Consultant Online in their new control
system I/A (Intelligent Automation). Foxboro has been involved in KBS actjv-
ities for a long time. They were one of the participators in the Falcon project.
They have also looked at model-based systems and alarm analysis,

Siemens: Siemens was a member of the German Research programme TEX-I
(Technische Expertensysteme zur DatenInterpretation, Diagnose und Prozess-
fuhrung) together with Bayer AG, Elektronik System Gesellshaft, Interatom,
Krupp Atlas, Fraunhofer Institut, and GMD. In that project the German tool
Babylon was used in a Symbolics environment. Partly as a result of this Project,
Siemens, through Interatom, has developed an interface between G2 and Simatic
S5.

Combustion Engineering: Combustion Engineering, now a part of ABB, has
developed the previously described GDS system for on-line diagnosis. Combus-
tion also work with G2 and have developed a special system towards the pulp
and paper industry based on G2.

Bailey Controls: Bailey has developed Expert 90 (Oyen et al, 1988), a rule-
based module that can be embedded within Bailey’s Network 90 control system.
The rules share the memory of the the other control blocks and is processed by
the same processor. The rules can use simple temporal expressions and allow for
fuzzy logic. Some examples of how rules may look like are:

IF CAVITATING

THEN FOR 30 SECONDS
INHIBIT_PUMP_ON

END

IF CERTAINTY PUMP_FAILURE > 30Y%
THEN PUMP_SUSPECT
END

Bailey also use expert systems within the organization.

Toshiba: Toshiba activities on expert systems are described in the Travel
Notes. Toshiba’s solution consists of three parts: a process computer (G8050), a
special purpose Lisp processor (TP704) running the TDES3 expert system tool,
and a separate engineering workstation for off-line development of the knowledge
base. TDES3 uses facts, production rules, schemas, and procedures for knowl-
edge representation. The process computer and the Lisp processor communicates
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through a VME bus interface. The operators use the same console to both the
process computer and the KBS.

Yokogawa: Similarly to Toshiba and Hitachi, Yokogawa has developed their
own tool, XL/AI, that can be interfaced to the CENTUM system. Japanese Gas

Company has developed a G2 interface to Centum.

8.7.4 Research programmes

The research programmes that are most central to our project is DUP in Sweden
and Esprit in the European Community. They will be described in some detail

here.

DUP

DUP (Development of User-friendly operation systems for the Process indus-
try) is a Swedish research programme funded by the Swedish National Board for
Technical Development. The programme is focussed on the end-users of modern
control systems within three selected branches: the chemical industry, the pulp
and paper industry, and the food engineering industry. DUP is an interdisci-
plinary programme composed of Computer Science, Automatic Control, Process
technology, Cognitive Psychology, and Environmental Sciences. Important areas
with DUP are knowledge-based systems for operator guidance and support and
the use of simulation techniques within the process industry.

Several projects within DUP are related to this project.

KE2000: SCA/Teknik and Uppsala University have a DUP project where they
develop a real-time expert system for monitoring of the pulp line at the Ostrand
plant. The real-time expert system is based on Prolog and the operator interface
is built in Supercard. The system executes on Macintosh II computers.

A fundamental part of the project is the organization of a future process control
room. The expert system part of the system will run on a separate operator
station, the KE-station 2000 (Knowledge — Experience) which should be well
integrated with the rest of the equipment in the control room.

Billerud/Skoghall: The previously discussed project at Skoghall where Stora
Teknik and The Karlstad Institute of Technology apply knowledge-based systems
to the monitoring of a continuous digester is a part of DUP.

Frovifors: At Frovifors, the expert system tool Epitool is used for closed loop

control of a pulp washing process.

|
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Knowledge techniques in the Food Engineering Industry: AB Felix
performs a study together with Infologics on how multi-media based knowledge
system can be applied in a mashed potato plant.

HAZOP: Nobel Chemical together with the Department of Chemical Engi-
neering, Lund Institute of Technology, and Masic AB take part in a Nordic
project where qualitative methods are applied for various process applications,
The DUP part of the project considers qualitative methods for HAZOP based
risk analysis of chemical processes.

ESPRIT

The ESPRIT programme (European Strategic Programme for R & D in Informa-
tion Technology) was defined after an analysis undertaken in close liaison with
EC industry in 1982 and 1983. The main reason for the programme was to
improve the competitive ability of the European Community. ESPRIT has the
following three objectives:

e to provide European Information Technology (IT) industry with the basic
technologies to meet the competitive requirements of the 1990s,

o to promote European industrial cooperation in IT, and

o to pave the way for new standards.

The first phase of the programme started in 1984 with ESPRIT I. The total
budget of ESPRIT I amounted to 1,500 MECU (about 10,500 MSEK) with 50%
coming from EC and 50% from industry. About 3000 full-time engineers and
scientists have been engaged in 226 projects. About 526 organizations have been
involved.

The second phase, ESPRIT II, is a five year programme from the 1st December
1987. It is a larger scale programme than ESPRIT I and the budget is 3,200
MECU (about 22,400 MSEK).This figure represents about 5% of the R & D
expenditure in the IT industry in EC. Relative to the long term R & D, the per-
centage is much higher. The catalytic effect of ESPRIT has played an important
role. In the fact the IT industry R & D has grown to the same level as US IT
companies in terms of percentage of turnover.

The first call for proposals to the ESPRIT II programme resulted in 156 project
contracts with 585 participating organizations. This represents about half of the

ESPRIT II programme. The second call for proposals is scheduled for January
1990:
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The Bidding for Research contracts

ESPRIT projects can be started only in competition with other interested groups.
This is done by a bidding procedure. An ESPRIT work programme describes in
detail different areas of interest for EC. Project proposals are prepared from the
different groups in order to meet the requirements of a specific work programme
description. Normally, only one proposal is selected for contracting in a specific
domain. In the second call of the ESPRIT II, the statistic chance to get a specific
contract is estimated to 10 - 30%.

In a group bidding for a contract, there has to be at least two industrial part-
ners from different countries. Large companies (more than 500 employees) and
universities dominate the ESPRIT programme.

The ESPRIT work programme

The work programme is focused on three strategic sectors:
e Microelectronics and Peripheral Technologies.
e Information processing system.

e IT Application Technologies.

Two areas of application technologies were identified:
e Office and Business Systems.

o Computer Integrated Manufacturing (CIM).

In CIM, all kinds of manufacturing are included — workshops, chemical plants,
etc. CIM also includes activities like design, product preparation, control, etc.

Microelectronics and Peripheral Technologies

The microelectronics and peripheral technologies sector was judged to be strate-
gic because microelectronics will influence all advanced technology areas. The
market for integrated circuits (ICs) is expected to approach 60 BECU (about
420,000 MSEK) by 1992 and about 20% to 30% of this will be for application-

specific integrated circuits (ASICs) required by electronic systems producers to
reach optimized solutions.

In ESPRIT I, 49 projects were launched. In ESPRIT II, at least 30 projects have
started. In very general terms the sector can be classified into four sub-areas:

o High-Density Integrated Circuits.
e High-Speed Integrated Circuits.

e Multifunction Integrated Circuits.
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e Peripheral Technologies.

Technology, CAD, manufacturing, and material issues are treated in each sub.
area.

Information Processing Systems

Information Processing Systems is a fast growing commercial sector and is there.-
fore of high strategic importance. For instance, the market volume for packed
software has been estimated to 35 BECU by 1993. The number of deployed
expert systems in the US jumped from 50 to 1400 between 1987 and 1988.

The sector has more than 137 projects and in ESPRIT II the sector is broken
down in five (four in some documents) sub-areas:

e System Engineering.

s Knowledge Engineering.

¢ Advanced System Architectures.
e Human-Computer Interfaces.

o Sensor-Based Systems.

As knowledge-based systems are of special interest to us, we will go into more
detail on Knowledge Engineering.

Knowledge Engineering: In the first call to ESPRIT II the key priorities
were for real-time and integration issues. The following projects were started
(state in July 89):

Key words Projects

Real-time AITRAS

Expert Agents ARCHON

Front-ends to existing systems KBSSHIP, ITSIE, FOCUS
KB and database integration KIWIS, STRETCH

MMC and KBS PROMISE, MMI2
Knowledge acquisition ACKNOWLEDGE

Temporal qualitative reasoning EQUATOR
KBS validation and verification =~ VALID
Learning MLT

ESPRIT I did not use the same classification in sub-areas and the projects are in
their finishing stages. The ESPRIT I projects of special interest to our pro Jject are
GRADIENT, QUIC, KRITIC, ESB, and EUROHELP, which all were described
in the Feasibility Study. Another ESPRIT I project of interest is SKIDS, Signal
and Knowledge Integration with Decisional Control for Multi-Sensory Systems.
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In the second call for proposals within ESPRIT II, real-time knowledge-based
systems has been selected as a special area of interest (no. 1.2.1). The objective
is “to develop new hardware/software systems that will integrate the traditional
approach to embedded computer systems based on numeric processing with more
novel approaches based on the processing of knowledge”. The interest area in-
volves identification of factors involved in real-time systems, i.e., “reasoning in
specified time constraints, reasoning with incomplete data, reasoning with chang-
ing facts, time dependent /“spatial reasoning, ability to respond to interrupts,
and real-time updating of knowledge bases”. The developed system should be
demonstrated and evaluated in real, demanding applications (i.e., process control,
autonomous agents).

At the present time it is not clear which proposal that will be selected for this
interest area.
Application area — Office and Business Systems

The world market for Office and Business systems is estimated to be around 240
BECU by the early 1990s. Under ESPRIT I, 48 projects were started and under
ESPRIT II, 39 projects have so far started. The area can be divided in:

e Office Document Architecture.

e Application Systems Engineering.

e Business Systems.

e Human Factors and Human-Machine Interfaces.
e Workstations.

o Networks and Distributed Systems.

e Storage and Retrieval Systems.

A wide range of technologies including KBS is used in the different projects.
Standardization issues are also addressed.

Application are — CIM

The Computer Integrated Manufacturing markets are growing fast with about
15 to 25% per year and represents an important market. Especially important is
the ability of CIM to improve the productivity and international competitiveness
of the manufacturing industry. CIM is an key area for ESPRIT as the potential
market is large and the area is not dominated by overseas suppliers.

The ESPRIT strategy in CIM is based on four lines of actions. These are:
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e to identify integration paths based on open system concepts and to develop
the associated methods and tools,

e to develop sub-systems capable of exploration within this framework,

o to demonstrate the success of this approach and its benefits by early imple-
mentation in a wide range of production environments, and

e to build on achieved ESPRIT results.

The CIM sector has at least 74 projects and it may be divided into the following
sub-domains:

o CIM Architecture and communications.

e A Manufacturing Systems Design and Implementation.
e Product Design and Analysis Systems.

¢ Management and Control of Manufacturing Processes.

e Robotics and Shop Floor Systems.

There is an ambition to coordinate and integrate all work in the sector with main-
stream CIM-OSA and CNMA developments. All kinds of technologies, including
KBS, are used in the projects.

The Basic Research Programme

A Basic Research IT programme has also been added to ESPRIT. At present
this programme is quite small with a budget of 63 MECU (about 440 MSEK)
during a 30 month period. This programme is supposed to equal similar ones
in the US, i.e., basic IT programmes of about 200 MUSD from the US Congress
and from DARPA. The Basic Research is divided in three main areas:

e  Microelectronics.
s Computer Science.

e Artificial Intelligence and Cognitive Science.

Almost all of the work is done at Universities and Research Establishments. The
projects are called “actions” in this programme.

Microelectronics: At least 26 actions are started with the following main
targets:

® Low-Noise and High-Speed Devices using super-conduction, etc.
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o Tundamental In-Depth Studies of Structures exploring quantum effects or
tailoring of electrical properties.

e Nanometer-Scaling of Circuits using organic molecule assemblage, etc.
o Super-fast and Parallel Computing using optical devices.

o Next Generation Design Systems, Methods, and Algorithms.

Computer Science: At least 15 actions have started in Computer Science.
The sub-area of architectures is not covered in a proper way. The areas are:

e Formal Systems.

e Concurrent Systems.

e Specification and Verification.

o Algorithms and Integration of Programming Styles.

o Dependability, Data Bases, and Distributed Computing.

Artificial Intelligence and Cognitive Science: At least 20 actions have
been launched in the following domains:

e Robotics and Vision.

e Neural Networks.

e Knowledge Representation.

e Speech and Natural Language Processing.

e Formal Theories of Automated Manufacturing.
e Human-Computer Interaction.

Participating Companies

An interesting question is: “Which companies are involved in ESPRIT projects?”
We have put together some statistics to answer that question. The most engaged
companies seen from the number of pro jects are:

Company No of projects
THOMSON 83
PHILIPS 67

BULL 63
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GEC 62
SIEMENS 60
AEG 49
ICL 35
OLIVETTI 32
PLESSEY COMPANY 28
NIXDORF COMPUTER 24
BRITISH TELECOM 24
CAP group 21
STC 20
KRUPP 16
CGE 16
MATRA 15
TITN 15
CRI-COMPUTER RESOURCES 13
SYSECA LOGICIEL 13
ALCATEL 12
BRITISH AEROSPACE 12
MARCONI 11
OCE-NEDERLAND 11
SEMA 10

As indicated in these figures, the leading European electrotechnical, electronical
and computer industry play a big role in ESPRIT. The automobile industry (Fiat,
Renault, Daimler-Benz, Volkswagen) take part only in a few projects, probably
because of the existence of a special R & D program outside ESPRIT for car
manufacturers.

