
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Platelets and their immunomodulatory roles during Streptococcus pyogenes infection

Hurley, Sinead

2016

Link to publication

Citation for published version (APA):
Hurley, S. (2016). Platelets and their immunomodulatory roles during Streptococcus pyogenes infection.
[Doctoral Thesis (compilation), Infection Medicine (BMC)]. Division of Infection Medicine.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 24. Apr. 2024

https://portal.research.lu.se/en/publications/35a1b85b-72fc-4c8a-9fdb-143bfb53dfe8


Platelets and their immunomodulatory  
roles during Streptococcus pyogenes infection
SINÉAD M. HURLEY  

DEPARTMENT OF CLINICAL SCIENCES | FACULTY OF MEDICINE | LUND UNIVERSITY



Department of Clinical Sciences
Division of Infection Medicine

Lund University, Faculty of Medicine 
Doctoral Dissertation Series 2016:30

ISBN 978-91-7619-256-6
ISSN 1652-8220

Printed by M
edia-Tryck, Lund U

niversity 2016

Sepsis and invasive bacterial infection is a major 
cause of human disease and death worldwide. 
Streptococcus pyogenes is one of the major 
pathogens responsible for bacterial infections, 
which range from mild to severe and life 
threatening conditions. S. pyogenes contains 
a cell wall anchored M protein, which is an 
important virulence factor that can interact with 
many cells of the immune system.

One of the smallest and most rapidly responding 
cells in our bloodstream is platelets. There are 

hundreds of millions of platelets in our blood system, which demonstrate 
multifaceted roles. They mend and seal our blood vessels at the site of 
vasculature damage and recruit, alert and activate other majorly important 
immune cells some of which have been investigated herein.

Collectively, this thesis has revealed multiple strategies for S. pyogenes to 
modulate the host immune response during invasive bacterial infection by 
interacting directly and indirectly with cells of our immune system: platelets, 
neutrophils, monocytes and endothelial cells. These interactions may have far 
reaching consequences during the pathogenesis of sepsis.
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PREFACE 
 

“ A book is not a book unless it is an experience” 

This PhD for the last number of years has been a complex mix of challenge and 
commitment but it has also been rewarding and fulfilling. As scientists we always 
question “why”? We constantly search to explore, to invent, to change, to create 
and to inspire. It is our willingness to seek and strive, to rediscover the known and 
discover the unknown that earns us the title of “scientist”. My journey throughout 
these last years has certainly been a journey of discovery.  

My interest in the human body and its ability to protect and defend us from all 
harm absolutely fascinates me and this interest has developed through working on 
the studies that are presented within this thesis today. When I initially embarked 
on this PhD one could say that I was assailed by the “flight or fight syndrome”, 
however with the endless support, enthusiasm, knowledge and friendship from 
those around me it has been a very fulfilling and rewarding Journey.  

I have invested much time in conducting this research, realising that it was not a 
sprint but a marathon. Still, time spent doing what you desire is time well spent.  

The starting point of all achievement is desire. Desire was the key to all my 
motivation but it was my unrelenting determination and commitment to the pursuit 
of my goals - a commitment to excellence - that enabled me to attain the success, 
which I sought and present herein. It has been a true learning experience. 

  

Dear friends & scientists, here’s to you, I hope you enjoy reading it. 

 

Beatha agus sláinte daoibh go léir  

 

 

 

 

Sinéad M Hurley 

Lund, 23th of February 2016 
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ABSTRACT 

Sinéad M. Hurley 

 

Sepsis and invasive bacterial infection is a major cause of human disease and 
death worldwide. Streptococcus pyogenes is one of the major pathogens 
responsible for bacterial infections, which range from mild to severe and life 
threatening conditions. S. pyogenes contains a cell wall anchored M protein, which 
is an important virulence factor that can interact with many cells of the immune 
system. One of the smallest and most rapidly responding cells in our bloodstream 
are platelets and they are a main focus for the studies presented in this thesis and 
have been investigated.  

The overall aim of this thesis was to delineate and understand the role of platelets, 
neutrophils and endothelial cells in response to bacterial infection and sepsis 
pathogenesis in both in vitro and in vivo model systems. 

Platelets can bind to neutrophils, resulting in the formation of heterotypic 
complexes, however the function of neutrophils within these complexes has not 
been described. In paper I, we investigated platelet-neutrophil complexes (PNCs) 
generated in response to thrombin, a key factor involved in coagulation and 
compared these to complexes formed in response to S. pyogenes M1 protein. We 
determined that platelet dependent neutrophil activation occurs in response to 
thrombin, while S. pyogenes M1 protein compromised neutrophil functions by a 
platelet-dependent mechanism. In addition, this was dependent on donor specific 
IgG against M1 protein. This paper highlights the modulation of neutrophil 
function by platelets during inflammation and infection. 

In paper II, platelet aggregation and platelet-leukocyte complex formation was 
investigated in whole blood in response to S. pyogenes bacteria. Platelet 
aggregation occurred and heterotypic complexes were formed between activated 
platelets and neutrophils and monocytes. Platelet dependent activation of these 
leukocytes was observed and bacteria were associated with the platelet and 
leukocyte complexes. The platelet aggregates remained stable over time, were 
viable and did not disaggregate. Taken together this study provides new insights 
into the role of platelets and heterotypic complex formation for bacterial survival 
in blood. 
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In papers III and IV, the contribution of platelets and the kinetics of platelet 
activation during invasive S. pyogenes infection were investigated in vivo in a 
mouse model. We demonstrated that during a bacterial infection 
thrombocytopenia, neutrophil activation and platelet-neutrophil complex 
formation occurs.  

The acute pro-inflammatory response to the infection and diminished bacterial 
dissemination in platelet-depleted animals indicated that platelets contribute to the 
immune response. In paper IV we determined that monitoring platelet activation, 
particularly PNC formation might provide prognostic information during the 
progression of sepsis. Platelet activation occurred and aggregated platelets 
accumulated in the liver at the late stages of sepsis.   

In paper V, we investigated the effect of the S. pyogenes M1 protein on endothelial 
cells in vitro using two cell lines. We have demonstrated that M1 protein binds to 
endothelial cells, increases endothelial cell vascular permeably in a TLR-2 and 
Rho kinase dependent manner and generates limited cytokine release.  This may 
reflect an innate immune recognition of the bacterial protein, however increased 
vascular permeability and vascular leakage has also been reported to contribute to 
the pathogenesis of streptococcal infection. 

Collectively, this thesis has revealed multiple strategies for S. pyogenes to 
modulate the host immune response during invasive bacterial infection by 
interacting directly and indirectly with platelets, neutrophils, monocytes and 
endothelial cells.  
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ROS, Reactive oxygen species 

CGD, Chronic granulomatous disease  
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1. THE IMMUNE SYSTEM- OUR 
PROTECTOR AND DEFENDER 

Host-Pathogen Interaction 

The host is constantly exposed to bacteria on a daily basis and our bodies are 
continually being colonised by bacteria, including non-pathogenic commensals 
within the human micro-biome, such as those found on the skin and mucosal 
surfaces in particular the gastrointestinal tract. All individuals are unique in their 
micro-biome content (1). The human body possesses a very potent immune system 
to defend and protect from bacterial infection. However, despite this very efficient 
immune system, which is amply attempting to eradiate invading bacteria, 
pathogens have developed ways to overcome our defence systems and invade and 
damage the bodies’ tissues. This thesis addresses aspects of host-pathogen 
interaction within the bloodstream. 

The cells of our bloodstream- Transporters, Defenders, 
Preventers! 

Erythrocytes or red blood cells (RBCs) are the most abundant cells in the blood, 
essential transporters that carry oxygen around the body and carbon dioxide away 
to be eliminated out from the body. The leukocytes in the blood consist of five 
main types; neutrophils, eosinophils, basophils, monocytes and lymphocytes 
which together account for between 4-11 x 109 cells/L of blood (2). They are 
defenders and protect us from harmful threats, including bacteria. Neutrophils, 
monocytes and macrophages are some of the key professional phagocytic cells that 
play central roles in preventing and resolving a bacterial invasion or inflammation. 
These cells originate from the myeloid progenitor cell in the bone marrow.  

