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Abstract 
Obesity is one of the major health concerns that has reached epidemic proportions globally. It is generally 
believed to be a result of interactions between genetic and environmental factors. In this thesis we investigated 
the role of dietary factors in modifying the genetic susceptibility to obesity (papers I to III), studied the association 
between genetic susceptibility to obesity and weight gain at different time-points in life (paper IV) and tried to 
dissect the causality between cardiometabolic traits and mortality (paper V). The work in this thesis was 
conducted using data from the population based prospective Malmö Diet and Cancer Study (MDCS; N= ~30,000) 
and the Gene-Lifestyle interactions And Complex traits Involved in Elevated disease Risk  (GLACIER; N= ~5000) 
cohorts. In paper I, we did not observe any evidence for macronutrient, fiber or total energy intake in modifying 
the genetic susceptibility to obesity when genetic susceptibility was represented as a Genetic Risk Score (GRS) 
based upon 13 BMI associated genetic variants. In individual SNP analyses, after correcting for multiple 
comparisons, some of the individual obesity loci such as NEGR1 rs2815752 associated with fat, carbohydrate 
and fiber intakes (P 1x10-4 for all) and BDNF rs4923461 interacted with protein intake on BMI (Pinteraction=0.001). 
In paper II, pooled analyses of MDCS and GLACIER suggested 0.16 (SE=0.04) kg/m2 increase in BMI (P=8x10-

5) in the lowest quartile of GRS (comprised of 30 BMI-associated genetic variants) for each increment in category 
of sugar-sweetened beverages (SSB) intake vs. 0.24 (SE=0.04) kg/m2 higher BMI in the highest GRS quartile 
(P=1x10-7). We also observed evidence for the role of SSB intake in modifying the genetic susceptibility to obesity 
(Pinteraction=0.049). In paper III, a copy number variant (CNV) in the salivary amylase gene (AMY1) did not 
associate with obesity traits neither in men nor in women (P>0.05 for all). However, upon stratification by dietary 
starch intake, BMI decreased with increasing AMY1 CNV in low starch intake group (P=0.035) and increased 
with increasing AMY1 CNV in the high starch intake group (P=0.04) among females. These results suggest a 
putative role of starch intake in modifying the association between AMY1 CNV and obesity in women 
(Pinteraction=0.041). In paper IV, a GRS based on 31 BMI-associated genetic variants was associated with 
increased annual weight change ( =0.003 kg; SE=0.01; P=7x10-8) and increased odds for substantial weight 
gain (OR=1.01; 95% CI= 1.00-1.02; P=0.013) per risk allele from young to middle age in MDCS. However, the 
GRS was associated with decreased annual weight change ( =-0.005 kg; SE=0.002; P=0.002) and decreased 
risk for substantial weight gain (OR=0.97; 95% CI= 0.96-0.99; P=0.001) per risk allele during and after middle-
age in the pooled analyses of MDCS and GLACIER. These results suggest a paradoxical inversed relationship 
between genetic susceptibility to obesity and weight gain during and after middle age compared to increased 
weight gain in younger age. In paper V, observations from multivariable Mendelian randomization analyses 
suggest a direct causal association of TG (P=0.017 and P=0.028) and an inverse association of HDLC (P=0.049 
and P=0.005) with total- and cardiovascular mortality, respectively. In conclusion, the results from this thesis 
suggest a role of specific dietary factors in modifying the genetic susceptibility to obesity and that genetic 
variation affect weight gain differently at different time-points in life but the underlying mechanisms need to be 
further understood. Additionally,our findings points towards causal associations between TG and HDLC and 
mortality which can help to devise better treatment strategies in clinical practice.  
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Introduction  

Obesity is a serious health problem that has recently been increased dramatically in 
both children and adults, and no country to date has been able to reverse its obesity 
epidemic. Starting as the problem of high income countries, it is now recognized as 
equally affecting middle- and low income countries. According to World Health 
Organization (WHO), 65% of world´s population live in countries in which more 
people die of overweight and obesity compared to underweight. Obesity is a 
significant economic and health burden as it is associated with other comorbidities 
such as diabetes, cardiovascular disease (CVD), certain cancers, gynecological 
problems, osteoarthritis [1] and premature mortality [2].  

In search for causes of the recent obesity epidemic, emphasis has been placed on the 
radical change in lifestyle during the last century promoting high intake of energy-
dense foods and physical inactivity thus creating an ‘obesogenic’ environment 
which results in positive energy balance leading to weight gain. Yet, not everyone 
living in an obesogenic environment gets obese and genetic components play an 
important role in contributing to individual risk of obesity. The role of genes in the 
development of obesity has been established in several twin-, family- and adoption 
studies with heritability estimates ranging from 40-70% [3-5]. So far 97 body mass 
index (BMI) associated genetic variants have been identified which explain about 
3% of the population variation in BMI [6] indicating that a large proportion of loci 
remain to be discovered. Thus an individual’s risk of obesity is influenced by both 
genes and environment and possibly by interactions between the two. Despite an 
increased body of research in this area in the past few years, existing evidence is not 
strong enough to drive concrete policy recommendations for obesity prevention 
indicating a need for better phenotyped and well powered studies. 

This thesis aims to investigate the role of gene-lifestyle interactions in the 
development of obesity as they may help to identify sub-groups of individuals in 
which effective strategies can be implemented for the prevention and treatment of 
obesity through individual genetic profiles. Further, this thesis investigates the 
effects of genetic variation on weight changes during different time points in life to 
understand how the genetic variants may vary in their association with weight 
changes at different ages. Finally, this thesis aims to explore causal links between 
cardiometabolic traits and mortality, as identifying the causal associations can 
decrease the disease burdens by improving prevention and treatment strategies. 
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Obesity 

Definition 

Generally, obesity can be defined as accumulation of excess body fat resulting from 
imbalance between energy consumption and expenditure [7]. However, no precise 
definition of ‘excess’ exists, and the degree of adiposity is a continuous trait without 
any clear division between normal and abnormal [8]. For practical purposes, obesity 
is defined as excess body weight rather than excess body fat, as direct measurement 
of body fat is more difficult than measuring weight. Thus, BMI, which is calculated 
as ratio of weight (in kilograms) to height squared (in meters), is commonly used to 
express height adjusted body weight both in children [9] and adults [10]. In most 
epidemiological studies, BMI is used as a surrogate marker of obesity. According 
to WHO, obesity is defined as BMI 30 kg/m2 and overweight as BMI between 25 
and 29.9 kg/m2 [11].  

Epidemiology 

Prevalence of obesity has been increasing worldwide over the past three decades. 
Globally, the proportion of men having BMI >25 has increased from 28.8% in 1980 
to 36.9% in 2013 and among women it has increased from 29.8% to 38.0% during 
the same period [12]. Overall, the combined prevalence of overweight and obesity 
worldwide has increased by 27.5% for adults and 47.1% for children between 1980 
and 2013. The prevalence of overweight and obesity has increased both in 
developed and developing countries but the patterns are different in men and 
women. Men have higher rates of overweight and obesity in the developed countries 
whereas these rates are higher among women in the developing countries. However, 
the prevalence of obesity is higher among women both in the developed and 
developing countries. Surprisingly, according to 2013 estimates, more than half of 
the 693 million obese people in the world, live in just 10 countries including USA, 
China, India, Russia, Brazil, Mexico, Egypt, Pakistan, Indonesia, and Germany. Of 
the total, 13% of all obese people live in USA, 15% jointly in China and India, and 
64% in developing countries. Largest increase in obesity rates in high income 
countries during 1980 -2013 have been observed in USA, followed by Australia and 
United Kingdom [12].   
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Obesity measurement methods 

Accurate assessment of body composition is very important for both clinical and 
research settings. A number of established methods and techniques can be used to 
assess obesity such as anthropometry, densitometry, imaging and bioimpedance. 
Each method has its strengths and limitations, and scientific acceptability and 
appropriateness of each method depends upon the situation. 

Anthropometry 
Anthropometry is the measurement of body weight and dimensions including 
length, width, circumference and skin fold thickness [13]. Despite technological 
advances, anthropometric measurements are still widely used in large 
epidemiological studies as they are simple and inexpensive. Among various 
anthropometric measures, height and weight are measured with highest accuracy 
and precision and minimal technical error [14]. BMI is a simple and easy measure 
of overall obesity but cannot differentiate between fat mass (FM) and fat free mass 
(FFM). However, several studies have shown strong correlation between BMI and 
body fat percentage (BF%) [15, 16]. Validity of BMI as a marker of body fatness 
depends on age, sex and ethnicity [17]. Waist circumference (WC) and waist-to-hip 
ratio (WHR) are indirect measures of abdominal or central adiposity that are easier 
to obtain in large epidemiological studies, but the measurement procedure has 
greater between technician variability compared to weight and height [14]. Both 
WC and WHR have been validated against abdominal fat measured by magnetic 
resonance imaging and dual-energy X-ray absorptiometry [18, 19] and WHR has 
been shown not to be superior to WC alone in predicting abdominal obesity [20]. 
However, there is little evidence showing advantage of WC over WHR [18] and 
similar to BMI, same WC cutoff cannot be applied to all populations and ethnic 
groups [21]. Skinfold thickness is used as an indirect measure for body fat 
distribution because of two reasons: first, 40 to 60% of total body fat resides in the 
subcutaneous region and second, it can be directly measured with the help of a well-
calibrated caliper. Skin fold thickness can be measured in more than 19 sites in the 
body [13]. Compared to other anthropometric measures they are less reproducible 
and more prone to interobserver errors [22].  

Densitometry 
Densitometry, also known as underwater or hydrostatic weighing, is a method to 
estimate body composition by means of total body density. It is based on the 
principle that fat is less dense than water, meaning that higher the amount of fat in 
the body, lower the density. For measuring body composition, densitometry has 
long been considered the “gold-standard” [23] because of its excellent precision and 
accuracy. However, this method is not suitable for children, older adults and 
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morbidly obese individuals as the procedure is complicated, time consuming and 
requires active cooperation of the participants [24]. The Air-displacement 
plethysmography (ADP) method is relatively quick and more comfortable and uses 
air instead of water for measuring body volume and density. It uses BodPod Body 
composition system (Life Measurement Instruments, Concord, California) and has 
become an excellent alternative to traditional densitometry, especially in younger 
children, pregnant women and morbidly obese individuals [25]. 

Radiation and imaging techniques 
Dual-energy X-ray absorptiometry (DXA) is frequently used in clinical studies for 
estimating body composition and can provide estimates of the three components of 
the whole body including FM, FFM and bone mineral density. It is based on the 
principle that two x-ray beams, of different but very low energy, attenuate 
differently by different body tissues when passing through the body. The method 
has been extensively validated and is highly accurate and reproducible and because 
of very low radiation exposure can be used in children. However, it cannot be used 
in pregnant women, and the equipment is expensive and immobile, which further 
limits its use in large epidemiological settings. Further limitation is that DXA cannot 
accurately discriminate visceral fat from subcutaneous fat [24].  

Computed tomography (CT) and magnetic resonance imaging (MRI) have excellent 
accuracy and reproducibility in measuring body composition at tissue and organ 
levels. Measurements obtained from CT and MRI can be classified into visceral 
adipose tissue, subcutaneous adipose tissue, interstitial adipose tissue and total 
adipose tissue [26]. MRI has an advantage over CT as it does not involve radiation 
exposure and can be used in pregnant women. Both methods are highly expensive 
and not readily accessible, which limits their use in large studies, but are methods 
of choice in calibration and validation of simple and inexpensive measures of body 
fat distribution.  

Bioelectric impedance analysis  
Bioelectric Impedance analysis (BIA) is used to estimate body composition by 
measuring resistance to a small electrical current passed across body tissues. The 
principle of  BIA is based on the electrical conductive properties of the human body 
i.e., the higher the fatty tissue content, the greater will the resistance to the applied 
alternating current be; or the greater the lean body mass or water content of a person, 
the faster will the current pass through [26]. BIA can be used in large studies as the 
equipment is simple, inexpensive and portable. BIA works well in healthy subjects 
and in patients without significant fluid and electrolyte abnormalities, when using a 
validated BIA equation appropriate for age, sex and ethnicity. However, clinical use 
in subjects at extremes of BMI ranges or with abnormal hydration is not 
recommended. Technological advances in the past few decades have developed 
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multifrequency and segmental BIA techniques which provide more accurate 
measurement of body composition than single-frequency BIA [27]. By comparing 
BF% estimated by multifrequency BIA and DXA in healthy subjects, it has been 
shown that BIA is a good alternative for estimation of BF% in subjects within 
normal body fat range. However, BIA tends to underestimate BF% in obese subjects 
and overestimate it in lean subjects [28].  

Obesity, cardiometabolic traits and mortality 

The global increase in the incidence and prevalence of obesity is occurring in 
parallel with the increasing burden of CVD and metabolic diseases such as type 2 
diabetes (T2D), hypertension and dyslipidemia.  

Obesity and cardiovascular disease 

Obesity is a major risk factor for CVD which includes coronary heart disease 
(CHD), myocardial infarction (MI), angina pectoris, congestive heart failure (CHF), 
stroke, hypertension and atrial fibrillation (AF) [29, 30]. Adverse effects of obesity 
on CVD have been confirmed in large prospective and observational studies. 
Association of obesity with CVD risk factors, and subclinical vascular disease 
(coronary artery calcium, carotid artery intimal medial thickness and left ventricular 
mass), was assessed among 6814 participants free of CVD at baseline in the Multi-
Ethnic Study of Atherosclerosis. The study showed that hypertension, diabetes and 
subclinical vascular disease were more prevalent among obese compared to non-
obese subjects [31]. In the Framingham Heart Study (FHS), the associated effects 
of obesity on the risk of CVD (stroke, MI, CHD and angina pectoris), hypertension, 
diabetes and hypercholesterolemia were prospectively evaluated. After 44 years of 
follow-up, the age adjusted relative risk (RR) for CVD was 1.46 among obese men 
and 1.64 among obese women as compared to non-obese [32]. Data from FHS has 
also shown that the lifetime risk of CVD is higher among individuals with diabetes 
and the risk is further accentuated by obesity status [33].  

Despite being recognized as a risk factor for CHD, obesity is not included in the 
global risk assessment tool, such as the Framingham risk score [34] because the 
consequences of obesity have been thought to be entirely mediated through the 
established risk factors like diabetes, dyslipidemia and hypertension. Recently, a 
large study by Lu et al. evaluated the magnitude of the effect of BMI on CHD and 
stroke that is mediated through blood pressure (BP), glucose and cholesterol, by 
using data from 97 prospective cohorts with 1.8 million participants [35]. The results 
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of this study suggested that 46% (95% CI: 42 to 50) of the excess risk of BMI for 
CHD and 76% (65 to 91) for stroke is mediated by these three factors, with BP being 
the most important mediator explaining 31% (28 to 35) of the excess risk of CHD 
and 65% (56 to 75) of the stroke. In addition, compared to normal weight 
individuals, these three mediators were observed to mediate 50% (44 to 58) of the 
excess risk of overweight and 44% (41 to 48) of the excess risk of obesity for CHD. 
The corresponding values for stroke were 98% (69 to 155) for overweight and 69% 
(64 to 77) for obesity [35]. Moreover Lu et al., by analyzing data from 9 prospective 
cohorts, concluded that the metabolic mediators (BP, glucose and cholesterol) 
explain about half of the adverse effects of BMI on CHD whereas the contribution 
via the inflammatory (C-reactive protein) and prothrombotic (fibrinogen) mediators 
is much smaller [36]. These results suggest that the metabolic mediators are 
important in a pathway between obesity and CHD, but that the excess risk cannot 
entirely be explained by them. It is thus very important from both clinical and public 
health point of view to add obesity into a CHD risk assessment tool. 

Obesity paradox: Obesity is an independent risk factor for CHF [37], but in patients 
with established CHF and other chronic diseases, obesity has been associated with 
lower mortality. This phenomenon is known as “obesity paradox” [38]. A recent 
meta-analysis has shown that the risk of hospitalization, CVD- and total mortality 
was highest among underweight and lowest among overweight CHF patients [39]. 

The relative importance of BMI and body fat distribution varies with age, sex and 
ethnicity. Independent of BMI and other CVD risk factors, body fat distribution 
measured by WC and WHR has also shown association with CHD and stroke [40-
43]. Moderate weight gain independent of BMI during young adulthood (since age 
21 for men and 18 years for women) is associated with increased risk of CHD and 
stroke at young age [44, 45]. All obesity measures (BMI, WC and weight gain since 
young adulthood) are thus very important in assessing the relationship between 
adiposity and CVD. 

Obesity and hypertension 

Obesity stands out as the major preventable contributor to hypertension. The 
prevalence of hypertension substantially increases with increasing BMI and 
hypertension greatly increases the risk for CVD. The obesity attributable burden of 
hypertension is very high and estimated to be approximately 80% and 60% for men 
and women, respectively [46]. The National Health and Nutrition Examination 
Survey (NHANES) observed that when compared to normal weight individuals, the 
odds ratio (OR) for hypertension was 1.7 for overweight, 2.6 for individuals with 
BMI 30.0-34.9 kg/m2, 3.7 for those with BMI 35.0-39.9 kg/m2 and 4.8 for those 
with BMI 40 kg/m2 [47]. Furthermore, data from the prospective Nord–Trondelag 
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Health Study (HUNT) reported that changes in BMI were significantly associated 
with changes in BP and that the risk of hypertension increased among those who 
increased their BMI [48].  

Obesity and type 2 diabetes 

Obesity is a major risk factor for T2D [49]. In a recent study from FHS cohort, 
where they looked at the trend in incidence of diabetes over the four decades (1970-
2000), diabetes incidence remained highest among obese individuals [50]. In line 
with this, results from the Nurses’ Health Study (NHS) [51] and the Health 
Professional Follow-up Study [52] have shown more than a tenfold increased risk 
of developing T2D among both men and women with BMI >35kg/m2 and >29kg/m2, 
respectively, compared to individuals in lower BMI categories. Apart from BMI, 
WC and WHR are independent risk predictors of T2D. In NHS, after adjusting for 
BMI, RR for T2D was 5.1 (95% CI: 2.9 to 8.9) for WC and 3.1 (2.3 to 4.1) for WHR 
for the participants in the 90th percentile of these traits compared to those in the 10th 
percentile. In addition, moderate weight gain during adulthood has been associated 
with increased risk of diabetes. In data from NHS, Colditz et al. compared the 
women who kept their weight stable (±5kg), between the age of 18 years and the 
baseline examinations in 1976, with the women who gained 5.0-7.9 kg, 8.0-10.9 kg 
and 20.0 kg, and the corresponding RRs for diabetes were 1.9 (95% CI: 1.5 to 2.3), 
2.7 (2.1 to 3.3) and 12.3 (10.9 to 13.8), respectively. Additionally, the risk for 
diabetes was reduced to 50% or more among women who lost more than 5.0 kg of 
their weight [49]. Reduced risk of T2D in relation to weight loss has also 
consistently been observed in randomized controlled trials (RCTs) like the Diabetes 
Prevention Program (DPP) [53] and the Finnish Diabetes Prevention Study [54]. 
Mendelian randomization studies have provided further support for a direct causal 
association between BMI and T2D [55, 56]. 

Obesity and dyslipidemia 

Dyslipidemia related to obesity is characterized by high levels of triglycerides (TG), 
low levels of high density lipoprotein cholesterol (HDLC) and abnormal 
composition of the low density lipoprotein (LDLC) particles (small dense LDL 
particles with normal or slightly elevated levels of LDL cholesterol) [57]. 
Dyslipidemia is an important component of the metabolic syndrome [58] and plays 
an important role in the development of CVD [57]. However, the link between 
obesity and dyslipidemia is complex and although evidence has been presented 
suggesting insulin resistance as the underlying mechanism [58], more studies are 
needed to distinguish between the role of insulin resistance and body fatness for the 
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lipid and lipoprotein profile. All the components of dyslipidemia have been 
associated with atherogenicity, and weight loss and exercise have been shown to 
reduce the risk of CVD by improving the atherogenic lipid/lipoprotein profile [57]. 

Obesity and mortality 

Association between obesity and mortality has been well established [59], majority 
of the studies using BMI as the measure of obesity. Until quite recently, the nature 
of this relationship has however, remained unclear due to inconsistent results 
between different studies: everything from U-shaped and J-shaped to linear 
relationship have been described [60, 61]. In 2009, the Prospective Studies 
Collaboration published a large study including 57 studies with almost 900,000 
participants, originating mainly from Western Europe and North America with a 
median follow-up of 8 years. This study observed lowest mortality among 
individuals within a BMI range between 22.5 to 25 kg/m2. BMI both above and 
below this normal range associated with higher overall mortality thus strongly 
supporting the U-shape association between BMI and mortality [62]. Further, a 
recent meta-analysis of 97 studies with 2.88 million individuals and 270,000 deaths 
reported that overall obesity (BMI 30) as well as grade 2 and 3 obesity (BMI 35) 
associated with higher mortality, while overweight (BMI 25 to <30) associated with 
lower total mortality, compared to normal weight (BMI 18.5 to <25). Surprisingly, 
grade 1 obesity (BMI 30 to <35) was not found associated with higher mortality 
[63] suggesting contribution of mainly higher levels of BMI to excess mortality. 
However, there are several discrepancies in the findings of the studies that have 
investigated association between BMI and mortality such as contrasting associations 
of overweight with mortality and wide variation in the estimated numbers of obesity 
associated deaths in different studies [64-66]. This lead to methodological 
challenges in analyzing the relationship between BMI and mortality including effect 
modification by age, confounding by smoking, reverse causation, over-adjustment 
for intermediate variables (T2D, hypertension and dyslipidemia) and imperfect 
measures (over and under reporting in self-reported data) of adiposity [61, 67-69]. 
Apart from this, intentional weight loss has shown to be associated with decreased 
mortality while unintentional weight loss associated with increased mortality among 
overweight and obese adults [70]. However, healthy dietary and lifestyle behaviors 
may confound the relationship between intentional weight loss and mortality, and 
morbidity related weight loss (for example in cancer) can confound the relationship 
between unintentional weight loss and mortality.  
Apart from BMI, several studies have demonstrated an important role of abdominal 
or central obesity (measured as WC and/or WHR) in predicting mortality. In NHS, 
both WC and WHR showed strong association with total-, CVD- and cancer 
mortality independent of BMI. Moreover, WC associated with increased CVD 
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mortality even among normal weight women [71]. Thus all three measures (BMI, 
WC and WHR) are important to be able to comprehensively evaluate the impact of 
obesity on mortality.  