More interesting is the low profile of the process industry. The Chemical process
industry in Europe is supposed to be the biggest in the world. BASF, for instance,
is only involved in three projects. BP is not represented at all. The US companies
= Dow Chemicals and Du Pont — keep themselves informed through participating
subsidiaries. One explanation is maybe the lack of process orientation in the
working program. The use of the word “CIM” to cover process control, is a good
indicator. Part of the US information technology industry is kept informed by
participating subsidiary companies. Bell has 7 projects, Digital has 4, Hewlett
Packard also has 4 projects, and IBM has 3 ESPRIT projects. There are rumours
that Motorola will open an office just for the purpose of taking part in ESPRIT.

8.8 SUMMARY

Since the time of the Feasibility Study, the development of real-time expert sys-
tem tools has increased. Several commercial tools are now available. However,
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all of them follow the “interfaced solution” architecture described in Chapter 1
with all the problems that follow.

Conventional control system suppliers have increased their activities in the field
and several have products on the way. The development involves both connecting
expert system to existing control systems and new generations of control systems
based on modern programming paradigms, such as object-orientation. The best
example of the latter is Sattline from SattControl that implements some of the

ideas behind the KBCS concept.

The development of object-oriented database systems is important for KBCSs.
OODBS will probably be of value for future KBCS implementations.




Description of Future
Activities

9.1 INTRODUCTION

This chapter will discuss which activities could form the major part of a contin-
uation of the project. A number of possible alternatives will be suggested and
discussed, and some of them recommended for the project.

9.2 ALTERNATIVE COURSES OF ACTION

Possible future activities are as follows:

Further specification of the KBCS concept.
Specifying a language for knowledge base representation.
Further prototyping of the KBCS concept with G2.

Prototyping of the KBCS concept with other environments such as Smalltalk
or C++.

Coupling the G2 prototype to a control system.
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o Prototyping of real-time KBS diagnosis, planning, etc.

0.2.1 Further specification of the KBCS concept

This report presents the framework of a concept for a KBCS system. In order to
further develop the concept, further specification work is essential.

9.2.2 Specifying a language for knowledge base representation

Some form of formal description or language (as discussed in Chapter 5.3) would
be very useful for implementing the knowledge base. Such a language must be
capable of completely describing the knowledge base.

Development of such a language would take place in the following stages:
1. Write a Requirements Specification for the language.

2. Specify the syntax of the language.

3. Implement an interpreter or compiler for the language.
The language can be tested “on paper” before any implementation of an inter-
preter or compiler is done.

A language is also a suitable means of transferring the knowledge base between
different future implementations of the knowledge based control system. It is rea-
sonable to expect that real implementations of knowledge-based control systems

in the future will have some form of language.

The language OMOLA, developed at the Department of Automatic Control, has
some of the characteristics required for the knowledge based control system. The
specification of a new language based on OMOLA is a possible course of action.

0.2.3 Further prototyping of the KBCS concept with G2

G2 has certain limitations that prevent important features of the KBCS from
being implemented, particularly the multiple-view object structure of the main
knowledge base. However, the prototyping work so far done with G2 has shown
that G2 is a very powerful tool, and it can be used to prototype some very
important aspects of the KBCS concept.

Aspects of the KBCS concept that are suitable for implementing with G2 are:
e the operator interface,
o diagnosis methods, and

e the knowledge base browser

Typical aspects that are difficult to implement in G2 are:

z
?
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o the structure of the main knowledge base,
e the design tools, and

o alanguage representation of the knowledge base

9.2.4 Prototyping of KBCS concept with other environments

There are a number of environments that can be used for prototyping work, e.g.
Smalltalk and C++. These environments are not as productive as G2, but on
the other hand they are more flexible and can be used to prototype aspects of
the KBCS concept that cannot be implemented with (2.

9.2.5 Coupling the G2 prototype to a control system

(G2 can be coupled to a conventional control system, which can in turn be coupled
either to a real process or to the G2 Steritherm simulator. This configuration
would not implement the proposed internal structure for the main knowledge
base, but it would test the concept of realization tools for extracting knowledge
from the main knowledge base and distributing control system functions to exe-
cuting units. Realization tools are one of the key features of the KBCS concept.

The conventional control system used can be an ABB or SattControl system or
some other system. Whichever system is used, it must have an interface to G2
(i.e. the G2 GSl interface). If this does not already exist it must be implemented
especially for the project.

Using a real process would not prove any new principles when compared with
the G2 simulator, but would require more effort. The G2 simulator }s therefore
the best alternative. This configuration is shown in Fig. 9.1.

9.2.6 Prototyping of real-time KBS diagnosis, planning, ete.

This alternative ignores the concept of a main knowledge base and concentrates
on various individual knowledge-based aspects of control systems such as diag-
nosis or planning. Although it is possible to achieve interesting results in these

areas, the results will not contribute to the development of the key aspects of the
KBCS concept.

9.3 SUMMARY OF ALTERNATIVES

Of the above alternatives, the following appear to be the most promising:

¢ More detailed specification of the total concept.

More specification work is essential to the project in order to come closer to
realizing the KBCS concept.
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Figure 9.1 System configuration

o Requirements Specification of a language to describe the knowledge base.

It is very important to specify a language, and we must therefore take the first
step towards this goal.

e Further prototyping of the the KBCS with G2.

Further prototyping can give important insights into the KBCS concept.

o If possible, connecting the G2 KBCS prototype to the G2 Steritherm Sirmu-
lator via a conventional control system

This would test the concept of realization tools, one of the key concepts of the

KBCS.
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9.4 SOFTWARE/HARDWARE REQUIRED

To proceed with the selected prototype, a conventional control system is needed.
This could be a SattControl or ABB system, or some other system. The control
system selected must have a G2 GSI interface already implemented or specially
written for this prototype.

9.5 CONCLUSION

The future activities recommended will give the best possible use of the resources
available in the project. Further specification of the concept and of the knowledge
representation language are extremely important for the project, and coupling
of the G2 prototype and simulator to a conventional control system will allow a
key part of the concept (realization tools) to be tested.




Summary

The control systems of today are very good at handling quantitative knowledge,
expressed as control logic, sequential logic, and procedures. Control systems are,
however, poor in representing qualitative knowledge, such as functional knowl-
edge, heuristics, etc.

In the IT-4 Feasibility Study (IT4, 1988), a basic concept was introduced in order
to solve the problem of representing qualitative knowledge. The concept is based
on knowledge based systems, an area within AI that focuses on the representation
and utilization of qualitative knowledge. In contrast to the traditional approach
of KBSs in process control, the concept is aiming at an integration of KBSs
and conventional techniques. The integration is essential in order to avoid data
redundancy and create consistent man-machine interfaces.

The concept implies a new generation of process control systems and influences
several parts of their design, e.g., what hardware and software units the system
consists of, the network architecture and communication protocols, the control
system language, the user interfaces, etc.

The kernel of the concept of Knowledge Based Control Systems (KBCSs) is a
knowledge base containing an object-oriented, multi-perspective model of the
process components and the control system. The knowledge base is surrounded
by tools. The tools build up the user interface for the different user groups and
implement the different functions of the system.

The work in the first phase of the main project, which is described in this report,
has basically been concentrated on verifying and broadening the original concept:

There has not been any reason to change the original concept. However, we have
found the complexity of the proposed system to be much higher than expected.
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The reason for this is mainly the complex structure and dependencies in an
industrial plant. In general, a process can be decomposed into a set of systems
that correspond to different flows in the process. The systems may be composed
of subsystems which in turn are composed of interconnected components. The
components are very often parts of several systems, which gives a very complex
structure.

The object-oriented, model of the Feasibility Study has been deepened into an
object-oriented, hierarchical, multi-view model. The basic views will be geo-
graphical, topological and functional. It should be possible to add other, more
application dependent, views to the model. The multi-view approach will also
be valid for the object structure, where multi-view objects are composed from
single-view objects. The structure could also be described as multi-view objects
consisting of several views, each with unique attributes, appearance etc.

Methods for representing knowledge of different kind such as sequences, rules, and
functional knowledge are essential. Several methods are discussed and proposed.

The contents of the knowledge base is described in terms of a language. The
language combines conventional programming techniques such as procedures and
equations, with knowledge-based techniques, e.g, objects and rules.

The model-tool concept has been retained and extended in order to secure real-
time performance and to avoid redundancy problems. The tools will extract
knowledge from the knowledge base and generate executable code. The code
could perform the basic continuous and sequential control, rule-based monitoring,
diagnosis, simulation, troubleshooting, etc. All interaction with the knowledge
base will be through tools. The tools will have different user interfaces depending
on the user’s demands.

Two prototypes have been developed. A hypermedia prototype models an opera-
tor interface to a KBCS and a G2 prototype concentrates on the structure of the
knowledge base. The prototypes have been extremely important for visualizing
various aspects of the concept.

We have found the concept to be well suited for solving many of the problems
in today’s process control systems. Since the concept has proved to be more
complex than originally expected, more specification and prototyping will have
to be done. With this in mind we do not believe that it will be possible to
infroduce a commercial product that fully implements the concept for another
10 years. However, there will be products that include ideas from the concept
lorig before that.




Steritherm

A.1 INTRODUCTION

This appendix contains a description of the Steritherm process which is used as
a demonstrator in the project. The reason for having a demonstrator process is
to try the system concept on a “real” process which is fairly representative for a
large class of industrial processes.

Section A.2 describes the process, its operation, and the current automation level.
Even though the Steritherm process mainly is used as one example out of the
large class of industrial processes for which the knowledge-base control concept
is of interest, the process has a set of specific problems that might be solved
with knowledge-based techniques. These are discussed in Section A.3. Finally,
the selection criteria for chosing the Steritherm process as a demonstrator are
described in Section A.4. Finally, Section A.5 contains the process schematic
which the two prototypes are based on, and the sequence activation chart.

A.2 PROCESS DESCRIPTION

Steritherm is Alfa-Laval's full-scale process for indirect UHT (Ultra High Tem-
perature) sterilization of liquid food products.

A UHT product is a liquid that has been sub jected to a continuous flow heating
process at a high temperature for a short time, normally 135-140 degrees C for
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Figure A.1 Block diagram of a UHT process with indirect heating
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Figure A.2 Block diagram of a UHT process with direct heating

a few seconds. The purpose of the process is to kill all micro-organisms in the
product. If the sterilized product is packed under aseptic conditions, it can be
stored at room temperature for months or longer. The most common product is
milk but it is also possible to process cream, coffee, dressings, sauces, etc.

UHT processing may be done with direct heating or indirect heating. In direct
heating, steam is injected into the product and condensed water is removed in a
vacuum vessel after cooling. In the case of indirect heating the product is heated
in a heat exchanger. Indirect heating is by far the most common method due to
legal restrictions in many countries against adding components to, e.g., milk.

Figs. A.1 and A.2 show the basic block diagrams for indirect and direct heating.
- For some products the UHT process is complemented with a homogenizer.

_ A normal capacity for a full scale UHT-plant is somewhere between 1,000 and
30,000 liters per hour. Such volumes are obviously too large for product develop-
ment. Sterilab is a laboratory scale UHT process intended for product develop-
ment. It has a capacity of about 100 liters per hour and can be configured both
for indirect heating, i.e., as a Steritherm process, and for direct heating.
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Figure A.3 Steritherm block diagram

A.2.1 Steritherm configuration

Fig

. A.3 shows a block diagram for a Steritherm process without homogenizer.

The process equipment is:

Product supply.
Balance tank and feed pump.

Pre-heater.

_Incoming cold product is heated with warm product from approximately 5°C

to 75°C in a heat exchanger.

Final heater.
The product is heated with hot water from 75°C to 137°C in a heat exchanger.

Holding tube.
The product is held at sterilization temperature, 137°C, for approximately 4
seconds.

Pre-cooler.
The product is cooled with cold product in a heat exchanger to 75°C. This is
the same heat exchanger that is used for pre-heating.

Final-cooler.
The product is further cooled with water or ice-water in a heat exchanger
down to filling temperature, 20°C or 5°C depending on the product.
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o Outlet valve.
In the case of a disturbance in the plant, e.g., too low temperature, this valve
is activated to protect the filling machines from an infected product.

e Product outlet.
To filling machines or an aseptic storage tank.

In addition to this, the process contains several valves, and additional pumps.
The hot water system consists of a balance tank, a pump, several valves, and a
steam injector through which steam is added to the hot water in order to increase
the water temperature. A complete flow diagram of the Steritherm process used
in the prototypes is shown in Section A.5.

A.2.2 Process operation

A normal production cycle in a Steritherm process can be split up in the following
steps:

¢ Plant sterilization

The plant is sterilized in order to kill all micro-organisms that may be present
in the process equipment. The sterilization is done by circulating water at a
temperature of approximately 140°C in the plant for a certain period of time,
typically 0.5 ~ 1 hour. When the sterilization is completed, the plant runs
with circulating water waiting for the production to start.

e Production

When production starts, a valve to a product tank is opened at the same time
as the circulating water is led to the drain. The product pushes out the water
and, after a certain time, when the product has reached the outlet valve the
production starts. Production normally continues for, at most, 8-15 hours
depending on the product and the rate of disturbances. After that production
period, the efficiency of the heat exchangers has decreased due to burn-on of
the product, and a cleaning is required.

o Intermediate cleaning

Intermediate cleaning is a way of extending the production period. Inter-
mediate cleaning is done under sterile conditions and does not require a re-
sterilization of the plant. Intermediate cleaning is not as efficient as a normal
cleaning, which implies that it can only be done a limited number of times
before a ordinary cleaning is performed.
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Figure A.4 Steritherm flow diagram with control objects

o Cleaning

After the production period described above, possibly including some inter-
mediate cleanings, there is a need for a proper cleaning. This cleaning is done
with all equipment in place (Cleaning In Place, CIP). The cleaning program
depends on the product and could vary quite a lot. Except for temperature
and flow, the cleaning program can vary in time and with respect to what
types of detergents that are used. After a CIP the plant must be re-sterilized.

A.2.3 Control and supervision

The basic control objective of a Steritherm process is to control the sterilization
temperature. This can be done in many ways with different levels of automation.