Platelets, the smallest of all the blood cells range from 150-400 x 109/L in healthy 
individuals (3). These cells have a small discoid shape. Together with the 
coagulation system platelets form blood clots and prevent blood loss during 
vascular damage allowing maintenance of vasculature integrity. These cells 
circulate in an inactive state in the blood but rapidly become activated in response 
to vessel damage and this activation is attributed to their very specialised structure.  
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The Innate & Adaptive immune response 

The human body protects us from infection by two interlinked defence systems, 
the innate and the acquired immune system. The innate immune system is the first 
defence mechanism against an invading pathogen or in response to tissue injury or 
damage. This response is rapid and consists of physical barriers such as the skin 
and mucosal membranes and chemical barriers such as host derived chemicals and 
our innate immune cells.  The innate immune system is comprised of the 
following; phagocytes such as neutrophils and macrophages, dendritic cells, the 
coagulation system, the complement system and other cells that participate in the 
innate immune response such as epithelial and endothelial cells. 

The complement system forms part of the immune response and consists of three 
main pathways, the classical, the alternative and the lectin pathway. The final step 
results in the generation of the membrane attack complex (MAC) that may 
mediate cell lysis. The central step for all pathways is the generation of C3 
convertase (4), which cleaves C3 into C3a and C3b and can attach to the surfaces 
of microbes, coating and opsonising the microbe.  

Host pattern recognition receptors (PRRs) form the backbone of the innate 
immune response by distinguishing self from non-self by recognition of 
pathogenic associated features and patterns called pathogen associated molecular 
patterns (PAMPs) (5) (6). The innate immune system also recognises molecules 
released as a result of tissue damage, known as damage associated molecular 
patterns (DAMPs) (7,8). Different types of PRRs exist including, the Toll-like 
receptors (TLRs), Nod-like receptors, C-type lectin receptors and retinoic acid-
induced gene (RIG)-1-like receptors (9). There is also the f-Met-Leu-Phe receptor 
(fMLP) (10). This receptor recognises bacterial peptides that are released when 
combating an infection.  

Inflammation 

Inflammation is a protective innate host response that is composed of four key 
components which are written in Latin as they were first described by the roman 
scholar Celsus; calor (heat), rubor (redness), dolor (pain) and tumor (swelling, 
oedema) (11). When the host receives signals, generated externally from 
pathogens or internally from tissue damage, an inflammatory response is initiated. 
An inappropriate host response that results in too little or too much inflammation 
will lead to progressive tissue damage.  
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The calor is derived from vasodilation, where a rise in blood volume results in 
heat and then redness. Initial responses involve changes in the vasculature, 
whereby blood flow is increased so that cells and plasma proteins can be 
transported to the local area and so the healing process can begin (Figure 1). The 
blood vessel walls become more permeable so that solutes can pass leading to 
fluid leakage (edema). Solutes can exudate to the tissues and within a few hours 
the process of extravasation takes place whereby granulocytes, particularly 
neutrophils can enter the tissue and facilitate the repair process. Leukocyte 
transmigration is a key event in the accumulation of effector cells at the site of 
damage (12).  

The coagulation system plays a role in prevention of blood loss and consists of 
primary and secondary hemostasis (13). In primary hemostasis the goal is to 
prevent blood loss as a result of vascular damage. The coagulation system does 
this through platelet activation and platelet plug formation. In secondary 
hemostasis, clotting factors are initiated which results in fibrin deposition and 
further contribute to the cessation of blood loss (14). The coagulation system 
consists of a cascade of serine proteases, which become activated during the 
cascade process.  The coagulation system is also involved in inflammation and 
results in fibrin deposition (15). Fibrinogen and fibronectin are deposited and 
dying cells contribute to pus formation during inflammation. Finally the process of 
resolution occurs and normal tissue architecture is resolved (16). In response to 
tissue damage, due to prolonged inflammation a more severe chronic cellular 
response occurs whereby macrophages and lymphocytes infiltrate the damaged 
area.  

 

Figure 1: Stages of inflammation. 
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The innate immune system responds immediately to eliminate invading pathogens. 
In contrast, a second branch of our immune system, the adaptive immune system 
responds more slowly on first encountering a pathogen. However, this response is 
more specific and consists of an immunological memory, which means a more 
finely tuned and heightened pathogen specific response can be mobilised when the 
same pathogen is encountered again (17). The primary cells involved are the 
lymphocytes in communication with antigen-presenting cells. B- and T- 
lymphocytes respond to microbial invaders by production of antibodies or 
generation of cell-mediated responses, respectively (18).  

Antibodies produced by activated B cells bind microbes and facilitate their 
elimination via phagocytosis or complement activation. Antibodies exist in five 
different classes of which the IgG class is the most abundant throughout the body. 
The IgG antibody is composed of two regions, the Fab fragment (Fragment 
antigen binding), which recognises and binds to antigens and the Fc region 
(Fragment crystallizible) whereby the molecule binds receptors (Fc receptors) and 
interacts with cells of the immune system.  

The Fc receptors expressed by phagocytes are responsible for binding to the IgG 
class of immunoglobulins are known as the Fcγ receptors (19). Fc receptors bind 
to antibodies at their Fc region, which may be coating the surface of microbes, and 
this process induces phagocytosis. An important mechanism of phagocytosis is 
FcγR- mediated phagocytosis. Human cells express six Fcγ receptors (Fcγ-RI, -
RIIA, -RIIB, -RIIC, -RIIIA and FcγRIIIB). Neutrophils constitutively express the 
Fc receptors, FcγRIIa (CD32), FcγRIIIb (CD16) and FcγRIV (20,21) and they 
express FcγRI (CD64) upon stimulation with granulocyte colony stimulating 
factor (G-CSF) (22).  

The ability of the host to distinguish self from nonself is an important 
phenomenon of our immune system. Generally, host PRRs do this flawlessly 
because they recognise a molecular pattern that is only produced by the pathogen 
and not by the host. In contrast, receptors of the adaptive immune system 
occasionally recognise self-antigens, which may lead to autoimmune disease. The 
immune system must respond adequately to protect us but it must not over-
respond and result in over activation and inflammation, which would be 
deleterious to the host. S.pyogenes can cause mild infections but can also lead to 
severe infectious diseases such as sepsis. In sepsis our immune system responds in 
an uncontrolled manner and it is this over-activation of the host response itself that 
leads to the severity of the disease.  

 

In the following sections I will discuss these host systems and host-pathogen 
interactions in greater detail. 
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2. STREPTOCOCCUS PYOGENES 

Streptococcus comes from the Greek words  (strɛptəʊˈkɒkə); streptos meaning 
“chain” and kokkos meaning “grain/berry”. The name is derived from the fact that 
streptococci are linked together in cocci chains like a pearled necklace. The 
streptococcal bacterium was isolated in 1879 by Louis Pasteur, from blood 
cultures from a woman with puerperal sepsis. It wasn’t until 1884 that Friedrich 
Rosenbach described the bacteria, which he isolated from wounds and skin 
infections, and coined the actual term Streptococcus pyogenes for the first time 
(23).  

Approximately 10% of the adult population are asymptomatic carriers of this 
pathogen (24,25). S. pyogenes infections range from mild superficial skin 
infections such as pharyngitis and impetigo to life-threatening diseases such as 
necrotizing fasciitis, sepsis and streptococcal toxic shock syndrome. There are 
approximately 1.78 million new severe GAS infections worldwide each year for 
example due to rheumatic fever, rheumatic heart disease and invasive disease (26). 

S. pyogenes is a Gram-positive facultative anaerobic bacterium which was 
classified as Group A streptococci by Rebecca Lancefield based on the 
carbohydrate composition of the antigens found on the bacterial cell wall (27). 
Another mechanism of classification was introduced in 1928 based on variations 
of M-protein on the surface of S. pyogenes (28). This forms the basis of serotyping 
of the bacteria, however nowadays this is based on sequencing of the emm gene 
that encodes for the M protein.  

Group A streptococcus (GAS) stimulates the innate immune system, causing local 
inflammation and damage, resulting in the initiation of an immune response. S. 
pyogenes has developed many mechanisms that enable it to penetrate the 
constitutive host defence systems and in some cases cause invasive disease. The S. 
pyogenes genome has been sequenced and multiple genes encode for virulence 
factors (29). S. pyogenes produces a wide range of virulence factors which allow 
the pathogen to attach to host tissue, degrade tissue proteins, multiply and spread 
in the host (Figure 2). The bacteria can be surrounded by a carbohydrate capsule 
composed of hyaluronic acid, a peptidoglycan cell wall and proteins are embedded 
in the cell wall such as protein H, F and M protein that contribute to bacterial 
attachment and invasion of host cells (30,31). The capsule has been shown to 
prevent phagocytosis (32) and may alter the response of antibodies to bacterial 
products or the M protein. The bacteria can secrete proteases for example 
streptococcal pyrogenic exotoxin B (Spe B), streptokinase and streptolysins that 
facilitate tissue invasion (33) (34). Streptolysin O (SLO) is a pore forming toxin 
that can destroy red blood cells, leukocytes and other cell types.  
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Secreted IdeS cleaves IgG at the hinge reason thereby inactivating Fc effector 
functions (35) (36,37). Streptococcal inhibitor of complement (SIC) described in 
1996 was initially reported to inhibit formation of the membrane attack complex 
during complement activation (38), however it has more recently been reported to 
bind to and neutralise antimicrobial peptides. 