Lifestyle factors that associate with obesity 

The prevalence of overweight and obesity is increasing and it is now well 
established that rapid globalization of westernized lifestyle is fueling this growing 
problem. However, lifestyle factors are not the only culprit as both genetic and 
environmental factors play major roles in weight gain and obesity. The lifestyle 
factors that have major impact on obesity are diet and physical activity and both of 
these factors are in turn influenced by genetic traits [72]. 

Diet 

Diet plays a major role in weight control but it is still unclear how and which specific 
dietary factors, apart from excess calories, are important for weight gain. One major 
contributing change over time worldwide has been the general increase in portion 
sizes that lead to increased energy intake and subsequent weight gain [73]. Even 
small positive daily energy balance, whatever dietary factors are behind the excess 
energy intake, results in weight gain and contribute to increased risk of obesity 
overtime. 

Dietary fat intake: Because of high density and high palatability of high-fat foods, 
it is generally believed that high fat intake lead to weight gain and obesity. However, 
the evidence on the relationship between fat intake and obesity, based on both 
epidemiological studies and clinical trials, has remained controversial. Cross-
sectional studies have suggested a positive association between dietary fat 
concentration and relative weight, results from prospective studies of diet in relation 
to subsequent weight change have been inconsistent, and intervention studies have 
provided evidence for a consistent but short lived effect of low fat diets on weight 
loss [74]. A review evaluating RCTs of low fat diets on weight loss suggested that 
such diets are not better than other calorie restricted diets in achieving long term 
weight loss in overweight or obese subjects [75]. 

Dietary carbohydrate intake: Despite decreasing fat content in diet, prevalence of 
obesity has increased in both USA and Europe which has drawn attention to the 
alternative hypothesis that the corresponding increase in carbohydrate (CHO) 
content may be the reason behind the obesity epidemic [76]. Cross-sectional studies 
have shown negative association between CHO intake and BMI but this relationship 
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may reflect confounding by health-conscious behaviors used to control weight [77]. 
Recently, CHO restriction has been promoted as an alternative strategy for weight 
loss. A meta-analysis of five RCTs, comparing the effects of ad libitum low-CHO 
with low-fat calorie restricted diets on weight loss and CVD risk factors, reported 
that low-CHO resulted in higher weight loss after 6 months but not after 12 months, 
compared to low-fat diets [78]. A recent RCT has shown that low-CHO diet, 
resulted in higher weight loss, and similar or greater improvement in inflammation, 
adipocyte dysfunction and endothelial dysfunction compared to standard low-fat 
diet among obese subjects [79]. 

Dietary protein intake: There is some evidence that high-protein diets may facilitate 
weight loss due to their association with greater satiety and lower energy intake 
compared to low-protein diets [80]. Protein intake is inversely associated with 
abdominal obesity in cross-sectional studies [81] but prospective studies in this 
regard are lacking. A randomized fat reduced weight loss trial comparing protein vs 
CHO in ad libitum diet found that replacement of some dietary CHO by proteins in 
such diet improved weight loss as well as adherence to low-fat diet [82]. 

Sugar-sweetened beverages: Consumption of sugar-sweetened beverages (SSB) has 
increased in parallel to the increase in overweight and obesity. A great body of 
epidemiological and experimental evidence have shown that a greater consumption 
of SSB is associated with weight gain and obesity [83]. In addition to SSB, 
consumption of high-fructose corn syrup (HFCS) has greatly increased in US 
representing >40% of the caloric sweeteners in the soft drinks [84]. The digestion, 
absorption and metabolism of fructose differ largely from glucose as it does not 
stimulate insulin secretion or enhance leptin production which are the key signals in 
regulation of food intake and body weight [85]. Furthermore, as compared to 
glucose, it can be easily incorporated into triglycerides backbone (glycerol) during 
fat synthesis, thus facilitating synthesis of fatty acid [85]. 

Physical activity 

The role of physical activity in the regulation of body weight has long been 
recognized. There is an inverse relationship between physical activity and adiposity 
[86]. In USA, trend for leisure-time physical activity (LTPA) has been stable or 
slightly increased over time compared to substantial decline in physical activities 
related to work, household and transportation. In addition, sedentary behaviors like 
television watching and computer use have substantially increased resulting in an 
overall decline in total physical activity [87]. A cross-sectional study in Australian 
workers has reported that both leisure time sitting and occupational sitting 
independently associate with obesity risk but the higher risk for obesity was 
observed for leisure time sitting [88]. Recently, International Physical activity and 
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the Environment Network study observed almost linear negative association 
between BMI and 0-50 min/day of moderate to vigorous physical activity (MVPA) 
measured by accelerometer, but this relationship was weakened at higher levels of 
MVPA and supports the current recommendation of Institute of Medicine that 60 
minutes of MVPA everyday prevents weight gain in normal weight adults. 
Additionally, country- and gender dependent relationship between physical activity 
and BMI has been reported [89]. Hemmingsson et al. studied the impact of obesity 
on the relationship between physical activity and BMI and observed a weak 
association among non-obese subjects but a highly significant association among 
obese subjects [90]. A recent meta-analysis of 45 RCTs on long term weight loss 
with non-surgical interventions in obese adults has shown that interventions that 
deal with both diet and physical activity have small but significant benefits on 
weight loss maintenance [91].  

Smoking 

Smoking is an important contributing factor for obesity mainly because of the 
association of smoking with lower weight and BMI, and of smoking cessation with 
weight gain [92, 93]. Smoking reduces appetite and increases basal metabolic rate 
by its thermogenic effects resulting in lower weight [94]. Although the underlying 
mechanisms relating smoking cessation to weight gain is not clear, nicotine has been 
considered the thermogenic agent that effects the peptides involved in the feeding 
behavior [95]. Data from large epidemiological studies have shown that smoking 
cessation is a plausible contributor to increasing rates of overweight and obesity 
[92]. However, the interaction between smoking and overweight in terms of CVD 
is frightening as the risk of coronary disease (MI and CHD) among non-smokers 
and smokers with BMI >29 increases to 2-fold and 12-fold, respectively, compared 
to their normal weight counterparts [96]. 

Genetic contribution to obesity 

Obesity is a complex multifactorial condition with an important genetic component. 
Evidence for genetic contribution to obesity comes from both descriptive 
epidemiological and heritability studies. 
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Descriptive epidemiological studies 

Epidemiological studies of families and migrants provided the first evidence of a 
genetic contribution to susceptibility of obesity. Data from twin and family studies 
have suggested that an individual with a family history of obesity has 1.5-5 times 
higher risk of obesity compared to the risk in population at large [97-100]. The 
familial risk increases with the increase in degree of relatedness and doubles if the 
related individual is extremely obese (BMI 45 kg/m2) [98]. However, the increased 
familial risk cannot be entirely attributed to a shared genetic background as the 
shared non-genetic factors also contribute, but to a lesser extent [97].  
Studies investigating migrants are based on comparing the risk of disease in 
migrants to the risk of disease in individuals in the country of their origin, and to the 
native born population of the country where they have migrated. A classic example 
of this are American Indians (Pima Indians) living in central and southern Arizona 
(U.S) and in Sonora (Mexico). In Arizona, despite of living in the same ‘obesogenic 
environment’, Pima Indians have double prevalence of obesity (69%) compared to 
the white American of European descent (33%), suggesting a higher genetic 
susceptibility to obesity in Pima Indians [101]. Despite sharing the same genetic 
background with those living in Arizona, Pima Indians living in the ‘restrictive’ 
original environment of Mexico have much lower prevalence of obesity (13%) 
[102], suggesting interaction between genetic susceptibility to obesity and lifestyle 
factors. 

Heritability studies  

Heritability can be defined as the proportion of phenotypic variation among 
individuals in the population due to genetic contribution. Heritability of obesity has 
now been widely accepted as between 40%-70% based on the estimates from twin-
, family- and adoption studies [3-5]. This wide range of heritability estimates is 
partly explained by the study design as the estimates from twin studies (47%-90%) 
are higher than those from family- (24%-81%) or adoption studies (20%-60%) [4, 
103], although the range is wide also within studies of similar design. Furthermore, 
heritability estimates are population specific (e.g. the heritability estimated from a 
population with little variation in environmental factors will be higher than that of 
a population with diverse lifestyles) and may vary with age, which could also 
explain the large variation in reported estimates. Thus, the reported estimates should 
be interpreted after taking into account both study design and population. A review 
of twin- and adopted children studies suggested that genetic factors have much 
stronger effect than environmental factors on BMI in children up to the age of 18 
years [104]. 



 
 

31 

Approaches to identify human obesity genes 

Monogenic obesity 

First insights into the genetics of obesity come from studies of single gene disorders. 
Monogenic obesity is caused by a single mutation that occurs de novo or segregates 
in the family and disrupts the expression of the gene in which it is located, or the 
function of the gene product. Several different monogenic forms of obesity have 
been described, of which the first, caused by mutations in the leptin gene (LEP) 
leading to severe obesity, was identified in 1997 [105]. Later on reversal of severe 
obesity upon administration of recombinant leptin in leptin deficient patients proved 
that a therapy can be highly effective if a clear molecular basis for an individual’s 
obesity is identified [106]. Apart from leptin, several obesity-causing genes have 
been identified mostly within the leptin-proopiomelanocortin (POMC)-
melanocortin pathway, such as leptin receptor (LEPR), POMC, prohormone 
convertase 1 (PC1) and melanocortin receptor 4 (MC4R) [107] as shown in Figure 
1. However, despite providing valuable insights into biological pathways and 
mechanisms leading to excessive weight gain, monogenic forms of obesity are rare 
and affect only a small fraction of population. The most common are MC4R 
mutations with a prevalence of at least 0.05% in normal weight population, 0.5%-
1% among obese adults and 1%-6% among obese children [108].  

Identification of genetic variation involved in common forms of obesity applicable 
to general population proved to be an arduous task. In order to identify genetic 
variants associated with common obesity in the general population, two main 
approaches have been used: hypothesis-driven approaches by using candidate gene 
studies, and the hypothesis-generating approaches by using genome-wide screening 
studies. 

Candidate gene studies 

As the name indicates, candidate gene approach is hypothesis-driven and depends 
upon the currently available information related to the biology and pathophysiology 
underlying obesity disease or a trait. 
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Figure 1. Leptin and melanocortin pathways 
 Lep-R, leptin receptor; POMC, proopiomelanocortin; -MSH, -melanocyte-stimulating hormone; AGRP, agouti-related 
protein; MC4R, melanocortin-4 receptor; PC1, proconvertase 1; red arrow, location of mutations responsible for 
monogenic obesity in humans; dashed arrow, AGRP is a natural antagonist of MC4R; +, pathway activated;   , pathway 
inhibited. Reproduced with permission from the publisher [109].  

A candidate gene can be either a functional or a positional candidate. Functional 
candidates can for example be genes known or thought to be involved in regulation 
of energy balance based on animal models or human physiology, or genes that have 
been implicated in monogenic/extreme obesity. Positional candidate genes are 
based on locations within the genomic regions implicated by genome-wide linkage 
analyses (see below) to be connected to obesity phenotypes [110]. Once a candidate 
gene is selected, genetic variations in the gene need to be identified and tested for 
association with obesity related traits at the population level. There are various 
forms of genetic variations including single nucleotide polymorphisms (SNPs), 
small insertions/deletions (indels), copy number variants (CNV) and microsatellites. 
Of all these, SNPs, that are most common and account for >90% of the genetic 
variation in the human genome, have most commonly been used in candidate gene 
studies. Most robust associations have been observed for non-synonymous variants 
(the variants that bring about a change in the amino acid sequence) in the MC4R, -
adrenergic receptor 3 (ADRB3), proprotein convertase subtilisin/kexin type 1 
(PCSK1), brain-derived neurotrophic factor (BDNF), melatonin receptor 1B 



 
 

33 

(MTNR1B) genes and for a functional variant near the lactase gene (LCT) [111]. The 
main reasons for the very limited success of candidate gene studies for obesity 
performed before the genome-wide association studies (GWAS) era initiated in 
2007, include the small sample sizes that made them insufficiently powered to detect 
modest effect sizes expected for common obesity, incomprehensive coverage of the 
genetic variants in the genes of interest due to high sequencing and genotyping costs, 
focus in protein-coding regions in identification and analysis of polymorphisms, and 
the selection of candidate genes based on the very limited knowledge about 
biological mechanisms.  

Genome-wide linkage studies 

Genome-wide linkage approach is a hypothesis-generating method that relies on 
studies in families or affected siblings and originally tests whether certain 
chromosomal regions co-segregate with a trait or disease across generations [111]. 
However, as the genetics of multifactorial diseases is complex, with among other 
things, unknown or low penetrance and lack of Mendelian inheritance structures, it 
is not possible to define unaffected family members as these may get affected later 
on. Therefore, the most commonly used approach was affected-only analysis, based 
on identifying chromosomal regions shared by the affected family members more 
often than expected by chance. For this purpose, around 300-500 microsatellite 
markers, that are highly polymorphic, were genotyped through all human 
autosomes. Because of low power mainly due to low resolution and limited number 
of affected families and family members, genome-wide linkage approach identified 
broad intervals that covered usually very many genes and usually further fine 
mapping of the region could not successfully define the regions of interest. In 
addition, the statistical significance of the identified regions, was commonly not 
very strong, and difficult to replicate. First genome-wide linkage study on body fat 
percentage in Pima Indians was published in mid-1990s [112] and after that a 
number of chromosomal loci were linked to obesity-related traits. Human obesity 
gene map reported identification of 253 loci of interest from 61 genome-wide 
linkage scans, of which only 15 had some evidence of replication in at least three 
studies [113]. Furthermore, a meta-analysis of 37 genome-wide linkage scans 
comprising of 10,000 families of European origin with 31,000 participants, despite 
having sufficient power to identify loci with small effects, could not pinpoint a 
single BMI or obesity locus with convincing evidence [114]. Thus, genome-wide 
linkage approach was not found to be an effective approach for identifying genetic 
variants associated with multifactorial diseases as common obesity.  
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Genome-wide association studies 

GWAS are based on hypothesis-generating approach that test the association 
between millions of SNPs and a particular disease in a case-control set-up, or a 
quantitative trait in population, by screening the entire genome at a much higher 
resolution compared to genome-wide linkage studies. GWAS has replaced the 
genome-wide linkage approach and as it does not rely on families, very large sample 
sizes can be achieved and the high resolution screening helps to narrow down and 
identify the associated locus and variants [111]. GWAS became possible thanks to 
sequencing of the human genome through the Human Genome Project [115], the 
identification of common genetic variants and linkage disequilibrium (LD) mapping 
by the International HapMap Consortium [116] and more recently the 1000-
Genomes project [117], together with advances in technological development of 
comprehensive, affordable and high-throughput genotyping technologies [118]. 

GWAS is based upon the principle of LD (nonrandom association between alleles 
at different loci) at the population level. Loci that are physically closer (physical 
distance is measured in base pairs) together on a chromosome exhibit stronger LD 
than those that are farther apart. LD structure also varies with the size of population, 
number of generations a population lived and ancestry such as older African 
population has smaller LD regions because of more recombination events compared 
to younger European or Asian populations. The genomic distance at which LD 
decays represent the number of genetic markers required to ‘tag’ a haplotype and 
the number of these tagging markers is usually much lower than the total number of 
segregating variants within the population. For example, nearly 500,000 common 
SNPs [minor allele frequency (MAF) > 1%] are sufficient to tag common variation 
in a non-African population, despite the fact that total number of common SNPs 
exceeds 10 million [119].  

GWAS typically comprises of two stages; a discovery stage and a replication stage. 
In the discovery stage, millions of common genetic variants (e.g., SNPs with MAF 

1) are tested for association with the trait or disease of interest. The SNPs that show 
significant association are further tested for association in independent samples in 
the replication stage to confirm or refute the findings from the discovery stage. To 
account for multiple testing, a stringent P-value of <5x10-8 (corresponds to a 5% 
genome-wide type I error rate) is considered as the minimum threshold to be reached 
after validation of association in the replication stage [120]. 

GWAS discoveries 

Since the introduction of GWAS approach in 2005 [121], a number of GWAS on 
obesity and related traits have been conducted predominantly in European 
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populations. However, the number of GWAS in African and Asian populations is 
also growing. The very first locus reported in a GWAS of obesity was Insulin 
induced gene 2 (INSIG2) that was found to be associated with obesity in FHS [122] 
but was not identified in subsequent larger meta-analyses. Year 2007 mark the first 
revolutionary breakthrough in the genetics of common obesity when three 
independent studies simultaneously reported a strong association between genetic 
variants within the fat mass and obesity associated gene (FTO) and BMI and obesity 
[123-125]. The association of FTO with obesity and related traits has been replicated 
in several populations both in children and adults. To date >500 studies have 
examined the association of FTO with obesity and >60 SNPs in this gene have 
shown significant associations with obesity [126]. All BMI-associated FTO SNPs 
lie within a 47 kilobase (kb) LD block encompassing parts of the first two introns 
and exon 2 of FTO and are highly correlated (LD of r2 >0.8) [127].  

Soon scientist realized the need of collaborative efforts to increase sample size and 
thus power of the studies to identify more common variants with effect sizes smaller 
than that of FTO variants. The GIANT (Genomic Investigation of Anthropometric 
Traits) consortium was formed by collaboration between the research groups from 
Europe and USA, and data from seven GWAS for BMI comprising of ~17,000 
individuals was meta-analyzed. This first joint effort resulted in identification of 
variants in the melanocortin-4 receptor gene (MC4R) associated with BMI, in 
addition to confirmation of FTO as a BMI locus [128]. Represented by rs17782313 
SNP, this newly identified locus was associated with obesity among both children 
and adults [128]. Simultaneously, another GWAS in Indian Asians found significant 
association of common variation near MC4R with obesity [129]. Thus, in addition 
to the well-established role of rare mutations within MC4R in the development of 
extreme monogenic obesity, GWAS provided convincing evidence that also 
common variation in MC4R contributes to the susceptibility of obesity in 
population. 

In their second study in 2009, GIANT consortium meta-analyzed data from 15 
GWAS of BMI in Caucasians comprising of 32,387 individuals in the discovery 
stage and 35 significant SNPs were taken forward for replication in ~59,000 
individuals [130]. This effort resulted in identification of six new loci associated 
with BMI where the associated SNPs were located near or in the genes encoding the 
neuronal growth regulator-1(NEGR1), the transmembrane protein-18 (TMEM18), 
SH2B adaptor protein-1 (SH2B1), the glucosamine-6-phosphate deaminase-2 
(GNPDA2), the potassium channel tetramerisation domain containing-15 
(KCTD15) and the mitochondrial carrier homologue-2 (MTCH2), in addition to 
FTO and MC4R. At the same time, another meta-analysis was published including 
four GWAS for BMI comprising of ~30,000 individuals of European and 1160 of 
African American origin by an Icelandic company, the deCODE Genetics [131]. A 
total of 43 most significant signals were taken forward for replication in ~5,500 
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Danish samples and for further confirmation in the discovery stage data of the 
GIANT consortium. In addition to FTO and MC4R, eight loci reached genome-wide 
significance in this study. Four of these loci were novel and had BMI associated 
SNPs in genes encoding the SEC-16 homologue-B (SEC16B) and BDNF, and 
between genes encoding the ets variant-5 (ETV5) and the diacylglycerol kinase 
(DGKG) genes and between the BCDIN3 domain (BCDIN3D) and the Fas apoptotic 
inhibitory molecule-2 (FAIM2), while the remaining four loci (NEGR1, TMEM18, 
SH2B1 and KCTD15) were also identified by the GIANT consortium [131]. 

In 2010, the GIANT consortium further expanded the discovery stage sample to 
~124,000 individuals from 46 studies, and 42 most significant SNPs were taken 
forward for replication in another set of ~126,000 individuals of white European 
descent [132]. They confirmed all of the 12 previously identified BMI-associated 
loci as well as two previously identified WC-associated loci [near the transcription 
factor AP-2 beta gene (TFAP2B) [133] and the neurexin-3 gene (NRXN3) [134]], 
and additionally revealed 18 new BMI-associated loci [132]. Thus, all the GWAS 
efforts identified 32 loci unequivocally associated with BMI by the end of 2010.   

In their most recent meta-analysis in 2015, the GIANT consortium included GWAS 
and Metabochip data from 125 studies of European (~322,000 individuals) and non-
European ancestries (~17,000 individuals) [6]. Analyses in European individuals 
identified 77 BMI-associated loci while inclusion of non-European individuals 
identified additional 10 loci. Secondary analyses (such as European sex-specific and 
population-based analyses) revealed 10 more loci. Thus, overall this effort yielded 
97 BMI-associated loci of which 56 loci were novel and 41 had previously been 
associated with one or more obesity traits [132, 135-139]. Comparison of the effect 
estimates of these 97 BMI associated SNPs across ancestries revealed two loci 
[SEC16B and zinc finger protein 64 (ZFP64)] that showed evidence for 
heterogeneity between sexes and three loci [NEGR1, protein kinase D1 (PRKD1) 
and glucan branching enzyme 1 (GBE1)] that showed evidence for heterogeneity 
between ancestries. Apart from these, the effect estimates of 79% of the BMI-
associated SNPs in Africans and 91% in East Asians showed directional consistency 
with Europeans suggesting that common BMI-associated SNPs have comparable 
effects across ancestries [6].  

The role of GWAS in unraveling common variants in complex diseases like obesity 
has been remarkable, but the so far identified loci still explain only 2.7% of the 
population variation in BMI and majority of the genetic variation remain 
unexplained. For most of the identified loci, there is uncertainty over which exact 
SNP is causal given the large number of variants in LD and further functional studies 
and fine mapping is required to identify causal variants. Clinical relevance and 
functional mechanisms of even the best-documented “hits” still remain question 
marks. Moreover, the vast majority of potentially causal candidate SNPs are located 
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in non-coding regulatory regions of the genome and provide very limited 
information about which cell types may be most relevant for a SNP, further limiting 
the identity and function of the causal SNP.  