A normally equipped Steritherm has an automation system that includes a pro-
grammable control system to control the sequence logic and carry out the alarm
monitoring. The operator interaction is basically to start sequences like steriliza-
tion, production etc, and to supervise alarms. The operator communicates with
the control system via LEDs, pushbuttons, and keyboard.

Control objects

Steritherm includes the following control objects shown in Fig. A.4:
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2 Temperature controllers.

Used to control the product heating temperatures and the re

circulated Warm
water temperature.

5 Temperature transmitters.

2 Temperature guards.
Covering production temperature and sterilization temperature.

1 Timer.
For measuring the sterilization time of the plant.

5 Pumps.

Two of the pumps are used in the product line, one is used in the warm water
system, and the remaining two are used for the cleaning liquids.

15-20 Automatic valves.

Includes regulator valves, constant pressure and constant flow valves, and
on-off valves.

2 Level transmitters.
To indicate high and low level in the balance tank.

Differential pressure transmitters (optional).
To measure the pressure drop in a heat exchanger affected by burn-on.

Flow meters (usually mechanical).

A.3 PROBLEM AREAS

The Steritherm process is not very complex compared to other types of industrial
processes. The problems that do exist are not especially complicated. Production
with the Steritherm often runs quite smoothly. However, there are some problems
which may be more important than first expected. This is indicated by the reject
flow in the production of the order of 3-7% and by the fact that the non-aseptic
alternatives to Steritherm products still seem to have a bett

er reputation among
customers.

The quality aspects are good starting points for an analysis of the problems of,

and the weaknesses in, the process concept. However, first the goals of the process
will be specified.

The purpose of the Steritherm process is to produce sterilized liquid food products
from of unsterile products. In the Steritherm process the bacterials in the raw
product are killed by the means of heat. However, it is not possible to heat up
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only the bacterials — the bulk of the material is also heated and affected by the
heat.

The main problems of the process have to do with the key question: “How to kill
the bacterials in the raw product without affecting product properties like taste,
consistency, stability, structure, and production volume in a negative way?”

In our case, we want to use information in a more efficient way in order to solve the
Steritherm problems. Different interest groups like the production management,
the operators, the service personnel, and, indirectly, the customer need different
types of information. The information needed is not only dependent on the user
group, but also on the current situation.

The KBCS concept may give us a means to solve some of the problems found in
the Steritherm process. We have found the following examples of problem areas,
which will be analyzed in further detail:

o Representation of design knowledge
o Alarm analysis

e Quality control

o Production optimization

e Raw material

e Auxiliary treatment

A.3.1 Representation of design knowledge

The present design of the Steritherm process is a result of more than 20 years
of continuous improvement of a basic process concept. For most people involved
in developing and using the system it is important to be able to trace and add
knowledge of reasons and criterias behind the basic design as well as behind the
different improvements done on the way during these years. By easily accessible
explanations or references to where such knowledge could be found, the users
should be able to adapt and optimize the process in a much better way to their
own specific demands and conditions. Mistakes could also be avoided when mod-
ifying and adjusting the design of the process. The problem today is that the
relevant knowledge is hard to elicit, represent, merge, and unify, and, further-
more, difficult to make available in a convenient way. Information that it should
be possible to access or reference by the control system is mainly of the following

types:

o Documented information in instruction manuals, process diagrams, design
criterias, field reports etec.
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e Un-documented design knowledge and experience about Steritherm, now in
the brains of several “experts” such as designers, service and maintenance
personnel, operators, aseptic product developers, etc.

o Important textbook knowledge of, e.g., aseptics, raw materials

, Process the-
ory, control theory, etc.

A.3.2 Alarm analysis

A correct alarm analysis can, under certain circumstances, be a problem for
the operator. This is typically the case for unskilled operators without deeper
understanding of the process. The major sources of alarms are the temperature
guards. These alarms can be caused by several differents faults such as problems

with the flow pump, leaking pipes, problems with the heating water supply,
broken temperature sensors, etc.

A standard Steritherm process is equipped with two temperature guards, a level
guard in the filling tank, and motor fault logics. It is not unusual that customers
add more guards. One such example is the Steritherm process at Pégen in Malmd
which has also had an alarm analysis system installed. The system was based on
additional measurements of the product pressure before and after heating, steam
pressure, product pressure at homogeniza.tion, hot water temperature, and water
flow. The reason it was removed was that it gave erroneous alarms when the
Steritherm process was used for product development.

A.3.3 Quality control

The main problem with the Steritherm process is to keep the quality of the

product high. To maintain a high quality the Steritherm has to be cleaned and
sterilized according to complex procedures.

How to kill bacteria

The main quality factor is to produce a sterile end product. The decay of the
number of bacteria in the sterilization process is probably close to a theoretical
first order decay reaction with the constant of speed and the half-time factor
governed by the Arrhenius temperature law.

This means that the number of live bacteria in the raw product decreases loga-
rithmically with time and that the mean bacterium survival time decreases in an
exponential way with higher sterilization temperature.

This is, however, only an ideal way of looking at the sterilization problem. The
transportation mechanism of heat to the particular bacteria is also important. A

_ particular bacterium may be well insulated and thus survive the fast sterilization
sequerice,
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The stirring of the product is important, as heat transport by conduction is a
slow process. The natural flow turbulence in the Steritherm takes care of the
stirring, unless the viscosity of the product is very high.

The product breakdown

Tt is not only the bacteria that decay in the Steritherm process. The product
itself decays according to similar theoretical models. The sensitivity for quality
breakdown is very dependent on the type of product, its material content, and
its internal physical structure.

Milk products are sensitive because the calcium content will be saturated and
less solvable at higher temperatures. The proteins tend to coagulate. Burn-on
coatings will be the result, especially on heated surfaces of the process equipment.
These coatings may be the source of changes in the taste of the product. Other
product properties like the fat droplet sizes and the long term physical stability
may also be affected.

Sterilization and quality

The sterilization process is governed by the least affected bacteria and the product
quality is governed by the highest temperature points. These factors have to be
well balanced in the process in order to obtain good products. A lot of the
knowledge about product quality comes from the designer, but the experience
and the actual values have to come from the people involved in the production.

Control parameters at the plant site: The following control parameters of
interest are changeable to a greater or lesser extent at the plant site:
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o Production flow rate.
e The preheating temperature.
e The final heating temperature.

e The volume of the holding tube.

Sterilization time: The sterilization holding time depends on the flow rate
and the volume of the holding tube. The back pressure or the speed of the pump
could be used to control the flow rate, while the tube volume has to be changed
by changing the piping of the Steritherm.

The back pressure also controls the boiling temperature in the holding tube and
prevents infection in the aseptic part of the process.

Sterilization temperature: The final heating temperature controls the ster-
ilization temperature in the holding tube. Another important factor to control is
the undesirable burn on. One way of minimizing this is to have the right time de-
pendent balance between the pre- and the final heating. Large local temperature
gradients in the contact area between the product and the heating surface should
be avoided in the high temperature zones. Another possibility is to optimize the
time sequences of production and cleaning.

Measurements: Direct, on-line measurements of quality factors are not possi-
ble today. All quality factors have to be estimated out of indirect measurements
and historical experiences.

For instance, the taste depends on the burn-on level, which can be estimated in
two ways. Firstly, the heat-insulating properties of the coating can be used and
secondly, the burn-on material blocks the flow in the heat exchanger and acts as
a measure of the fouling,

A.3.4 Production optimization

Optimization of production is an important issue. The production is determined
by the product flow which is normally constant. The flow rate depends on the
size of the heat exchangers and and the volume of the holding tube. The flow is
determined by the flow pump and by pre-sized orifices that are inserted into the
flow pipes. Different flows are used for production and cleaning. This is achieved
by bypassing the orifices. Due to the different flows, the parameter settings of
the temperature controllers are usually not correct in the cleaning phase. The
tuning of the temperature controllers is also important. They must be tuned to
ensure that the product temperature is also above the sterilization temperature
level during transients caused by switches in the product recirculation.
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Tn some cases the process is run with a variable product flow in order to adjust
the production to the capacity of the following filling machines. To maintain
product quality the heating temperatures should then also be varied. This is,
however, seldom done.

The washing and cleaning of the process due to fouling and burn-on also con-
straints the process availability. The cleaning takes place both between product
changes and during normal production. For products that are highly disposed to
burn-on the cleaning must be performed as often as two or three times a day.

The decision of when to interrupt production and clean the process is taken by the
operator. The standard procedure is to have pre-scheduled cleaning interrupts
where the schedule is product dependent. The schedule is based on experience
of how fast burn-on occurs for different products. The operator can, however,
decide to override the cleaning intervals if, e.g., there is only a short time left to
a normal process stop.

A way to estimate the burn-on is to measure the pressure difference over the heat
exchangers. Burn-on is detected as an increase in the pressure difference. These
differential pressure sensors are, however, not part of the standard Steritherm
process.

With more advanced methods for burn-on detection and with product and pro-
duction dependent cleaning decision thresholds there is potential for increasing
the intervals between cleaning and thus increasing process availability.

A related area, where large amounts of heuristics are involved, is the actual
cleaning. The sequence and concentration of the different cleaning detergents,
and the cleaning flow and temperature are highly product dependent. The same
is true for the overall cleaning scheme: whether to make many intermediary
cleanings or a few complete cleanings.

A.3.5 Raw material knowledge

The properties of the raw materials used in the Steritherm process are crucial
for its efficiency and for the quality of the products produced in it. Milk-based
products dominate ranging from plain milk to all types of flavoured and fermented
products, but products based on vegetables and fruits are also used. As the raw
materials are usually biological, the quality can vary due to where and how they
have been produced and treated.

Some examples of important parameters for the raw materials are viscosity, acid-
ity, air content, disposition to burn-on, fat content and if it is vegetable or animal
fat, sweetened or salted, with or without pulp or fibre, heat stability and sensi-
tivity, heat resistance of spores, and whether it has been pre-treated and thus
already depleted of some of the bacterials and enzymes.
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Knowledge of these parameters and their influence on the process efficiency and
the final product is, the same as for design knowledge, scattered about in different
process documents, in the heads of experts, in textbooks, etc. Possibilities to
access this knowledge in a unified way and through the control system should be
an important support for the designers and the different users in their efforts to

further develop the process, to adapt it to specific conditions, and to run it more
efficiently.

A.3.6 Auxiliary treatment

Incoming product

The Steritherm process works on final products, e.g, after mixing in the case
of sauces, brewing in the case of coffee, or after standardization in the case of
cream. This indicates that the quality of the incoming product could vary quite
a lot depending on how long it has been stored, the air content, etc.

Outgoing product

After the product has been processed it is normally forwarded to one or several
filling machines for packing. Due to the construction of the filling machines they
often require a somewhat higher inflow of product than they can pack. The
normal solution to this problem is to have a higher flow rate in the Steritherm

than the filling machine can handle. The “overproduction” is circulated via the
balance tank back into the Steritherm.

Excess volumes of recirculated product may cause problems with a burned taste
in the product. This may occur if, e.g., one filling machine suddenly stops. The
ideal solution to this problem is to use an aseptic bufler tank between the UHT-
process and the filling machines. This solution is often rejected for economical
reasons. Another solution is to have variable flow in the UHT-plant and adjust
the flow to the capacity of the filling machines. This solution gives problems with
controlling the temperature when the product flow is not steady.

Knowledge about auxiliary processing, before and after the Steritherm, is needed
in order to optimize production and product quality. It is therefore essential that
this knowledge is made available in the operational system.

A.4 SELECTION CRITERIA
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A.4.1 Generality

One interesting question concerning the Steritherm process is: “How general is
the process and is it possible to extend research results from the Steritherm to
industrial processes in general?”

It is impossible to give an answer to the second part of the question, but if the
Steritherm is “similar” to other processes we have reason to believe that the
results are possible to generalize.

The generality of the Steritherm process will be judged according to the following
points:

e Products.
e Production organization.
e The type of process.

e The identified problems.

Products

The Steritherm products are food products, which are sold to the consumer
without any further processing. Compared to many non-consumer products,
the delivery is fast. The number of different products produced by a particular
Steritherm process is about average for a process oriented industry.

As the product is delivered to the end user, there is limited relevance to products
that are an integrated part of other products. The very high quality standard
aspects which originate from advanced non-consumer products are not present.

Production organization

At Pagen in Malmd we found that the product development was integrated with
the production organization. However, this is not true in general. Arla (a Swedish
dairy corporation), e.g., has a separate development organization.

The production planning seems to be quite simple and the role of the process
engineer seems to be well integrated and non-distinct in the organization.

The process operator has a very important position as the main supervisor of the
process. The status and the advancement level of the service personnel varies
from plant to plant. In general, they have less process knowledge than the oper-
ators. Instead, they have more detailed knowledge about the individual process
components.
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The type of process

The Steritherm process has as input one single raw product and as output only
one product. The process may be judged as continuous with one majin process
function, which is heat treatment. The frequency of the product changes varies
from installation to installation. .

The sequence control of the Steritherm is advanced. There are sequences for start-
up, close-down, and for change of the sub-function of the process. The continuous
control problems seem to be quite easy. Today the control is restricted to the
base level — pressure and temperatures — and there are severe problems with
measuring the quality factors.

There are many types of process problems which are not present in Steritherm.
Missing from the process flow point of view are batch, assembly, positioning,
separation, major reaction, and storage problems.

The identified problems

Several of the previously identified problems with the Steritherm process are quite
general. Representation of design knowledge is one example. Representation of
knowledge about raw materials and auxiliary freatment are others. The alarm
analysis problem is perhaps the most well-known motivation for knowledge-based
systems in process industry. The complexity of this problem is, however, in our
case, relatively small. The long-term monitoring of burn-on has strong similarities
with condition monitoring problems in other industries.

Summary

The Steritherm process is quite simple from a continuous control point of view.
It has advanced sequence control. The main problem is to measure the quality
factors.