 

 

 

 

Figure 2: Streptococcus pyogenes stucture & virulance factors.  
 

Plasminogen 

Following activation, plasminogen is converted to plasmin, a protease that can 
breakdown fibrin clots, adhesion molecules, the extracellular matrix (ECM) and 
connective tissue (39,40). S pyogenes secretes streptokinase which binds and 
activates plasminogen (41). In addition to degrading fibrin, plasmin can also bind 
fibrinogen (42) and this increases the streptokinase induced plasminogen 
activation (43). This is reported to play a significant role in the pathogenesis of 
invasive S. pyogenes infection (44) and in enhancing the dissemination of the 
bacterium from the local infection.  
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Superantigens 

There are five classes of superantigens (I-V). They are toxic substances that bind 
to major histocompatibility complex class II and rapidly trigger an uncontrolled 
proinflammatory response (45,46) and toxic shock syndrome (47). These antigens 
activate T cells non-specifically i.e. they do not undergo the normal mechanism of 
antigen processing and presentation but directly bind to the T cell receptor. These 
bacterial toxins can stimulate an inflammatory and cytokine storm and very low 
concentrations of bacterial SAgs (< 0.1 pg/ml) are sufficient to induce toxic levels 
of cytokines in the bloodstream and an uncontrolled adaptive immune response 
(48). S. pyogenes can release a number of different superantigens. In addition, the 
M protein that is released from the S. pyogenes surface exhibits superantigenic 
properties (49). 

M Protein 

M-protein is one of the main virulence factors that cover the surface of S. 
pyogenes. M-protein is normally anchored on the bacterial surface but can be 
released by the action of cysteine proteases secreted from the bacteria (50), 
neutrophil proteases (51) and small quantities of M protein can be shed from the 
bacteria during growth in-vitro (52). M protein has a α-helical fibrillar coiled-coil 
structure and each homodimer chain of M-protein is composed of four repeating 
domains (Figure 3 A-D), each with various host interacting partners and functions 
during infection. A structural model of M protein was first proposed by Fischetti 
in 1989 and 1991 (53) (54). The M protein was later confirmed to have 
irregularities within the coiled-coil structure that facilitated interaction with host 
proteins, including fibrinogen (55). M protein can facilitate attachment to host 
cells and tissues for example it can bind to extracellular matrix and cell surface 
glycosaminoglycans (56), it can bind directly to extracellular matrix components 
such as fibronectin (57) and indirectly these molecules bind to host cells and 
thereby act as bridges, promoting uptake of bacteria into these cells (58,59). 
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Figure 3: Each chain of the M protein includes different regions (A-D) that have different sizes 
and amino acid sequences. A - amino-terminal region or hypervariable region (HVR), B- Binds 
Fibrinogen, S- IgG binding region, C & D- Both the C and D region can bind factor H and 
serum albumin, D- Contains an LPxTG motif that attaches to the peptidoglycan which is 
required for correct anchoring of the protein in the cell wall. 

 
The antigenic diversity at the N-terminal hypervariable region (HVR) is the basis 
of M-protein serotyping. Type specific antibodies are directed against this HVR 
and have been proposed to confer protection against subsequent infection with the 
same serotype (60). There are >100 serotypes of the M protein known (60) (61) 
but only a few are particularly associated with invasive disease where M1 and M3 
serotypes in particular have dominated (62). 

M protein is strongly anti-phagocytic because it can bind plasma proteins and the 
Fc region of IgG antibodies thereby preventing activation of complement. 
Complement regulatory components can bind to the HVR of M protein and limit 
complement activation on the bacterial surface, for example C4b-binding protein 
which degrades C3 convertase and decreases opsonisation (63-65). M protein of 
certain serotypes may bind factor H and prevent C3b binding to the bacteria. 
Another mechanism that prevents complement activation is the binding of the 
plasma protein, fibrinogen to M protein. Fibrinogen acquisition by S. pyogenes 
was first described by Kantor, however the importance of this interaction for 
bacterial pathogenesis was not clarified in this study (66). In 1985, Whitnack et al 
demonstrated that when fibrinogen binds to M protein the binding of C3b is 
inhibited and this prevents activation of the alternative complement pathway and 
phagocytosis (67). Fibrinogen binding has also been shown to prevent 
complement activation by blocking the classical complement pathway (68).  
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The M protein - fibrinogen complex has been show to protect against phagocytosis 
of group A streptococci (69). In addition the recruitment of the Fc region of IgG to 
the bacterial surface is also a mechanism to prevent complement activation and 
bacterial killing (70). Furthermore, M protein contributes to intracellular survival 
of S. pyogenes that has been phagocytosed by neutrophils (71).  

The released M1 protein has potent pro-inflammatory properties that are 
associated with the formation of a complex between M1 protein and plasma 
fibrinogen. This complex mediates neutrophil activation and release of vasoactive 
substances (such as heparin binding protein) and has been shown to induce 
vascular leakage in animal models of disease (51,72,73). Furthermore, M1 protein 
stimulates neutrophil and mast extracellular formation and the bacteria can survive 
inside these extracellular traps (74). M1 protein activates platelets (75), monocytes 
(76) and epithelial cells (77) and initiate’s an inflammatory response. In addition, 
the M protein can also interact with the coagulation system where it has been 
shown to cause tissue factor production from monocytes (78) and contact system 
activation at its surface with the release of bradykinin, a potent mediator of 
inflammation (79).  

Severe bacterial infection: Sepsis 

When S. pyogenes disseminates into the bloodstream, life-threatening disease and 
sepsis may result. Sepsis is the result of a systemic inflammatory immune 
response to a bacterium, characterised by a number of clinical parameters. The 
definition of sepsis that is in use today arose from the sepsis consensus conference 
held in the USA in 1991 led by Prof. R.C. Bone and colleagues (80). This was 
later refined at another sepsis consensus conference in 2001 to enhance the 
definition to contain additional added criteria (81). Sepsis is a complex and life-
threatening condition that has a high mortality rate in those severely affected 
individuals and despite continuous research and continually emerging antibiotics, 
sepsis still remains a very complicated condition to detect and treat.  

Each year in the US there are approximately 750,000 new cases of severe sepsis 
(82) and in 2001, sepsis resulted in approximately 215,000 deaths (83). The initial 
clinical symptoms for diagnosing sepsis include the systemic inflammatory 
response syndrome (SIRS) criteria; fever, high temperature, increased respiratory 
rate, elevated heart rate and an altered white blood cell count (Figure 4) (80).  
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There are three clinical stages of sepsis; sepsis, severe sepsis and septic shock and 
each have a different definition depending on the severity of the clinical symptoms 
(Figure 4) (84). One important cardiovascular change in these individuals is 
hypotension, low blood pressure and if this occurs rapidly, in addition to other 
symptoms and the patient are irresponsive to fluids, septic shock can be diagnosed 
which is the phase with the highest mortality rate (70-80%) (85,86). 

 

 

 

Figure 4: The classification of Sepsis. The initial clinical presentation is the systemic 
inflammatory response syndrome (SIRS) and then a progession to sepsis, severe sepsis and 
septic shock. 
 

Sepsis involves a deregulation of both pro- and anti-inflammatory pathways. The 
inflammatory response generated during sepsis is very often followed by a period 
of immune suppression or immunoparalysis which can persist for days and 
involves bacterial endotoxins and superantigens (SAgs) (87,88).   

During sepsis there may be a high or low neutrophil count (Figure 4) or the 
presence of greater than 10% immature blast cells and the neutrophils function is 
generally altered (89) and impaired for example an impaired neutrophil 
chemotactic ability was seen in patients with severe sepsis (90). The gene 
expression of the neutrophil may be increased during sepsis (91) and becomes 
altered as the condition progresses. 
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 This leads to a gene suppression of proinflammatory molecules and a decreased 
production of neutrophil reactive oxygen species (ROS). The result may be an 
abnormal recruitment of neutrophils to sites of inflammation and a subsequent 
accumulation of these cells, which have deregulated responses.  

