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System Identification—A Survey

Une revue de I'identification des systémes

Systemidentifikation, eine Ubersicht

O0630p OmnO3HABAHMS CHCTEM

K. J. ASTROMY and P. EYKHOFF}

Summary—The field of identification and process-parameter
estimation has developed rapidly during the past decade. In
this survey paper the state-of-the-art/science is presented in
a systematic way. Attention is paid to general properties and
to classification of identification problems. Model structures
are discussed; their choice hinges on the purpose of the
identification and on the available a priori knowledge.

For the identification of models that are linear in the
parameters, the survey explains the least squares method and
several of its variants which may solve the problem of
correlated residuals, viz. repeated and generalized least
squares, maximum likelihood method, instrumental variable
method, tally principle.

Recently the non-linear situation, the on-line and the real-
time identification have witnessed extensive developments.
These are also reported. There are 230 references listed,
mostly to recent contributions. In appendices a resumé is
given of parameter estimation principles and a more detailed
exposition of an example of least squares estimation.

Organization of the paper
The contents of the paper are arranged as follows:

(1) Introduction
Status of the field

(2) General properties of identification problems
Purpose of identification
Formulation of identification problems
Relations between identification and control; —the
" separation hypothesis
Accuracy of identification

(3) Classification of identification methods
The class of models
The class of input signals
The criterion
Computational aspects

(4) Choice of model structure
The concept of linearity in the parameters
Representation of linear systems
Canonical forms for linear deterministic systems
Canonical forms for linear stochastic systems

* Received 9 February 1970; revised 24 August 1970.
The original version of this paper was an Invited Survey
Paper which was presented at the 2nd IFAC Symposium on
Identification and Process Parameter Estimation, held in
Prague, Czechoslovakia, during June 1970. It was recom-
mended for publication in revised form by the editorial staff.
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(5) Identification of linear systems
Least squares identification of a parametric model
A probabilistic interpretation
Comparison with correlation methods
Correlated residuals
Repeated least squares
Generalized least squares
The maximum likelihood method
Instrumental variables
Levin’s method
Tally principle
Multivariable systems

(6) Identification of non-linear systems
Representation of non-linear-systems
Estimation of a parametric model

(7) On-line and real-time identification
Model reference techniques
On-line least squares
Contraction mappings
Stochastic approximations
Real-time identification
Non-linear filtering
Approximations

(8) Conclusions
(9) References
Appendix A A resumé of parameter estimation

Appendix B An example of least squares identification of
a parametric model

1. INTRODUCTION
IN RECENT years aspects of system identification
have been discussed in a multitude of papers, at
many conferences and in an appreciable number of
university courses. Apparently the interest in this
subject has different roots, e.g.

Definite needs by engineers in process industries
to obtain a better knowledge about their plants
for improved control. This holds not only for
the chemical but also for the mechanical and
other production industries.

The task of studying high performance aero and
space vehicles, as well as the dynamics of more
down-to-earth objects like railway carriages and
hydrofoils.

Study of the human being in tracking action and
in other types of control.
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Research of biological functions, e.g. of neuro-
muscular systems like the eye pupil response, arm
or leg control, heart rate control, etc.

Not only the needs for, but also the possibilities
of estimation have dramatically changed with the
development of computer hardware and software.
More or less apart from the ‘“engineering” and
“biological” approach the econometricians and
statisticians have been working on dynamical
economic models, leading to incidental cross-
fertilization with engineering [1].

At many universities the field has been recognized
as a legitimate subject for faculty and Ph.D.
research. The net result of this development is a
large number of publications, either accentuating
a particular type of approach or describing a certain
case study. In this survey paper the “motivation”
of the identification is derived from control engi-
neering applications.

Throughout the history of automatic control it
has been known that the knowledge about a system
and its environment, which is required to design a
control system, is seldom available a priori. Even
if the equations governing a system are known in
principle it often happens that knowledge of parti-
cular parameters is missing. It is not uncommon
that the models which are available are much too
complex etc. Such situations naturally occur in
many other fields. There are, however, two facts
which are unique for the identification problems
occurring in automatic control, i.e.

It is often possible to perform experiments on the
system in order to obtain the lacking knowledge.

The purpose of the identification is to design a
control strategy.

One of the factors which undoubtedly contributed
very much to the great success of frequency res-
ponse techniques in “‘classical”’ control theory was
the fact that the design methods were accompanied
by a very powerful technique for systems identifi-
cation, i.e. frequency analysis. This technique made
it possible to determine the transfer functions
accurately, which is precisely what is needed to
apply the synthesis methods based on logarithmic
diagrams. The models used in “modern’ control
theory are with a few exceptions parametric models
in terms of state equations. The desire to determine
such models from experimental data has naturally
renewed the interests of control engineers in para-
meter estimation and related techniques.