There are many general process aspects missing, but still, all aspects present in
the Steritherm process are relevant from a general point of view. The different
kinds of physical process problems missing would probably not have influenced
the major structure of an integrated process model.

The subset of problems in the Steritherm process is big enough to serve as a
generator for ideas and for demonstrators. To use a process with a greater com-
plexity would probably just have led to confusion in the project. It has not been
possible to work with the whole Steritherm in detail — certain aspects have been
selected.

§
|
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A.4.2 Sterilab accessability

The Sterilab process is available for experiments during most of the year at the
Department of Food Technology, Lund Institute of Technology. There are also
two Sterilabs at Alfa-Laval Food Engineering AB which probably can be used if
planned well in advance.

A.4.3 Access to experts and documentation

Expertise on process technology, the process design, and most of the included
main components (e.g., the heat exchangers) is available at Alfa-Laval Food En-
gineering AB. They also have people with a lot of experience of installation,
service, and maintenance of the process. Key people are Bengt Palm, the de-
signer of the process, and Lennart Alkskog, head of process development.

Among the customers we have contacted Pagen Produkter AB. Lennart Persson,
site manager, is willing to share their experience of using the Steritherm process.

Other customers of interest in Sweden are Arla in Alingsas and Ekstréms in
Orebro who have modern and fully automated Steritherms.

A.4.4 Access to full scale processes

It is probably unrealistic to think that we will be allowed to make any extensive
experiments on full scale processes at customers.

A.5 DOCUMENTATION

The process schematic that has been the base for the prototypes is shown in Fig.
A.6. The sequence activation chart used in the G2 prototype is shown in Fig.
AT,
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Travel Notes

B.1 PALO ALTO, 22/4 — 1/5 1989

Between April 22 and May 1, Karl-Erik Arzén visited Palo Alto in California.
The main purpose of the visit was to participate in a G2 user group meeting, April
24 - 25. In connection with this, Intellicorp, Neuron Data, Stanford University,
Santa Clara University, and FMC Corporation were visited.

B.1.1 G2 users meeting

The user group meeting took place at the Holiday Inn in Palo Alto. Monday
morning was devoted to presentations of the current status of Gensym, their
plans, and new products. Monday afternoon and Tuesday morning contained
user presentations. The meeting ended with demonstrations of some of the new
features of G2 version 2.0 intended to be released in September 1989.

The meeting gathered around 80 participants including 20 persons from Gensym.
The majority represented American industrial users. Peter Pavek from Uppsala
University was the other Swedish participator. His travel was sponsored by FMV.
The only other European participator came from Siemens. J apan was represented
by Mr. M. Yokoyama from C.Itoh Techno-Science.

A Sun, a HP, and a Vaxstation were available in the meeting room for G2 demon-
strations.
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Gensym presentations

Gensym’s presentations began with Lowell Hawkinson and Robert Moore. They
gave a very positive picture of Gensym. The company has grown from 17 to 32
employees over the last year. The yearly revenue is 4 MUSD. They have currently
80 customers world-wide and 150 G2 licenses. Of these, 40 include licenses for
the on-line interface GSI.

The major current event for Gensym is the announcement of G2 version 2.0.
With this version Gensym aims to bring out G2 in the operator rooms. This
intention shows up in the improved possibilities to build up end-user interfaces
within G2, including the use of colour. The user requirements, specially from Du
Pont, on integrating G2 with external simulators, have led to the development of
GSPAN that allows G2 to call external simulators through the G2 simulator. Du
Pont uses GSPAN as an interface between G2 and their own simulator written

in C++.

The development of off-the-shelf interfaces to major control systems continues.
The initiative is shared between Gensym, consultant companies, and control sys-
tem suppliers. Fisher Controls has developed an interface to Fisher PROVOX,
JGC Engineering has developed an interface to Yokogawa CENTUM, and Inter-
atom is developing an interface to Siemens S5. Gensym already has an interface
to HP 48000 and is in the process of developing interfaces to Honeywell TDC
3000, Allen Bradley PLC, HP RTAP, Modicon/AEG PLC, and to the relational

database Oracle.

G2 is currently available on Symbolics, Texas Explorer and micro-Explorer, Sun
3 and 4, HP 9000/3XX and HP 9000/8XX, Vaxstation 2000 and 3000, Vax series
6000 and 8000, Macintosh II, and Compaq 386. Versions for Apollo DN 3500
and Decstation 3100 are being developed. They have also considered IBM PS/2.
The usual memory requirement is 16 MByte.

Gensym have three new offices; in Texas, California, and Illinois. SIRA in the
UK, ORSI Automazione in Italy, Cognitech in France, and C. Itoh Techno-Science
in Japan sell G2, provide user support, and give G2 courses. Gensym also has
value-added resale contracts with ESIA in France, Interatom in Germany, JGC
Corporation and NTT Data Communications in Japan, and Scicon in USA. Com-
panies that do G2 consulting include Al Systems in Belgium, Insiders in Germany,
Computas in Norway, and Coopers & Lybrand, Badger Engineers, Management
Analysis Company, Combustion Engineering, and Kaman Sciences Corporation,

all in the USA.

User presentations

Sarat Chandra from FMC Corporation presented a project where G2 was used
for diagnosis of an armoured tank. The ultimate goal for the project was to
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embed G2 inside the tank. Due to the nature of the computers that G2 runs on,
this is currently not possible. The presentation was ended by a video film,

Albert Brown from Lockheed described a G2 application for monitoring and diag-
nosis of a propellant manufacturing process. At this stage they were still running
against a simulated process. However, they had money granted to eventually
install it in a real plant.

Clint Whitaker from Scicon gave a general talk about Scicon’s reasons for using
G2. He described one project for optimization of a fluid catalytic cracking unit.
Scicon has also developed a G2 demonstration of a car painting process and is
currently looking upon using G2 in the manufacturing industry.

Karl-Erik Arzén gave a talk were he presented his experiences of using G2 for
modelling and simulation. The main focus of the talk was on the need for hier-
archical objects and why this is difficult to implement in G2. The talk was very
well received.

Karlene Kosanovich from Du Pont described GSPAN, the interface between G2’s
simulator and external simulators that Gensym has developed in cooperation
with Du Pont. Gensym will also market G2 with GSPAN as a front-end to
commercial simulator packages like, e.g., ACSL.

Lee Thompson from Fisher Controls gave an overview of their interface between
G2 and Fisher PROVOX. The name of the interface is CGI (CHIP G2 Interface)
and connects GSI to the CHIP real-time database in PROVOX.

Makoto Yokoyama from C. Itoh in J apan presented an icon editor that they have
developed. The editor operates on G2 knowledge-base files and modifies theiricon
descriptions. The editor was only available on Sun. G2 has been selected by MITI
as the official tool in a nuclear safety research programme. In connection with
this a spectacular G2 demonstration has been developed including presentation
on a 70” video back-projection system and voice output using DECTalk.

Finally, Karlene Kosanovich discussed the possibilities to develop realistic end-
user interfaces in G2. She was very critical. Du Pont’s original specification
of the interface was described as a “Cadillac” and the interface they ended up
with as a “Yugo”. Du Pont is Gensym’s largest single customer and is currently
installing one G2 system each month in operation. From what was shown of the
new features in version 2.0, it is evident that Du Pont has strong influences on
Gensym’s development.

Version 2.0

The meeting ended with a presentation of the new features in version 2.0 and
four demonstrations. The new features are: transient object, i.e., the possibility
to create new objects and connections dynamically from rules; sets and lists to
Fepresent variables with more than one value; connections between workspaces;
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improved presentation possibilities including new and better graphs and alarm
messages; polychrome icons; user-definable menus; scroll windows; a general-
ization of the object concept to also include other G2 items such as operator
controls, alarm messages, workspaces, etc.; an integrated icon editor (possibly
in ver. 2.1); separate compiled run-time versions of G2 (possible in ver. 2.1);
Telewindows; and G2 networks.

Procedures have been expected and talked about for long and will now finally
be available. The earlier discussions had indicated that the procedural language
would be a graphical language of Grafcet type. This is, however, not the case.
The procedures resemble a conventional Pascal-ADA type of language. Proce-
dures are activated with a START action and executes as parallel activities. Pro-
cedure arguments are typed and local variables are allowed. Procedures can be
procedure arguments and recursive procedure calls are allowed. Primitives that
interrupt the procedure execution for a certain time or until a certain condition is
true exist. Gensym have plans to use procedures to implement object methods.
This will not be available in version 2.0.

Gensym demonstrated their new end user interface features. Polychrome icons
contains multiple layers with different colors that can be changed dynamically.
Combined with the possibility to move and rotate objects this gives quite powerful
animation possibilities. What is still lacking is the possibility to dynamically
change the size and shape of icons. The improved graph facility was shown.

Telewindows makes it possible for multiple users to simultaneously access a single
G2 over a network. It provides the user with a viewport into G2. Telewindows
runs on smaller workstations and requires less memory (4 MByte) than G2
G2 networking allows several G2 systems to be interconnected and exchange
information.

Conclusions

The impression of the meeting is that Gensym goes very well at the moment. It
is interesting to note that G2 is becoming a de facto standard for real-time expert
system tools that most control system suppliers want to provide interfaces to.

G2 is also used in several interesting projects. One example is MITI’s nuclear
safety project. The French oil company ELF has chosen G2 for a project where
they plan to totally automate their North Sea oil platforms during the pumping
phase. The american venture capital project Space Biospheres uses G2 to monitor
complete artificial ecological systems. In two years they plan to seal their first
biosphere for a period of two years. The biosphere will contain humans, animals,
different climates, etc.
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B.1.2 Center for Integrated Systems

The G2 meeting included a visit to the Center for Integrated Systems at Stanford
University. The Center is a research institute for semiconductor manufacturing
research. The visit was organized by Don Gardner who also was the local orga-
nizer of the G2 meeting and uses G2 to monitor the semiconductor manufacturing
process.

The visit consisted of a tour of the lab and presentations of the different research
groups. One of the groups, headed by J ay M. Tenenbaum from Schlumberger,
works with integrated systems for planning, administration, control, and moni-
toring using model-based approaches.

Don Gardner gave Karl-Erik Arzén the opportunity to present the IT-4 project at
one of the Center’s weekly meetings. The response was very positive. Tenenbaum
was enthusiastic and interested in maintaining the contact.

Karl-Erik also had the opportunity to discuss with Jeff Y-C Pan and Jay Glicks-
man from Tenenbaum’s group. Pan has developed PIES (Parametric Interpre-
tation Expert System), a system for interpretation of parametric test data and
model-based fault diagnosis of the semiconductor manufacturing process. They
are currently including PIES in MKS (Manufacturing Knowledge System), a
knowledge-based CIM system (Pan et al, 1989). Many of the ideas in the MKS

project are similar to our’s.

Tenenbaum’s group was using the HyperClass tool from Schlumberger. Hyper-
Class is an object-oriented expert system development environment similar to
KEE or Knowledge Craft. It includes objects, rules, graphics, etc. It is writ-
ten in Lisp and runs on Sun workstations under SPE (Symbolic Programming
Environment). HyperClass was developed as an internal product within Schlum-
berger in the beginning of the eighties. On top of Hyperclass they were developing
graphical editors and hypertext systems.

In parallel with Tenenbaum, a Norwegian guest researcher from SINTEF devel-
oped a similar system using HyperCard on a Mac IL HyperCard was used for
rapid development of a user interface to a semiconductor manufacturing process.
The system included pictures of the process layout, process components, produc-
tion plans, etc., and was connected to a relational database containing on-line
process data. This project also coincided very much with our project. The im-
Pression was that the small HyperCard project well matched the much larger
HyperClass project.

B.1.3 Intellicorp

During Wednesday, Karl-Erik visited Intellicorp to see Plexsys. Plexsys is an add-
on package to KEE, aimed for power system applications, developed by Intellicorp
together with EPRI (Electric Power Research Institute) in Palo Alto. Plexsys
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has been further described in Chapter 8. The Plexsys system was demonstrated
in a not too convincing way. There are rumours that EPRI has cut down their
work on KEE and Plexsys to instead concentrate on Nexpert Object. The overall
impression of Intellicorp was not very good. The building was very empty and
quiet with very little activity of any kind.

B.1.4 Neuron Data

On Thursday, Karl-Erik visited Neuron Data to see their HyperCard interface
to Nexpert Object. Here the general impression was the opposite from that of
Intellicorp. The activity was very high, telephones were ringing, etc.

The HyperCard interface was not ready. They gave a very primitive demonst:a-
tion. The interface will probably be announced at the AAAI in August 1989,
Neuron Data have interfaces available to Dataviews and Ease+ which both are
graphical information presentation programs. Neuron Data also has its own end-
user interface to Nexpert, called AIVision, with some hypertext features.

B.1.5 Other visits

On Wednesday Karl-Erik visited H. Chris Tseng and D. Siljak at University of
Santa Clara where he gave a talk about the department’s activities in knowledge-
based systems.

On Friday a planned visit to Advanced Decision Technologies was cancelled.
Instead he visited C.W. Chen and R. Walker at FMS Corporation in Santa Clara.
They worked mainly with conventional control theory.

B.2 MARYLAND, 2/5 1989

In connection with a review meeting for the Systems Research Center at Univer-
sity of Maryland, Karl Johan Astrdm had the opportunity to visit the Human
Computer Interaction Laboratory at University of Maryland. Professor Shnei-
dermann gave a an overview of the laboratory and their activities. Hyperties, a
new hypertext system was demonstrated (Marchionini and Shneidermann, 1988).
The system is available on IBM PC and IBM PS/2 including compatibles and
will later also be available for Sun workstations.