For understanding this complexity, the FTO locus, which has been consistently 
identified by GWAS and contains intronic SNPs that strongly associate with obesity 
in diverse populations provides an excellent example. The evidence for that FTO is 
highly expressed in hypothalamus and controls appetite and energy expenditure 
suggested it to be the relevant target gene. However, the link between the intronic 
SNPs and FTO activity has remained unclear [140]. In 2014, two studies [141, 142] 
provided convincing evidence that obesity associated SNPs in the FTO region 
appear to be functionally connected with two neighboring genes; iroquois 
homeobox 3 (IRX3) and RPGR-interacting protein-1 like (RPGRIP1L) rather than 
FTO itself as shown in Figure 2. 
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Figure 2. Increasing functional complexity around the FTO locus 
(A) Emerging data indicate that the links between intronic variance within FTO and body composition are mediated 
through funstional interactions with neighbouring genes. The first intron of FTO contains a binding site for the 
transcription factor CUX1 (cut-like homeobox 1) which, through regulation of RPGRIP1L expression, modulates leptin 
receptor localization within neurons. This intron also contains an enhancer sequence which directly binds to the 
promotor of IRX3. (B) Summary of data on FTO, RPGRIP1L and IRX3 from human genetic and mouse model studies. 
Data on IRX3 are notable in that eQTL (quantitative trait loci) mapping demonstrates an association of obesity-linked 
SNPs with IRX3 expression. Adapted from Tung et al. [143] with permission from the publisher. 

In 2015, Claussnitzer et al. [144] made further progress in the field by identifying 
the causal SNP and proposing a mechanism by which this SNP could affect body 
weight as shown in Figure 3. Similar to Smemo et al. [142], Claussnitzer et al. 
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provided compelling evidence that SNPs in this region associate with the expression 
of IRX3 and /or iroquois homeobox 5 (IRX5) in human cells but not with FTO [144]. 
Taken together, the cell type and mechanism by which the FTO variant affects body 
weight is still unsettled but these studies demonstrated that only by combining 
bioinformatics and experimental approaches, biology associated with GWAS loci 
can be elucidated. 

 

Figure 3. Variants in the FTO locus regulate IRX3/5 expression to exert effects on body weight 
(A) Variants in the FTO locus regulate the expression of IRX3 and IRX5 via binding the transcription factor ARID5B (AT 
rich interactive domain 5B). (B) The consequences of altered IRX3/5 expression may be manifested in the adipose 
lineage, with altered beige fat development, and/or in the hypothalamus, via changes in food intake and energy 
expenditure. Adapted from Herman and Rosen [145] with permission from the publisher. 

Thus, the puzzle of common obesity genetics cannot be solved through a single 
approach and technological advances enabling the sequencing of entire genomes to 
identify rare variants with potentially large effects at affordable prices are needed to 
identify elusive obesity associated genes, causal mutations, pathways and biological 
mechanisms.  

Copy number variants in obesity 

Copy number variants (CNV) are defined as genomic structural variations in which 
one kilobase to several megabases long segments of DNA are either deleted, 
duplicated or multiplicated. Thus, CNVs can be simple bi-allelic, deletions and 
duplications or more complex, multiallelic variants (mCNV) [146] as shown in 
Figure 4.  
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Figure 4. Copy number variant types 
Copy number variants may consist of simple deletions and duplications of DNA segments or they may vary in the 
number of copies of the duplicated region such as multiallelic CNV. 

CNVs are widespread throughout the genome and are common variations in human 
population [146]. The highest resolution genomewide CNV discovery study carried 
out todate [147] using oligonucleotide microarrays comprising of 42 million probes, 
generated a comprehensive map of 11,700 CNVs greater than 443 bp of which 8,599 
have been independently validated. The validated CNVs cover 3.7% of the genome 
with a median CNV size of 2.7 kb, and a median number of 1117 CNVs were found 
in Europeans and 1488 in Yoruban Africans. Further investigation of ~5,000 
validated CNVs revealed that 77% were deletions, 16% were duplications and 7% 
were mCNVs [147]. Despite being minority, the mCNVs account for seven times 
more variation in gene dosage compared to combined contribution of deletions and 
bi-allelic duplications [148] resulting in abundant variation in gene expression. 
Difference in copy numbers for any two individuals account for 0.78% of the 
difference in genome and affect structures of nearly 2.7% of the gene transcripts 
[147]. Common bi-allelic CNVs are well tagged by surrounding SNPs but 
significantly less LD has been detected between mCNVs and their surrounding 
SNPs. CNVs may influence gene expression levels in a variety of ways by either 
deletion,duplication or multiplication of entire genes or by disruption or insertion of 
regulatory elements such as enhancers or repressors [146].  

Recently, several associations have been reported between common CNVs and 
complex diseases like obesity. As some CNVs are in strong LD with common SNPs, 
some studies have identified common CNVs potentially contributing to disease 
susceptibility through LD with SNPs. The association of a common deletion 
upstream NEGR1 gene and body weight was detected in a SNP GWAS for BMI by 
Willer et al. [130]. Another common CNV near G-protein coupled receptor, class 
C, group 5, member B gene (GPRC5B) was identified through association of tag 
SNP with BMI in GWAS meta-analyses by Speliotes et al. [132]. However, the 
effect sizes for BMI observed at each of these loci were small. 
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Similar to SNP GWAS, genome-wide CNV association studies have focused on 
common CNVs (CNVs with population frequency >5%). Several common CNVs 
have been identified in studies that directly measure copy numbers. A common 
CNV on chr10q11.2 encompassing pancreatic polypeptide receptor 1 gene (PPYR1) 
has been identified where low copy numbers were marginally associated (P=0.011) 
with increased BMI among chinese contributing 1.6% of variation in BMI [149]. In 
2011, a  genome-wide study searching for common CNVs in early-onset extreme 
obesity identified common CNV encompassing olfactory receptor genes (OR4P4, 
OR4S2 and OR4C6) [150]. This study also confirmed the CNVs at NEGR1 and 
PPYR1. In addition to these common bi-allelic CNVs, a complex copy number 
variable region on chr8p21.2 encompassing dedicator of cytokinesis 5 gene 
(DOCK5) has been shown to be associated with severe obesity [151]. This region 
includes two variable number tandem repeats (VNTR) flanked by a 3975 bp 
deletion. The VNTRs explains 0.8% of the phenotypic variance while the 3975 bp 
deletion explains 0.46% [151]. Despite all this evidence, the role of common CNVs 
in disease susceptibility remains an issue because of low replication of initial 
findings. In general, the main challenges are confounding due to various sources of 
systemic errors such as source and quality of DNA, batch effects  and difficulties in 
genotyping complex  mCNVs [146].  

Rare CNVs (CNVs with frequencies <1% in general population) are not well-tagged 
by surrounding common SNPs genotyped on GWAS panels. Due to the difficulties 
in genotyping CNVs, studies analyzing rare CNVs have primarily focussed on 
variants of large sizes (200-500kb) [146]. Several large rare CNVs have been 
identified within the chr16p11.2 in relation to body weight and risk of obesity. In 
2010, Walters et al. reported association of a 593kb deletion at chr16p11.2 with 30-
fold increased risk for obesity and 43-fold increased risk for morbid obesity and 
additionally with macrocephaly [152]. Simultaneously, another study reported the 
association of 593kb deletion at this locus with severe obesity [153]. In 2011, 
Jaquemont et al. observed that the reciprocal duplication of 16p11.2 was associated 
with 8.3 fold increased risk of being underweight in adults as well as with reduced 
postnatal weight and BMI compared to non-duplication carriers [154]. The 16p11.2 
duplication was also associated with microcephaly mirroring the macrocephaly in 
deletion carriers. Additionally on chr16p11.2, a 220 kb deletion encompassing nine 
genes including SH2B1 (which is involved in leptin signalling and insulin 
resistance) has been associated with hyperphagia, severe early onset obesity and 
developmental delay [153, 155].  

In addition to investigating contribution of individual CNVs to obesity 
susceptibility, global burden of rare CNVs has been assessed by comparing the 
number of rare CNVs in obese with normal weight subjects. Analyses have shown 
the enrichment of large, rare deletions in obese cases and larger effect was 
associated with CNVs that disrupt genes [153, 156]. Despite the mounting evidence 
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for the contribution of both common and rare CNVs to obesity susceptibility, our 
understanding of the contribution of CNVs to obesity remain incomplete. Novel 
technical and statistical methodologies are needed to investigate the role of 
structural variants particularly complex mCNV followed by well-powered and well-
designed replication studies to confirm the initial signals. Lastly, functional studies 
are needed to uncover the underlying mechanisms.  

Gene-lifestyle interactions in obesity 

Rapid rises in the prevalence of overweight and obesity clearly exemplify the 
importance of lifestyle factors in the etiology of obesity. As both genetic factors and 
lifestyle factors affect the risk, the challenge is to understand the interplay between 
genes and lifestyle factors, and identify interactions of importance. Gene-
environment interaction (GEI) can be defined as “a different effect of a genotype on 
disease risk in persons with different environmental exposures” or “a different effect 
of environmental exposures on disease risk in persons with different genotypes” 
[157]. Thus, not everyone living in the present obesogenic environment (which in 
general promotes excess calorie intake and discourages physical activity) become 
obese and the response to such environment can be expected to be dependent on 
genetic-susceptibility to obesity, and additionally other genetic and environmental 
factors.  

Two main types of study designs for identifying or testing the effects of GEIs are 
observational association studies and RCTs. There is limited evidence for testing 
GEI on the genome-wide scale due to computational and statistical difficulty. 
Winkler et al. recently conducted a genome-wide interaction study to examine the 
influence of age and sex on genetic association with adult body size and shape [158]. 
The most studied environmental factors in context of GEI in obesity include age, 
sex, physical activity, total energy intake, dietary fats, dietary CHO and SSB. 

Evidence from observational studies 

In observational studies, GEI has been tested using various study designs such as 
cohort studies, case-control studies, case-only studies [159], each having advantages 
and limitations and may be more or less suitable for different scientific questions. 
Cohort studies can be either cross-sectional or prospective (that follows subjects 
over time) and are less prone to selection and recall bias but are expensive, require 
large sample sizes and long enough follow-up time specially in case of chronic 
conditions with low incidence [160]. Case-control studies in which subjects with a 
certain disease (cases) are compared to unaffected individuals (controls) are 
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relatively easy to conduct but they are prone to several potential sources of bias such 
as selection bias (differences in source populations of cases and controls), survival 
bias (when subjects die from disease of interest before enrollment in the study), 
recall bias (differential reporting of past behaviors e.g. diet, exercise among cases 
and controls, or lifestyle changes due to disease among cases) and population 
stratification bias (when cases and controls differ in ethnicity/ancestry). These 
biases reduce the power to detect GEIs [161]. Case-only study design is simple and 
efficient when interest is limited to study GEI and there is no need for control 
subjects. Its validity is highly dependent on the assumption that environmental 
exposures and genotypes are independent of each other so that the exposure should 
not differ among different genotypes and such design performs poorly if this 
assumption is violated. The main limitation of this method is that it cannot assess 
the main effects of neither genotype nor the exposure [162]. 

GEI studies for candidate genes: GEI studies of biological candidate genes have not 
been very successful, mainly due to that candidate gene approach was not successful 
in identifying obesity genes. Thus, only a few GEI findings of candidate obesity 
genes have been replicated in independent studies due to the small effect sizes and 
modest levels of significance for most of the obesity associated candidate genes 
[163]. As the interaction effect sizes are likely to be of even smaller magnitude, 
many of the small scale GEI studies were underpowered and hence false positive 
[164].  

GEI studies for GWAS genes: Since GWAS identified significant and replicated loci 
are known to reliably associate with the disease traits that have been studied, the 
possibilities to detect GEI may be better as causal inference for an interaction may 
be increased [165]. Among GWAS identified loci, FTO is the most studied locus 
and accumulating evidence supports its involvement in eating behavior, satiety and 
dietary intake [166]. In terms of GEI, most of the studies have examined variation 
in FTO with dietary components and physical activity in context of obesity. 
Andreasen et al. reported that low physical activity accentuate the effect of FTO 
rs9939609 on body fat accumulation [167]. In a Swedish study, Sonestedt et al. 
reported that high intakes of fat, low intakes of CHO and low physical activity 
accentuate the association between FTO rs9939609 SNP and obesity traits (i.e. BMI 
and FM) [168, 169]. A large meta-analysis of 45 adult and 9 pediatric cohorts found 
that physical activity decreases the odds for obesity by 27% among FTO risk allele 
carriers [170]. Recent large scale meta-analyses evaluating the interaction between 
FTO rs9939609 and dietary intake on obesity found that lower dietary protein intake 
attenuates the association between FTO genotype and adiposity in children and 
adolescents [171] but no such significant interaction was observed in adults [172]. 
Vimaleswaran et al. investigated the association of FTO rs9939609 with changes in 
weight and WC during 6.8 years of follow-up in data from European Prospective 
Investigation of Cancer (EPIC) and examined whether these associations were 
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modified by dietary energy percentage from fat, CHO, protein or glycemic index 
(GI), but found no influence of dietary factors on associations of FTO with obesity 
traits [173]. Similarly, a recent study has reported no influence of Mediterranean or 
Nordic diet scores on associations between FTO and changes in weight or WC 
[174]. 
Corella et al. investigated whether the independent and joint associations of FTO 
and MC4R are modulated by diet and physical activity. They observed a significant 
interaction between FTO genotype and LTPA on BMI, WC and risk of obesity, but 
no interactions with the studied environmental factors and the MC4R genotype were 
observed. This was the first study to investigate the joint effect of obesity associated 
SNPs and a significant interaction between an additive genetic score of the two 
SNPs and physical activity on BMI and obesity. They also reported that adherence 
to Mediterranean diet could modify the genetic susceptibility to obesity, however 
this interaction with diet was not statistically significant [175]. Li et al. by using a 
genetic risk score (GRS) of 12 BMI-associated SNPs showed that physically active 
lifestyle attenuates the genetic predisposition to obesity in ~20,000 participants from 
EPIC-Norfolk cohort [176]. Ahmad et al. tried to replicate this finding in ~111,000 
participants of European ancestry and although their meta-analyses provided further 
support for interaction between genetic susceptibility to obesity and physical 
activity, the findings were observed to hinge on the inclusion of North American 
cohorts indicating the results to be population-specific or not causal [177]. A Danish 
prospective population based Inter99 study examined whether the effect of lifestyle 
changes on body weight fluctuations could be modulated by a GRS based on 30 
GWAS identified BMI-associated loci. They observed no significant interaction 
between lifestyle changes (diet, physical activity and smoking) and GRS on body 
weight changes [178]. 

Qi et al. by using data from multiple US cohorts, created a weighted GRS of 32 
BMI associated SNPs and demonstrated that genetic association with adiposity was 
strengthened among participants with higher consumption of SSB [179], fried food 
[180] and increased hours of television watching, while it was weakened with 
increased levels of LTPA [181]. Recently, Nettleton et al. investigated whether a 
diet score calculated from self-reported intakes of healthy (fruits, vegetables, fish, 
whole grain and nuts) and unhealthy (fried potatoes, sweets, SSB and red/processed 
meat) food items modifies the association of 32 BMI-associated SNPs 
(independently as well as when combined to a GRS) with obesity traits and found 
no significant interaction between diet score and GRS on obesity. However, two of 
the SNPs [leucine-rich repeat neuronal protein 6C (LRRN6C) rs10968576 and 
mitochondrial translational initiation factor 3 (MTIF3) rs4771122] indicated 
nominally significant interactions with the diet score on BMI [182].  
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Evidence from intervention studies 

Most reliable evidence for interactions between genetic components and lifestyle 
factors can be derived from RCTs due to random allocation of exposures that 
eliminates confounding. However, these studies are expensive and difficult to 
perform, and therefore usually small short-term studies. Another drawback is that 
study dropouts are common and compliance with dietary interventions are poor 
which complicates the interpretation of the results [160]. 

GEI studies for candidate genes: In one of the very first GEI studies in obesity, 
carriers of the Trp64Arg variant in the ADRB3 were found to have less weight loss 
upon three month low-calorie diet and exercise intervention compared to non-carrier 
obese women [183]. Several intervention studies have studied GEI for variants in 
the LEP and perilipin 1 (PLIN1) genes and found them to be associated with 
differences in weight loss in response to calorie restricted diets [184, 185]. One RCT 
reported no major effect of variants in the melanocortin-3 receptor gene (MC3R) on 
weight loss after a 10-week intervention with low-calorie diets in obese Europeans 
[186].  

GEI studies for GWAS genes: A couple of intervention studies have investigated 
interaction between variants in FTO and lifestyle factors on obesity traits. One 
nutritional intervention study that evaluated the associated effect of FTO rs9939609 
on body weight changes after three years of intervention with a Mediterranean style 
diet in high CVD risk subjects, did not find any significant interaction. However, 
risk allele carriers gained less weight compared to non-risk homozygotes regardless 
of the nutritional intervention [187]. Finish Diabetes Prevention Study did not find 
the FTO rs9939609 to modify the success of lifestyle modification on weight loss 
[188]. Huang et al. examined interaction between FTO genotype and protein intake 
on long term changes in 737 overweight adults in the two year Preventing 
Overweight by Using Novel Dietary Strategies (POUNDS) trial and suggested that 
individuals having the risk A-allele of FTO rs9939609 might reduce their appetite 
and food cravings by choosing low-calorie high-protein weight loss diet [189]. In 
another study where 742 obese subjects were randomly assigned to one of four diets 
differing in the proportions of fats, proteins and CHO, a high-protein diet was found 
to facilitate weight loss and improvement of body composition only in individuals 
with risk-allele of rs1558902 variant in FTO and not among other genotype carriers 
[190]. In a one year lifestyle intervention study, SNPs in FTO and INSIG2 
collectively associated with lowest degree of overweight reduction or even 
aggravated their effect on overweight reduction [191]. Jääskeläinen et al. examined 
whether 26 BMI-associated SNPs individually and as a weighted GRS associate 
with obesity and weight change after one and three years, and further tested whether 
these associations were modified by dietary factors or physical activity among 459 
participants of Finish Diabetes Prevention Study. The study results suggested that 
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the association between BMI GRS and obesity might be attenuated by high fibre 
diet, however this interaction was not statistically significant (Pinteraction= 0.065) 
[192]. 
Recently, Papandonatos et al. examined whether 91 BMI-associated SNPs influence 
weight change or modify the response to weight loss interventions in two large 
RCTs of lifestyle modification i.e., in people with pre-diabetes in DPP and in T2D 
patients (in the Action for Health in Diabetes (Look AHEAD). For most of the SNPs 
they did not find any significant interaction with lifestyle on weight loss or weight 
regain, but a variant in MTIF3 rs1885988 was observed to modify the effects of 
lifestyle intervention on weight loss. None of the SNPs modified treatment response 
on weight regain [193]. 

Mendelian randomization studies 

Many behavioral, physiological and pharmacological measures that show 
significant associations in observational studies fail to do so in RCTs [194]. 
Residual confounding, reverse causation and incorrect causal inference may explain 
the associations found in observational studies [195]. Mendelian randomization 
(MR) is a technique that make use of genetic data to examine causal relationship 
between risk factors (usually circulating biomarkers) and disease outcomes [196]. 
Since genes are randomly allocated at conception, they can be used as natural 
experiments to prove causation. In MR analysis, a genetic variant associated with 
the biomarker of interest is used as a proxy for the biomarker and randomly divides 
the study population into groups based on genotypes similar to the arms of RCT 
[196, 197].  

Assumptions of MR studies 

In MR studies genetic variants such as SNPs are used as instrumental variables (IV) 
to infer causal association between a trait and an outcome because of several 
reasons. First, genetic variant is associated with the trait of interest in only one 
direction and eliminates the possibility for reverse causation. Secondly, 
measurement of genetic variants usually involve very low levels of errors. Thirdly, 
genetic variants in high LD with causal variant can be used as instruments [196]. 
However, in order to be used as IV, genetic variants must fulfill three IV 
assumptions: (i) the genetic variant is reliably associated with the exposure; (ii) the 
genetic variant is associated with the outcome through the studied exposure only; 
and (iii) the genetic variant is independent of other factors which affect the outcome 
(confounders) [198]. Furthermore, using MR for accurate estimation of effect sizes 
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in mediation analyses using a measured exposure requires that the measured 
exposure accurately captures true causal exposure, and that the genetic variants 
should be robustly associated with the exposure of interest [198].  

MR studies vs RCTs 

MR study design is considered as a non-experimental alternative to RCTs as both 
share many commons features. In a RCT participants are randomly assigned to 
treatment or control groups to balance confounders and establish causal inference 
whereas in MR, alleles are randomly allocated at conception [197]. Thus, similar to 
RCT, groups defined by genotype in MR will not differ with respect to confounding 
factors but will experience an on-average difference in exposure to the studied trait 
[197]. These similarities between the two study designs suggest that MR can predict 
the outcome of an RCT as long as it strictly meets the criteria of MR assumptions. 
However, in contrast to RCT, MR studies have much lower cost and once a 
population is genotyped on genome-wide level, basically every biomarker that is 
measured in the population, that is at least partially modulated by genetic factors, 
can be studied in silico by simple exploration of the data set [199]. 

Limitations of MR studies 

There are several potential threats to IV assumptions such as pleiotropy, LD, 
population stratification, canalization and weak instruments and breaking against 
any of these assumptions interferes testing for causal relationship.  

Pleiotropy 

The most important limitation of MR studies is pleiotropy, which in this context 
means that a genetic variant not only associates with the exposure trait of interest 
but with one or more other traits. Pleiotropic associations can affect the results of 
MR analysis in multiple ways. Pleiotropic associations can counteract any effect of 
the variant acting through the biomarker of interest on the disease resulting in a null 
finding when a true causal relationship exists between biomarker and disease, but 
also result in positive association between the genetic variant and a disease that 
could mistakenly be interpreted as causal association, although the causal 
connection would be mediated by association with biomarker(s) other than the 
biomarker of interest [199].   