Status of the field

Although it is very difficult to get an overview
of a field in rapid development we will try to point
out a few facts which have struck us as being rele-
vant when we prepared this survey.

The field of identification is at the moment rather

bewildering, even for so-called experts. Many
different methods and techniques are being analysed
and treated. “New methods” are suggested en
masse, and, on the surface, the field appears to look
more like a bag of tricks than a unified subject.
On the other hand many of the so-called different
methods are in fact quite similar. It seems to be
highly desirable to achieve some unification of the
field. This means that an abstract frame-work to
treat identification problems is needed. In this
context it appears to us that the definition of an
identification problem given by ZADEH [2] can be
used as a starting point, i.e. an identification pro-
blem is characterized by three quantities: a class
of models, a class of input signals, and a criterion.
We have tried to emphasize this point of view
throughout the paper.

For a survey paper like this it is out of question
to strive for completeness. Limitations are given
by: the number of relevant publications; the
balance between the “educational” and the “‘expert”
slant of this representation; the (in)coherence of the
field and the wide spectrum of related topics.

Also it is desirable to keep in mind that until now
a number of survey papers have been written, based
on many references. For an indication where this
new paper [0] stands with respect to the older ones
the reader is presented with an enumeration of
topics dealt with in the IFAC survey papers:
EYKHOFF, VAN DER GRINTEN, KWAKERNAAK and
VELTMAN [208], CuENOD and SAGE [206], EYKHOFF
[22], and BALAKRISHNAN and PETERKA [35].

IDENTIFICATION IN AUTOMATIC CONTROL
SYSTEMS
General aspects
The purpose of identification/estimation procedures
Identification
—definition and formulation {0]

—and control [0}, [35]
Model representation

—a priori knowledge 22]
—linear [0], [22], [35], [206], [208]
——linear in the parameters [0], [22]
—non-linear, general [206]
——non-linear, Wiener [206]
—non-linear, Volterra [35]
—linear/non-linear-in-parameters [0]
—multivariable [0]
Industrial models

—use [208]
—examples dynamic/static [208]

Formulation of the estimation problem

Classes of instrumentation  [0], [22], [35], [208]
—models [0]
—input signal [0]
—criteria [0
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—explicit mathematical relations/model

adjustment [208]
—*“one-shot” technique/iterative technique [0]
achievable accuracy [0}, [35]
input noise [0]
identifiability [0]

Parameter estimation
Relationship between estimation techniques  [22]

Least squares|generalized least squares
[0], 122}, [35], [208]

“One-shot” techniques

auto and cross correlation [0], [22], [206], {208]

differential approximation [206]
deconvolution, numerical [206]
normal equations (sampled

signals) [01, 22}, [35], [208]
residual: [0]
test of model order [0]
combined model and noise param. estimation  [0]
instrumental variables [0], [35]

generalized model/minimization of
equation-error [01, [22], [35], [208]

Iterative techniques

model adjustment [0], [22], [35], [208]
—on-line, real-time [0], [35]
—sensitivity [22], [208]
—hill climbing techniques [0]
stochastic approximation [], [22], {35]
relation with Kalman filtering [0]

Maximum likelihood [0], [22], [35], [208]

achievable accuracy [35]
properties [0}, [22]
Bayes’ Estimation [22]
Use of deterministic test signals

choice of input signals [0]
comparison of a number of test signals [208]
sinusoidal test signals [206]
pseudo-random binary noise [35], [208]
State estimation

state description, examples [208]
state estimation [0], [208]
—non-linear filtering [0]
Parameter and state estimation combined

gradient method [206]

(0], [22], [206]
[0], [206]

quasilinearization
invariant imbedding

Other surveys and monographs of general interest
are ALEKSANDROVSKII and DEicH [3], BeExkey [4],
LEeE [209], RAiBMAN [221] and STROBEL [6], [42].

2. GENERAL PROPERTIES OF IDENTIFICATION
PROBLEMS

Purpose of identification

When formulating and solving an identification
problem it is important to have the purpose of the
identification in mind. In control problems the
final goal is often to design control strategies for
a particular system. There are, however, also situa-
tions where the primary interest is to analyse the
properties of a system. Determination of rate
coefficients in chemical reactions, heat transfer
coefficients of industrial processes and reactivity
coefficients in nuclear reactors are typical examples
of such a “diagnostic” situation. In such a case
determination of specific parameter values might be
the final goal of the identification. Many problems
of this type are also found in biology, economy,
and medicine.