B.3 ESPRIT CONFERENCE, 27/11 —1/12 1989

Anders Aberg and Bérje Rosenberg attended the ESPRIT research conference
in November — December 1989 in Brussels. The purpose was to check up on the

ESPRIT programme.
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The five day conference had three days of paper presentations, workshops; ang
panel discussions with about 12 parallel sessions. The fourth day was an ES}SRIT
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policy day with EC R & D policy presentations and panel discussions, The

fifth day was a free activity day, which was spent at the huge ESPRIT pr
exhibition. The exhibition was running in parallel to the rest of the confe

oject
Tence

during five days.

The general impressions from the conference were:

@

ESPRIT means a lot for the process of gluing together research organizations
and, especially, large companies in the EC.

There are political forces which are really trying to design an R & D pro-
gramme based on an analysis of the future needs of the European industry,

ESPRIT creates an European spirit and a general sense of belonging together.
“Inside and outside” of EC was a subject which was stressed at several oc-
casions. Some lecturers wanted to build quite high walls in order to protect
Europe. Especially, the US was pointed out as a dangerous technological com-
petitor. We got a strange feeling that Japan was regarded as less dangerous
and as a potential cooperation partner

Some projects in ESPRIT I are not very goal-oriented and seem to have been
put forward to get financing for each of the consortium members and not for
the common projects. ESPRIT 11 is growing much more strict in this aspect.

The administration of the projects is expensive. Through the cooperation of
many partners and the multiplication effect, it is still regarded as beneficial
to participate in ESPRIT. Some companies have as a business idea to start
up and to administrate ESPRIT projects as the main contractor.

In the application sectors, the strong standardization efforts are probably
very important. The position in CIM (CAD, job shops) is quite impressive
and EC may have a chance to get a world leadership, if they can succeed in
marketing,

The information processing systems sector (IPS) is quite influenced by the
academic world. The IPS sessions had a high number of academic visitors
and this also influenced the discussions. The industrial people were found
mainly in the application sessions. There seems to be a gap between the
industrial and the theoretical people. But there is a dialogue, which may
bridge this gap.

The quality of the sessions was very uneven. We believe that fewer sessions
but higher quality would be a good goal for future conferences.
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B.3.1 Interesting Projects

The interesting ESPRIT I projects are described in detail in the Feasibility Study,
(IT4, 1988). Some ESPRIT II projects have been started and these will be
described in more detail.

AITRAS (2167)

The AITRAS project is supposed to deal with real-time expert systems. Nothing
else is reported.

ARCHON (2256)

“Architecture for Cooperating Heterogeneous On-line Systems” is a five year
project with about 14 MECU (about 100 MSEK) in the budget and 14 partners.
It aims to develop an architecture for cooperating expert systems in industrial
applications. This will be done by defining and implementing a Knowledge In-
terchange Protocol (KIP), which will ensure re-usability of existing systems, ver-
satility with respect to different techniques and paradigms and, finally, openness
in the information interchange with conventional systems (databases and process
control systems).

Demonstrators: Electrical power generation and transmission, Electrical distri-
bution, CERN control, Cement kiln control, Robot arm control.

Prime contractor: Krupp Atlas Elektronik.
Others: CERN, Framentec, Queen Mary College, etc

KBSSHIP (2163)

“Shipboard Installation of Knowledge Based Systems” is a 3 1/2 year project,
which continues the ESPRIT I project (1074). The objective is to optimize several
aspects of ship operation. This is done by a number of integrated expert sys-
tems. The System Manager Expert System coordinates five sub-expert-systems.
The “Expert Voyage Pilot” helps in the voyage planning. The “Expert Loading
System” provides advice for ship loading and unloading. The daily maintenance
planning is supported by the “Expert Maintenance System”. The “Expert Diag-
nosis System” monitors and pin-points equipment failures. Finally, the “Statu-
tory requirements and Classification Expert System” gives advice according to
international safety legislation, to port entry requirements and to Classification
Society Rules.

Prime Contractor: Danish Maritime Institute.
Others: Sgeren T. Lyngsg, Krupp Atlas Elekronik, Lloyd’s, etc.
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ITSIE (2615)

“Intelligent Training Systems in Industrial Environments” is a project which
looks at the possibilities of using Al techniques to develop sophisticated training
systems for industrial personnel concerned with the operation and Maintenance
of complex industrial processes. In a generic adaptive architecture for trainin
purposes, multiple representations of the physical system must be utilized., Ap.
stract teaching based on qualitative reasoning comes first, Teaching details will
probably utilize numerical modelling.

Prime Contractor: Consortium Marconi Simulation.

Others: Heriot-Watt University, AXION A/S, CISE SpA, etc.

FOCUS (2620)

Classified as a front-end to an existing system. Nothing else is reported.

KIWIS (2424)

The “Advanced Knowledge-Based Environment for Large Database Systems”
project is developing a knowledge based management system which supports both
a sophisticated stand-alone “personal knowledge machine” and an integration of
information coming from a wide variety of sources. The KIWI system has a
layered architecture with a object virtual machine at the bottom. The next layer
is the heart of KIWI - the Basic Language machine, which combines logic and

cooperation manager (for communication). The project originates from ESPRIT
I (641, 1117).

Prime Contractor: Philips.
Others: CRAI, ENIDATA, SISU, etc.
STRETCH (2443)

The purpose with “Extensible KBMS for Large Knowledge-Base Applications”
project is to provide a physical and conceptual object manager in the form of a
knowledge-based management system. The system will support a rule based lan-
guage and an object-oriented language in a multiuser environment. The demon-
strator will be an intelligent training system.

The only contractor reference: Laboratoires de Marcoussis.

PROMISE (2397)

The main objective of the “Process Operator’s Multi-media Intelligent Support
Environment” project is to develop techniques for enhancing man-machine inter-

 faces to knowledge-based systems in the real-time and the process control area.
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The system will provide several interaction channels to the system such as graph-
ics, sound, voice and animation, which make use of KBS techniques. Subjects
such as dialogues in real-time systems, user modelling, and timing and synchro-

nization aspects will also be covered. The “ESB” (ESPRIT I 96) results will
be used as a base in the project. A nuclear plant oriented demonstrator and a

chemical plant application are planned.

Prime Contractor: Tecsiel S.p.A.
Others: Algotech, Dow Chemicals, Scottish HCI Centre, South of Scotland Elec-
tricity Board, etc.

MMI2 (2474)

“A Multi-Modal Interface for Man-Machine Interaction with Knowledge-Based
Systems”. Nothing is reported.

ACKNOWLEDGE (2576)

The “Improving the Knowledge Acquisition Process” project will achieve its goal
by constructing a Knowledge Engineering Workbench (KEW). The system will
assist knowledge engineers in their tasks and partially automate the tasks. Learn-
ing mechanisms are planned to support automatic deduction and the knowledge
is re-organized if new information is entered. Tools will harvest, refine, and recon-
struct knowledge. One application mentioned is fault isolation and corrections
in the telecommunication domain.

Prime Contractor: Cap Sesa Innovation.
Others: Marconi, Telefonica, Computas ES, Sintef, etc.

EQUATOR. (2409)

The “Environment for Qualitative Temporal Reasoning” project aims at develop-
ing a toolkit and environment for industrial and commercial applications in which
Time Dependent Reasoning (TDR) is required. The TDR system structure will
be based on a system model consisting of the real world model, the computer
world model and the operator world model. A General Representation Formal-
ism (GRF) for events and temporal relations will be used in the environment.
The GRF representation is translated into an executable common represent ation
language. The EQUATOR environment will be evaluated on two demonstrators.

Prime Contractor: ERIA.
Others: CENA, CISE, Ferranti, Imperial College, etc.

MLT (2154)

The “Machine Learning Toolbox” objective is to build a toolbox of machine
learning algorithms. These algorithms will use a common knowledge representa-
tion language to allow different algorithms to be used with the same data. The
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toolbox will be evaluated on several applications. The MLT-Consultant will be
an expert system helping the user to represent the knowledge.

Prime Contractor: Nixdorf.
Others: The Turing Institute, Intellisoft, INRIA, British Aerospace, etc.

IPCES (CIM 2428)

%
.
!2

The “Intelligent Control by Means of Expert Systems”
of developing a set of modular building blocks, combini
able technologies, which can be tailored and assembl
control systems functions in small and medium sized manufacturing enterprises.
Expert systems for control, for diagnosis of product defects, and for future system

behaviour are suggested. The project is a continuation project from ESPRIT I
(1653).

project has the objective
ng new and already avail-
ed to perform a range of

Prime Contractor: Philips.

Others: ELTEC Elecktronik, RTC, MINIWATT, CNRS, Dornier,

etc.

B.4 JAPAN, 2/12 — 12/12 1989

Karl-Erik Arzén from the Department of Automatic Control, Claes Rytoft from
ABB, and Christer Gerding from SattControl visited Japan, December 2-12 1989,
The goal of the visit was to study Japanese activities concerning real-time appli-
cations of expert systems. Hilding Elmqvist from SattControl and Arne Otteblad
from The Swedish National Board for Technical Development (STU) accompa-
nied the travel group. Visits were made to Yokogawa, Nippon Kokan Steel,
Toshiba, LIFE, JAERI, Hitachi, Tokyo Institute of Technology, Japanese Gas
Company, and Petroleum Energy Centre. A G2 users group meeting at C. Itoh
Techno-Science Co. was also attended. The majority of the visits

by The Swedish Technical Attachée Office (STATT) in Tokyo.

were organized

B.4.1 Yokogawa

On Monday morning we visited Yokogawa where we were received by Mr. Ya-
suro Hirata, manager of the AI section of the application engineering section.
Yokogawa has been active in the field of Al for four years.

XL/AI, an expert system tool for diagnosis and alarm reduction, has been devel-
oped by Yokogawa and seems to have been their main Al project during recent

years. However, what they were working on now was a carefully avoided subject
of discussion.

XL/AI is implemented in C and executes on a 68020 based UNIX workstation.
It took 10 man years to develop. XL/AI is intended to be used together with
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Yokogawas control system CENTUM. However, it is not integrated with the
control system, but put on top on of the conventional system with a separate
database and user interface. Concerning the user interface, the separation is
deliberate since, according to Mr. Hirata, the conventional user interface has
totally different demands on what information to present and how to present it.

XL/AI is purely rule based and mainly uses backward chaining. The rules are
divided into rule classes of about 40 rules each. The reason for this is to make
verification and consistency checks easier. Except from this, there is no support
for verification. Verification is considered a problem that the customer and the
developer of the expert system should solve by themselves according to Mr. Hi-
rata. There is a graphical rule interface and it should be easy to add, delete,
and modify rules, as it is mainly the customer, not Yokogawa, that is the user
of XL/AIL The tool does not have real-time functionality as it cannot handle
interrupts, i.e., changes in data or new data, while executing rules.

Yokogawa and Shin-Daikyowa Petrochemical Corporation Ltd have jointly devel-
oped a process diagnostic expert system for a cumene plant using XL/AL The
system is aimed at the reduction of operators’ load by providing guidance for the
causes of plant abnormalities. The system consists of about 1250 rules and 500
items and was installed in May 1989.

Before developing XL/AI, Yokogawa has worked with BRAINS, KEE, and similar
systems. However, even if many of these systems had a high functionality they did
not have the right functionality. That is the reason why XL/AT was developed.

Some fields that Yokogawa found interesting for the future were mentioned. These
include model based diagnosis, combining XL/ATI and fuzzy control, and planning
and scheduling. Yokogawa already has a fuzzy control package that runs as a
separate program on the same computer as XL/AIL

Although Yokogawa did not show much of their recent development, our impres-
sion was that the combination of a control system and an expert system tool from
the same company is an interesting beginning of something that could come close
to some of the ideas in our IT4 project.

B.4.2 Nippon Kokan Corporation

On Monday afternoon we visited NKK, a company active in steelmaking, ship-
building, and engineering and construction. Our host was Mr. Masanori Itoh,
manager of the Electronics Research Center. The different research areas of the
centre are Al, fuzzy control, neural networks, CIM, CAD/CAM, robotics, micro
computers, measuring instruments, and electronic devices.

NKK develops expert systems and tools for internal use as well as for customers.
Expert systems have been used in NKK plants for five years and the main pur-
poses are to reduce the number of operators and to transfer skill from old to new




B.4 JAPAN, 2/12 - 12/12 1989

275

operators. Two expert systems were presented: Expert System f,

) or Blagt
Operation Control and Refuse Incinerator Operation Guidance Experz Slz,utnace
stem.

NKK has applied expert system techniques to the furnace condj
system, which is one of the most important systems of the OPeration coptro]
system for the blast furnace. The Expert System for Blast Furnage Operation
Control consists of two systems. The first is the Abnormal Furnace Condition
Prediction System, which predicts the occurrence of burden slip apq channeling
in the furnace. The second is the Furnace Heat Monitoring and Control System
which judges the in-furnace heat level and instructs the operators, The func.’
tions of the system are separated into two parts. One is the Preprocessing part
which uses conventional techniques. The second is the inference part which is,
performed on an AT processor, which so far only is implemented as software, not
as separate hardware. The knowledge structure is mainly production rules, and
a blackboard architecture is used for the inference part. The knowledge base ;g
divided into several knowledge units, which have a hierarchical internal structure,
The purposes of this structure are: to avoid increased inference times when the
number of rules increases, to make it easy to check the validity of the rules, and
to mimic the reasoning structure of an expert. The system consists of 400 rules
and was developed using ESHELL, a blackboard shell from Fujitsu,

tion diagnosis

The Refuse Incinerator Operation Guidance Expert System is a system that aids
operation when the automatic combustion control system is difficult to continue,
The knowledge is structured in hierarchical combinations of production rules and
state transfer models. The system is divided into one preprocessing part that runs
on a Fuji Electric L-300 and an inference part that runs on a Fuji Xerox 1121,

These described systems were developed 2 — 3 years ago. NKK’s more recent
development was not presented. However, the impression is that NKK is very
active in applying expert system techniques to real problems. Furthermore, there
seems to be a lot of interesting projects at the research centre, e.g., adaptive
controllers (already now used in many applications), fuzzy controllers (partly used
in the Blast Furnace Operation Control System), and neural networks (pattern
matching for hand writing).