Linkage disequilibrium 
LD means correlation, allelic association between physically close alleles that are 
inherited together. If there is LD between a genetic variant being used as IV and a 
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genetic variant that is causally associated with the exposure, then none of the MR 
assumptions will be violated and the association between IV and exposure can be 
estimated. This form of LD is exploited in many MR studies when a genetic variant 
in LD with the often unknown functional variant is used as IV. However, when a 
genetic variant being studied is correlated with another polymorphic locus and this 
locus influences the outcome of interest in the genetic association study, then this 
will violate the assumption (iii) of MR and IV analyses will be confounded [196]. 
Thus, when conducting MR studies, it would be ideal to use only those SNPs that 
lie in genomic regions without any further proximity to loci that might circumvent 
SNP-disease association [199].  

Population stratification 
Population stratification occurs when the population under investigation is not 
homogenous, but rather based on several subgroups that experience both different 
disease rates as well as have different frequencies of alleles of interest. Population 
stratification in MR studies could result in confounded associations. This potential 
limitation requires special attention when genetic variant-biomarker-disease 
relationships are not studied in one population but in several cohorts of different 
origin. Combining different data sets to increase statistical power, such as 
combining findings from a GWAS meta-analyses on a biomarker with another 
GWAS meta-analyses on an outcome of interest, brings its own challenges [199] as 
some studies may introduce heterogeneity in the meta-analysis.  

Canalization 
Canalization or developmental compensation refers to alteration in the expected 
disease-genotype association by adaptation to a genetically determined phenotype. 
A genetic variant can affect the biomarker already during the childhood or even 
earlier while a clinical biomarker can usually only be of relevance later in life. Thus 
the association of the genetic variant with the disease may be blurred by the counter-
regulatory mechanisms that compensate for the effects related to SNPs in utero or 
during childhood [199]. Canalization could invalidate findings from MR studies by 
altering the effect of a genotype on the outcome of interest in adulthood without any 
effect on the association between genotype and modifiable exposure of interest. 
Hence the estimate of association between genetic variant and exposure would be 
valid whereas that between genetic variant and outcome would not be valid, and 
consequently the IV estimate of causal effects would be biased [196].  

Weak instruments 
A weak instrument is defined as one that explains only small proportion of variance 
in the exposure and may lead to very imprecise estimates of the causal effects. F-
statistics from first stage regression of the 2-stage least square regression can be 
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used to check instrument strength. A value of F-statistics >10 is taken as indicative 
of sufficient strength to ensure the validity of IV method. Thus, it is now suggested 
that MR studies always report F-statistics to examine the strength of the instrument 
and seek expert advice when this value is close or less than one [196]. 

Use of GRS in MR studies 

Multifactorial polygenic traits (such as obesity, BP, T2D) are affected by many 
common variants with small effects. GRS is a convenient way of combining a large 
number of genetic variants that together may explain a considerable proportion of 
variation in the risk factor. Both un-weighted GRS (constructed by summing up the 
total number of risk alleles present in the genotype of an individual) and weighted 
GRS (where each risk allele is weighted on the basis of effect estimate of the 
corresponding SNP on the trait) are used as IVs in MR studies for reasons of 
simplicity, increased power and avoidance of weak instrument bias. For the variants 
with different effect sizes on the risk factor, use of estimated weights rather than an 
un-weighted GRS gave some improvement in power [200]. However, care should 
be taken while constructing the GRS as each of the variants should satisfy the 
assumptions of the IV, and use of invalid genetic variants (with pleiotropic effects) 
can severely bias estimates of causal effects even when 90% of the variants in the 
score are valid instruments [200].  

MR studies of BMI and cardiometabolic traits 

In the recent years, several MR studies have attempted to evaluate the associations 
between obesity measures (especially BMI) and several diseases including 
cardiometabolic traits and outcomes. Freathy et al. used FTO rs9939609 as IV to 
study causal association between BMI and 10 metabolic traits in ~17000 European 
participants and found that each copy of FTO A-allele was associated with higher 
fasting insulin, glucose and TG and with lower HDLC. No associations were found 
for fasting alanine-transferase, gamma-glutamyl transferase, LDLC, A1C and 
systolic and diastolic blood pressure (SBP and DBP) [201]. Timpson et al. by using 
a combination of FTO rs9939609 and MC4R rs17782313 as IV, studied if the earlier 
observed association between BMI and BP could be causal in the Copenhagen 
General Population Study. The study confirmed the observational associations 
between BMI and BP by finding 3.85 mmHg (95%CI: 1.88 to 5.83 mmHg; 
P=0.0002) increase in SBP and 1.79 mmHg (95% CI: 0.68 to 2.90; P=0.002) 
increase in DBP for each 10% increase in BMI [202]. Fall et al. in a large MR effort 
from the European Network for Genetic and Genomic Epidemiology (ENGAGE) 
consortium investigated if the association between BMI and 24 cardiometabolic 
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traits is causal, using FTO rs9939609 as IV in ~199,000 European individuals. Apart 
from replicating earlier findings from Freathy et al. [201] and Timpson et al. [202], 
they reported novel causal associations of BMI with incident heart failure (HR: 1.19 
per unit increase in BMI; 95% CI: 1.03 to 1.39) and increased liver enzymes 
(alanine-aminotransferase and gamma-glutamyl transferase) [55]. Nordestgaard et 
al. using a GRS comprised of FTO rs9939609, MC4R rs17782313 and TMEM18 
rs6548238 SNPs as IV found a causal link between BMI and ischemic heart disease 
(IHD). They reported a 26% and 52% increase in odds for IHD in observational 
analyses and MR analyses, respectively, for every 4 units increase in BMI [203]. 
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Aims 

General aims 

The general aim of this doctoral thesis was to investigate how common BMI-
associated genetic polymorphisms interact with dietary intakes to modify the 
genetic susceptibility to obesity, and how they affect the weight gain in different 
ages. Further, genetic variants that associate with cardiometabolic traits were used 
to dissect causality between cardiometabolic traits and mortality. 

Specific aims 

Paper I: To test whether genetic susceptibility to obesity associates with dietary 
intake levels of fats, CHO, protein and fibre and total energy intake, and whether 
diet intakes modify the genetic susceptibility by using a GRS comprised of 13 
replicated BMI-associated SNPs. 

Paper II: To replicate the recent report that genetic susceptibility to obesity 
modifies the association between SSB intake and obesity risk in two large Swedish 
cohorts using a GRS of 30 BMI associated SNPs.  

Paper III: To investigate the association of salivary amylase (AMY1) CNV with 
obesity traits (BMI, WHR and BF%) and to test whether starch intake modifies these 
associations. 

Paper IV: To investigate how genetic susceptibility to obesity measured as GRS 
comprised of 31 BMI-associated loci affects weight gain from young adulthood to 
middle age and later life. 

Paper V: To understand the causal nature of the associations of common 
cardiometabolic traits (BMI, SBP, LDLC, HDLC, TG and FPG) with CVD- and 
total mortality using trait specific GRS as IV in a Mendelian Randomization 
approach. 
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Participants and methods 

The different hypotheses of this thesis were tested analyzing two Swedish cohorts 
(Figure 5). Three of the papers, i.e. the study evaluating the association and 
interaction between the genetic susceptibility to obesity and diet intakes (Paper I), 
the study investigating the role of dietary starch in modifying the association 
between AMY1 CNV and obesity (Paper III) and the study dissecting the causal 
associations between cardiometabolic traits and mortality (Paper V), were all based 
on the cohort of 30,447 subjects from the population based Malmö Diet and Cancer 
Study (MDCS). The two remaining studies i.e., the replication study of interaction 
between BMI-GRS and SSB on obesity (Paper II) and the association study of BMI-
GRS and weight gain at different time points (Paper IV) also included participants 
from the Gene-Lifestyle interactions And Complex traits Involved in Elevated 
disease Risk (GLACIER) cohort in addition to participants from MDCS.  

Malmö Diet and Cancer Study 

MDCS is a population based prospective cohort study from Malmö, a city in 
southern Sweden with about 250,000 inhabitants. The study was planned and 
initiated in collaboration with the International Agency for Research on Cancer 
(IARC), Lyon, France, the Swedish Cancer society and the Faculty of Medicine, 
Lund University, Sweden. The main aim of MDCS was to investigate the 
relationship between diet, life-style factors and various forms of cancers [204]. 

MDCS baseline examinations 

Baseline examinations for MDCS were conducted between March 1991 and 
October 1996. In 1991, by using both letter of invitation and information campaign 
(including advertisements in newspapers and television and posters in public 
places), all men and women born between 1926 and 1945 (n=53,325) were invited 
to participate in the study. In May 1994, the invited population was extended to 
include all men born between 1923 and 1945 and all women born between 1923 and 
1950 (n=74,138) with intention to increase the number of younger women to study 
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breast cancer. The exclusion criteria for recruitment were limited Swedish language 
skills and mental incapacity. Of those invited, 41% attended the baseline 
examinations, yielding a cohort of 30,447 subjects [205]. Ethical permission of 
MDCS protocols was obtained from ethical committee at Lund University (LU 51-
90). All participants provided written informed consent.  

Each participant visited the study center twice. During the first visit, anthropometric 
measurements (weight, height, waist and hip circumference, and body lean mass 
and fat mass) were taken, BP was measured and non-fasting blood samples were 
collected by trained nurses. Participants were provided with the extensive dietary, 
lifestyle and socioeconomic questionnaire, menu book and detailed instructions 
about the dietary data collection procedure. The questionnaire included items such 
as place of birth, education, employment, social network and support, LTPA, 
smoking, alcohol use, previous weight change, dietary change in the past, previous 
and current disease, use of medications etc. During the second visit, after nearly two 
weeks, trained dietary interviewers conducted individual interviews to complete the 
diet history and to check the correctness of the completed questionnaires [205].  

In 1993, MDCS became an associated member of EPIC, which is one of the largest 
cohort studies in the world comprising of >521,000 participants from 23 centers 
across 10 Western European countries. EPIC is organized by the IARC, WHO, 
Lyon, France [206, 207].  

Reproducibility of the MDCS questionnaire 
In 1994, three weeks after the first invitation, 232 randomly selected participants 
were invited to complete the questionnaire a second time. Of the 211 subjects who 
responded to the questionnaire twice (participation rate 90.9%), 209 were complete 
participants. The kappa values for concordance between two questionnaires showed 
high reproducibility of the questionnaire for most of the factors. For example, kappa 
coefficients among men/women were as follows: 0.96/0.84 for education, 0.73/0.77 
for alcohol, 0.70/0.84 for weight change, 0.76/0.68 for dietary change, 0.97/0.96 for 
hypertension, 0.90/0.85 for diabetes [208]. 

The biobank 
Blood samples from each participant were fractionated i.e., 10 ml blood without 
anticoagulant was used to store serum sample (at -80oC) and 28 ml of heparinized 
blood was used to purify and store mononuclear leucocytes (at -140oC), 
granulocytes, erythrocytes and plasma (all at -80oC). An alteration in this method 
was made in August 1995 after which buffy coats were stored (at -140oC) instead 
of mononuclear leucocytes and granulocytes. The yield, purity and storage of blood 
samples were all assessed by a quality control program and no differences in terms 
of purity and yield were found [209, 210]. 



 
 

55
 

 

 
Fi

gu
re

 5
. S

tu
dy

 p
op

ul
at

io
ns

 in
 p

ap
er

s 
I-V

 



56 

Malmö Diet and Cancer Study-Cardiovascular Cohort 

Of the MDCS participants that were enrolled between October 1991 and February 
1994 (n=12,445), approximately 50% (n=6,103) were randomly selected and invited 
to participate in a study for the epidemiology of carotid artery disease forming a 
sub-cohort known as the Malmö Diet and Cancer Study- Cardiovascular Cohort 
(MDC-CC). These participants additionally underwent a review of their medical 
history, a physical examination and provided fasting blood samples for the 
assessment of cardiovascular risk factors such as fasting glucose and fasting serum 
lipid and lipoprotein concentrations [211]. 

MDC-CC follow-up 

During 2007 to 2012, a re-examination of MDC-CC participants was conducted 
after a mean follow-up of 16 years (range 13 to 20 years). A total of 4,924 
participants who were still alive and had not emigrated from Sweden were invited 
to participate in a follow-up examination using the same methods as during the 
baseline. Of those invited, 3,734 participants attended and underwent re-
examination including anthropometric measurements, a questionnaire on lifestyle 
factors and fasting blood samples. 

Diet assessment in MDCS 

A modified diet history method (comprising of a 7-day menu book, an extensive 
168-item dietary questionnaire and a 1-hour diet history interview) was specially 
designed for MDCS. The menu book covered information about meals that vary 
from day to day such as cooked lunches and dinner meals as well as cold and 
alcoholic beverages, medications, natural remedies and dietary supplements. The 
dietary questionnaire covered information about the food items regularly consumed 
during the past one year, not covered by the menu book. Participants were asked to 
report frequency and estimated intake of each food by using a booklet containing 48 
photographs, each showing four different potion sizes of the respective food item. 
Both menu book and questionnaire were filled at home by the participants. During 
their second study visit which was about two weeks after the first visit, participants 
were interviewed by trained interviewers to collect information about their food 
preparation methods, portion sizes of the foods collected in the menu book (using a 
more extensive booklet of photos) and detailed food choices (e.g., type of bread and 
fat) as well as to check for the correctness of information provided in the menu book 
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and questionnaire. By combining the information from menu book, questionnaire 
and interview, the average daily food intakes (grams per day) were calculated and 
were converted into nutrient and energy intakes by using MDC Food and Nutrient 
Database specifically developed for MDCS from the PC KOST-93 of the Swedish 
National Food administration [212].  

Validity and reproducibility  
The relative validity of the modified diet history methods used in MDCS has been 
evaluated among 206 residents of Malmö using an 18-day weighed food record 
(obtained by collecting 3-days weighed records every second month over one year 
to equally represent week days and weekend as well as seasonal variations) as a 
reference method. Energy–adjusted Pearson correlation coefficients in men/women 
were 0.64/0.69 for fat, 0.66/0.70 for CHO, 0.54/0.53 for protein and 0.74/0.69 for 
fiber [213]. Reproducibility of the method was examined approximately one year 
after the first diet assessment among 126 men and 115 women residing in Malmö. 
Energy-adjusted Pearson correlations were between 0.50 and 0.80 for most of the 
nutrients [214].  

Energy misreporting and food habit change 
To identify the participants misreporting their energy intake, the physical activity 
level (PAL) was calculated from self-reported information on physical activity at 
work, household and leisure time, sleeping hours, self-care and passive time. The 
individuals having ratio of energy intake to basal metabolic rate (BMR) outside the 
95% CI limits of calculated PAL, were classified as misreporters [215]. Information 
about the change in food habit was obtained through a question stating ‘Have you 
substantially changed your eating habits because of illness or for other reasons?’ in 
the questionnaire.  

Seasonal variation and diet assessment method version 
Since the dietary intake may change with the season, the season of the dietary 
interview was recorded as spring (Mar-May), summer (Jun-Aug), autumn (Sep-
Nov) and winter (Dec-Feb). A slight alteration (replacement of individualized with 
standardized recipes and portion sizes for some foods) in diet assessment method 
was made in September 1994 to shorten the interview time. The diet assessment 
method version variable indicate if the data was collected before or after this change 
but it appears to have no major influence on the ranking of participants [213]. 
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The GLACIER Study 

The GLACIER study comprising of 19,547 participants is a population based 
prospective cohort nested within the ongoing Västerbotten health survey (VHU, 
Västerbotten Hälso Undersökning) of >100,000 adults from northern Swedish 
county of Västerbotten. GLACIER participants underwent the baseline health 
examination between 1985 and 2004 when all residents of the Västerbotten County 
were invited to visit their primary health care center in connection with their 40th, 
50th and 60th birthdays. A sub-group of GLACIER participants (n=5010) attended a 
10-year follow-up examination between 1995 and 2007. During baseline 
examinations basic anthropometric measurements (weight, height and WC) and BP 
were taken, fasting blood samples were drawn and information about physical 
activity, lifestyle factors and diet was obtained using validated self-administered 
questionnaires [216, 217]. Initially an 84-item food frequency questionnaire (FFQ) 
was used to capture habitual diet intakes but in 1996, some of the food items were 
combined and the questionnaire was reduced to 66-items. Participants were asked 
to record food intake on a 9-point frequency scale ranging from never to >4 times 
per day as well as portion sizes from three food groups including potatoes/rice/pasta, 
meat/fish and vegetables. Energy and nutrient intake was calculated by the 
nutritional values available through the National Food Administration’s database 
(www.slv.se). Food intake level (FIL) was calculated by dividing total energy intake 
with the BMR and was used to identify and exclude participants with unreliable data 
(top 1% and bottom 5% of the FIL distribution within entire VHU population were 
excluded). Information about lifestyle such as family history of diseases (CVD, 
diabetes), quality of life, social support, tobacco and alcohol use etc. was obtained 
through the Short Form-36 and information about physical activity was obtained 
through a modified version of International Physical Activity questionnaire. All 
participants provided written informed consent as part of VHU and GLACIER study 
protocols were approved by the regional ethical review board in Umeå [217].  

Study Specific Materials 

Dietary variables 

Macronutrients, starch and fiber (Paper I and III) 
The variables for total energy intake, macronutrients (fat, CHO and protein) and 
fiber were used in paper I. Total energy intake (kcal/day) included energy from fat, 
CHO, protein, fiber and alcohol. Macronutrient intakes were converted into 
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percentage of non-alcohol and non-fibre total energy (E%) by using a conversion 
factor of 4kcal/g for CHO and proteins and 9kcal/g for fats while fiber intake was 
studied as fiber density (g/1000kcal). Fat intake included saturated-, mono-
unsaturated- and poly-unsaturated fats and cholesterol. CHO intake included 
monosaccharides, disaccharides and starch but not fiber. Fibre intake included all 
types of fiber as data on fiber subtypes was not available in MDCS. In paper III, 
starch intake was used which was calculated by subtracting monosaccharides and 
disaccharides from total CHO intake. Starch intake was also studied as E%.  

Sugar-sweetened and artificial-sweetened beverages (Paper II) 
In paper II, dietary data on SSB and artificial-sweetened beverages (ASB) was 
studied. In MDCS, SSB include all carbonated and non-carbonated beverages 
sweetened with energy containing sweeteners except juice. ASB include all 
beverages with non-energy artificial sweeteners, for example fruit drinks, sodas and 
pops. Reported intakes of SSB and ASB in g/day were converted into serving/day 
by using a conversion factor of 250g/serving. Further, SSB (or ASB) intake was 
stratified into tertiles after putting zero/seldom consumers in a separate category. In 
GLACIER, information on SSB was collected via two questions (one on carbonated 
and other on non-carbonated beverages) in the 88-item FFQ but later on in 66-item 
FFQ, both questions were combined and juice was added. The 9-point scale of FFQ 
was combined to form 4 categories similar to MDCS. No information on ASB was 
available. 

Lifestyle variables 

The information regarding socioeconomic and lifestyle factors was obtained 
through a self-administered questionnaire.  

Smoking (Paper II and III) 
In both MDCS and GLACIER, the smoking variable was categorized into never, 
former and current smokers. 

Alcohol (Paper II and III) 
Alcohol consumption was quantified as gram/day. In MDCS, participants reporting 
no alcohol consumption in the previous year in the questionnaire as well as in the 
menu book, were considered as zero consumers while the rest of the individuals 
were further categorized into gender specific low, moderate and high consumers 
based on information from the menu book. The cut-off levels for males were 
<20g/day, 20-40g/day and >40g/day and for females were <15g/day, 15-30g/day 
and >30g/day. 
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Education (Paper III) 
Based on the type of education attained, the variable was categorized as elementary 
( 8years), primary or secondary (9-10 years), upper secondary (11-13 years) and 
university degree. 

Leisure time physical activity (Paper II and III) 
In MDCS, information on LTPA was obtained from 17 different pre-specified 
activities and one open activity in the questionnaire. The questionnaire was adapted 
from Minnesota leisure time physical activity questionnaire [218]. Thus the time 
spent on each activity was multiplied with an intensity factor to calculate LTPA 
score which was further stratified into gender-specific tertiles. In GLACIER, 
information on LTPA regarding past three months was gathered through a modified 
International Physical Activity questionnaire. The five point scale representing 
never, occasionally, 1-2 times/week, 2-3times/week and >3 times/week was 
combined to form a two level scale (low level (<1 time/week) and a medium/high 
level ( 1-2 times/week)) for analyses in paper II. 

Clinical measurements  

Anthropometric measurements (Paper I to V)  
In both cohorts, weight (kg) and height (cm) were measured by trained staff using a 
calibrated balance-beam scale (with participant wearing light indoor clothing) and 
a wall-mounted stadiometer respectively. In MDCS, participants also provided self-
reported data during baseline examinations regarding their weight at the age of 20 
years. They also provided the information whether their weight has been stable, 
increased or decreased since then. BMI was calculated by dividing weight (kg) with 
height (meters2) and obesity was defined according to WHO criteria [11]. WC (cm) 
was measured midway between the lowest rib margin and iliac crest and hip 
circumference (cm) was measured at the level of greatest lateral extension of the hip 
by trained staff. WHR was calculated by dividing WC with hip circumference. Body 
composition (FM and FFM) was estimated by using BIA (BIA 103; JRL Systems, 
Mt. Clemens, MI, USA) and BF% was calculated using manufacturer provided 
algorithm.  

Laboratory measurements (Paper V) 
BP was measured in supine position after resting for ten minutes by using a mercury-
column sphygmomanometer. Fasting blood samples were available only in MDC-
CC for the measurement of fasting blood glucose (FBG) and fasting lipids and 
lipoproteins (TG, LDLC and HDLC) which were analyzed by routine standard 
methods at the Department of Clinical Chemistry, Malmö University Hospital. FBG 
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was measured by hexokinase method and was multiplied by 1.13 to be converted 
into fasting plasma glucose (FPG). TG and total cholesterol (TC) were measured 
using reagents and calibrators from the supplier on a DAX 48 automatic analyzer 
(Bayer AB, Göteborg, Sweden). HDLC was first treated with dextran sulphate to 
precipitate LDLC and very low-density lipoprotein cholesterol (VLDLC) and then 
measured in the same manner as TC. LDLC was calculated using Friedewald 
formula: LDLC= TC – HDLC - (TG/2.2) [211], excluding individuals with TG>4.0 
mmol/l. 