Some different theories have been proposed about the immune response during 
sepsis for example according to Hodchkiss et al. one theory proposed that both 
pro- and anti-inflammatory responses occur during sepsis where patient deaths are 
due to more of an immunosuppression and a second theory proposed that deaths 
from sepsis are more due to a stronger innate immune response than the adaptive 
response (87). Sepsis is a very complicated phenomenon and a lot more work is 
still to be done to better understand the role of the immune system. 

Coagulation and Sepsis 

Sepsis and septic shock involve a massive dysregulation of the pro- and anti- 
inflammatory systems, but also the coagulation system. Significant crosstalk 
occurs between coagulation and inflammation. During sepsis the coagulation 
system is fully activated and thrombin is generated, which will result in the 
generation of a fibrin clot, activation of the endothelium and platelet activation. 
This will further escalate the coagulation system and in advanced sepsis 
disseminated intravascular coagulation (DIC) may occur. Furthermore, bacterial 
toxins can directly activate the coagulation system by upregulation of tissue factor 
(92) and indirectly activate the system through the activation of inflammatory 
molecules such as tumor necrosis factor alpha (TNF-α) and interleukins (93). The 
end result is a state of pro-coagulation and generation of fibrin clots. During DIC, 
systemic activation of the coagulation system occurs with fibrin deposition in 
small vessels, consumption of coagulation factors and regulators of coagulation. 
This can culminate in an increased bleeding risk in these patients. Platelets are 
affected during DIC. Thrombocytopenia occurs during invasive bacterial infection 
and is an independent marker of mortality (94,95). The activation and aggregation 
of platelets could be responsible for platelet consumption and the decreased 
platelet numbers observed in these individuals.  
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Sepsis Management 

Sepsis diagnosis, management and treatment continues to remain a major health 
challenge due to the disease complexity, therefore identifying a reliable biomarker 
of sepsis is extremely difficult. Some of the current septic biomarkers include 
procalcitonin, cytokine biomarkers, such as IL-8 or IL6, mRNA expression in 
blood and in leukocytes, micro RNAs (miRNA) (96). Some cell receptors or 
adhesion molecules can also serve as biomarkers including soluble ICAM-1 or E-
selectin. Heparin binding protein (HBP), also known as azurocidin is released 
from activated neutrophils during sepsis and is an inducer of vascular leakage (97). 
Plasma HBP was shown to be a prognostic marker of the severity of septic 
progression (98) and HBP was shown to be a possible marker of circulatory failure 
in septic patients (99).  

Management and treatment for sepsis includes fluids, vasopressors, ventilation and 
antibiotic administration. Some studies are aimed at blocking inflammatory 
molecules for example TNF-α (100), however, targeting one specific molecule in 
sepsis usually is inefficient and many have failed in clinical trails (101). Due to the 
complex nature of sepsis finding a single and effective treatment is rare and a 
combination of treatments offer more potential.  
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3. THE POWERS OF PLATELETS 

Platelets are small anucleate cells, 3μm in diameter and the human body has 
between 150-400 x 109 platelets per litre of blood, of which one hundred billion 
are produced daily from the bone marrow (102). Megakaryocytes are precursor 
cells produced from pluripotent stem cells in the bone marrow and James Homer 
Wright was the first to note that platelets are produced from megakaryocyte 
fragmentation in the bone marrow (103).  

Within the bone marrow, maturation of the megakaryocyte takes place, which 
increase in size and content. The production of megakaryocytes in the bone 
marrow is mainly regulated by the platelet growth factor thrombopoietin (TPO) 
(104-107) which facilitates the in vitro culture and expansion of megakaryocytes 
and therefore advanced our understanding with regard to the platelet 
developmental process (108). Following maturation, the mature megakaryocytes 
then degrade their basement membrane and the cell cytoplasm is reorganised into 
beaded extensions called proplatelets (109-112). An intermediate before this step 
occurs in the sinusoidal blood vessel of the bone marrow and are now defined as 
preplatelets, which are larger than platelets and can convert into proplatelets (113). 
As proplatelets continue to develop and mature, platelet specific granules are taken 
along microtubule bundles to the proplatelets before finally releasing platelets into 
the blood vessel from their surface (114). Each megakaryocyte produces between 
1000-3000 platelets and on average the platelet has a lifespan between 8-10 days 
in the circulation (115). Mouse platelets circulate in greater numbers than that of 
human platelets and have shorter lifespans (116,117).  

Platelet Cytoskeleton 

The small and discoid shape of the platelet allows them to be close to the vessel 
edge and therefore to quickly respond to vascular damage. Their unique shape is 
maintained by their cytoskeletal structure. Platelets have an open canalicular 
system (OCS) which serves as a conduct for granule secreted substances, to 
facilitate their transport to the platelet surface and to allow substances to be 
transported into the cell (118,119). Platelets contain small numbers of 
mitochondria which provide energy to the platelet for processes such as platelet 
activation and granule secretion (120). Glycolysis and oxidative phosphorylation 
are the main energy demanding process that take place during platelet activation 
and secretion (121). 
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Platelet Granules 

Platelets have three main granules, α-granules, dense granules and lysosomes, of 
which the α-granules are the most abundant (122) (123). Platelet α-granules 
contain more than 300 proteins per platelet including adhesive proteins, 
coagulation clotting factors such as fibrinogen, fibrinolytic factors, cellular 
mitogens, proteases, growth factors and proteins (124). They contain cytokines 
and chemokines, for example transforming growth factor β (TGFβ) (125), platelet 
factor 4 (PF4), Growth-regulating oncogene-alpha (Groα) and regulated on 
activation, normal T cell expressed and secreted (RANTES). P-selectin is an 
important membrane protein stored in the α-granules of resting unactivated 
platelets. This cell adhesion molecule (CAM) becomes translocated from the 
platelet granules and upregulated to the platelet surface following platelet 
activation (126). Endothelial cells have also been shown (in 1989) to contain p-
selectin stored in the Weibel-Palade bodies (WPBs) (127). In addition platelets 
release antimicrobial peptides from their α-granules for example after activation 
with thrombin, platelets release peptides called thrombocidins (128). Actin in the 
cytoskeleton plays a key role in the release of platelet α-granules by the action of 
actin polymerisation (129) (130). Microparticles are small vesicle structures that 
are shed from the plasma membrane of cells in the bloodstream. The release of 
microparticles involves actin and cytoskeleton detachment from the plasma 
membrane and primarily requires calcium (131).  

In contrast, platelet dense granules are smaller and carry other activating factors 
such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), serotonin 
and cations such as calcium and magnesium. Platelets have a few lysosomes, 
which store digestive and acid hydrolase enzymes including cathepsin, β-
galactosidase and acid phosphatases. Platelets also have cytoplasm peroxisomes 
that store the enzyme, catalase.  

Platelets express thousands of copies of receptors on their surface and these 
numbers are continuously expanding as research reveals new receptors with 
increasingly new functions. Among these, some receptors are present in platelet 
granules and are only expressed on the platelet surface upon activation. Platelets 
express TLR’s, initially shown to express TLR1, TLR2 and TLR3 on both mouse 
and human platelets but further studies have demonstrated that platelets express 
TLR’s 1-9 and some are functional (132-134).  
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Platelets express one receptor class for IgG, FcγRIIA (135). When Fcγ binds the 
Fc region of IgG a number of downstream signalling events occur including 
phosphorylation of tyrosine residues in the receptor within immunoreceptor 
tyrosine-based activation motifs (ITAMs) which begins with the Src family of 
tyrosine kinases (136).  These signalling events have been shown to result in the 
activation of the platelet integrin GPIIbIIIa (137). Table 1 indicates some of the 
most important platelet receptors and their ligands. 

 
Receptors  Ligands  Family  References 
GPIIbIIIa Fibrinogen, fibrin, 

vWF,fibronectin 
Integrins (138) 

GPVI Collagen Ig Superfamily  
P2Y1, P2Y12 ADP G protein-coupled 

receptors 
(139) 

PAR1, PAR4 Thrombin G protein-coupled 
receptors 

(139) 

CD62P PSGL-1, GPIb, TF C-type lectin receptor 
family 

 

GPIb-IX-V complex Thrombin, vWF, FXI, 
FXII, P-selectin,   
Mac-1 

Leucine-rich repeat 
family 

 

GPIaIIa Collagen Integrin  
FcγR’s IgGs Ig superfamily  

TPα Thromboxane G protein-coupled 
receptors 

(139) 

 

Table 1: Platelet receptors and their coresponding ligands. 