B.4.3 Toshiba

On Tuesday morning we visited Toshiba Fuchu Works were we met Dr. Kiyoshi
Niki and some of his colleagues.

Toshiba develops expert systems for mainly three different areas: power trans-
mission and distribution systems (planning, design, operation, diagnosis, main-
tenance, training, and simulation), power generation systems (mostly fault diag-
nosis), and paper production systems (production planning system). At Fuchu
Works there are about 10 persons developing Al tools and about 150 persons
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developing applications. The tools mostly used are TDES-3, IREX, and the lan-
guage C. The computers are mostly engineering workstations. To increase the
speed of the systems they are normally compiled into C even when developed in
other environments. However, this makes the systems rather static.

Six systems were presented and demonstrated. Many of these system were deliv-
ered. They were mostly rule based fault diagnosis systems, often with simulation
opportunities for training. The common way to verify the knowledge base is to
test all possible combinations. Two of the systems will be presented here.

The Turbine-Generator On-line Monitoring and Diagnosis Expert System has
been developed to detect vibration malfunctions and support the operators by
recommending appropriate corrective actions. The system consists of a real-time
diagnostic part and a detailed diagnostic part. The former can respond directly
to the dynamic behavior of abnormal vibration and provide the operators with
operation guidance in real time. The latter enables the operators to identify the
cause of the malfunction through interaction with the computer. The real-time
diagnosis was implemented with procedural programming in C, while the detailed
diagnosis was implemented with frames, rules and backward reasoning in IREX,
an integrated expert system building tool. The real-time diagnosis runs on a
mini-computer and the detailed diagnosis runs on an engineering work station.
The system has been in operation since 1986.

Another system was a production planning system for paper production. Based
on three different knowledge-bases, one for product orders, one for product spe-
cific knowledge, and one for planning knowledge, the system presents a plan. The
scheduling constraints are volume, sequence, delivery date, production interval,
product combination, material, and energy. The plan is produced in three steps.
First, a group product allocation is done, where products are put together with
regard to volumes, sequences and delivery dates. Second, an individual product
allocation is done according to production intervals and product combinations.
Finally, adjustment is done with respect to energy and pulp constraints.

Our impression is that Toshiba are very active in the field of expert systems.
Although many systems have been implemented, none of those we looked on
was very impressive when it comes to advanced expert system techniques. The
number of different fields of application, however, was impressive.

B.4.4 Life

On Tuesday afternoon we visited the Laboratory for International Fuzzy Engi-
neering Research (LIFE), where we met Dr. Toshiro Terano, executive director
of LIFE, and the directors of the three laboratories.

LIFE was founded in March 1989 by permission of the Minister for International
Trade and Industry (MITI) according to the National Research and Development
Program. The laboratory is associated with 48 companies for the purpose of R &
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D in the application of fuzzy theory to engineering and also for the Promotion of
national and international exchange on the study of fuzzy theory. The laboratOry
has a budget of 6 MUSD over six years and today consists of 22 researchers takey
from the different sponsoring companies.

During the first 6 months the three laboratories have determined what to cop.
centrate their efforts on. These programs were presented to us.

The first research laboratory — Fuzzy control — involves the application of fuzzy
theory to control of mechanical systems, process plants, etc. The three main
headlines are: study of fuzzy control including fuzzy modelling, fuzzy reasoning,
fuzzy adaptive and learning control, and stability evaluation; development and
testing of support tools for design, simulation and stability evaluation; and testing
and evaluation of application system, and by this establishing a development
methodology for fuzzy control systerns.

The second research laboratory - Fuzzy intellectual information processing ~ has
five sub-topics: image recognition, databases, decision support system, natural
language processing, and intelligent estimation.

The third research laboratory - Fuzzy computers — concentrates on fuzzy hard-
ware and software which is able to represent and execute the concepts of qual-
itative expressions in the same way that humans do. These computers will be
capable of high-speed processing of large amounts of fuzzy information and ex.
ecuting of fuzzy reasoning. They will be very user-friendly systems for fuzzy
control and fuzzy intelligent information. The work proceeds on two fronts. In
a top-down fashion, software and hardware that are anticipated are being devel-
oped on the basis of a total architecture. And in a bottom-up fashion, a system,
which integrates an existing fuzzy technology and a computer technology, is being
developed.

Fuzzy is a very hot subject in Japan today. The LIFE laboratory programs are
very ambitious However, they had no results to show us yet.

B.4.5 Jaeri

General Information

Japan Atomic Energy Research Institute (JAERI) is supervised by the Science
and technology agency. JAERI has 2.500 employees and mainly works with:

® Nuclear Energy production systems including high temperature gas-cooled
reactors and fusion reactors.
o Nuclear safety research.

e Radiation applications.
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e Nuclear ships.

JAERI is an active part of the OECD Halden Reactor Project in Norway. We
visited two groups dealing with reactor safety research and reactor engineering.

Technical Information

The Department of Reactor safety research presented a project called: “A Com-
puterized support system for the emergency technical advisory body in Japan”.
The main purpose of the system was to provide a national capability in emer-
gency response to radiological accidents. Via this system, it should be possible to
access all available information about, e.g., similar accidents in the past, in order
to help the operators to make the right decisions. The system layout included
access to central databases via modem communication.

The Department of Reactor Engineering’s major R & D issues were:

e Reactor dynamics and Control.
o Telerobotics for Nuclear Applications.

e Intelligent Robotics

From an Al point of view the work is concentrated on intelligent control including
expert Control and fuzzy control. Expert control is intended for reactor control
and robotics while fuzzy control has so far been intended for robotics only. We re-
ceived a paper describing a project using a conventional rule-based expert system
approach to optimal reactor shutdown. Another paper described a project where
a self tuning fuzzy controller for a mobile robot had been implemented. The
control rules for the robot were acquired through an adaptive learning process.
JAERI have purchased G2 for further work with the mobile robot.

B.4.6 Hitachi

General Information

Within Hitachi Ltd, there is about 78.000 employees, with 12.000 working with
R & D. The corporate R & D is organized in nine laboratories with totally 5.000
persons. Totally there are 275.000 employees in the Hitachi group. We visited
Hitachi Research Lab (HRL), located in Hitachi City which mainly deals with
materials, electronics, and energy. The research on Al issues is handled by the
Department for Electronics at HRL.
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Technical Information

Hitachi has worked with AT since 1980, and neural networks since 1989, Hitachi
have developed their own expert system tool called EUREKA which is sold ag a
commercial product.

They showed /presented the following Al-applications:

o Power generation scheduling.

e Restoration of distribution lines.
o CAE for power system analysis.

e BWR power maneuver planning.

o Load following demand allocation between nuclear power plants.

It would be going too far to describe all the systems above so we will only
describe the KBS system for load following demand allocation between nuclear
power plants. It is intended for engineers at a power company’s head office. In
the system knowledge base, procedures for planning the demand allocation are
expressed as rules. The load following demand, the operation status of each plant,
and constraints are expressed as frames. The functions for evaluating margins of
the constraints are expressed as methods. As for the results, one week to three
year operation plans are stored.

In common for most of the applications above seems to be that the knowledge
base consists of rules and frames.

Neural network applications:

o Turbine Vibration Adaptive Prediction Control.
This project was very interesting because they used time series information
and the corresponding frequency spectrum from the generator to identify the
different failure states. The neural network was "trained” to identify 15 failure
states.

Fuzzy Control applications:

¢ Automatic operation method for control rods in BWR plants.
The method has the following features. (1) judgement of control rod driving
time using an event-driven method; and (2) tuning of control rod withdrawal
length and the control parameters using fuzzy logic. (They admitted that
they had some problems to get the authorities to accept fuzzy logic in nuclear
power plants.)
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During the meeting we got the feeling that they didn’t show us their latest
research. According to our Japanese guide from the Swedish Attache’ office
they had done research for several years on integrated knowledge based systems,
similar to our ideas in the IT-4 project. '

B.4.7 'Tokyo Institute of Technology

On Thursday morning we visited Dr. Shigeyuki Tomita at the Research Labora-
tory of Resources Utilization, Tokyo Institute of Technology. Dr. Tomita began
by presenting an Al-based system for synthesizing plant operating procedures
for chemical processes. The system was based on a top-down approach where
the functions in the plant were hierarchically classified and heuristic knowledge
relative to operating procedures of fixed routine were generalized and represented
in a script-like data structure. The system was mainly aimed at guidance during
normal operating conditions.

The root in the function hierarchy was the function normal-operation. This
function could be seen as made-up of a set of main functions such as reaction,
blending, storage, and separation. Also, each main function could consist of a set
of sub-functions.

The main representation form used are scopes. A scope is defined as a frame-
like data structure that corresponds to a minimal portion of the plant that can
realize one of the functions of the plant. There are two types of scopes. Primitive-
scopes (P-scopes) represent the primitive elements of the plant, such as process
components and pipes. These are interconnected in a directed graph. Functional-
scopes (F-scopes) represent the process functions. Scopes are organized into a
scope-library.

Scripts for plant operations embody generic knowledge for getting a scope to
function: the overall purpose of the operation sequence, pre-conditions to be sat-
isfied in advance, the order of realizing subordinate functions commonly accepted
as a standard, etc. As with scopes, scripts are organized into a script-library.

Using the scripts and the scopes the system can automatically generate a scope-
net for a plant and from this generate an appropriate sequence of operating
procedures.

The system was implemented in Kyoto Common Lisp on a Vax 8600. It had no
graphical interface. Several of the ideas in the system where similar to the MFM
technique, of Morten Lind. Dr. Tomita was, however, not familiar with MFM.
The paper “On the development of an Al-based system for synthesizing plant
operating procedure” gives more details on the technique.

Dr. Tomita also gave us a paper where a bottom-up approach for synthesizing
plant operating procedures was used. Here, heuristic knowledge was general-
ized and classified into a sets of various kinds of fragmentary knowledge. This
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knowledge-base was used to get a guideline of the o

. oy Peration under abnormal
operating conditions.

Dr. Tomita also briefly presented a project on fault diagnosis of chemical plants
The system was called FINDS (Fault Identification Using Natura] Diapnostic.
Strategy). The system was able to automatically gener &

' : 1 ate mass balance equations
from the process and instrumentation diagram.

Finally, Dr. Tomita presented a system for planning of batch Process opera-
tion where multiple products, different recipes, and different combinations of
equipment must be taken into consideration. Originally, the system was based
on finding an optimal solution using linear programming techniques. However,
these techniques was found not to be flexible enough. The current system was
therefore implemented using heuristic scheduling rules that did not necessarily
generate an optimal solution, but instead provided the necessary flexibility with
respect to, e.g., adding new constraints to the planning problem. The system was
set up so the user could choose between four different sets of heuristic scheduling
rules. The system was implemented in Smalltalk on a Tektronix Al workstation.

Several of the projects and ideas that Dr. Tomita presented were very interesting
and fit well into the IT4 project.

B.4.8 Japanese Gas Company

On Friday morning we visited Japanese Gas Company in Yokohama. This visit
was organized by Mr. Makoto Yokoyama, the J apanese representative for Gen-
sym, who also accompanied us.

Japanese Gas Company is a plant engineering and construction company in the
areas of petroleum refining, chemical production, nuclear energy, food processing,
pharmaceutical manufacturing, pipeline construction, and environmental protec-
tion. The number of employees are 2.600 with 75% engineers, mainly chemical
engineering.

At JGC we met Mr. Katsumi Tanaka, the manager of the AI Technology Team
at the Systems Integration Division. The reason for our visit to J GC was their
work with G2. For various reasons, we were not allowed to see this. Instead Mr.
Tanaka presented their CATCH systems. CATCH (Computer Aided Operation
& Trouble Checking System) is a series of expert systems developed within JGC.

o CATCH-ARIS (Advanced Refinery Instruction System) for diagnosis and op-
eration support.

¢ CATCH-FOSTS (Fluid Catalyst Cracking Operation Support and Trouble
checking System) for diagnosis, plant start-up support, and yield checking.

¢ CATCH-SR (Sulphur Recovery unit) for diagnosis and start-up support.
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e CATCH-ARES for operation support of cooling water operation.

e CATCH-DE for diesel engine diagnosis.

The first three systems were implemented in Brains, a simple rule-based tool
from Toyo Information Systems. CATCH-ARES was implemented in Guru and
CATCH-DE directly in C. The systems were PC-based and all but one installed
into plants with good results. From a technical point of view the systems were
not impressive.

In their current systems, JGC is using G2. The plants they are working with are
a phosphoric plant in Belgium and a liquid natural gas receiving plant in Japan.
In both cases, G2 is intended for diagnosis and operator support. The plant in
Belgium is developed together with Rhone-Poulenc and within this project JGC
has developed an interface between G2 and Yokogawa CENTUM, which they will
sell as a separate product.

JGC also has developed expert systems for flow meter selection and for regulatory
information support. The latter is an interactive system that allows the formation
of correct judgement on the application of related laws and regulations.

The main motivation for JGC to develop expert systems is the difficulties in
finding new skilled process operators. This is a major problem in Japan, which
leads JGC’s customers to look into expert systems.

B.4.9 Petroleum Energy Centre

On Friday afternoon we visited the Al lab at the Petroleum Energy Centre in
Tokyo were we met Dr. Yoshihiko Tamura. Dr. Tamura was from the Elec-
trotechnical Lab at MITI and also a MITI representative in the European Com-
munities Esprit project. Dr. Tamura presented the PRIOS project, a 4-year
project started in June 1987, which goal was the development of technologies for
advanced refinery operation systems including process operation support tech-
nology (faults inspection, prediction, and diagnosis, monitoring & measurement
systems, consultation for operators’ processing, start-up & shut-down, advanced
controls) and production planning and scheduling support technology (daily plant
operation scheduling for monthly demand, tanker loading/unloading planning,
plan management and maintenance.)