Genetic variants and genotyping 

In MDCS, blood samples (non-fasting) were collected and stored at baseline and 
DNA was extracted from frozen granulocyte or buffy coat samples using QIAamp96 
spin blood kits (QIAGEN, VWR, Gaithersburg, MD, USA). Genetic variants and 
genotyping methods used in papers I to V are summarized in Table 1. In all the 
studies genotypes were recoded as 0, 1 and 2 according to the number of risk 
increasing alleles for the corresponding trait. 

Table 1. Summary of genotyping methods and genetic variants in paper I-V 
Paper Genetic 

variant 
type 

Main 
trait 

Total 
no. of 
loci 
used 

Genotyping 
method 

Reference 

Paper I SNP BMI, 
obesity 

16 Sequenom 
iPLEX, TaqMan, 
KASPar 

Meyre et al., 2009 [219]; 
Thorleifsson et al., 2009 
[131]; Willer et al., 2009 
[130] 

Paper II SNP BMI 30 Sequenom 
iPLEX, TaqMan, 
KASPar, 
*Metabochip 
array 

Speliotes et al., 2010 
[132] 

Paper III CNV BMI 1 TaqMan Falchi et al., [220] 

Paper IV SNP BMI 31 Sequenom 
iPLEX, TaqMan, 
KASPar, *Open 
array, 
*Metabochip 
array 

Speliotes et al., 2010 
[132] 

Paper 
V 

SNP BMI, 
SBP, TG, 
LDLC, 
HDLC, 
FPG 

153 Sequenom 
iPLEX, TaqMan, 
KASPar 

Speliotes et al., 2010 
[132]; Newton-Cheh et 
al., 2009 [221]; Ehret et 
al., 2011 [222]; Wain et 
al., 2011 [223]; Teslovich 
et al., 2010 [224]; Dupuis 
et al., 2010 [225] 

SNPs: single nucleotide plymorphisms; CNV: Copy numbervariant; BMI: Body mass index; SBP: Systolic blood 
pressure; TG: Triglycerides; LDLC: Low-density lipoprotein cholesterol; HDLC: High-density lipoprotein cholesterol; 
FPG: Fasting plasma glucose. *Open array and MetaboChip array genotyping methods were used only in GLACIER. 
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BMI-associated SNPs (Paper I, II, IV and V) 
In paper I, 16 GWAS identified BMI and/or obesity associated SNPs were studied. 
These included FTO rs9939609, MC4R rs17782313, SH2B1 rs7498665, GNPDA2 
rs10938397, BDNF rs4923461, AIF1 rs2844479, MTCH2 rs10838738, FAIM2 
rs7138803, SEC16B rs10913469, TEM18 rs6548238, NEGR1 rs2815752, SFRS10 
rs7647305, KCTD15 rs29941 [130, 131], MAF rs1424233, NPC1 rs1805081 and 
PTER rs10508503[219]. The SNPs were genotyped either by TaqMan or KASPar  
allelic discrimination assay-by-design method using an ABI 7900 PCR system 
(Applied Bio-systems, foster City, CA, USA) or by Sequenom iPLEX method using 
a MALDI-TOF mass spectrometer (Sequenom, San Diego, CA, USA) depending 
on the availability of assays and reagents. Average successful genotyping call rate 
was 98.4% and all SNPs were in Bonferroni corrected Hardy-Weinberg equilibrium 
(HWE) (P>0.0031 for 16 independent tests at =0.05). In paper II, IV and V, 32 
BMI associated SNPs identified in GWAS by Speliotes et al. in 2010 were studied 
[132]. Of these, one of the SNPs representing ZNF608 rs4836133 was not 
successfully genotyped in MDCS and hence was excluded in all the three studies. 
In MDCS, all SNPs were genotyped using the same methods as stated in Table 1 
with average genotyping success rate of 97.2% and all SNPs were in Bonferroni 
corrected HWE (P>0.001 for 31 independent tests at =0.05). In GLACIER, 
genotyping was performed by MetaboChip array (Illumina Inc., San Diego, CA, 
USA) with a genotyping success rate of 96.0% and all SNPs were in HWE 
(P>0.001). Additionally one more SNP representing LRP1B rs206936 was not in 
Bonferroni corrected HWE and as no proxy was available for the GLACIER sample 
used in paper II, in total 30-BMI associated SNPs were included in paper II.  

Lipids-, BP- and FPG-associated SNPs (Paper V) 
In paper V, SNPs associated with cardiometabolic traits other than BMI were also 
analyzed. All SNPs were genotyped by Sequenom iPLEX, TaqMan or KASPar 
methods as described above. As a quality control, all SNPs with genotype success 
rate of <90% and deviating HWE for each trait-specific set of SNPs were excluded. 
Thus, in total 153 GWAS identified SNPs were studied including 31 SNPs for BMI 
[132], 29 for SBP [221-223], 26 for TG [224], 32 for LDLC [224], 41 for HDLC 
[224] and 15 for FPG [225].  

AMY1 CNV (Paper III) 
Copy numbers of AMY1 were determined by TaqMan assay using AB 7900HT Real-
time PCR system (Applied Biosystems, Foster City, CA, USA). All samples were 
run twice in triplicate and copy numbers were estimated using Ct method using 
a reference DNA sample with 14 copies of AMY1. As a quality control, all samples 
for which the difference in estimated copy numbers is >1 between the two runs and 
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those that were outside 99 percentile for Ct.SD and/or predicted copy numbers 
were excluded. 

Since the reliability of qPCR method for genotyping CNVs has been questioned in 
the recent literature [226-228], we additionally genotyped AMY1 CNV by another 
method reported to be more reliable known as droplet digital PCR (ddPCR) [226, 
227]. In ddPCR, reaction mixture is partitioned into thousands of nanoliter-sized 
droplets each with 0 or 1 copy of locus of interest and after thermocycling number 
of florescent droplets are counted. Each of the 96-well plate was run with three 
reference DNA samples containing 4, 8 and 17 copies of AMY1.  All the samples 
with unreliable number of droplets (too few or too many) were excluded. However 
we did not find any significant difference in genotypes by the two methods as they 
were highly correlated (Pearson correlation coefficient =0.98). However, upon 
stratification into low ( 10) and high (>10) copy numbers, the correlation 
coefficients were 0.98 and 0.78 respectively.  

Clinical end points 

Diabetes (Paper I to V) 
In MDCS, diabetes cases at baseline examination were identified by self-reported 
diagnosis in the questionnaire, by use of anti-diabetic medication and additionally 
by a FBG 6.1 mmol/L (equivalent to FPG 7.0 mmol/L) in MDC-CC. In 
GLACIER, diabetes cases at baseline were identified through self-reported data 
provided in the questionnaire. 

CVD- and total Mortality (Paper IV and V) 
In papers IV and V the information regarding total mortality and CVD mortality 
were retrieved by linking the individual’s 10-digit civil registration number with 
Swedish National Cause of Death Register. Mortality was attributed to CVD causes 
when the main International Classification of Disease (ICD) code was ICD:9(390-
459) or ICD:10I(00-99) on the cause of death certificate.  
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Study specific methods and analyses 

Paper I 

Study participants 
For paper I, the whole MDCS cohort (n=30,447) was included. After excluding 
participants lacking DNA, genotype information for more than 40% of the studied 
16 SNPS or crucial phenotype information, 29,480 participants remained that 
constituted the study sample for genetic analyses (association analyses of SNPs/GRs 
with obesity and related traits). For association and interaction analyses with dietary 
variables, participants with incomplete dietary data (n=2,258) and with diabetes at 
baseline (n=1,115) were excluded. Thus, 26,107 participants constituted the study 
sample for analyses with dietary variables.  

GRS calculation and statistical analyses 
A non-weighted GRS comprising of 13 of the 16 SNPs (three SNPs were not 
replicated in Paper I) was calculated using PLINK (version 1.05). All other analyses 
were performed using SPSS version 20 (IBM Corp. Armonk, NY, USA). All 
variables were logarithmically transformed to normalize the distributions. 
Assuming additive model and adjusting for age and sex, logistic regression was used 
to analyze association between SNP/GRS and dichotomous variables (overweight 
and obesity) and linear regression was used to analyze association between was 
SNP/GRS and continuous variables (height, weight, WC, hip circumference, FM, 
FFM, BF%). Association analyses with dietary variables [total energy intake 
(kcal/day), fat (E%), CHO (E%), protein (E%) and fiber (g/1000 kcal)] using linear 
regression were additionally adjusted for season, diet assessment method version 
and total energy intake when applicable. Association between GRS and BMI, FM 
and FFM was also evaluated in population specific quintiles of macronutrients (E%) 
and fiber (g/1000 kcal). Generalized linear model (GLM) was used to study 
interactions between SNP/GRS and diet quintiles on BMI, FM and FFM. Since diet 
reporting and body composition differ between male and females, we run all 
SNP/GRS x diet interaction analyses separately in males and females using sex-
specific diet quintiles. Power calculations were performed using Quanto (Quanto 
version 1.2.4: http://hydra.usc.edu/gxe) and the present study was found to have 
80% power to detect a gene x diet interaction of at least 0.022 on BMI at  level of 
0.05. A P value of <0.05 was considered significant in the association analyses of 
SNP/GRS with BMI and related traits and in the GRS x diet interaction analyses on 
BMI and associated traits. However, in the association analyses of 16 SNPs with 
diet intakes and SNP x diet interaction analyses on BMI and related traits, a 
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Bonferroni corrected P value of 0.003 (0.05/16) was considered significant. 
Sensitivity analyses were performed after excluding energy misreporters (~19%). 

Paper II 

Study participants 
In paper II, participants from MCDS and GLACIER were included. In MDCS, the 
study population comprised of 21,824 healthy participants (free of diabetes at 
baseline, CVD and cancer) with complete dietary data and genotype information. In 
GLACIER, 4,905 participants with available genotype and phenotype data for 
variables used in this study were included. 

GRS calculation and statistical analyses 
All statistical analyses were performed by using SPSS version 20 (IBM Corp, 
Armonk, NY, USA) (in MDCS), SAS version 9.4 (SAS Institute Inc., Cary, NC, 
USA) (in GLACIER) and STATA (Stata Corp, College station, TX, USA) (in meta-
analyses). GWAS identified 30 BMI-associated SNPs were used to calculate both 
weighted (where each BMI-increasing risk allele was weighted by their previously 
reported effect sizes [132]) and un-weighted (by summing up the BMI-increasing 
risk alleles) GRSs. To facilitate interpretation, weighted GRS was rescaled to reflect 
the number of risk alleles by using a previously described method [229]. However, 
the results for both GRSs were overall similar, so results for weighted GRSs were 
presented throughout the paper. Assuming an additive effect of alleles, GLM was 
used to study interaction between GRS and SSB/ASB on BMI by including a 
multiplicative term (GRS x SSB or GRS x ASB) in addition to marginal effect terms 
in the model. All models were adjusted for age, sex and study specific covariates 
(MDCS: season, diet assessment method; GLACIER: FFQ version). To account for 
potential confounding factors, analyses were additionally adjusted for physical 
activity, smoking, alcohol intake and total energy intake in a second model. For 
illustration of interaction, the association between GRS and BMI were analyzed 
stratified by SSB intake categories (four categories) and association of SSB with 
BMI was stratified by cohort-specific GRS quartiles. To combine the cohort-
specific effect estimates from main and interaction analyses and their respective 
variance estimates, inverse-variance weighted fixed effects meta-analysis was 
performed using metan command in STATA. 
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Paper III 

Study participants 
In paper III, 4,047 participants from the sub-cohort MDC-CC were included after 
excluding participants lacking DNA and information about dietary variables, failing 
quality control of AMY1 CNV genotyping and having diabetes at baseline. 

Statistical analyses 
In paper III, all statistical analyses were performed separately in men and women 
using SPSS version 22 (IBM Corp, Armonk, NY, USA). AMY1 CNV and dietary 
starch intake (E%) were used both as continuous variables and as stratified into sex-
specific tertiles when indicated. Across tertiles of starch intake, ANOVA was used 
to compare mean (±SD) values for continuous variables (age, BMI, WHR, BF% and 
total energy intake; they were all normally distributed) and Chi-square test was used 
to compare distribution [n (%)] for categorical variables (LTPA, alcohol, smoking 
and education). Association of AMY1 CNV with obesity traits (BMI, WHR and 
BF%) was tested by using linear regression adjusted for age. GLM was used to 
calculate age-adjusted mean values and 95% CI for obesity traits in tertiles of starch 
intake and tertiles of AMY1 CNV. The association analyses of AMY1 CNV with 
obesity traits in strata of starch intake were adjusted for age. The association 
analyses of starch intake with obesity traits were adjusted for age season and total 
energy intake in basic model and additionally adjusted for LTPA, smoking, alcohol 
intake and education in the fully adjusted model. Similarly, using both basic and 
fully adjusted models, GLM was used to test interaction between AMY1 CNV and 
starch intake on obesity traits by including a multiplicative term in the model. A two 
sided P value <0.05 was considered significant. In sensitivity analyses, the 
participants identified to have changed their food habits in the past and/or misreport 
their energy intakes were excluded (~32%).  

Paper IV 

Study participants 
I Paper IV, participants from both MDCS and GLACIER were included. In MDCS, 
from the total 30,447 participants, 21,407 participants were included after excluding 
participants lacking DNA, crucial basic phenotypic information and reliable self-
reported weight information at age of 20 years, with poor genotyping (lacking 
genotype information for >40% of the SNPs) and with diabetes at baseline. Of these, 
2673 participants also had follow-up information taken during MDC-CC re-
examination. In GLACIER, after excluding participants with poor genotyping and 
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with diabetes at baseline, 4,327 participants with 10 year follow-up data were 
included in the study.  

GRS calculation 
GRSs, both weighted (where each risk allele was weighted by their previously 
published effect sizes [132]) and un-weighted (where BMI-increasing risk alleles 
were summed up) were calculated from 31 BMI-associated SNPs. The weighted 
GRS was rescaled so that each point of the GRS corresponded to one risk allele. 
Since both GRSs produced similar results, results from weighted GRS were 
presented. GRS was used as both continuous variable and stratified into quintiles. 

Annual weight change 
Information about weight was available at three time points in MDCS [at age 20 
years (young age), at baseline (late middle age) and at follow-up (old age)] and at 
two time points in GLACIER [at baseline (early middle age) and at follow-up (late 
middle age)]. The weight change was calculated from the difference in weight 
between (i) age 20 years and baseline and (ii) baseline and follow-up in MDCS and 
(iii) baseline and follow-up in GLACIER. The resulting weight change was divided 
by the follow-up time corresponding to each time period to calculate annual weight 
change. Annual weight change from baseline to follow-up was further stratified into 
weight gain (when weight at follow-up was higher than weight at baseline) and 
weight loss (when weight at follow-up was lower than weight at baseline) groups.  

Substantial weight gain  
Substantial weight gain was defined as at baseline, having gained 10% of their 
weight at age 20 years in MDCS and at follow-up, having gained 10% of their 
weight at baseline in both MDCS and GLACIER. Participants who gained or lost 
<10% were considered as having stable weight and those who lost 10% were few 
(<3%) and were included in the stable weight group in all analyses (since excluding 
them did not influence the results). 

Statistical analyses 
Data was analyzed using SPSS version 20 (IBM Corp, Armonk, NY, USA), PLINK 
version 1.07 (http://pngu.mgh.harvard.edu/~purcell/plink/), and STATA version 13 
(Stata Corp, College station, TX, USA) in MDCS and replication analyses in 
GLACIER were performed using SAS version 9.3 (SAS Institute Inc., Cary, NC, 
USA), STATA version 12.1 and PLINK version 1.07. In MDCS, linear regression 
was used to analyze association between GRS and BMI at age 20 years, at baseline 
and at follow-up. Association between annual weight change and substantial weight 
gain (from age 20 years to baseline and from baseline to follow-up) and SNP/GRS 
(per unit increase in GRS, per GRS quintile and comparing extreme GRS quintiles) 
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was analyzed by linear regression and logistic regression respectively. In order to 
investigate changes in body composition, we additionally performed similar 
analyses for WC and WHR and annual changes in these traits in relation to BMI 
GRS (these analyses were not performed in GLACIER as longitudinal data was 
unavailable). Analyses were adjusted for age, sex and follow-up time when 
applicable. Model coefficients [effect size ( ) or odds ratio (OR)] from these 
analyses (from age 20 years to baseline and from baseline to follow-up) were 
compared by implementing seemingly unrelated estimation. GLM was used to test 
for interaction between GRS and weight gain and weight loss groups on annual 
weight change. Using time to follow-up as time axis and adjusting for age at baseline 
and sex, Cox proportional hazard model was used to calculate the hazard ratios (HR) 
and 95% CI for GRS in relation to total- and CVD mortality. In analyses with GRS, 
a two sided P value of <0.05 was considered significant and in analyses with single 
SNPs, Bonferroni corrected P value of <0.0016 (0.05/31) was considered 
significant. Replication analyses in GLACIER were performed using the same 
statistical models. Cohort-specific estimates were combined by performing both 
fixed-effect and random-effect meta-analyses using metan command in STATA. 
Since results were similar using both models, only fixed-effect results were 
presented in paper IV.  

Paper V 

Study participants 
In paper V, 28,606 MDCS participants with genotype data were included. All of 
these participants had information about BMI and SBP and of these, 5435 randomly 
selected participants had information about fasting lipids, lipoproteins and glucose. 

GRS calculation 
Trait-specific weighted GRSs were calculated using PLINK such that BMI, SBP, 
TG, LDLC, HDLC and FPG were comprised of 31, 29, 26, 32, 41 and 15 SNPs 
respectively.  

Statistical analyses 
All statistical analyses were performed using STATA version 13 (Stata Corp, 
College station, TX, USA), PLINK version 1.07 and R version 3.1.0.  

For comparability, all study traits (BMI, SBP, TG, LDLC, HDLC and FPG) were 
log transformed and changed to z-scores prior to analyses. Linear regression was 
used to test association between GRSs and their respective traits. Analyses were 
adjusted for age and sex and additionally for lipid lowering therapy or 
antihypertensive therapy when outcome variable was lipid (TG, LDLC or HDLC) 



 
 

69 

or SBP respectively. Participants with diabetes at baseline were excluded when the 
outcome variable was FPG.  

Observational analyses: Cox proportional hazard regression using age as time-scale 
and stratifying the analyses by sex and medication use (when applicable), was used 
to assess associations between trait specific z-scores and outcome traits (total- and 
CVD mortality). Data were treated as left-truncated and right censored.  

Instrumental variable analyses: Causal effect of cardiometabolic traits on total- and 
CVD mortality was evaluated by using two-stage least square regression. In the first 
stage, for each cardiometabolic trait, linear regression with trait-specific z-score as 
the dependent variable and respective GRS (instrument) as the independent variable 
was performed to obtain predicted fitted values (exposure variables) based on the 
instrument. In the second stage, Cox regression was performed with mortality as the 
dependent variable and genetically predicted exposure level from the first stage as 
the independent variable using same conditions as described above.  

Multivariable Mendelian Randomization analyses: To control for the pleiotropic 
effects, we used multivariable Mendelian randomization (MMR) method [230] and 
further modified it by using inverse-variant of the outcome as weights [231]. First, 
each of the 153 SNPs was regressed on each of the cardiometabolic trait using linear 
regression and each of the outcome trait (total- and CVD mortality) using Cox 
regression as described above. The resulting  coefficients of each SNP for each 
cardiometabolic trait were inverse-weighted. Finally, using  coefficients of the 
outcome traits as the outcome variables, and weighted  coefficients of the 
cardiometabolic traits as the predictor variables in a single multivariable regression 
model and using inverse variance of the outcome as weights, weighted linear 
regression analyses were performed. 
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Results 

Paper I: Genetic susceptibility to obesity and diet intakes  

Associations of obesity susceptibility SNPs and GRS with obesity and 
related traits 

In paper I, 16 BMI and/or obesity associated SNPs were first tested for the 
association with obesity and related traits in 29,480 MDCS participants.  More than 
50% of the participants were either overweight or obese and 4.2% had diabetes at 
baseline. Of the tested 16 SNPs, 14 showed directionally consistent associations 
with BMI as reported in the original GWAS. Apart from PTER and MAF that did 
not show any significant associations, and AIF1 that associated with lower BF% and 
show a negative trend for association with BMI, rest of the SNPs associated with at 
least one or more of the anthropometric (BMI, waist and hip circumference) and 
body composition traits (BF%, FM and FFM) (P<0.05 for all) to expected direction. 
FTO rs9939609 explained the highest per-risk allele increase for each of these traits.  

For the association with overweight and obesity, six of the loci in/near FTO, 
GNPDA2, SEC16B, BDNF, TMEM18 and NPC1 associated with increased risk for 
both overweight and obesity. SNPs in/near SH2B1, SFRS10 and KCTD15 associated 
with increased risk for overweight and MC4R and NEGR1 associated with increased 
risk for obesity. Three loci (AIF1, PTER and MAF) did not associate with risk for 
overweight or obesity. 

To study the cumulative associated effect of all the obesity susceptibility loci, a GRS 
comprising of 13 SNPs was calculated. Since three loci (AIF1, PTER and MAF) 
were not replicated in the present study, they were not included in the GRS. Of these 
three loci, PTER and MAF being originally identified as loci for morbid obesity, did 
not associate with BMI and/or obesity while AIF1 which was originally identified 
for association with weight associated with lower BMI in this study. The GRS 
strongly associated with all the studied anthropometric and body composition traits 
but not with hip circumference. Each additional BMI-increasing allele of the GRS 
associated with 0.12 kg/m2 increase in BMI which corresponds to 347g increase in 
body weight per allele in a 170 cm tall person. A difference of 2.2 kg in total weight, 
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1.2 kg in FM and 1.0 kg in FFM was observed when individuals having a low 
number of risk alleles (GRS 11) were compared with those having a high number 
of risk alleles (GRS 16).  

Each unit increase in GRS was associated with 5% increased odds of being 
overweight and 8% odds of being obese (Table 6). Using individuals with GRS 11 
as the reference group, individuals having GRS 16 had 1.38- and 1.64 fold higher 
risk for being overweight or obese, respectively.  