Platelets & Haemostasis  

Platelets patrol the vasculature in an inactive state, however following vessel 
injury or inflammation platelets are rapidly activated and responsive. Platelets are 
activated in response to agonists such as collagen, Adenosine diphosphate (ADP) 
and thrombin, which bind to their respective receptors on the platelet surface 
(Figure 5). ADP and thrombin bind to G-protein coupled receptors on the platelet 
and initiate a downstream signalling event, that results in a calcium influx which 
can result in further platelet granule release and platelet integrin conformational 
changes. 
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Figure 5: Platelets become activated and release their granules upon stimulation. Upon 
vascular damage collagen is exposed which can bind to platelet receptors and initiate a process 
of firm platelet attachment and endothelial transmigration.  

 
During primary haemostasis platelets undergo a series of events that ultimately 
result in repair or cessation of blood flow (Figure 6). This is one of the primary 
functions of the platelet. Upon vessel injury, subendothelial extracellular matrix 
components are exposed such as collagen (140). One of the initial steps in platelet 
adhesion is the immobilisation of circulating von Willebrand Factor (vWF) on the 
collagen surface which exposes the vWF binding site and subsequently promotes 
platelet tethering and attachment (141,142). The A1 domain of collagen bound 
vWF interacts with GP-Ib-IX-V receptor complex on the platelet surface 
(143,144). Further interactions of vWF-GPIb are formed and platelet rolling 
occurs. Other more stable interactions occur that involve integrins including the 
collagen receptors GPIaIIa and GPVI and the GPIIbIIIa receptor. 

The GPIIbIIIa receptor which is activated by inside-out signalling (145-147) binds 
fibrinogen which bridges adjacent platelets and recruits more circulating platelets 
to the site of damage resulting in further platelet-platelet interactions and 
formation of a platelet plug (148). The platelet plug is sufficient to cease blood 
loss in small vessels, however, if the injury is more extensive in the larger blood 
vessels, this in insufficient and secondary haemostasis occurs.  

Secondary haemostasis is the stage where insoluble fibrin is generated (149), 
which stabilises the platelet plug. The process requires the regulated control of 
coagulation factors, cofactors and inhibitors to generate the protease thrombin, 
which initiates the formation of fibrin.  
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Figure 6: Schematic representation of the events involved in formation of a platelet plug, 
cessation of blood flow and repair of the damaged vessel.  
 

Fibrinogen 

Fibrinogen is a major plasma protein and coagulation factor in blood. The 
molecule has multifunctional roles due to its complex structure and functions. 
Fibrinogen has multiple binding sites which are open or which open as a result of 
proteolysis and/or conformational change. The fibrinogen molecule is a trinodular 
structure that consists of two sets of three different polypeptide chains Aα-, Bβ- 
and γ- chains (150).The chains are joined by disulphide bonds to form the N-
terminal amino acid ‘E’ domain of the molecule and the two D domains are 
connected to this domain by a coiled-coil segment (Figure 7). Fibrinogen is 
involved in inflammation, repair, fibrinolysis and cellular and matrix interactions 
(151).  

The interaction between fibrinogen and platelet GPIIbIIIa plays an important role 
in the generation of platelet-platelet aggregates and platelet thrombi. Fibrinogen 
can bind to the activated platelet integrin GPIIbIIIa receptor and that initiates an 
outside-in signalling event, which provides bridging between platelets.  
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Following activation of the plasma coagulation cascade fibrinogen is converted to 
fibrin by thrombin (Figure 7). The molecule has two recognition sites for thrombin 
in the E domain (EA and EB). Thrombin cleaves fibrinogen at these sites, first 
cleaving fibrinopeptide A (FPA) followed by fibrinopeptide B (FPB). The 
structure is stabilised by FXIII which crosslinks the fibrin molecules. Fibrin 
combines with other fibrin molecules to form long threads of fibrin polymers that 
intertwines with the forming thrombus and forms a scaffold i.e. a blood clot. 

 

 

Figure 7: Schematic diagram of the fibrinogen structure and the thrombin cleavage sites. 

 

Bacteria-Platelet interaction 

During severe bacterial infection platelets are either directly or indirectly affected 
and thrombocytopenia can occur. Thrombocytopenia may be due to the increased 
consumption of clotting factors and the subsequent DIC. It may also be as a result 
of direct interaction of bacteria with platelets resulting in activation and 
aggregation. Many in vitro studies have shown that bacteria can interact with 
platelets, however less is know about the role of these interactions in vivo. 
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Mechanism of bacterial-platelet interactions 

Bacteria can bind either directly or indirectly to platelet receptors. They can bind 
directly via bacterial surface proteins or they can associate indirectly via 
acquisition of plasma proteins including fibrinogen, fibronectin, IgG and the 
complement component C1q that can bind to both the bacteria and the platelet. In 
addition bacteria can also release products such as bacterial toxins that can interact 
with and activate platelets for example α-toxin, lipopolysaccharide (LPS) and 
streptocococcal M1-protein (75,152,153). 

In the case of S. pyogenes and S. aureus indirect binding to platelets can occur via 
bridging molecules that connect the bacteria to the platelet surface (154-156). For 
example S. aureus clumping factor A (ClfA) binds to fibrinogen and interacts with 
the platelet through the GPIIbIIIa receptor (157-159). These studies of S. aureus 
aggregation are IgG dependent. A similar mechanism of fibrinogen and IgG 
dependent platelet aggregation has been described for S. pyogenes bacteria (160). 
Furthermore, S. pyogenes can release M protein from the bacterial surface, which 
forms a complex with plasma fibrinogen and engages with the platelet fibrinogen 
receptor (Figure 8) and in the presence of specific IgG against M1 protein bound 
to the platelet FcγRIIa receptor, platelet activation can occur (75). In the absence 
of this IgG, M1 protein binding still occurs but the platelets do not become 
activated.  
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Figure 8: Schematic image of platelet activation and aggregation in response to S. pyogenes M1 
protein.  
 

Bacteria play a role in infective endocarditis where platelet thrombin adhere and 
accumulate on the heart valve and in septicaemia where a decrease in the platelet 
count is seen as an indicator of illness (161). Bacteria have developed resistance to 
platelet antimicrobial peptides that are aimed at killing the bacteria (162). 
Although demonstrated by few studies, platelets have also been shown to bind and 
internalise bacteria for example S. aureus (163-165). Platelets have been shown to 
engulf S. aureus and human immunodeficiency virus (HIV) in a subcellular 
component and the bacteria appeared to be associated with platelet granule 
secretory products (166). This work also demonstrated that platelets, once 
activated, could increase their ability to internalise bacteria, therefore it was 
considered to be important that platelet activation had previously occurred in order 
for the process to take place more effectively.  
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Platelet-Neutrophil Complexes 

Platelets can form complexes and communicate with leukocytes by the formation 
of platelet-leukocyte complexes (PLC) during vessel injury and inflammation 
(167). Platelets can interact and form complexes at different levels with the 
respective cell types. They form complexes most easily with monocytes 
{Michelson: 2001ep}, followed by neutrophils. Furthermore, platelets bind 
monocytes stronger than neutrophils under vascular shear (168). PLC interactions 
are observed in diseases including, inflammatory diseases for example 
inflammatory lung disease such as cystic fibrosis (169), allergy (170), 
atherosclerosis (171), autoimmune diseases for example rheumatoid arthritis (172) 
and infection for example in sepsis progression and septic shock (173,174).  

Platelets interact with neutrophils through different receptors, mainly selectins and 
integrins (Table 2). The most well studied is platelet P-selectin (CD62P) 
interacting with the PSGL-1 (P-selectin glycoprotein ligand-1, CD162) receptor on 
the neutrophil (175).The signalling through PSGL-1 results in the up regulation of 
the β2-integrin Mac-1 or CD11b/CD18 complex on neutrophils (176). 
CD11b/CD18 may bind directly to the platelet GPIb receptor or indirectly bind to 
the plasma protein fibrinogen which then associates with the platelet GPIIb/IIIa 
receptor (167). Blocking of the platelet GPIb receptor has been shown to prevent 
PNC formation at the endothelium (177).  