The lab was equipped with Elis Lisp Machines, Symbolics, Suns, a plant sim-
ulator for an indirect desulphurization plant (NATRAS) together with Hitachi
minicomputers, and Yokogawa Centum PLCs.

Some of their research issues for now were model-based approaches to fault di-
agnosis using influence digraphs and quantitative balance equations similar to
the DMP method used in our project, feedforward control of systems with large
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time delays, procedure planning for start-up/shut-down, inte

' ) lligent monitoring
and measurement, fuzzy control, and instrument maintenance support

It was very difficult for us to get any detailed information about how far they had
reached and they were not willing to show us anything. The general impression
of this visit was that they had done a lot but were very reluctant to show any of
it to us.

B.4.10 G2 Users meeting — C.Itoh Techno-Science Co.

On Monday Karl-Erik Arzén and Christer Gerding attended the first Jjapanese G2
users group meeting at C. Itoh Techno-Science Co. in Tokyo. The meeting was
attended by around 35 persons, mostly G2 users. Karl-Erik Arzén was invited
as a guest speaker together with Dr. Don Gardner from Center for Integrated
Systems, Stanford University. From Gensym Corporation, Robert Moore, Jim
Allard, Greg Stanley, and Ray Haarstick attended.

The meeting was opened by Robert Moore and Roy Haarstick who gave an
overview of Gensym. The company now has 42 employees. The sales are in-
creasing with the result of the third quarter 1989 being 1.2 MUSD. The set of
GST interfaces to standard process control systems is increasing and now also in-
cludes Honeywell TDC 2000 and 3000, Bailey Net 90, Taylor Mod 300, Siemens
55, Allen Bradley, and the relational databases Oracle and DEC RDB. Combus-
tion Engineering has developed a system specially for the paper industry based
on G2.

Karl-Erik Arzén presented and demonstrated the Steritherm — G2 prototype Af-
ter lunch Don Gardner showed a video tape where G2 was used for semiconductor
manufacturing modelling simulation, and monitoring. Then, Mr Oka from Toyo
Engineering Company gave a presentation (in Japanese) about a knowledge-based
training simulator written in G2 and Mr. Tanaka from JGC presented the G2 -
Yokogawa Centum interface also in Japanese.

Finally, the Gensym people presented and demonstrated some of the new G2
version 2.0 features. Apart of the things that we already have in our Alfa ver-
sion (procedures, relations, parameters, transient objects, multi-region objects,
user-defined menu choices, etc.), version 2.0 will also contain lists, improved
alarm message features, kanji and swedish character support, and an icon editor.
Telewindows that allows multiple G2 users running remotely will also be ready
when version 2.0 is released in February 1990.

Unfortunately we had to leave before most of the demonstrations in order to
catch our flight home.
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B.4.11 Conclusions

The activities concerning real-time expert systems in Japan were impressive more
with respect to the numbers of projects and the number of expert systems in
industrial use than the technological level. We got the impression that in Japan
expert systems are considered to be an accepted technique which is regularly
applied in industrial applications. By expert system is usually meant a rule-base
system. The two largest companies that we visited, Toshiba and Hitachi, had
very large groups on Al applications. None of the systems that we saw were
comparable to, e.g., G2 in power. One reason for this could be that we were not
shown their latest developments. Sometimes we had a feeling that the systems
they showed us were developed two or three years ago. The reason for this can
be competition. However, it can also depend on the fact that in order not to
loose their face the demonstrations that they show to other companies must be
very well prepared. It is possible that they had shown more if our group only had
consisted of persons from universities. Also, from Mr. Yokoyama, the Japanese
G2 representative, we got information about places that perhaps would have been
more interesting to visit than some of the places we actually visited.

Both Meidensha Electric Company, the fifth largest electric company in Japan,
and Toyo Information systems have recently announced real-time expert system
tools. According to Mr. Yokoyama both of these were modelled after G2. The
system from Toyo was an extension to their tool Super-Brains. Some of the
other actors on the Japanese arena were Mitsubishi Heavy Industries who had
several installations of P-DIAS, a non-Al diagnostic systems; Hitachi who sold
their Eureka-III system; Fuji Electric who used expert systems connected to
their distributed process control systems for water treatment plants, hydraulic
plants, and chemical plants; and Chiyoda Chemical Construction who distributed
PICON in Japan and had a couple of installations of a real-time expert system
called C-Rex.

The main reason for using industrial on-line expert systems is the difficulties that
the process industries have in finding new operators. This was mentioned several
times. Japanese youth are not willing to work as process operators. The compa-
nies see expert systems as a way to help them to better utilize the knowledge of
skilled operators and to provide a better environment for new operators.

In spite of the technological level, it is interesting to note that several of the
japanese control system developers had their own expert system tools which they
could connect to their systems. Some examples are the Yokogawa XL/AI system;
Toshiba's TDES3, and Hitachi’s EUREKA-III. Even if the systems are not inte-
grated in the IT4 sense, these companies have reached further than comparable
companies in the US and in Europe.

The lasting impression of the trip is perhaps the enormous activity in fuzzy tech-
niques and primarily fuzzy control. More than 100 industrial applications of fuzzy
control have been reported. Fuzzy controllers are used for supervisory set-point
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control of multivariable, nonlinear processes. Some examples are coordination
control of elevator systems and train control. Apart from the LIFR Project a;1
additional 80 MUSD are spent on a separate Fuzzy Systems Research iject’ b
by Professor Sugeno from MITIL.

B.4.12 Documentation

The following material was handed out from the different companies visited and
is available from the project members.

Yokogawa

Kazuo Sueyoshi et al, (1989): Process Diagnostic Expert System for Cumene
Plant (in japanese).

Nippon Kokan Steel

NKK Research & Development

NKK Blast Furnace Expert System

NKK Ohgishima: the ultramodern steelworks on the sea,

NKK Refuse Incinerator Operation Guidance Expert System

H. Ase et al (1988): Refuse Incinerator Operation Guidance Expert System,
Nippon Kokan Technical Report, Overseas No. 52

M. Shibata et al: Application of expert system for blast furnace operation control

Toshiba
Toshiba Fuchu Works
Toshiba Artificial Intelligence Technology

T. Fushimi et ol Turbine-generator on-line monitoring and diagnostic expert
system

N. Inoue et al (1989): An expert system for intelligent alarm processing in EMS
and SCADA systems, Second Symp. on Expert Systems Applications to Power
Systems, Seattle

T. Kaneko et al: Development of FBR plant operational guidance system

S. Kawakita et al (1988): An integrated AI environment for industrial expert
systems, Int. Workshop on AT for Industrial Applications, Hitachi-city
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Y. Kojima et ol (1989): The development of power system restoration method
for a bulk power system by applying knowledge engineering techniques, IEEE
Transactions on Power Systems, Vol. 4, No. 3

R. Megoro et al: Expert system for nuclear power plant feedwater system diag-
nosis

Y. Miyajima et al (1988): A knowledge-based water purification control system,
IEEE Proc. of the International Workshop on Al for Industrial Applications,
Hitachi-city

S. Moriguchi et al (1989): A large-scale SCADA system with real-time knowledge-
based functions, Second Symp. on Expert Systems Applications to Power Sys-
tems, Seattle

S. Moriguchi et al (1989): An expert system for power system fault analysis and
restoration, International Conference on Large High Voltage Electric Systems

H. Ogi et al: An expert system with cognitive model for power system outage

scheduling

T. Sato (1989): An expert System for mill pacing in bar mills, 6th IFAC Workskop
on Distributed Computer Control Systems, Tokyo

1. Takeyasu et al (1988): An expert system for fault analysis and restoration
of trunk line power systems, Symp. on Expert System Applications to Power
Systems

LIFE
LIFE Introduction to Laboratory for International Fuzzy Engineering Research

LIFE Research & Development Project Overview: The First Research Lab (Fuzzy
Control)

LIFE Research & Development Project Overview: The Second Research Lab
(Fuzzy Intellectual Information Processing)

LIFE Research & Development Project Overview: The Third Research Lab
(Fuzzy Computer)

Colin Johnson (1989): New LIFE for fuzzy logic, Electronic Engineering Times

Proceedings of the 5th Fuzzy System Symposia, Meiji University, June 2-3 1989
(in Japanese with abstracts in English, only available at the Department of Au-
tomatic Control)
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JAERI
JAERI Japan Atomic Energy Research Institute

Y. Fujii et al (1988): Design and operational experience of the man-

: machine
interface of a fully computerized control system, Int. Conf. on Man-Machine

Interface in the Nuclear Industry, Tokyo

K. Kobayashi et al: Development of a computerized support system for the emer-
gency technical advisory body in Japan

Y. Shinohara: Application of an AI method to optimal reactor control problems

K. Suzuki et al: Self-tuning fuzzy control of a mobile robot

Hitachi
Hitachi, Hitachi Research Laboratory
Hitachi, Energy Research Laboratory

C. Fukui et al (1986): An expert system for fault section estimation using infor-
mation from protective relays and circuit breakers, IEEE Transactions on Power

Delivery, Vol 1, No. 4

T. Fukuzaki et al (1989): Knowledge-based system for load following demand
allocation between nuclear power plants

T. Fukuzaki et al (1988): Knowledge-based system for core operation manage-
ment of boiling water reactors, Int. Workshop on AT for Industrial Applications,
Hitachi-city

T. Kasahara et al (1988): Maintenance work scheduling aid for nuclear power
plants, Int. Workshop of AI in Industrial Applications, Hitachi-city

M. Kinoshita et al (1988): An automatic operation method for control rods in
BWR plants using fuzzy logic

Y. Matsumoto et al: An expert system for restoration of distribution lines

T. Mitsuta et al: A knowledge-based approach to routing problems in industrial
plant design

S. Osaka et ol (1988): An expert system for power generation scheduling, Int.
Workshop on Al for Industrial Applications, Hitachi-city

M. Suwa et al: A theory of frustration-based learning mechanism

N. Yamada et ol (1984): A Plant diagnosis method based on the knowledge of
system description, Jour. of Information Processing, Vol 7, No. 3

N. Yamada et al (1989): Knowledge-based operation guidance system for nuclear
power plants based on generic task methodology, Jour. of Nuclear Science and
Technology, Vol 26, No 7.
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N. Yamada et al: A Theorem proving system for logic design verification

K. Yoshida et al: Knowledge-based layout design system for industrial plants

Tokyo Institute of Technology

S. Tomita et ol (1989): Automatic synthesizer of operating procedures for chem-
ical plant by use of fragmentary knowledge, Jour. of Chemical Engineering of
Japan, Vol. 22, No. 4

S. Tomita et al: On the development of an Al-based system for synthesizing plant
operating procedures

S. Tomita et ol (1986): Development of batch operating system, World Congress
11T of Chemical Engineering, Tokyo

Japanese Gas Company

JGC, Facts about JGC

JGC, Outline of JGC

JGC, Plant operations support expert systems

M. Kitahara: Computer-aided operation & trouble checking system

Petroleurmn Energy Center
PEC Petroleum Energy Center
PEC Prios-project

G2 Users Meeting

Gensym/G2 User Society, Fall’89 Meeting Proceedings, Boston (only at the De-
partment of Automatic Control)

D. Gardner (1989): Equipment modeling, simulation and monitoring using a
knowledge base system

D. Rowan (1989): On-line expert systems in process industries, AI Expert (Du
Pont’s view on expert systems in the process industry)

Various G2 documentation in Japanese

B.4.13 Persons to contact

These are the persons that we met during our visits.
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Yokogawa

Main Address: Yokogawa Electric Corporation, 2-9 32 Nakacho, Musashino-shi,
Tokyo, 180 Japan. Fax: 0422 55-1728

Yasuro Hirata, Manager, Al Engineering Section, Application Engineering Dept.,
Sales Engineering Subdivision

Kiyokazu Konishi, Manager, Section 2, Development & Engineering Dept. 1I,
Process Control Systems Div.
NKK

Main Address: NKK Corp., Ltd., NKK Keihin Bldg., 1-1, Minamiwatarida-cho,
Kawasaki-ku, Kawasaki 210 Japan. Fax: (044) 322-6644

Hajime Ase, Senior Researcher, Al Research Project, Electronics Research Center
Masanori Itoh, Manager Electronics Research Center
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Glossary

The glossary contains explanations for the terminology used in the report. It
consists of words that are specific to the knowledge-based system area and words
which are used, sometimes in a special, non-standard way, for describing the

system concept.

Agenda

Antecedent

Application-speciflc system

Artificial Intelligence

Attribute

Backward chaining

A prioritized list of waiting activities. Used
in blackboard systems to schedule knowledge
sources.

The IF-part of a production rule. Other
names are premise and condition.

Knowledge-based system framework aimed
at a specific type of applications.

A subfield of computer science, which accord-
ing to one definition is the study of how to
make computers do things at which, at the
moment, people are better.

A property of an object. Also called slot.

An inference method where the system starts
with what it wants to prove and then tries to
find the necessary facts in the database or
as the conclusion of a rule. Also known as
goal-directed search. Contrast with forward
chaining.



Blackboard

Blackboard architecture

Browser

Causal model

Certainty factor

Class

Cognitive science

Common knowledge base

Compiled knowledge

Composite object
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A database used by several knowledge sourcag
to exchange information about the problem
solving and to store the problem solving
state.

An expert system architecture in which sev-
eral independent knowledge sources each ex-
amine a common database, called a black-
board. An agenda-based control system con-
tinually examines all of the possible pending
actions and chooses the one to try next.

The browser constitutes a graphical interface
to the knowledge base that is common to all

users of the KBCS.

A model of a physical object that expresses
the causal relations among the involved sig-
nals, or events.