Associations of obesity susceptibility SNPs and GRS with dietary 
intakes 

For the associations of individual SNPs with total energy intake, macronutrients and 
fiber intake, FTO, GNPDA2, MTCH2, NEGR1, MAF and NPC1 showed nominal 
significant associations with at least one of these dietary traits. However, after 
correction for multiple comparisons, only the association of FTO with lower total 
energy intake (P=0.001) and NEGR1 with lower fat intake (P=3.2x10-5), higher 
CHO intake (P=3.3x10-5) and higher fiber intake (P=1.1x10-4) remained significant. 
In sensitivity analyses, after excluding potential misreporters of energy, the 
association of FTO with total energy intake became non-significant (P=0.083) but 
the association of NEGR1 with fat (P=5.5x10-5), CHO (P=1.8x10-4) and fiber 
(P=4.0x10-6) intakes remained unchanged. 

Mean total energy intake, protein and fiber intakes differed significantly across GRS 
groups but no significant differences in fat and CHO intakes were observed. 
Individuals in the high GRS group (GRS 16) had on average lower total energy 
intake (P=0.001) and higher intakes of protein (P=0.011) and fiber (P=2.3x10-4). 
Upon additional adjustment with BMI, the association of GRS with protein intake 
was no more significant (P=0.25), while the associations with total energy intake 
and fiber intake remain unaffected. Similarly, in the sensitivity analyses, association 
of GRS with protein intake became non-significant (P=0.11) but remained 
unchanged for total energy intake (P=0.019) and fiber (P=2.1x10-4). 

Interaction between obesity susceptibility SNPs or GRS and dietary 
intakes on obesity-related traits 

Nominal significant interactions were observed for 11 loci with at least one of the 
dietary intakes on BMI, FM and FFM. However, after correction for multiple 
testing, only one locus (BDNF rs4923461) showed significant interaction with 
protein intake on BMI (Pint=0.001). High protein intake was significantly associated 
with higher BMI in all BDNF genotype groups but was stronger among BMI-
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increasing A-allele homozygotes (P=1.1x10-60) compared to non-risk G-allele 
homozygotes (P=2.7x10-4). These associations remained similar in sensitivity 
analyses.  

GRS was significantly associated with BMI in each dietary intake and total energy 
intake quintiles but the associated effect sizes did not significantly differ across the 
quintiles of fat (Pint=0.83), CHO (Pint=0.49), protein (Pint=0.27), fiber (Pint=0.67) or 
total energy intake (Pint=0.63). Similarly no significant interactions between GRS 
and dietary intakes on odds of being overweight or obese were observed. Additional 
adjustments with fiber intake or with physical activity levels did not change the 
results. The results remained similar in the sensitivity analyses. 

Paper II: Genetic predisposition to obesity and beverages 
consumption 

In 2012, Qi et al. using three large prospective U.S. cohorts of European ancestry 
have shown that common genetic susceptibility to obesity modifies the association 
between SSB intake (and not ASB intake) and obesity risk [179]. We sought to 
replicate this finding in two large Swedish cohorts: MDCS and GLACIER.  

Association of beverage intakes and GRS with BMI 

Mean daily intake of SSB was similar overall as well as in each of the four categories 
of SSB intake between MDCS (n=21,824) and GLACIER (n=4905) cohorts. After 
adjusting for age, sex, cohort specific covariates and putative confounders (see 
methods for more details), each increment in category of SSB intake was associated 
with 0.19 (SE=0.02; P=1.2x10-16), 0.04 (SE=0.06; P=0.55) and 0.18 (SE=0.02; 
P=3.0x10-20) kg/m2 higher BMI in MDCS, GLACIER and pooled analyses, 
respectively. After same adjustments, each increment in category of ASB intake was 
associated with 0.64 (SE=0.04; P=3.9x10-58) kg/m2 higher BMI in MDCS and this 
association remained unchanged upon additional adjustment for SSB intake.  

Unweighted GRS comprising of 30 BMI associated SNPs was significantly 
associated with BMI in MDCS [ = 0.09 (SE=0.01) per risk allele; P=5.5x10-29] and 
GLACIER [ = 0.16 (SE=0.02) per risk allele; P=4.3x10-22]. GRS was not associated 
with SSB (or ASB) intake in both cohorts. Analyses with weighted GRS produced 
similar results. 
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Interaction between GRS and beverage intake on BMI 

In the interaction analyses, beverage intake was defined as either four categories 
(seldom, low, medium and high intake) or two categories (seldom to low and 
medium to high intake). In the pooled analyses, for each 10 unit increase in GRS, 
the magnitude of association with BMI increased with each increment in category 
of SSB intake (Pint=0.030). Additional adjustments with putative confounding 
lifestyle factors reduced the statistical significance of the observed interaction 
(Pint=0.049). In the lifestyle adjusted pooled analyses with two categories of SSB 
intakes, individuals reporting medium to high intake had on average 1.29 (SE=0.11; 
P=8.3x10-33) kg/m2 higher BMI for each 10 unit increase in GRS. Participants 
reporting seldom to low intake had 0.83 (SE=0.09; P=9.6x10-21) kg/m2 higher BMI 
for each 10 unit increase in GRS. Similar results were obtained with weighted GRS.  

Paper III: AMY1 CNV and dietary starch intake 

In 2014, Falchi et al. indicated a very strong association between CNV in AMY1 and 
obesity, and reported this locus as having the largest genomic influence on obesity 
[220]. However, GWAS studies for obesity have not detected this locus and larger, 
well powered studies failed to replicate these findings [227]. We set up to investigate 
this conflicting relationship of AMY1 CNV with BMI, WHR and BF% in 4047 
participants of MDC-CC, challenging the question of if starch intake may modify 
association between the CNV and obesity traits.  

No significant differences were observed in age, BF%, LTPA, and education across 
starch intake tertiles in neither men nor women. However, in the high starch intake 
tertile, men had significantly lower WHR (P=0.040), women had significantly lower 
BMI (P=0.009) and both men and women had a lower total energy intake (P=3x10-

6 for men; P=5x10-15 for women) and lower proportion of smokers (P=0.002 for 
men; P=2x10-7 for women) compared to those in the low starch intake tertile. 

Association of AMY1 CNV with obesity traits 

No significant associations were observed between AMY1 CNV and BMI, WHR or 
BF% in either men or women (P>0.05 for all). After stratifying by starch intake, we 
observed opposite direction for association between AMY1 CNV and BMI in the 
low and high intake tertiles. BMI decreased with increasing AMY1 CNV in the low 
starch intake tertile (P=0.035) while BMI increased with increasing AMY1 CNV in 
the high starch intake tertile (P=0.040). Moreover, we observed that participants 
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with low AMY1 CNV and high dietary starch intake had the lowest BMI (P=0.024 
for men; P=0.005 for women). 

No association between AMY1 CNV and WHR was observed across tertiles of starch 
intake. However, men with low AMY1 CNV and high starch intake had significantly 
lower WHR compared to those with high starch intake (P=0.011). No significant 
associations between AMY1 CNV and BF% in strata of starch intake were observed 
among men, while AMY1 CNV significantly associated with BF% (P=0.031) among 
women with high starch intake. Moreover, women with low AMY1 CNV and high 
starch intake had significantly lower BF% compared to those with high starch intake 
(P=0.004).  

Interaction between AMY1 CNV and starch intake on obesity traits 

A significant interaction between AMY1 CNV and starch intake on BMI was 
observed among women (Pint=0.041) in the basic model. However, interaction did 
not remain significant in the sensitivity analyses when participants with energy 
misreporting and food habits change were excluded. No significant interactions 
between AMY1 CNV and starch intake on BMI, WHR or BF% was observed in men 
or women when using fully adjusted model (Pint >0.05 for all). Interaction results 
remained unchanged in the sensitivity analyses. 

Paper IV: BMI GRS and weight change 

In paper IV, we investigated the association between a weighted GRS comprised of 
31 BMI associated SNPs and changes in weight at different time points in life using 
data from MDCS (n=21,407) and GLACIER (n=4,327) cohorts. Mean weight, BMI 
and proportion of normal weight and obese subjects at baseline and at follow-up 
were similar in both cohorts. In MDCS, the GRS was significantly associated with 
higher BMI at age 20 years (P=7x10-35), at baseline (P=2x10-34) and at follow-up 
(P=0.005) with comparable effect sizes of 0.15, 0.23 and 0.19 kg/m2 per GRS 
quintile. The GRS was also significantly associated with higher BMI in GLACIER, 
both at baseline (P=1x10-17) and at follow up (P=5x10-13) with somewhat higher 
effect sizes of 0.33 and 0.31 kg/m2 per GRS quintile as compared to MDCS. 
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MDCS 

Weight change from age 20 years to baseline in MDCS 
Self-reported weight information at the age of 20 years was only available in MDCS. 
The GRS was significantly associated with an increased annual weight per risk allele 
of GRS [ = 0.003 (SE=0.001); P=7x10-8], per GRS quintile [ = 0.007 (SE=0.001); 
P=5x10-7] and comparing the extreme quintiles [ = 0.032 (SE=0.006); P=2x10-7]. 
Among the individual SNPs, only FTO rs1558902 showed significant association 
with increased annual weight gain [ = 0.013 (SE=0.003) kg per risk allele; P=5x10-

6] after correction for multiple comparisons. 

Of the 21,407 MDCS participants, 29% (n=6182) maintained a stable weight 
between age 20 years and baseline and 71% (n=15225) gained 10% of their weight 
until baseline. The GRS was associated with 1%, 3% and 12% increased odds for 
substantial weight gain from age 20 years to baseline per risk allele (P=0.013), per 
GRS quintile (P=0.021) and comparing the highest and lowest quintiles (P=0.020). 
FTO rs1558902 (P=0.047), BDNF rs10767664 (P=0.034) and TMEM160 
rs3810291 (P=0.008) showed nominal significant associations with substantial 
weight gain, however, these associations were not significant after correction for 
multiple comparisons. 

Weight change from baseline to follow-up in MDCS 
The GRS was associated with reduction in weight from baseline to follow-up by -
0.006 kg (SE=0.002; P=0.009) per risk allele, -0.018 kg (SE=0.006; P=0.004) per 
GRS quintile and -0.062 kg (SE=0.03; P=0.026) for comparing highest and lowest 
quintiles. Nominally significant associations were observed for MC4R rs571312 
(P=0.042) with weight reduction and for QPCTL rs2287019 (P=0.021) and 
FLJ35779 rs2112347 (P=0.037) with annual weight gain.  

Among MDCS participants (n=2673) with follow-up data, 78% (n=2083) 
maintained a stable weight between baseline and follow-up and 22% (n=587) gained 

10% of their baseline weight. The GRS was associated with 4%, 10% and 32% 
decreased odds for substantial weight gain per risk allele (P=0.001), per GRS 
quintile (P=0.002) and for comparing highest and lowest quintiles (P=0.011). 
Additional adjustments with baseline weight did not change the associations of GRS 
with annual weight change or substantial weight gain.   When stratified into weight 
loss and weight gain groups, the association of GRS with substantial weight gain 
remained unchanged but the association with the annual weight change was 
significant only in the weight loss group.  However, the associations did not 
significantly differ between the two groups (Pint=0.26). Among the individual SNP 
associations with substantial weight gain, FTO rs1558902 (P=0.008) and GNPDA2 
rs10938397 (P=0.037) showed nominal while SLC39A8 rs13107325 (P=0.001) 
showed significant associations. In order to further understand these results, we 



 
 

77 

performed association analyses between GRS and annual changes in WC and WHR. 
Similar to annual decrease in weight, GRS was significantly associated with annual 
reduction in WC and showed similar though non-significant trend for WHR. 

Comparison of estimates 
We further investigated whether the effect size ( ) for association of GRS with 
annual weight change or odds (OR) for substantial weight gain differ between the 
two time periods. The  effect size for association of GRS with annual weight change 
from age 20 years to baseline was significantly different from the effect size from 
baseline to follow-up (P=0.0002 per risk allele and P=0.0001 per GRS quintile).  
Among the individual SNPs, only nominally significant differences in effect 
estimates were observed for FTO rs1558902 and MC4R rs571312 (P>0.01 for both). 
Similarly, the OR for association of GRS with substantial weight gain from age 20 
years to baseline was significantly different from the OR from baseline to follow-
up (P=0.0001 per risk allele and P=0.0002 per GRS quintile). Among the individual 
SNPs, the OR for FTO rs1558902, GNPDA2 rs10938397, SH2B1 rs7359397 and 
TMEM18 rs3810291 were nominally significantly different (P<0.05 for all) and OR 
for SLC39A8 rs13107325 was significantly different (P=0.001) when the results 
from the two time periods were compared. 

Association of GRS with mortality 
We further tested the association between GRS and total- and CVD mortality in 
order to clarify if the observed inverse associations between GRS and weight gain 
during and after middle age could be due to association of GRS with mortality. 
During a mean follow-up of 15 years, 3879 participants died and of these 1217 died 
of CVD. No significant association were observed between GRS and total mortality, 
but higher number of BMI-increasing alleles associated with increased risk of CVD 
mortality [HR (95% CI)=1.02(1.00-1.03); P=0.029]. Upon further stratifying 
participants into weight stable and substantial weight gain groups from age 20 years 
to baseline, GRS associated with CVD mortality particularly among those in the 
highest GRS quintile compared to those in the lowest GRS quintile [1.33(1.10-
1.56); P=0.003] irrespective of the weight gain or weight stable group, while no 
association with total mortality was observed.  

GLACIER 

Weight change from baseline to follow-up in MDCS 
In GLACIER, no significant association between GRS and annual weight change 
was observed, and among the individual SNPs only nominally significant 
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association was observed between PTBP2 rs1555543 and reduction in weight from 
baseline to follow-up (P=0.030).  

Of the 4327 study participants, 79% (3442) maintained stable weight and 21% (885) 
gained 10% weight during follow-up. The GRS was associated with 2% decreased 
odds for substantial weight gain per risk allele (P=0.034) and showed a trend for 
5% and 18% decreased odds for substantial weight gain per GRS quintile (P=0.055) 
and for comparing highest and lowest quintiles (P=0.087) from baseline to follow-
up. None of the SNPs showed association with substantial weight gain. Additional 
adjustment with baseline weight did not change the results. Further stratification 
into weight gain and weight loss groups did not change the association of GRS with 
substantial weight gain but a significant inverse association between GRS and 
annual weight change was observed in the weight loss group (P=0.080 per risk 
allele; P=0.047 per GRS quintile; P=0.016 comparing highest and lowest quintiles).  

Meta-analyses  

In the pooled analyses of MDCS and GLACIER, in total comprising of 7000 
participants, the GRS was significantly associated with annual weight reduction per 
risk allele of GRS [ = -0.005 kg (SE=0.002); P=0.002], per GRS quintile [ = -0.012 
kg (SE=0.005); P=0.007] and comparing the extreme quintiles [ = -0.052 kg 
(SE=0.020); P=0.011] from baseline to follow-up. Among individual SNPs, 
FLJ35779 rs2112347 (P=0.009) and PTBP2 rs155543 (P=0.023) showed nominally 
significant association with annual weight change from baseline to follow-up.   

Similar to association with annual weight reduction, the GRS was associated with 
3%, 7% and 24% decreased odds for substantial weight gain per risk allele 
(P=0.001), per GRS quintile (P=0.001) and for comparing highest and lowest 
quintiles (P=0.004). In meta-analysis, FTO rs1558902 was the only variant that 
showed nominally significant associations with decreased odds for substantial 
weight gain from baseline to follow-up (P=0.019).  

Paper V: Mendelian randomization analyses for the role 
of cardiometabolic traits in mortality 

In paper V, including 28606 MDCS participants and employing Mendelian 
randomization approach, we tried to investigate causal associations between 
cardiometabolic traits and total- and CVD mortality. At baseline, the mean age of 
the participants was 58 years (SD=7.7 years) and 60.3% of the study participants 
were women. Of all the participants at baseline, 3.0% (n=868) were on lipid 
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lowering therapy, 16.9% (n=4841) on antihypertensive therapy and 4.4% (n=1261) 
had diabetes. During a mean follow-up period of 17.6 years (until 31st December 
2013), 27.1% (n=7760) of the participants died of which 9.0% (n=2578) died of 
CVD. Trait specific GRSs were significantly associated with their respective traits 
(P 3x10-16 for all) and explained 0.8, 0.5, 7.2, 5.7, 4.3 and 2.2% of variation in BMI, 
SBP, LDLC, HDLC, TG and FPG, respectively.  

Observational analyses 

Higher levels of BMI, SBP, TG and FPG and lower levels of HDLC were 
significantly associated with increased risk for total- and CVD mortality (P<0.05 
for all) in the observational analyses. No significant association were observed 
between LDLC and risk for total- or CVD mortality (P>0.05 for both). 

Instrumental variable analyses 

Genetically elevated BMI [HR (95% CI)=1.37 (1.06-1.77); P=0.015], LDLC [1.10 
(1.01-1.20); P=0.027] and TG [1.15 (1.04-1.28); P=0.007] were associated with 
higher risk whereas genetically elevated HDLC [0.90 (0.82-0.98); P=0.020] was 
associated with lower risk for total mortality in the IV analyses. Similarly, 
genetically elevated BMI [1.83 (1.17-2.86); P=0.008], LDLC [1.18 (1.02-1.36); 
P=0.028] and TG [1.30 (1.09-1.55); P=0.004] were associated with higher risk 
whereas genetically elevated HDLC [0.78 (0.66-0.91); P=0.002] was associated 
with lower risk for CVD mortality. 

Multivariable Mendelian randomization analyses 

In line with the associations observed in instrumental variable analyses, MMR 
analyses suggested a direct causal association between TG and total- (P=0.017) and 
CVD mortality (P=0.028), and an inverse causal association between HDLC and 
total- (P=0.049) and CVD mortality (P=0.005). However, the significant 
associations observed in instrumental variable analyses between BMI and LDLC 
and total- and CVD mortality did not remain significant in MMR analyses. Similar 
results were observed in the sensitivity analyses, when participants using lipid 
lowering medications and antihypertensive medications at baseline were excluded 
when estimating  coefficients for lipid/lipoprotein and SBP SNPs, respectively. 

  



80 

 



 
 

81 

Discussion 

The overall purpose of this thesis was to contribute to understanding of reasons 
behind the rapid rises in the prevalence of obesity, and possibly to assist in devising 
strategies for the prevention and treatment of this major global health problem. This 
thesis deals with two broad questions. First, by using lifestyle factors, specially diet, 
and available genetic information from recent GWAS discoveries, we tried to 
investigate if and how genetic susceptibility to obesity can be modified by dietary 
factors (paper I to III) and how genetic susceptibility to obesity relates to weight 
gain at different time points in life (paper IV). Understanding gene-diet interactions 
may help to identify sub-groups of people that may benefit from specific lifestyle 
modifications. Further, understanding the associated effects of genetic variants on 
weight changes at different ages may help to appropriately implement the lifestyle 
modifications in people with different age groups. Secondly, we investigated if 
cardiometabolic traits causally link with mortality (paper V) as identifying causal 
associations can decrease the disease burden by improving strategies for prevention 
and treatment. 

Paper I 

In paper I, 13 of the 16 obesity susceptibility variants were replicated for their cross-
sectional associations with BMI, overweight, obesity or body fat distribution. The 
SNPs in/near AIF1, PTER and MAF were not replicated in the middle-aged Swedish 
population in paper I and similarly have not been replicated in other studies [232, 
233]. GRS comprising of 13 replicated variants was associated with an increase of 
347 g in body weight per BMI-increasing allele. GRS was found to associate with 
higher fiber intake and lower total energy intake but the dietary macronutrients, fiber 
or total energy intake did not seem to modify the association between GRS and 
obesity related traits (BMI, FM or FFM). Several of the SNPs showed nominal 
significant associations with dietary intakes and nominal significant interactions 
with dietary intakes on obesity related traits. However, after Bonferroni correction, 
only NEGR1 locus showed significant associations with fat, CHO and fiber intakes 
and BDNF locus showed significant interaction with protein intake on BMI. 
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All the studied 16 variants were identified through GWAS for BMI/weight and 
early-onset morbid adult obesity [130, 131, 219]. Replication studies following 
GWAS are very important in providing convincing statistical evidence for 
association, to rule out associations due to biases and to improve effect estimations. 
Additionally, extension of original findings to more detailed and complex 
phenotypes is necessary to ascertain the clinical relevance of genetic variation [234]. 
In paper I, for the replicated loci, the per-allele effect sizes observed for BMI were 
modest but quite similar to those observed in discovery studies [130, 131]. FTO 
rs9939609 explained the highest per-allele change in BMI in paper I (0.32 kg/m2) 
which is comparable to effect sizes observed in GWAS (0.33 kg/m2) [130]. The 
second largest per-allele effect size for BMI was observed for TMEM18 rs6548238 
both in our study (0.19 kg/m2) and in the discovery studies (0.26 kg/m2) [130, 131]. 
In line with our study, associations between quantitative measures of obesity such 
as BMI, weight and WC and/or risk for obesity have also been confirmed in other 
studies for variants in/near FTO, MC4R, TMEM18, SEC16B, NEGR1, SH2B1, 
MTCH2, GNPDA2, FAIM2, BDNF and KCTD15 [235-242]. In total these loci 
explain only 1% of the total genetic variation in BMI in the population [243]. Later 
on, more recent GWAS efforts have extended the list to 97 BMI-associated genetic 
variants, that explain 2.7% of the genetic variation in BMI but still a large part of 
the genetic variation controlling obesity awaits discovery. It is expected that rare 
variants with potentially large effects and copy number variants may cover part of 
the missing heritability.  