At the endothelium neutrophil rolling can occur on platelets adhered to the 
endothelium via PNC formation (178,179). Activated platelets release 
chemokines, adhere to the endothelium and may subsequently recruit neutrophils 
to the endothelium and enhance their transmigration (180,181).  

Other adhesion partners between platelets and leukocytes have been reported, 
although these are not as well studied. Intracellular adhesion molecule-2 (ICAM-
2) is the main β2-integrin ligand present on activated platelets and can interact 
with neutrophil CD11b/CD18 or CD11a/Cd18, promoting neutrophil adhesion 
(182). In addition, neutrophil CD11a/Cd18 can interact with the platelet receptor 
junctional adhesion molecule 3 (JAM-3) (183). Activated platelets express CD40 
ligand (CD40L) (184) which can interact with neutrophil CD40 (185). The table 
below (Table 2) outlines some of the most well studied interactions that occur 
between platelets and neutrophils.  
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Platelet Neutrophil 

P-selectin PSGL-1 
ICAM-2 CD11a/CD18 

JAM-3 CD11a/CD18 
CD40L CD40 

GPIIbIIIa CD11b/CD18 
GPIbα CD11b/CD18 

 

Table 2: The table demonstrates the most well studied mechanisms of interactions between 
platelets and neutrophils of which platelet p-selectin interacting with its coresponding receptor 
PSGL-1 on neutrophils is the most well known.  

 

 

Platelets in complex with neutrophils have been shown to have enhanced functions 
while combined. Platelet binding can induce neutrophils to release neutrophil 
extracellular traps (NETs) which can entrap bacteria (186,187). PNC formation 
facilitates transcellular metabolism of arachidonic acid metabolites, which 
enhances the synthesis of proinflammatory and vasoconstrictive compounds 
amplifying the levels of neutrophil eicosanoids such as lipoxins and leukotrienes 
(188) (189).  

PNCs have been reported to occur during sepsis and in some patient studies PNCs 
are speculated to contribute to the development of multiorgan failure (190) 
(173,186). It is however unclear whether PNC formation is directly mediated by 
the bacteria or is an indirect consequence of the overwhelming immune 
dysregulation observed in sepsis. Bacterial LPS has been shown to mediate PNC 
formation (186). Bacteria isolated from patients with bacteraemia generated PNCs 
ex-vivo in blood samples from the same patient from which the bacteria were 
isolated, indicating that PNC formation may occur in direct response to 
pathogeneic bacteria (191). 
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4. NEUTROPHILS-TRAVELLERS AND 
ENGULFERS 

In the nineteenth century, the German researcher Paul Ehrlich was the first to 
distinguish the different leukocytes on the basis of their nuclear morphology and 
granule content by utilising special cell staining techniques. The neutrophil is the 
most abundant leukocyte in the blood stream and has an important immune role. 
They are also designated as polymorphonuclear leukocytes (PMN) since they have 
a multilobed nucleus and contain large numbers of intracellular granules and 
vesicles (192). The exciting, yet relatively short-lived life of a neutrophil begins in 
the bone marrow during granulopoiesis when a hematopoietic stem cell 
differentiates first into the common myeloid progenitor cells and then into 
polymorphonuclear leukocytes (193). Each day 1011 neutrophils are produced from 
the bone marrow from the hematopoietic stem cell (194). They have been 
considered to have relatively short lifespans with a half-life of approximately 8 h 
in humans (195) and approximately 1.5 hours in mice in the blood circulation, but 
more recent studies suggest they have longer lifespans (196). The neutrophil is an 
exceptionally efficient phagocyte displaying an immense ability to engulf and 
destroy microbes. If they do not encounter an infectious agent, neutrophils enter 
the reticuloendothelial organs or return to the bone marrow to undergo 
programmed cell death. Maintaining neutrophil homeostasis is very important and 
is regulated by the rate of differentiation and proliferation of the neutrophil 
precursors in the bone marrow.  

Neutrophil Granules 

Neutrophil granules can be subdivided into three main subsets. The utilisation of 
multiple techniques over the last number of years, including fractionation 
techniques, immune electron microscopy and flow cytometry have shown that 
neutrophils possess three main granule types; Azurophilic (primary), specific 
(secondary) and gelatinase (tertiary) subsets (197). Neutrophils also contain 
secretory vesicles whose origin may differ from the other granule types (198,199). 
The granules contain about 300 proteins (Figure 9) which include receptors which 
can become part of the cell membrane, proteolytic and bactericidal proteins and 
pro-inflammatory molecules (200) (201) which can all be rapidly transported to 
the cell surface when necessary.  
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During the transition from myeloblast to promyelocyte the granules begin to 
appear. Neutrophil granules are released in an hierarchical order and this is the 
opposite to that of which they were formed (202). The azurophilic granules are the 
largest (203) and are only fully mobilised after a strong stimulation that release 
molecules such as HBP and myeloperoxidase (MPO). The secondary (specific) 
granules are smaller than the azurophilic, contain many plasma molecules and play 
a role in oxidative burst (204). These are rich in antimicrobial substances such as 
neutrophil gelatinase associated lipocalin (N-GAL), lactoferrin, lysozyme among 
others and these granules contribute to the contents of the phagosome during 
bacterial clearance. The secretory vesicles and tertiary granules are more easily 
mobilised and play a role in neutrophil transmigration (205). Granules are not 
released until a signal transduction event is initiated whereby signals are sent to 
the cytoplasm to activate their movement to the membrane for cell degranulation 
and granule secretion. Neutrophil degranulation requires calcium, guanosine 
triphosphate (GTP) and ATP hydrolysis. 

 

 

 

 

Figure 9. Neutrophil granule subsets. 
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Neutrophil Function 

Neutrophils are one of the first responders at the site of inflammation, adhering 
and migrating rapidly to the necessary sites and are crucial for bacterial clearance. 
This is one of the neutrophils primary functions – extravasation to the site of 
inflammation and/or damage. This process is discussed in more detail later in this 
thesis. It is complex and involves a number of processes including neutrophil 
rolling, arrest, spreading, crawling and transmigration (206). The neutrophil 
granules facilitate transmigration across the endothelium, particularly the secretory 
and gelatinase (tertiary) granules. Secretory granules can incorporate molecules 
into their membrane such as selectins which then play a role in the initial steps of 
transmigration (207). Tertiary granules contain membrane and matrix degrading 
proteins such as collagenase that degrades collagen (208). 

The importance of neutrophil function is demonstrated in patients with leukocyte 
adhesion deficiency (LAD), a rare yet life-threatening genetic condition. There is a 
deficiency of CD18, an adhesive glycoprotein on the surface of leukocytes that 
facilitates cellular interactions such as adhesion and subsequent leukocyte 
transmigration (209). Leukocytes are unable to transmigrate to the site of infection 
and thus are unable to clear pathogens. This results in these individuals being 
severely immunocompromised and unable to clear bacterial infection, therefore 
they experience recurrent necrotic soft tissue infections and impaired wound 
healing. 

Neutrophils express a vast array of receptors on their surfaces that play important 
roles in pathogen recognition and phagocytosis of microbes. They express 
pathogen recognition receptors such as TLRs which are essential for PAMP 
recognition or DAMP recognition and generation of antimicrobial responses (210) 
but also opsonic receptors including the Fc and complement receptors.  

Neutrophils migrate in a directional manner in a process called chemotaxis, which 
was first described by Leber in 1888. They move towards a chemical gradient in 
response to chemotactic factors or chemoattractants such as platelet activating 
factor (PAF), formyl-methionyl-leucylphenylalanine (fMLF), complement factor 
5a (C5a) and chemokines such as interleukin 8 (IL-8). When the orientation of the 
chemoattractant changes the neutrophil cytoskeleton reorganises and it moves in 
the direction of that chemoattractant.  
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The neutrophil may use this method when migrating towards its target (see review 
(211)). fMLF is a proteinogenic amino acid found in bacteria and is a potent 
chemotactic factor when the peptides are released during infection. The formyl 
peptide receptor (FPR) receptor on the neutrophil recognise these peptides and 
initiates a cell signalling event. The neutrophil express two formyl peptide 
receptors, known as FPR1 and FPR2 and are both G-protein coupled receptors 
(212,213).  