A number that measures the certainty, cred-
ibility or confidence a fact or rule has.

A group of objects that share the same
attributes and behaviour. Organized into an
inheritance lattice.

An interdisciplinary research area concerning
the principles by which intelligent entities
interact with their environment. Includes
topics from psychology, computer science,
physiology, philosophy, engineering etc.

The central part of the system concept. It
contains all the knowledge that are of interest
in an application. It consists of objects, rules,
procedures, equations, documents, pictures,
dynamic process data, models, etc. Can be
separated into local databases and the main
knowledge base.

Knowledge that has been structured and
compiled into a form that is efficient for ex-
ecuting. The heuristic knowledge of, e.g., a
human process operator can, e.g., be com-
piled into a production rule format.

An object that has an internal structure con-
sisting interconnected objects representing
subparts of the superior object.
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Concept

Conflict resolution

Control (of a KBS)

Data-driven

Declarative knowledge

- Declarative programming

Deep knowledge

Demon

Design tool
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Used as a designation for real or abstract
objects and terms, that are represented in
a knowledge-based system.

The technique of resolving the problem of
multiple matches in a rule-based system.

The method used by the inference engine to
regulate the order in which reasoning occurs.
Backward chaining, forward chaining, and
blackboard agendas are all examples of con-
trol methods.

An approach to problem solving that starts
from current or initial information and em-
ploys forward chaining.

A description of what is. Contrast with
procedural knowledge, which is a description
of how to.

An organizational technique for computer
programs. The wanted result and precon-
ditions are stated instead of a step-by-step
description of how to solve the task. Con-
trast with procedural programming.

Knowledge of basic theories, first principles,
axioms, and facts about a problem domain.
Often in the form of a model of the behaviour
of the problem domain. The model could be
expressed as, e.g., a causal model.

A procedure that is attached to a frame
attribute. The procedure is executed when
the attribute is changed or referred to. The
programming style is called access-oriented.

A tool that is used by the designers to build
up the knowledge base.

Diagnostic Model Processor — DMP A method for model-based diagnosis based

Empirical knowledge

Experiential knowledge

on quantitative, governing equations.

Knowledge based on empirical or experiential
observations of a process.

Knowledge based on empirical or experiential
observations of a process.



Expert control

Expert system

Expert system framework

Expert system shell

Explorative programming

First generation diagnosis system

Forward chaining

Frame

Functional view
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Seeks to extend the range of conventional
control algorithms by encoding general con-
trol knowledge and heuristics in a supervi-
sory expert system.

A computer program that uses expert knowl-
edge to attain high levels of performance
in a narrow problem area. The results are
compatible with those of a human expert.
Knowledge-based system is sometimes used
as a synonym.

A computer environment that provides dif-
ferent tools for implementing expert systems.
One or many knowledge representation tech-

niques are supported. Also expert system
shell.

A computer environment that provides dif-
ferent tools for implementing expert systems.
One or many knowledge representation tech-
niques are supported. Also expert system
framework.

Programming without any given specifica-
tions. Requires powerful and flexible pro-
gramming environments and programming
languages that support rapid testing and
prototyping.

Knowledge-based diagnosis system based on
empirical knowledge, usually represented as
rules, of how fault symptoms and causes
relate.

A problem solving technique where hypothe-
ses are verifies by starting with known facts
and trying to make deductions from these.
The same as data driven. Contrasts with
backward chaining,.

A knowledge representation scheme based on
the idea of a frame of reference. A frame
consists of slots or attributes that describe
the features of the frame. The slots are
further described by facets.

The functional view describes an object in
terms of the goals that it should fulfill, the
functions needed to fulfill these goals, and
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Fuzzy controller

Fuzzy logic

Garbage collection

Geographical view

Goal-directed system

Heuristic

Hybrid system

Hypertext

Hypermedia
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the process components that realize these
functions.

A controller based on rules of how the con-
trol variable be selected based linguistically
quantized values of the measured variables.
Uses fuzzy logic to describe the quantized
values.

A logical theory where the truth values ’true’
and ’false’ have been replaced with more
approximate values like 'not very true’, 'not
likely’ and ’very unlikely’.

A background activity where free memory is
reclaimed to the programming system. Im-
portant in languages with dynamic memory
allocation, e.g., Lisp.

The geographical view describes a physical
object in a geometrically and isometrically
correct way.

An inference method where the system starts
with what it wants to prove and then tries
to find the necessary facts in the database
or as the conclusion of a rule. Also known
as backward chaining. Contrast with data-
driven system.

A rule or some other piece of knowledge that
is based on experience or observation: a rule

of thumb.

An expert system shell that allows a variety
of different knowledge representation tech-
niques.

A technique that extends the traditional no-
tion of “flat text” files by allowing more com-
plex organizations of the material. Mech-
anisms that allow direct machine-supported
links from one textual chunk to another and
new interactive interface techniques allow the
user directly interact with these chunks and
to establish new relationships between them.

A hypertext system that also includes non-
textual informations such as images, time
series signals, audio recordings, etc. Also
called multimedia.



Induction system

Inference

Inheritance

Inference engine

Instance

Instantiation

Job shop scheduling

KBMS

Knowledge

Knowledge acquisition

Knowledge base

Knowledge-Based Control System
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A system that can deduce rules from a
material consisting of many examples from
the problem area.

The process of drawing conclusions from
premises.

A process where new objects in a hierarchical
structure can get new attributes deduced
from more general objects in the structure.

The part of a knowledge based system that
contains the general problem-solving knowl-
edge.

An object that describes a unique member of
some object class.

The process where a new individual of a
certain type is created.

The job shop scheduling or factory schedul-
ing problem concerns the allocation over time
of a finite set of resources to specific manu-
facturing operations such that the orders for
parts received by the factory are produced in
a timely and cost-effective fashion.

Knowledge Base Management System. The
KBMS is the interface between the tools and
the main knowledge base.

Information that is used to behave in an
intelligent way. In the concept knowledge
is used in a wide sense including all types
of information, e.g., text book knowledge,
heuristics, models, documents, control code,
etc.

The process of acquiring, structuring and
organizing the knowledge of a particular
domain. Also knowledge elicitation.

The part of a knowledge based system that
contains the knowledge.

KBCS. A control system that integrates con-
ventional programming techniqiiés and know-
ledge-based techniques using a common data
or knowledge base.
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Knowledge-based system — KBS

Knowledge elicitation

Knowledge engineer

Knowledge representation

Knowledge source

Learning control

Lisp machine

Local databases

Local fault model

Main knowledge base

Mental model

Message passing

Method
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A computer system that contains knowledge
and is able to reason with that knowledge to
reach solutions. Sometimes a synonym for
expert system. See expert system.

The process of acquiring, structuring and
organizing the knowledge of a particular
domain. Also knowledge acquisition.

The person who designs and builds the ex-
pert system. This person should have expe-
rience of artificial intelligence methods.

Formalisms used to represent knowledge. By
using these formalisms, it is possible to han-
dle and manipulate the knowledge. Typi-
cal formalisms are semantic networks, frames
and predicate logic.

Knowledge module in a blackboard system.

A combination of AI techniques and control
theory that utilizes various learning schemes
for control purposes. Also intelligent control
and self-organizing control.

Workstation with dedicated hardware for
Lisp execution. Has very powerful program-
ming environment.

Contains the dynamic process data of the
common knowledge base. They are localized
on the distributed processing units in the
system.

A model that relates faults in a physical
component with possible causes internal to
the component.

Contains all the knowledge in the common
knowledge base except for the dynamic pro-
cess data. Can be distributed.

The human operator’s apprehension of how
the process behaves.

Communication method between objects in
a object-oriented system. Supports data
abstraction and generic algorithms.

Procedure associated with an object that
responds to a certain message.



Modal logic

Modus ponens

Monotonic reasoning

Multilevel flow models - MFM

Multiple inheritance

Multiple perspectives

Multiple worlds

Multi-view object
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A logic system that includes the notions of
necessity and possibility. A proposition is
necessarily true if it could not be the case
that it was false. A proposition is possible if
it is not necessary that it be false

An inferencing rule which says that whenever
a fact A is known to be true and there is
an implication A = B, it is permitted to
conclude that B is true.

A Jogical system where axioms that have
been stated and conclusions that have been
drawn are not allowed to change during the
reasoning process. The set of beliefs mono-
tonically increases. The case for standard
logic systems.

A technique for describing physical systems
that emphasizes functional relations among
the involved components. Systems are de-
scribed in terms of goals, functions, and com-
ponents. Two main abstraction relations ex-
ist: the part—whole relation and the means—
ends relation. Developed by M. Lind.

An inheritance mechanism where a class may
have more than one superclass. Contrasts
with single inheritance.

Used in some object-oriented systems for the
case when a single object, at any one time,
can be seen as the instance of one of a set
of classes. It can be seen as a special kind
of multiple inheritance where the behaviour
and attributes from the inherited classes are
kept separated in the object instead of being
combined together.

Represents alternative states of knowledge in
which different assumptions have been made.
They allow the problem solver to set up hy-
pothetical assumptions which are automat-
ically withdrawn when worlds are deleted.
Also multiple viewpoints and hypothetical
worlds.

An object in the main knowledge base that
represents all the individual views that the
object can be described from.
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Neural network

Nonmonotonic reasoning

Object-attribute-value triplets

Object-oriented programming

Ontological knowledge

Opportunistic reasoning system

Predicate logic

Premise

Procedural

Procedural knowledge

Process
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Connectionist system modelled on the neu-
ron structure of the human brain.

A knowledge based system allowing new
information that can make old deductions
become false. This is very important when
information changes during execution.

A way of storing knowledge in an object-
oriented system.

A style of programming based on directly
representing physical objects and abstract
concepts in the machine. The basic entity
is the object which has a local state and a
behaviour. Objects are asked to perform op-
erations by sending messages to them. Ex-
amples of programming languages are SIM-

ULA and SMALLTALK.

Knowledge based on theoretical knowledge
which is analytic and derived from first prin-
ciples.

A reasoning system that changes inferencing
strategy depending on the problem solving
state.

A classical logic which is based on the use
of predicates to express relations among ob-
jects. The formal basis for Prolog. Also pred-
icate calculus or first order logic.

The IF-part of a production rule. Sometimes
it is called ’antecedent’. The THEN-part is
called ’conclusion’.

A technique for organization of programs,
by using a step by step description of how
to solve a problem. The opposite word is
declarative.

A description of how to. Contrast with
declarative knowledge, which is a description
of what is.

The controlled flow of matter, energy, or
information from generation (source), via
transport, storage, distribution, and change
to consumption (sink). The flow may be
discrete or continuous.



Process control

Process control system

Production system

Production rule

Propositional logic

Qualitative models

Qualitative knowledge

Quantitative knowledge

Realization tool

Recognize-act cycle

Rule

Rule based system

Script
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The different tasks that interact with a spec-
ified process and with the different users of
the process.

The system that controls and supervises the
the operation of a process.

A rule-based system where rules or produc-
tions are matched against the contents of a
working memory and executed by forward
chaining inferencing,.

A type of rule in a knowledge based system,
usually expressed as an IF-THEN statement.

A classical logic which is based on proposi-
tions without any internal semantics.

Models of a process in the terms that a hu-
man uses when describing and analyzing the
process. Used for simulation and analysis.
Based on the ideas in Naive Physics.

Knowledge about and based on matters that
cannot be measured quantitatively.

Knowledge about and based on matters that
can be numerically measured. An differential
equation model is one example.

Realizes the different control functions in the
system by extracting the relevant knowledge
from the main knowledge, converting into
executable code, and possibly, distributing it
to local processing units.

The execution cycle of a forward chaining in-
ference engine. Fulfilled rules are collected
during the match phase. During the select
phase one rule is chosen for execution. Dur-
ing the act phase the right hand side of the
rule is executed.

A formal way to specify a fact, directive or
strategy. The most common way to represent
it is with the IF-THEN construction.

A program organized as a set of rules.

A knowledge structure containing a stereo-
type sequence of actions.
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Second generation diagnosis systern Knowledge-based diagnosis system based on

Semantic network

Single inheritance

Single-view object

Superclass—subclass hierarchy

System

Temporal logic

Time constrained reasoning

Tools

Topological view

Truth maintenance system

User interface parameters

deep-level or first principles knowledge about
the problem domain.

A knowledge representation method based
on a structure of nodes that represent objects
and named arcs between the nodes that
define attributes and relations.

An inheritance mechanism where a class may
have only one superclass. Contrast with
multiple inheritance.

An object in the knowledge base with only
one view. Is sometimes used to refer to one
view of a multi-view object.

A directed graph that describes the relations
among object classes. A subclass inherits be-
haviour and attributes from its superclasses.

A structuring primitive in the main knowl-
edge base. A flow of material, energy, or in-
formation in the process.

A logic system that includes time intervals or
time instants and truth relations over time.

The situation where a reasoning system must
be able to come up with the best solution
before a certain deadline.

Operates upon the main knowledge base.
They build up the user interfaces and per-
form the different tasks in the process control
system. Can be divided into design tools and
realization tools.

The topological view described the internal
structure of a physical object.

A system that revises sets of beliefs when
new information is found to contradict old
information. Inconsistencies in the set of
beliefs are resolved by using dependency-
directed backtracking to alter the minimal
set of beliefs which is responsible for the
contradiction.

The user interface parameters define the
different user interfaces of the KBCS in terms



User view

Validity interval

View

‘Working memory
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of what parts of the knowledge base that
should be presented and how they should be
presented.

The information from the common knowl-
edge base that a specific user of the KXBCS
gets presented. May not necessarily equal a
view in the main knowledge base.

A time interval that tells how long the
associated fact is valid.

A structuring primitive in the main knowl-
edge base. Describing an object from several
views is a way of structuring the knowledge
the object into “natural” parts. The most
general views are the topological, the geo-
graphical, and the functional view.

The fact database in a production system.,
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