Many of the studied variants are in/near the genes that are expressed particularly in 
the hypothalamus which is a crucial center for energy balance and regulation of food 
intake [130]. It is well established that genetic variants do not solely result in obesity 
without the exposure of an obesogenic environment i.e., increased energy intake and 
reduced energy expenditure that are considered to be the main culprits in global 
obesity epidemic in the past decades [244]. Apart from total energy intake, which is 
the most important aspect of food intake in weight control and obesity development, 
the macronutrient composition may be an important factor, and may be dependent 
on genetic factors.  In our study, we hypothesized that the relative intakes of fat, 
CHO, protein and fiber could influence the genetic predisposition to obesity. Among 
the individual SNPs after accounting for multiple comparisons, FTO rs9939609 was 
significantly associated with lower total energy intake and NEGR1 rs2815752 was 
significantly associated with lower fat and higher CHO and fiber intakes. FTO 
variant has earlier shown to be associated with increased total energy intake in 
children [245-247] and adults from multiple ethnicities [248]. We could not confirm 
these findings which could be due to the differences in the studied variants, type of 
participants (children, multiple ethnicities), smaller study populations in the earlier 
studies as compared to our, and differences in the dietary assessment methods. In 
line with our results, despite the mentioned differences, other studies both in 
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European adults [240, 249] and European and African-American children [250, 
251] did not find association between FTO and increased total energy intake. 
Moreover, BMI-increasing allele of FTO variant was found to be significantly 
associated with decreased total energy intake [172, 252] in adults and with increased 
total energy intake in children and adolescents [171] in large scale meta-analyses.  

Misreporting is a common inevitable measurement error found in any dietary 
assessment that relies on self-reports such as FFQ and dietary records. After 
exclusion of misreporters, the association of FTO rs9939609 became non-
significant but NEGR1 rs2815752 results remained unchanged. In MDCS cohort 
misreporting of energy has been closely examined in relation to other 
characteristics. Under-reporting of energy was significantly associated with higher 
BMI, larger WC, lower education and a-blue collar profession while over-reporting 
of energy was associated with lower BMI, living alone and current smoking in both 
genders compared to adequate energy reporters [215]. There is no gold standard 
approach for measuring dietary intake and all diet assessment methods are prone to 
measurement errors [253]. Measurement errors can be because of random errors in 
dietary measurement (which occur when there is large day-to-day variation in 
dietary intake making it difficult to estimate mean daily intake and when dietary 
intakes are inaccurately measured) or systemic errors (which occur when diet 
assessment method fail to cover frequently consumed foods in a specific group 
resulting in underestimation of dietary intakes) [253]. Measurement error in the 
assessment of dietary data may significantly attenuate the diet–disease association 
[254]. However, the diet assessment method used in MDCS is a combination of 
FFQ, 7-days dietary record and extensive interview and proved to have high validity 
[213] and reproducibility [214].  Energy-adjusted Pearson correlation coefficients 
in men/women were 0.64/0.69 for fat, 0.66/0.70 for CHO, 0.54/0.53 for protein and 
0.74/0.69 for fiber [213].   

The association between genetic variation in FTO and obesity has been clearly 
established but the underlying mechanism by which FTO variants influence 
adiposity is unknown. Animal studies have suggested a role of Fto in regulating 
energy homeostasis but whether it does so by influencing energy intake [255, 256] 
or energy expenditure [257, 258] is unclear. Moreover, a debate is ongoing 
concerning the role of the different genes in the FTO locus and it is currently not 
clear if it is FTO itself or one of the nearby genes such as IRX3 [142] or RPGRIP1L 
[141], or if genetic variation in this locus has functional effects on several genes in 
the region. Most recently, Claussnitzer et al. proposed the switch like behavior of 
FTO rs1421085 variant in browning of white adipocytes and thermogenesis through 
an evolutionary conserved motif for the ARID5B repressor that regulates the 
downstream expression of IRX3 and IRX5 [144]. The variant can disrupt the 
ARID5B repressor binding during early adipocyte differentiation resulting in lipid 
and fat storage and weight gain by decreasing adipocyte browning and 
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thermogenesis [144]. Animal studies have proposed a role of NEGR1 in body weight 
control, food intake and regulation of energy balance [259, 260].  

A higher GRS was associated with lower total energy intake and higher intakes of 
protein and fiber. These associations could be secondary to the associations between 
GRS and BMI or could be due to under-reporting. We further tested the associations 
by additionally adjusting for BMI and physical activity and after excluding energy 
misreporters but the association of GRS with lower total energy intake and higher 
fiber remained significant in all analyses. One possibility for the association of GRS 
with low total energy intake could be that some of the obesity susceptibility variants 
are involved in regulation of BMR, but this warrants further investigation. The 
unanticipated association of higher GRS with higher fiber intake remained 
unanswered. However, the associations between GRS and BMI and related traits 
were not significantly modified by dietary macronutrients or fiber intakes. Prior to 
this study, only a few studies have reported interactions between obesity GRS and 
lifestyle factors. By using a GRS comprised of 12 BMI-associated SNPs, Li et al. 
showed that physically active lifestyle attenuates the genetic predisposition to 
obesity in ~20,000 participants from EPIC-Norfolk cohort [176]. Qi et al. by using 
a weighted GRS of 32 BMI associated SNPs, demonstrated that genetic association 
with adiposity is accentuated among participants with higher consumption of SSB 
[179] and increased hours of television watching while is attenuated among those 
with increased levels of LTPA [181]. Our study is among the first ones to investigate 
the role of dietary intakes in modifying the association between GRS and obesity. 
Simultaneously, an intervention study led by Jääskeläinen et al. assessed the 
interaction between a GRS comprised of 26 BMI-associated SNPs and dietary 
macronutrient composition on BMI during a 3-year follow-up among 459 
participants of the Finish diabetes prevention study. They observed higher BMI by 
GRS among those who reported diet low in fiber and suggested that the genetic 
predisposition to obesity could be attenuated by high fiber diet, however the 
interaction was not significant (Pint=0.065) [192]. 

We further conducted single SNP analyses to examine the contribution of each locus 
in interaction with dietary exposures on anthropometric traits. We observed a 
significant interaction between BDNF rs4923461 and protein intake on BMI, where 
risk allele carriers had stronger association between higher protein intake and higher 
BMI. BDNF is a neurotropin that plays a key role in the development of central 
nervous system and participates in energy metabolism and food intake regulation 
[261]. An interaction between BDNF rs6265 and PUFA intake on WC has been 
reported among Boston Puerto Rican men [262]. However, the interaction between 
BDNF and protein intake on obesity should be confirmed in other studies to exclude 
any chance findings. None of the other SNPs showed significant interactions with 
dietary intakes on BMI and related traits. 
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There are several challenges in studying gene-lifestyle interactions. Findings are 
often inconsistent across studies and replication studies are usually lacking. One 
major challenge in replication studies is the publication bias. Thus, reporting 
negative results is equally as important as reporting positive results [263]. Another 
limiting factor is inadequate statistical power due to modest sample sizes and 
measurement errors in environmental exposures [263]. GEI studies may benefit 
more from better measurement of environmental exposures rather than increasing 
sample size. Simulation studies have demonstrated that smaller studies with more 
precise and repeated measures of exposures and outcomes may be equally powerful 
as 20 times bigger studies with imprecisely measured exposures [264]. In many 
studies, like ours, SNP-diet interactions are nominally significant but do not survive 
a correction from multiple testing and thus it is not clear whether statistical power 
is an issue. Most likely, the challenges faced by main-effect association studies are 
also faced by gene-diet interaction studies. As the for almost 95% of the loci 
associated with chronic diseases including obesity, the underlying mechanism is 
unknown and it is challenging to select which putative loci are involved in the 
disease pathway and should be analyzed in context of gene-diet interactions. 
Simulation studies have shown that variants that show most significant associations 
in GWAS are not likely to be those which interact with the environment to influence 
phenotypes of interest. GWAS detects variants of relatively large effect but presence 
of an interaction with diet is likely to weaken the main effect, thus it is likely that 
genetic loci that are not the top GWAS hits are those which hold promise for gene-
diet interactions [265]. However, there is no empirical or theoretical threshold for 
selection of these variants. 

Since MDCS is a large well phenotyped cohort with highly validated dietary data, 
it is unlikely that the lack of significant interaction was due to low statistical power. 
According to our statistical power calculations we had adequate sample size to 
detect interactions of small magnitude (>80% power to detect gene-diet interaction 
effect size of 0.022 kg/m2). We observed some nominal interactions between 
individual SNPs and dietary intakes on obesity traits, and these could possibly 
reflect different underlying physiological mechanisms. However, upon combining 
into GRS, the potential individual SNP interactions may get diluted or neutralized 
by interactions with specific dietary factors in specific directions. Moreover, we 
only investigated the interaction with total energy, macronutrients and fiber intake 
but investigating dietary patterns or examining how overall diet interacts with 
genetic variation in context of chronic diseases is an important direction for public 
health and should be further studied. Nevertheless, there is a possibility that 
interaction effect is an underestimation of the true effect because of measurement 
error in dietary intakes. Additionally, the present analyses are based on cross-
sectional data which limits the interpretation of our findings. Thus, using 



86 

longitudinal data with repeated measures might be helpful in reducing measurement 
errors and improving power to detect interactions.  

Paper II 

In 2012, Qi et al. published a paper showing that SSB intake accentuates genetic 
predisposition (based upon 30 BMI-associated genetic variants) to obesity [179]. In 
paper II, we replicated this finding in a pooled sample of 26,729 adults from two 
large Swedish cohorts, where the mean reported SSB intakes were comparable to 
those in the American study. In line with that study, we observed that the magnitude 
of association between SSB intake and BMI was stronger in people with higher 
number of BMI associated risk alleles. Additional adjustments for potential 
confounding lifestyle factors had no material impact on the results. Increment in 
each category of SSB intake was associated with higher BMI in both cohorts. ASB 
intake was available only in MDCS and was significantly associated with BMI but 
no significant interaction with genetic predisposition was observed.  

A strong body of evidence both from observational studies and randomized 
intervention trials suggest a positive association between SSB consumption and 
BMI [266-268]. However, a recent systematic review reported inconsistent evidence 
from observational studies as in many studies total energy intake was not taken into 
account making it difficult to evaluate energy-independent role of SSB intake in 
obesity risk, and none of the intervention studies passed the inclusion criteria [269]. 
However, another recent review evaluating the results from several systematic 
reviews and meta-analyses reported discrepant results regarding the association 
between SSB and obesity. They highlighted several factors such as use of 
inappropriate study design, lack of energy adjustment and limitations in the dietary 
assessment methods, that may have affected the observed relationship between SSB 
and obesity [270]. As reported by Qi et al. [179] and further supported by our 
findings from Swedish cohorts in paper II, these inconsistent findings can partly be 
explained by taking into account individual genetic susceptibility to obesity.  

Since common obesity is a polygenic disease, information from multiple genetic 
variants is required to characterize genetic susceptibility to obesity. A GRS created 
by combining several small-effect SNPs may potentially increase power to 
determine genetic risk for complex diseases [271]. Compared to weighted GRS used 
by Qi et al. we calculated both weighted (see methods for details) and unweighted 
GRS and found no marked differences in the results. Similarly, previous studies that 
have compared weighted and unweighted GRS have reported similar effects for both 
models [236]. A possible explanation could be that in majority of the populations, 
effect of each allele tends to be normally distributed so the alleles with larger effects 
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are counter balanced by the alleles with smaller effects. Thus, upon summing these 
effects, the weighted means approximate that of the unweighted mean [272].  

Our results have some public health implications. Since genetic predisposition to 
obesity is modifiable, principle objective of studying gene lifestyle interaction is to 
identify high-risk individuals for more efficient and targeted diet and/or lifestyle 
interventions. In paper II, we observed that higher consumption of SSB increases 
the risk of obesity particularly among those with higher genetic predisposition to 
obesity. As SSB contain a large amount of rapidly absorbable sugars despite 
containing a lot of calories their intake is associated with less satiety and incomplete 
compensatory reduction in energy intake at subsequent meals [273]. This may lead 
to over consumption of total daily calories and higher SSB intake has been observed 
to increase the risk of insulin resistance, beta-cell dysfunction, visceral adiposity, 
inflammation and other metabolic disorders. However, since biological functions of 
the studied genetic loci are mostly unknown [132], the mechanisms underlying the 
observed interaction between SSB intake and genetic predisposition to obesity 
require further studies.  

Our study has some limitations that need to be acknowledged. The main limitation 
is the cross-sectional study design and the self-reported intakes of SSB and ASB. 
Additionally, due to the differences in diet assessment methods, SSB intake could 
not be uniformly defined across the two cohorts. Moreover, seldom consumers in 
MDCS were those who reported zero consumption of SSB (or ASB) and might 
harbor certain degree of misclassification. However, similar results in both cohorts 
reduce the possibility of measurement errors confounding the results. The modified 
diet history method used in MDCS captured both current (by using a 7-day food 
record) and habitual dietary intake (by means of FFQ) while in GLACIER only FFQ 
was used that more likely capture habitual diet intake. Thus differences in total 
energy intake between the two cohorts, owing to different diet assessment methods, 
might partly explain why we observed a dose-dependent effect modification in 
GLACIER similar to the US cohort, but a threshold-effect in MDCS.  

The main caloric sweetener used in US is HFCS (which is a mixture of free glucose 
and fructose) while in Europe it is sucrose (a disaccharide made up of glucose and 
fructose) [266]. It is not known whether HFCS and sucrose affect obesity risk 
through the same mechanisms or follow different biological pathways. As it has 
been shown that added caloric sweeteners irrespective of the type (sucrose, HFCS 
or fruit-juice concentrates) all result in similar metabolic effects [266] and the 
similar interaction between GRS and SSB intake on obesity was observed in US and 
Swedish cohorts may imply that the underlying mechanism may be independent of 
the sweetener type. Despite differences in culture and various aspects of lifestyle 
between Europe and US, agreement in the results from both studies warrant the 
generalizability of these results to other populations of European ancestry.  
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Paper III 

The AMY1 in humans exhibit extensive copy number variation and recent studies 
have implicated this variation in adaptation to high starch diets [274] and in 
association with BMI [220]. In paper III, we investigated whether CNV in AMY1 
associates with obesity traits (BMI, WHR or BF%) and if this association is 
modified by dietary starch intake. Overall, AMY1 CNV was not significantly 
associated with obesity traits in our study population. However, stratification by 
AMY1 CNV and starch intake revealed some significant associations and 
interactions. For participants with low AMY1 CNV, high starch intake was 
associated with lower WHR in men, lower BF% in women and lower BMI in both 
genders. Significant interaction between AMY1 CNV and starch intake on BMI was 
observed among women, but this result did not remain significant after adjustment 
for potential confounding lifestyle factors. 

Human amylase locus has been shown to have a very complicated structure. 
Salivary amylase is encoded by three closely related genes, namely AMY1A, AMY1B 
and AMY1C, which are 99.9% identical in DNA sequence and are collectively 
referred as AMY1. Pancreatic amylase genes (AMY2A and AMY2B) are located on 
the telomeric end of the amylase gene cluster. AMY2A and AMY2B genes share 94% 
similar sequence identity with each other, and are 93.2% and 93.6% similar to AMY1 
[275]. Salivary and pancreatic amylase genes encode enzymes that digest starch into 
sugars and these genes vary widely in their copy numbers (AMY1: 2-17 copies; 
AMY2A: 0-8 copies; AMY2B: 2-6 copies) [274, 275]. Thus, it has been hypothesized 
that AMY1 shapes the metabolic response to diet due to its role in starch metabolism, 
and a greater average copy number of AMY1 has been observed in populations with 
starch-rich diets [274]. 

AMY1 CNV received special attention as its copy number varies widely and a recent 
study demonstrated 1.2-fold decrease in obesity for each copy increase in AMY1 
[220] reflecting a profound effect. Another study by the same group  reported 
association between AMY1 CNV and obesity risk in a smaller sample of Mexican 
children [276] where higher copy numbers were found to associate with lower risk 
of obesity (OR per estimated copy = 0.84). However, they did not observed 
significant associated effect of low AMY1 copy numbers on increased risk of obesity 
in children. A Finnish study did not observe any difference in mean AMY1 copy 
numbers between 61 childhood-onset obesity cases and 71 controls [277]. 
Moreover, Falchi et al. reported that AMY1 CNV explains around 11% of the genetic 
contribution to obesity [220]. However, so far GWAS studies have identified 97 
BMI-associated loci and together they explain about 2.7% of the variation in BMI 
and suggest that common variation account for 21% of BMI variation [6]. 
Surprisingly, AMY1 despite explaining such a large proportion of BMI variation in 
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the Falchi et al. study, has not been detected in a GWAS of ~340,000 people [6]. 
GWAS relies on tag SNPs to capture the extent of variation in human genome and 
identifying association signals. Variants poorly tagged by GWAS SNPs can be of 
high importance for association studies such as putative rare variants with high 
effect sizes. Many CNVs are also poorly tagged by GWAS design. The effectiveness 
of GWAS SNPs to tag CNV is highly dependent on the type of CNV. For example, 
tagging properties of bi-allelic CNVs usually closely match those of SNPs as they 
generally arise from a single ancestral mutation, while multiallelic, highly 
polymorphic CNVs (like AMY1 CNV) mutate more frequently, and are therefore 
often in low LD with GWAS tag SNPs [278].  

In Paper III, AMY1 CNV was genotyped by quantitative polymerase chain reaction 
(qPCR), similar to the method used by Falchi et al. but we observed no significant 
association between AMY1 CNV and BMI. Similar to our findings, a very large 
study led by Usher et al. with high statistical power, could not replicate this finding 
[227]. Complex mCNVs are notoriously difficult to measure (as counting copies is 
much more difficult than registering presence or absence of an allele) and 
association studies often involve rough copy number estimates which can be 
confounded by technical issues with genotyping and can create the false impression 
of strong association [279]. Carpenter et al. reported that qPCR used by Falchi et al. 
for estimation of AMY1 CNV is less accurate than high resolution molecular 
analyses [such as paralog ratio tests (PRT) and fiber-fluorescence in situ 
hybridization (FISH)] [228]. PRT is a precise molecular method which uses 
paralogous (copy number invariant sequences elsewhere in the genome as 
embedded controls) to calibrate copy number measurements. Another precise 
method is the ddPCR in which PCR reaction mixture is partitioned into thousands 
of nanoliter-sized droplets, each with 0 or 1 copy of the locus of interest, and after 
thermocycling the number of florescent droplets are counted. Analyses using whole 
genome sequencing, ddPCR and PRT revealed that odd copy numbers of AMY1 
CNV are four times more common than even copy numbers, and this was not 
observed with qPCR [226]. Analyses with more precise methods have shown that 
some SNPs modestly correlate with AMY1 CNV and if the AMY1 CNV associates 
with BMI then the GIANT consortium comprising of >300,000 participants would 
had 99.9% power to detect this association, but Usher et al. found no such 
association [227]. Similarly, in a sub-sample of ~3000 MDC-CC participants, we 
did not observe any significant association between these SNPs and BMI. 

Apart from genotyping by qPCR method, another limitation of our study is the 
estimation of dietary intakes from self-reported data, which can be prone to 
measurement errors. However, as the relative validity of our diet assessment method 
is quite high, we do not expect the measurement error to have a major impact on our 
observed results [280]. We observed significant differences in BMI across AMY1 
CNV tertiles in women such that among women with low starch intake, high AMY1 
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CNV associated with lower BMI, while among women with high starch intake 
AMY1 CNV associated with higher BMI. These results suggest that starch intake 
modifies the association between AMY1 CNV and BMI. The possible explanation 
for the association of high copy number of AMY1 with high BMI among those with 
high starch intake could be the facilitated digestion of starch among high copy 
number carriers resulting in higher glucose absorption and subsequently more 
available energy to the cells. This indicates that the amount of starch that is digested 
is dependent on AMY1 CNV, if diet is rich in starch.  

Moreover, all the significant associations between starch intake and obesity traits 
were limited to the participants with low AMY1 CNV. Salivary amylase is the most 
abundant protein in the human saliva and responsible for the pre-digestion of starch 
in the oral cavity [281], and AMY1 CNV is directly proportional to the salivary 
amylase content [274]. Thus, among participants with low AMY1 CNV, starch may 
not be fully hydrolyzed into glucose due to limited amount of salivary amylase. 
Previous reports demonstrating that direct delivery of starch in the small intestine 
results in decreased starch digestion and glucose absorption [282], which further 
highlights the important role of salivary amylase in starch digestion and metabolism. 
Starch that has not been digested and absorbed by the small intestine, also called 
resistant starch, is thus transported through the gastro-intestinal tract. Importantly, 
it has been reported that resistant starch may increase satiety [283], which further 
supports our results as we observed low BMI among individuals reporting high 
starch intake but having a low number of copies of AMY1 CNV. 

Recently, AMY1 CNV was reported to be significantly correlated with BF% and 
BMI only among obese women with childhood onset obesity [277]. In line with 
these gender-specific findings, our observations of significant interaction between 
AMY1 CNV and starch intake on BMI were restricted to female participants of 
MDCS. However, the interaction did not remain significant after excluding ~32% 
of the participants that were categorized as potential misreporters of their dietary 
intake or who reported having changed their dietary habits, as well as after adjusting 
for putative lifestyle confounding factors.  

Finally, as an attempt to examine if the observed gender specific associations in 
paper III could be related to differences in food sources of starch, we compared the 
different starch sources in males and females. A subgroup of MDCS participants 
(n=3,132) underwent a face-to-face 24-hour dietary recall in 1996-1997 [207]. The 
average daily starch intake was 142g for males and 105g for females. The major 
sources of starch were cereal and cereal products (55% in males and 52% in 
females), bread (35% in males and 30% in females), potatoes (15% in males and 
13% in females) and rice (7% in both males and females) [284]. Thus, although men 
had a higher starch intake as compared to women, the percentage of starch obtained 
from various food sources was similar in men and women, and it is unlikely that the 
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observed gender-specific associations in paper III might be due to differential intake 
of starch among men and women. Our findings suggest a putative role of starch 
intake in modifying the link between AMY1 CNV and obesity, particularly in 
females. 

Paper IV 

In paper IV, we investigated how established BMI-associated genetic variants affect 
changes in weight across different adult ages. To clarify whether the genetic variants 
that positively associate cross-sectionally with BMI, also influence weight gain over 
time, we studied their association with annual weight change and substantial weight 
gain ( 10%) between different adult age periods in two prospective Swedish 
cohorts. The GRS strongly associated with BMI at all adult ages and with increased 
weight gain both annually and substantially from young age to late middle age. In 
contrast, higher GRS was associated with significantly decreased annual weight 
gain and less substantial weight gain after middle age.  