Pathogen Elimination  

Phagocytosis is an active receptor mediated process that is actin driven and assists 
in the clearance of bacteria. The process was originally shown in 1977 to be IgG 
dependent (214), but later studies revealed a role for other receptors, including the 
complement receptors (215). There are a number of key steps involved in the 
process of phagocytosis, which involves receptor mediated particle recognition by 
the phagocyte, particle uptake into a vesicle, formation of a phagolysosome and 
finally clearance of the pathogen digested particles (216). Initially, the phagocyte 
must recognise many types of pathogen targets for which it has evolved many 
receptors on its membrane surface. PRRs on the neutrophil recognise PAMPs (5) 
or the phagocyte Fcγ receptors and complement receptor 3 (CR3, CD11b/CD18, 
αMβ2 integrin) (217) recognise pathogens that are opsonised by antibodies or 
complement components bound to their surface (218). When signalling networks 
are initiated and cytoskeletal actin rearrangements occur the plasma membrane 
surrounds the microbe and engulfs it, forming the phagosome. The microbe, once 
within the membrane bound phagosome is entrapped and fuses with the lysosome 
to form a phagolysosome (219). The phagolysosome is an acidic compartment in 
which the pathogen is broken down and processed for antigen presentation (220).  

Neutrophils also have an oxidative (respiratory) burst mechanism. Neutrophils 
generate reactive oxygen species (ROS), which essentially are oxygen-derived 
molecules that are oxidising agents or converted to radicals. The process of ROS 
production requires nicotinamide adenine dinucleotide phosphate-oxidase 
(NADPH) (221). Chronic granulomatous disease (CGD) is an inherited disorder, 
which occurs due to a defect or deficiency in the subunits, which make up the 
NADPH oxidase enzyme system (222). The disease is characterised by recurrent 
bacterial infections due to the inability of phagocytes, including neutrophils, to 
perform one of their functions in releasing reactive oxygen species.  
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Another mechanism by which neutrophils can entrap and clear bacteria is through 
the release of NETs (223). NET formation occurs when neutrophils undergo a 
special type of controlled cell death called NETosis where the nuclear chromatin is 
dissolved and extracellular strands of “sticky” threads of DNA are released. These 
strands of DNA also contain antimicrobial peptides. Platelets may have a role in 
NET formation in response to LPS and Escherichia coli (186).  
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5. THE ENDOTHELIUM - MORE THAN 
JUST A BARRIER BREACHED! 

The endothelium consists of a single monolayer of specialised cells that provide 
the inner lining to blood vessels and as such is a major interphase for circulating 
immune cells in their passage from blood to tissues. In this way the endothelium 
can be considered an important barrier between blood and underlying tissues. 
Endothelial cells arise from the precursor hemangioblast, which can either 
differentiate into hematopoietic stem cells (HSCs) or into angioblasts (224). The 
hematopoietic and angiogenic lineage is derived from the mesodermal stem cells 
during embryonic development. The endothelium has the ability to secrete 
cytokines, chemokines and express adhesion molecules and is therefore viewed as 
an important host immunological organ (225). Endothelial cells maintain normal 
homeostasis by maintaining an antithrombotic state, regulating secretion of 
vasodilator and vasoconstrictor molecules (prostacyclin and nitric oxide), control 
vascular tone and blood pressure (226) and control leukocyte migration and fluid 
permeability across the vessel wall (227).  

Activation of the Endothelium  

 Endothelium cell activation occurs in response to “danger” signals from 
pathogens and/or inflammatory mediators. Activating agonists such as thrombin, 
TNFα and bradykinin induce endothelial signalling events and vascular leakage 
(228). Endothelial cells express functional PRRs, which include the TLRs- TLR 
1,2,4,5 and 6 that recognise bacterial PAMPs (229) such as bacterial lipoproteins, 
peptidoglycan, carbohydrates and endotoxins for example LPS released from gram 
negative bacteria (230). PRRs also recognise DAMPs, which are generated in 
response to tissue damage. The S. pyogenes M protein has recently been shown to 
be recognised as a PAMP by keratinocytes and is involved in the upregulation of 
many signalling partners (77).  
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Leukocyte Cell Migration 

The initial events in leukocyte transmigration involve leukocyte capture, rolling 
and adhesion. Mediators of acute inflammation stimulate molecules such as 
selectins to be translocated from endothelial cells and facilitate the initial rolling 
process. There are three selectins involved -E, -P and -L selectins. Endothelial p-
selectin, found in WPBs of endothelial cells is the primary selectin involved in 
leukocyte capture and rolling, which interacts with selectin ligands on leukocytes, 
particularily PSGL-1 and this facilitates rapid leukocyte adhesion (231). Once the 
leukocyte is in contact with the endothelium and the rolling process has occurred, 
further endothelial adhesion molecules are upregulated and chemokines such as 
IL-8, GROα and monocyte chemoattractant protein-1 (MCP-1) are secreted by the 
endothelium (232,233). The contact between chemokines and leukocyte 
chemokine receptors leads to the activation of leukocyte integrins. 

Leukocytes express β2 integrins, and when upregulated, they tightly adhere to the 
endothelium (234). This stage of firm leukocyte arrest involves leukocyte-function 
associated antigen-1 (LFA-1/ (CD11a/CD18) and Mac-1 (CD11b/CD18) that can 
bind to ICAM-1 and ICAM-2 on endothelial cells promoting firm leukocyte arrest 
(235). Once leukocytes are firmly attached the process of leukocyte transmigration 
takes place. Adhesion molecules involved with transmigration include platelet 
endothelial cell adhesion molecule-1 (PECAM-1), vascular endothelial (VE) -
cadherin, vascular cell adhesion molecule-1 (VCAM-1), integrin associated 
protein (IAP,CD47) and very late antigen 4 (VLA-4, α4β1) (236).  
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Figure 10: The diagram indicates the main events and interacting patners involved in 
leukocyte transmigration. 

 

Endothelial cells play an important role in vascular healing. Upon vascular 
damage platelets become activated and adhere to subendothelial components, 
initially to vWF, which is bound to collagen at the subendothelium. Platelets 
interact with adhesion molecules such as P-selectin, PECAM-1 and integrins 
(237). Once adhered platelets aggregate together forming a platelet plug that seals 
vessel damage.  
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The endothelium normally maintains an antithrombotic state (238) with molecules 
such as activated protein C (APC), of which thrombomodulin is a cofactor for 
thrombin-induced activation of APC and the anticoagulant proteins, tissue factor 
pathway inhibitor (TFPI) and antithrombin (AT). These molecules primarily 
prevent blood from clotting by inhibiting the activation of clotting factors on a 
normal endothelial cell surface. The inhibitor, plasminogen activator inhibitor-1 
(PAI-1) (239) plays a role in the fibrinolytic system. When endothelial cells 
become activated, the endothelium changes to a prothrombotic state and the 
clotting factor thrombin generated by the coagulation system can bind to receptors 
(PARs) on endothelial cells and platelets, which stimulates endothelial cytokine 
and chemokine production. TF is a potent activator of the coagulation cascade and 
is constitutively expressed by cells surrounding blood vessels (240) and is induced 
by cytokines from endothelial cells. TF is also present on monocytes and 
macrophages (241) and platelets and granulocytes play a role in its generation 
(242). In addition both the S. pyogenes M1 and M3 serotypes have been shown to 
stimulate procoagulant activity in endothelial cells via TF upregulation (243).  
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PRESENT INVESTIGATIONS 

When S. pyogenes disseminates into the bloodstream, life-threatening disease such 
as sepsis can result. Upon interacting with our immune system this pathogen or its 
bacterial surface M protein has multiple effects and can activate several cells 
including platelets, neutrophils and endothelial cells which are investigated in this 
thesis. Platelets are a key focus throughout the studies of this thesis and we have 
investigated their function in both in vitro and in vivo model systems. 

PAPER I 

Background: Platelets can interact and form complexes with other immune cells. 
In this paper we investigate the formation of platelet- neutrophil complexes 
(PNCs). We focused on the relative contribution of each cell type involved in PNC 
formation and the functional effect these complexes have on neutrophils. During 
severe bacterial infection both the coagulation and inflammatory systems are 
activated (244) and we investigated these systems by comparing different agonists 
throughout this study. These included ADP, fMLF, the coagulation factor 
thrombin and the S. pyogenes virulence factor, M1 protein. It has previously been 
shown in vitro that in order for platelets to become activated in response to M1 
protein, fibrinogen binding and the presence of anti-M1 IgG antibodies are 
required in those individuals (75). Therefore the effects of this protein were 
investigated in this study in different donors that could then be categorised as 
“responders” and “non-responders”. PNC formation and neutrophil activation was 
investigated in a whole blood environment, thus resembling normal physiological 
conditions. 

The main aims were to investigate the effects of distinct agonists on neutrophil 
function in PNCs and to distinguish any differences between the agonists. 

Results & Conclusions: The agonist thrombin gave rise to platelet dependent PNC 
formation in all donors investigated and the neutrophils in response to this agonist 
demonstrated enhanced phagocytic and killing abilities, while chemotaxis was 
unaffected. In comparison, M1 protein only demonstrated PNC formation in 
certain donors that contained specific IgG against M1 protein and a direct 
correlation was made between donors with anti-M1 IgG antibodies and their level 
of PNC formation.  
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Neutrophil functional readouts differed in PNCs generated in response to M1 
protein as compared to thrombin or ADP in combination with fMLF. Those PNCs 
generated in response to the M1 protein diminished the phagocytic and 
chemotactic functions of the neutrophils. In addition immunofluorescent and 
scanning electron microscopy revealed that PNCs in response to M1 protein were 
entrapped in a platelet and fibrinogen network.  

PAPER II 

Background: S. pyogenes has been shown to aggregate and subsequently 
disaggregate platelets over time in platelet rich plasma (245) and this bacteria has 
the ability to evade the immune detection systems and escape neutrophil 
phagocytosis (246) (63,68,71). The aim of the study was to investigate the role of 
platelet activation and aggregation in response to S. pyogenes for leukocyte 
function in blood. To this end we investigated the interactions between washed 
bacteria, platelets and leucocytes in whole blood, with a particular focus on 
bacterial survival.  

Results & Conclusions: We demonstrate for the first time that platelet aggregation, 
platelet-neutrophil complex formation and platelet- monocyte complex formation 
occurs in direct response to S. pyogenes in whole blood. This results in platelet 
dependent neutrophil and monocyte activation, tissue factor up-regulation and clot 
formation.  Furthermore, bacteria were directly associated with all of these 
homotypic and heterotypic cell aggregates, as visualised with immunofluorescent 
microscopy. Bacteria were entrapped within these cell aggregates over time, 
however bacterial killing was not observed and viable bacteria could be removed 
by sonication of the samples after one hour. We propose that bacterial entrapment 
in platelets or platelet leukocyte complexes might contribute to bacterial survival 
in human blood. 
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PAPER III and IV 

Background: Platelets have been reported to play a role during invasive bacterial 
infections and the inflammatory response that follows and their numbers decrease 
dramatically during the progression of sepsis. In these two papers we assessed the 
role of platelets during the pathophysiology of sepsis in an animal model of S. 
pyogenes, infection. There have been many studies of platelet-bacteria interactions 
in vitro and ex vivo but animal models of platelet function during infection have 
been lacking. Thrombocytopenia occurs during severe and invasive bacterial 
infection and there is a correlation between the platelet count and the severity of 
sepsis (94,95,247). It is not clear whether platelets play a protective role in the 
prevention of sepsis or whether platelet activation contributes to the pathogenesis 
of the syndrome, therefore in paper III we investigated how platelets contribute to 
the acute response to bacterial infection using a mouse model of S. pyogenes 
bloodstream infection in platelet depleted mice as compared with healthy controls. 
Platelet activation was observed in paper III, therefore paper IV was initiated as a 
follow up study to investigate the kinetics of platelet activation during the 
progression of sepsis in the same animal model. A particular focus of this study 
was to determine which platelet activation assays could provide prognostic 
information on the progression of S. pyogenes sepsis and whether platelet 
activation was associated with organ damage. 

Results & Conclusions: Collectively, the results of paper III and IV demonstrate 
an important role for platelets during the pathophysiology of S. pyogenes 
infection. In paper III platelets are reported to contribute to bacterial dissemination 
from the blood to the organs of animals, infected with S. pyogenes. The bacterial 
load in the blood, spleen and lungs was significantly decreased in platelet-depleted 
animals. These animals also exhibited reduced plasma IL6 levels and weight loss 
during the infection, suggesting that the pathogenesis of infection was decreased in 
these animals at this time point. We also observed that there was a significant 
increase in PNC formation during S. pyogenes infection as compared with 
uninfected controls, therefore PNC formation may be important during bacterial 
infection.  

Paper IV was initiated to investigate the kinetics of platelet activation and in 
particular PNC formation throughout the progression of S. pyogenes sepsis and the 
results suggest that PNC formation may be a more robust biomarker to 
demonstrate platelet activation during disease progression. In our model neutrophil 
activation occurred early and remained high during the course of infection but 
platelet activation and PNC formation was more discriminatory between different 
time points.  
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The platelet count progressively decreased in blood during the infection while 
PNC formation was first increased and then decreased during the later stages of 
infection. The PNCs do not correlate to neutrophil activation, which implies that 
PNCs in this model are platelet dependent events, as we have previously 
demonstrated in vitro.  

As S. pyogenes infection progressed to a late stage of sepsis, organ damage was 
observed at the same time point as PNCs were decreased in the blood of the 
animals and thrombocytopenia was most profound. Platelet aggregates were 
detected in the liver therefore suggesting that platelet activation and PNC 
formation precedes thrombocytopenia and platelets may contribute to the 
pathogenesis of organ damage during sepsis.  

Very little work has been carried out on the therapeutic potential of targeting 
PNCs, as most studies are still at the investigation and mechanistic phases but 
further studies should aim to better understand their functional role and their future 
potential use as diagnostic or therapeutic tools. 

PAPER V 

Background: The endothelium constitutes the inner lining of blood vessels with a 
single layer of cells and is a semi-permeable barrier that plays an important role in 
regulating the movement of fluids, proteins and the transmigration of cells from 
blood to the tissue. Endothelial permeability and endothelial responses are altered 
in the presence of activating substances, such as TNFα and thrombin and when 
bacteria are present in the bloodstream. In this paper we investigated the effects of 
the Gram-positive bacterial protein, M1 protein on endothelial cells. Previously, 
M1 protein in complex with a plasma protein has been shown to induce the release 
of HBP from neutrophils (51) and HBP can increase endothelial cell permeability. 
In addition M1 protein activates platelets (75) and within platelet-neutrophil 
complexes we have shown that the neutrophils are dysfunctional (248). The aim of 
this paper was to determine whether M1 protein released from S. pyogenes binds 
to and activates endothelial cells, and the consequences of this for endothelial cell 
permeability. We investigated endothelial cell function either with M1 protein 
alone or in the presence of a plasma cofactor, fibrinogen. 

Results & Conclusions: M1 protein increased endothelial vascular permeability in 
a Rho kinase and TLR-2 dependent manner, at levels equivalent to the positive 
control, thrombin. M1 protein has previously been shown to bind human 
monocytes by TLR-2 engagement and increase cytokine production from these 
cells (76). It has also been shown that M1 protein induces vascular nitric oxide 
production via TLR-2 (249). The results of these studies are in agreement with our 
TLR-2 findings and we demonstrate M1 protein can bind to both human and 
immortalised endothelial cell lines.  
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M1 protein may contribute to endothelial dysfunction and vascular leakage during 
infection. M1 protein has been shown to induce a proinflammatory cytokine 
response in epithelial cells (77). This may suggest that M1 protein induces an 
activation of the innate immune response, however in our studies there is a relative 
lack of cytokine production from the immortalised cell line and weak cytokine 
release from the primary human endothelial cells in response to M1 protein, 
indicating that the protein alone induces a weak response. However, in the 
presence of the plasma protein fibrinogen binding of M1 protein to endothelial 
cells and cytokine production were increased. It could be speculated that M1 
protein requires another bridging molecule in addition to TLR-2 for an enhanced 
endothelial response. In addition, M1 protein has been shown to lose its 
specialised structure at 37°C (250) and perhaps the plasma protein herein is 
playing a role in stabilising M1 protein.  

 

All together the findings of this thesis provide new evidence for the role of 
platelets, neutrophils, monocytes and endothelial cells during the pro- 
inflammatory response that is initiated during the pathogenesis of infection. The 
combination of pro-inflammatory stimuli, S. pyogenes and its virulence factor M1 
protein, used throughout these studies contribute and affect these cells which are 
stimulated and play central roles in the immune response. M1 protein directly 
binds endothelial cells and effects vascular function, directly activates platelets, 
which in turn can interact with leukocytes whereby the neutrophils are 
dysfunctional and entrapped in aggregates which may accumulate in damaged 
organs and ultimately contribute to the outcome of sepsis.  
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