Identifying the age associated effects of genetic variants on body weight may help 
in understanding the mechanisms underlying age related weight changes and devise 
intervention strategies. Earlier evidence suggest that genetic effects of BMI 
associated variants vary by age and most of these studies have focused on childhood 
and adolescence or compared these periods with adulthood [285-287]. There is a 
limited evidence for genetic influence of BMI-associated variants on changes in 
weight during adult life course. Nevertheless, although the inverse and significantly 
different association between GRS and weight change at different adult age periods 
observed in paper IV have not been reported previously, some evidence for 
differential genetic effects at different time–points in life have been recognized. 
Murphy et al. investigated the cross-sectional associations between 10 BMI- 
associated SNPs and anthropometric measurements among Europeans and African 
Americans aged >65 years. Their findings that genetic loci related to BMI in middle 
age do not associate with weight and adiposity in older age support our results that 
genetic variants may have different influences at different ages [288]. Similarly, a 
Swedish study investigating multifactorial causes of change in BMI over the adult 
life course demonstrated that a GRS comprising of 32 BMI-associated variants 
predicted an accelerated increase in BMI until the middle age but not later in life 
[289]. However, it needs to be recognized that the design of the Swedish study was 
markedly different from our study and that they did not analyze the associated effect 
of GRS on weight gain. Among the individual SNPs in our study, the FTO variant 
was significantly associated with decreased odds for substantial weight gain during 
and after middle age and with significantly different effect estimates on weight 
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change before and after middle age. In line with this, Hardy et al. tested association 
between FTO and MC4R variants with BMI and weight at 11 time-points from 2 to 
53 years of age and showed that associations reached peak strength at age 20 years 
and then weakened during adulthood [290].  

Further support to our findings comes from a recent work by Winkler et al. where 
they examined the influence of both age and sex, simultaneously, on associated 
effects of genetic variants affecting BMI and WHRadjBMI in a large scale genome-
wide interaction study. They discovered that the association of 15 BMI-associated 
loci with BMI were influenced by age, and that the association of 44 WHRadjBMI-

associated loci with WHRadjBMI were influenced by sex. Further, none of the BMI 
loci were influenced by sex and none of the WHRadjBMI loci were influenced by age. 
Of the 15 BMI-associated loci identified to be modified by age in that study, 11 had 
1.5 to 3.5 times smaller effect on BMI in older adults (>50 years) compared to 
younger adults ( 50 years) [158]. The smaller or inverse effects of BMI associated 
variants on weight gain or BMI in older adults can be expected to reflect a greater 
influence of environmental and lifestyle factors on adiposity in older adults, thus 
overwhelming the genetic effects. Sandholt et al. investigated the effect of GRS 
(comprised of 30 BMI-associated loci) on weight change among 3982 individuals 
from the Danish Inter99 cohort (mean age 46.7 years) during a five year period, and 
did not find any significant associations [178]. Although these results can be 
interpreted to be in contrast to our results, they may also be explained by some 
important differences between the studies. Firstly, Inter99 cohort was on average 11 
years younger at baseline and had a 10 years shorter follow-up than MDCS. 
Secondly, despite the comparable ages of our replication cohort GLACIER (mean 
age 45.2 years) and Inter99 (mean age 46.3 years) at baseline, the follow-up time of 
GLACIER was almost twice that of Inter99. Thus, the age of the Inter99 participants 
may have potentially coincided with a time-point when the increased risk of weight 
gain associated with GRS may had begun to shift towards decreased risk, resulting 
in null association. However, in line with findings from Inter99, GRS did not 
associate with annual weight gain but only with substantial weight gain in 
GLACIER, putatively indicating a higher statistical power in the latter model. 

The mechanisms explaining the significantly inversed consequence of carrying 
more BMI-increasing alleles on weight gain until and after reaching middle age 
could not be addressed in our study. The participants gained 0.34kg/year from age 
20 years to baseline in MDCS while weight gain from baseline to follow-up was 
0.32 and 0.15 kg/year in MDCS and GLACIER, respectively. Thus one might 
expect smaller effect estimates owing to lesser weight gain during the later time 
period compared to weight gain in early adulthood, but not the significantly inversed 
associations we observed. A possible explanation for the differential associated 
effects of genetic variants on weight gain at different ages could be due to 
differences in the genetic background for body weight as compared to body weight 
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fluctuations. It is important to emphasize that all the variants used to calculate GRS 
were identified in GWAS for cross-sectional associations with BMI, and our results 
thus indicate that these variants have different effects on weight gain at different 
points in life.  

In order to differentiate genetic effects from non-genetic effects, we stratified the 
analyses by weight gain and weight loss status during the follow-up. We observed 
comparatively stronger associations among the group of individuals who lost 
weight, as compared to those who gained weight from baseline to follow-up, which 
could suggest a greater influence of non-genetic effects (e.g. dieting and 
unidentified diseases) on the observed findings. As additional adjustments for 
baseline weight in the sensitivity analyses did not affect the association of GRS with 
weight loss after the middle-age argues against the possibility that this finding could 
be a result of more weight loss in obese people in old age. Both physiological and 
genetic factors related to aging might explain this relationship.  Loss of bone and 
muscle tissues and increase in body fat has been shown to associate with ageing 
leading to clinical hazards of obesity at lower BMI in elderly [291-293]. 
Furthermore, rapid weight gain during midlife has been suggested to have negative 
health consequences which may lead to weight loss in later life leading to increased 
mortality [294].  

We also tested the association of GRS with mortality and found evidence for 
association between GRS and CVD mortality independently of whether the study 
participants gained weight or kept their weight stable until baseline. This association 
was more pronounced among those with higher number of BMI-increasing alleles. 
Thus, an implication of the findings may be that the influence of common genetic 
variants on weight gain is not uniform throughout the life and lifestyle interventions 
may be particularly important during the young to middle-age period to avoid or 
dilute the negative effects of increased weight gain during this period on older age, 
especially among those with higher genetic burden for obesity.  

Strengths of our study include a large sample size, longitudinal data, long follow-
up period and the availability of a replication cohort from Sweden. However, certain 
limitations of our study also need to be recognized. First, weight information at 20 
years of age in MDCS was self-reported and recalled several decades later by the 
participants. However, the strong association of GRS with self-reported BMI 
suggests that recall bias is unlikely to have significantly affected the results.  
Second, the GLACIER participants were younger at baseline and had a shorter 
follow-up time, which probably affected the statistical power of the replication 
analyses, which was reflected in the comparatively weaker associations. Finally, 
analyzing association between GRS and age-related changes in body composition 
traits (e.g. FM, FFM and BF%) could have provided insights into the underlying 
mechanisms behind the observed associations and thus had facilitated the 
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interpretation of our results, but both cohorts lack data for such analyses. 
Nevertheless, longitudinal data on WC and WHR was available in MDCS and 
showed similar association patterns with GRS as the annual weight change, 
indicating that part of the weight loss was because of decrease in abdominal fat. 
Lastly, genetic loci could affect weight changes differently in men and women, but 
we did not perform sex-stratified analyses because this had markedly decreased the 
statistical power to detect significant associations. 

Paper V 

In paper V, we attempted to understand the causal role of cardio-metabolic traits in 
total- and CVD mortality by using the MR approach. We used data from a large 
cohort of middle-aged Swedish adults that were followed up for more than 17 years. 
Our findings suggest an inverse causal role between HDLC and both total- and CVD 
mortality, and a direct causal role between TG and both total- and CVD mortality.  

Observational studies provide important insights into disease etiology but their 
validity has been questioned lately. This is due to the fact that many findings from 
observational studies have not been confirmed in subsequent large RCTs [295, 296]. 
However, research in humans relies on observational studies for identification of 
risk factors as many risk factors cannot be randomized using controlled trials in 
humans because of technical and ethical reasons. Furthermore, observational studies 
are prone to spurious results because of confounding, reverse causation and 
selection bias making it difficult to firmly establish causal relationship between risk 
factor and disease. This is especially true for common diseases such as obesity, CVD 
etc. which are complex and influenced by multiple risk factors that may be 
correlated with each other and with modest influence on disease. Thus, it is hard to 
find a risk factor that is independently (of all other risk factors) and causally 
associated with a disease in observational studies. MR is a promising approach to 
deal with this difficult task of establishing causal inference [297]. 

Although free from most forms of confounding, the validity of MR findings suffers 
from two key threats; population stratification and pleiotropy [196]. Population 
stratification is unlikely to be an issue in MDCS cohort as majority of the 
participants were either from Sweden or from countries in geographic proximity to 
Sweden [204]. However, we have used trait-specific GRSs (as IVs) comprising of 
genetic variants that have, or may have pleiotropic effects. We therefore used two 
different methods to dissect causality; a traditional MR method employing IVs and 
a modified MMR method developed to control for potential pleiotropic effects.  
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BMI significantly associated with increased risk for both total- and CVD mortality 
in IV analyses. However, no significant association between BMI and total- or CVD 
mortality was observed after controlling for pleiotropic effects in MMR analyses. 
Similarly, Fall et al. examined causal associations between adiposity and cardio-
metabolic traits using FTO rs9939609 genotype as the instrumental variable and did 
not observe causal association between BMI and total mortality [55]. In line with 
our results, intervention studies have shown no evidence for association between 
weight loss and total- or CVD mortality [298, 299]. Moreover, evidence for 
causality regarding adiposity and CVD from earlier MR studies has been 
inconsistent as some studies support a direct causal relationship [203, 300] while 
others do not [55, 56]. Thus, larger and well-designed studies are needed to provide 
conclusive evidence. 

SBP strongly associated with increased risk for both total-and CVD mortality 
supporting the earlier evidence from observational studies [301-303]. However, we 
did not observe any significant association between SBP and mortality outcomes in 
either instrumental variable- or MMR analyses.  In contrast to our results, RCTs 
have clearly demonstrated that BP lowering treatment reduces total- and CVD 
mortality [304]. In the present study, since the SBP GRS only explains about 0.5% 
of the total genetic variation in SBP, the lack of association between genetically 
elevated SBP and mortality could be attributed to low power to detect causal effects 
due to weak instrument. 

We did not find any evidence for causal association between LDLC and mortality 
outcomes in the present study. However, findings from clinical trials have 
established that lipid lowering therapy with statins reduces the risk of MI and stroke 
in addition to lowering the risk of total- and CVD mortality in both primary and 
secondary prevention [305]. In addition to the effects of statins on LDLC lowering, 
it is well established that they also exert TG lowering effects, and in our study we 
observed a causal role of TG in total- and CVD mortality. However, statins have not 
been shown to reduce total mortality in low risk primary prevention setting, but 
instead have been shown to increase the risk for side effects [306]. Moreover, 
findings from RCTs [307, 308] and large cohort studies [309] suggest a link between 
statin use and elevated risk for T2D.In line with this, we [310] and others [311] have 
shown that genetically lower LDLC associates with increased risk for T2D. This 
could partially explain the lack of association between genetically elevated LDLC 
and mortality over a long follow-up period. However, these findings should be 
interpreted with caution as our results could be biased by unknown confounding. 
Nonetheless, “negative” results from MR analyses are suggested to be less prone to 
biases related to violation of assumptions and provide robust evidence when effects 
are entirely absent or very small [170]. 
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In contrast to previous MR studies [312] and RCT [313] where no causal link 
between HDLC and coronary events could be established, we observed a putative 
role for genetically elevated levels of HDLC in significantly lowering the risk for 
total- and CVD mortality. However, a trial with Torcetrapib, which is a 
cholesterylester transfer protein (CETP) inhibitor that lowers LDLC and raises 
HDLC, was prematurely terminated due to increased mortality possibly as a result 
of off-target drug effects [313]. Thus, our result support a role of HDLC in CVD 
mortality, including deaths not only due to coronary events but also from stroke and 
other vascular and heart related complications, and total mortality. In addition to 
HDLC, we observed a direct causal relationship between TG levels and total- and 
CVD mortality. In agreement with our findings, MR studies have shown that higher 
concentration of remnant cholesterol, marked by increased levels of TG, is an 
additional causal risk factor for total- and CVD mortality [314-316]. However, a 
recent meta-analysis of RCTs of HDLC increasing drugs such as niacin, fibrates, 
CETP inhibitors (that also lower TG levels) on stroke, MI and total- and CHD 
mortality did not observed any additional benefits of these drugs on the top of statins 
, although when used without statins, niacin and fibrates have shown reduced risk 
for non-fatal MI [317]. A subgroup analysis of large RCTs has shown that in patients 
with high TG and low HDLC levels, fibrates reduce the risk of cardiovascular events 
[318]. Thus, for patients with low HDLC and high TG who are resistant to statin 
treatment, further studies are needed to clarify the role of fibrates. Furthermore, two 
large trials with CETP inhibitors; evacetrapib [ACCELERATE (NTC01687998)] 
and anacetrapib [REVEAL (NTC01252953)] are underway and will report their 
findings in 2016 and 2017, respectively [319].  

The major limitation of our study is the pleiotropic effects of the genetic variants 
that were used to create the GRS. Although it is difficult to completely exclude 
confounding by pleiotropy, we exerted efforts to correct for it, but still residual 
pleiotropic effects could bias our observations. Another limitation of our study can 
be the relatively low statistical power to detect causal associations as the used GRSs 
explain only a limited proportion of variance of their respective cardiometabolic 
traits, especially for BMI and SBP. Thus, in order to reliably confirm the true 
negative findings, larger studies with better statistical models to control for 
pleiotropy and stronger non-pleiotropic genetic instruments are needed.  
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Conclusions  

The work presented in this thesis was aimed at identifying the role of dietary factors 
in modifying the genetic susceptibility to common obesity and to investigate 
whether genetic effects of the identified loci vary in relation to weight gain at 
different age periods during a life course. We further aimed to understand if obesity 
and other cardiometabolic traits are causally linked to mortality. From the findings 
in papers I to V, we can conclude that: 

I. Dietary macronutrients and fiber, or total energy intake levels, do not play 
a major role in modifying the overall genetic susceptibility to obesity. 
However, some of the individual obesity loci like NEGR1 may have a role 
in the regulation of food intake and BDNF may interact with protein intake 
on BMI.  
 

II. SSB consumption may play a role in modifying the genetic susceptibility to 
obesity. Thus, reduction in SSB intake may reduce the risk for obesity, 
especially among people with higher number of BMI-increasing risk alleles. 
 

III. Dietary starch intake may play a putative role in modifying the association 
between AMY1 CNV and obesity, at least in females where low copy 
number of AMY1 was associated with higher BMI in the lowest tertile of 
starch intake, but with lower BMI in highest tertile of starch intake.  
 

IV. Genetic susceptibility to obesity associates with higher BMI at all adult ages 
cross-sectionally. However, we present convincing evidence for a 
paradoxical inversed relationship between higher number of BMI-
increasing risk alleles and reduced weight gain during and after middle age 
in contrast to increased weight gain in younger age.  
 

V. Our study provides evidence for causal association between TG and HDLC 
and both total- and CVD mortality. Further evidence is required to 
understand the causal impact of other cardiometabolic traits on mortality 
outcomes.  

 



98 

  



 
 

99 

Future perspectives 

We are living in exciting era of genetic research when GWAS are making significant 
development in dissecting the genetic basis of human obesity, and has been 
successful in identifying almost 100 BMI-associated loci in adults. Despite all the 
discoveries, identified genetic variants explain only a small percentage of obesity 
susceptibility and the mechanisms by which they lead to the development of obesity 
are largely unknown. Of all the identified loci, FTO has the largest effect on obesity 
susceptibility explaining 0.31% of the inter-individual variation in BMI. Thus, we 
can speculate that rare low frequency variants may contribute more to the obesity-
susceptibility. In order to find rare variants, exome genotyping arrays in sample 
cohorts that have been previously studied by GWAS should be applied. Moreover, 
in addition to SNP associations, focus should also be given to CNVs, which remain 
largely unexplored for their association with common obesity. Exome genotyping 
is cost-effective when applied to large samples. On the other hand, despite being 
extremely expensive, whole-genome sequencing remains the most powerful 
approach to study the different types of genetic variants including SNPs, small 
insertions/deletions, CNVs and other structural variants in a single dataset and cover 
both common and rare variants. Epigenetics is another promising area that might 
explain individual differences in obesity risk. Most recently, possible influence of 
human gut microbiota in obesity has opened new window in understanding obesity 
etiology. 

Similar to other complex traits, dietary and lifestyle factors play a major role in the 
etiology of obesity. The identification of interactions between genetic markers and 
environmental exposures may be informative for clinical and/or public heath 
interventions. However, there are several methodological challenges that need to be 
overcome before we can identify putative variants that interact with dietary patterns. 
These include very large sample size (a sample size four times larger than that 
required to detect the marginal effect), study design, frequency of interacting allele 
and accurately measured exposures. These issues may be solved by: 

• Increasing sample size through collaborations of international consortia 
similar to GWAS. 

• Identifying genetic variants through longitudinal GWAS and conducting 
genome-wide interaction analyses. 

• New statistical methods for studying interactions. 
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• Studying interactions in different ethnic groups to identify causal genetic 
and environmental factors. 

• Using better measured exposures. 
• Testing results of interaction in intervention settings whenever possible and  
• Complementing with other ‘omics’ approaches such as transcriptomics, 

proteomics and metabolomics to understand how diet and lifestyle alter the 
expression of our genomes.  

Another major challenge of all the observational studies is that they are prone to 
confounding and reverse causation and randomized control trials still remain the 
golden standard. However, owing to the extremely high costs of conducting clinical 
trials and several ethical and technical issues, it is not always feasible or possible 
to conduct one. An alternating approach is MR that uses genetic variants as 
instrumental variables to identify causal associations by taking care of confounding 
and reverse causation. However, to effectively use MR approach in dissecting 
causal inference, we need new stronger genetic instruments and more reliable and 
better statistical methods to control for pleiotropic effects and unmeasured 
confounding.  
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Populärvetenskaplig sammanfattning 

Fetma är ett världsomfattande hälsoproblem som drabbar rika och fattiga länder i 
samma utsträckning och leder till minskad förväntad livslängd. Detta är inte bara ett 
problem i sig utan för med sig ytterligare följdsjukdomar så som diabetes, hjärt- 
kärlsjukdomar, vissa former av cancer och artros. Det är en allmän uppfattning att 
den oroväckande ökningen av fetma under de två senaste decennierna beror på 
ohälsosamma matvanor och fysisk inaktivitet, men trots samma levnadssätt drabbas 
inte alla av fetma. Studier i familjer och tvillingar visar att 40-70% av fetman 
förklaras av genetiska faktorer. De hittills identifierade genetiska varianterna 
förklarar dock enbart en liten del av den sammanlagda genetiska risken. Den 
individuella risken att utveckla fetma beror således på både gener och miljön och 
möjliga interaktioner mellan dessa. I nuläget finns inte tillräckligt starka bevis för 
att kunna ge tydliga rekommendationer syftande till att förebygga fetma och visar 
att stora studier med tydliga sjukdomsdefinitioner behövs. 

Att studera interaktioner mellan gener och miljö kan hjälpa till att identifiera grupper 
av människor där man kan skräddarsy förebyggande och behandling av fetma 
baserat på individens genetiska profil. I avhandlingen fokuserade vi på genetiska 
varianter med koppling till BMI och studerade dessa både individuellt och 
tillsammans i så kallad genetisk riskberäkning (GRS). GRS byggs upp genom att 
summera antal riskvarianter hos varje individ till ett individuellt score. Vi 
undersökte om matvanor kan förändra den sammanlagda genetiska risken för fetma. 
Vi utvärderade också huruvida den genetiska riskscoren påverkade viktuppgång vid 
olika tidpunkter i livet. Slutligen studerade vi om det finns ett orsakssamband mellan 
kardiometabola egenskaper och mortalitet, genom att använda en så kallad 
Mendeliansk randomiseringsmetod. Vi använde oss av data från två olika 
befolkningsbaserade prospektiva studier, MDCS som består av ca.30 000 individer 
från södra Sverige och GLACIER som består av ca.19 000 individer från norra 
Sverige. 

I studie I såg vi att energigivande näringsämnen, fibrer och sammantaget energiintag 
inte påverkar styrkan i kopplingen mellan genetiska riskfaktorer och högre BMI och 
fetma. Å andra sidan observerade vi att vissa individuella genetiska varianter kan 
ha en effekt på mat- och energiintag och att effekten av vissa genetiska markörer 
kan förändras genom kosten. I studie II kunde vi se att individer som har en hög 
genetisk risk för fetma och dessutom konsumerar stora mängder av socker-sötade 
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drycker hade högre BMI. I studie III, studerade vi genen för enzymet amylas som 
förekommer i saliv (AMY1) i förhållande till mängd stärkelse i kosten och fetma. 
Genen förekommer i flera kopior i vår arvsmassa och antalet kopior varierar mellan 
individer.  Vi kunde konstatera att kvinnor med färre kopior av genen AMY1 hade 
högre BMI om deras kost innehöll lite stärkelse och vice versa, vilket tyder på att 
mängden stärkelse i kosten kan påverka den genetiska risken för fetma hos kvinnor. 
I studie IV kunde vi se att individer med högre genetisk risk för fetma ökar mer i 
vikt i tidig vuxenålder men därefter är förhållandet det motsatta. I studie V, 
observerade vi ett orsakssamband mellan HDL-kolesterol (”det goda kolesterolet”), 
triglycerider (en särskild typ av blodfetter) och mortalitet. Individer med högre 
genetisk risk för höga triglyceridnivåer och låga HDL-kolesterolnivåer har högre 
risk att dö i förtid, speciellt av hjärt-kärlsjukdomar. 

Sammanfattningsvis så visar våra resultat att även om vi inte kan ändra våra gener 
så kan vi ändra deras effekt med våra livsstilsval. Genom att t.ex. minska 
konsumtion av sötade drycker kan man minska risken för fetma även hos individer 
med hög genetisk risk. Våra resultat tyder på att effekten av våra gener förändras 
under vår livstid och livsstilsanpassnig kan därför krävas. Speciellt individer med 
hög genetisk risk för fetma bör undvika stor viktuppgång tidigt i vuxenlivet för att 
inte drabbas av negativa konsekvenser senare i livet. Våra resultat pekar också på 
ett orsakssamband mellan högre nivåer av triglycerider, lägre nivåer av HDL-
kolesterol och högre risk för ökad dödlighet, vilket kan hjälpa att utveckla nya 
behandlingsmetoder i kliniken. 
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