Even if the purpose of the identification is to
design a control system the character of the problem
might vary widely depending on the nature of the
control problem. A few examples are given below:

Design a stable regulator.

Design a control program for optimal transition
from one state to another.

Design a regulator which minimizes the variations
in process variables due to disturbances.

In the first case it might be sufficient to have a
fairly crude model of the system dynamics. The
second control problem might require a fairly
accurate model of the system dynamics. In the
third problem it is also necessary to have a model
of the environment of the system. Assuming that
the ultimate aim of the identification is to design
a control strategy for a system, what would con-
stitute a satisfactory solution from a practical point
of view?

In most practical problems there is seldom
sufficient a priori information about a system and
its environment to design a control system from
a priori data only. Tt will often be necessary to
make some kind of experiment, observe the process
while using perturbations as input signals and ob-
serve the corresponding changes in process
variables. In practice there are, however, often
severe limitations on the experiments that can be
performed. In order to get realistic models it is
often necessary to carry out the experiments
during normal operation. This means that if the
system is perturbed, the perturbations must be
small so that the production is hardly disturbed.
It might be necessary to have several regulators in
operation during the experiment in order to keep
the process fluctuations within acceptable limits.
This may have an important influence on the esti-
mation results.
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When carrying out identification experiments of
this type there are many questions which arise
naturally:

How should the experiment be planned ? Should
a sequential design be used, i.e. plan an experi-
ment using the available a priori information,
perform that experiment, plan a new experiment
based on the results obtained, etc. When should
the experimentation stop?

What kind of analysis should be applied to the
results of the experiment in order to arrive at
control strategies with desired properties? What
confidence can be given to the results?

What type of perturbation signal should be used
to get as good results as possible within the limits
given by the experimental conditions?

If a digital computer is used what is a suitable
choice of the sampling interval ?

In spite of the large amount of work that has been
carried out in the area of system identification we
have at present practically no general answers to
the problems raised above. In practice most of these
general problems are therefore answered in an ad
hoc manner, leaving the analysis to more specified
problems. In a recent paper JACOB and ZADEH [7]
discuss some of the questions in connection with
the problem of identifying a finite state machine;
c.f. also ANGEL and BEKEY [8] Some aspects of the
choice of sampling intervals are givenin FANTAUZZI
[9] and Sano and TeErAo [11]. Sincethe general prob-
lems discussed above are very difficult to formalize
one may wonder if there will ever be rational
answers to them. Nevertheless, it is worthwhile to
recognize the fact that the final purpose of identifi-
cation is often the design of a control system, since
this simple observation may resolve many of the
ambiguities of an identification problem. A typical
example is the discussion whether the accuracy
of an identification should be judged on the basis
of deviations in the model parameters or in the
time response. If the ultimate purpose is to design
control systems then it seems logical that the ac-
curacy of an identification should be judged on the
basis of the performance of the control system
designed from the results of the identification.

Formulation of identification problems

The following formulation of the identification
problem was given by ZADEH [2]:

“Identification is the determination, on the basis
of input and output, of a system within a specified
class of systems, to which the system under test is
equivalent.”

Using Zadeh’s formulation it is necessary to
specify a class of systems, & = {S'}, a class of input
signals, %, and the meaning of “equivalent”. In
the following we will call “the system under test”
simply the process and the elements of & will be
called models. Equivalence is often defined in terms
of a criterion or a loss function which is a functional
of the process output y and the model output y,, i.e.

V=V, yuw) - 1

Two models m, and m, are then said to be equiva-
Jent if the value of the loss function is the same for
both models, i.e.

Vs Y=V Vi) -

There is a large freedom in the problem formulation
which is reflected in the literature on identification
problems. The selection of the class of models,
&, the class of input signals, %, and the criterion
is largely influenced by the a priori knowledge of
the process as well as by the purpose of the identi-
fication.

When equivalence is defined by means of a loss
function the identification problem is simply an
optimization problem: find a model Sye& such
that the loss function is as small as possible. In
such a case it is natural to ask several questions:

Is the minimum achieved ?
Is there a unique solution?

Is the uniqueness of the solution influenced by
the choice of input signals ?

If the solution is not unique, what is the charac-
ter of the models which give the same value of
the loss function and how should & be restricted
in order to ensure uniqueness?

Answers to some of these problems have been given
for a simple class of linear systems arising in
biomedical applications by BELLMAN and ASTROM
[12]. The class of models & has been called identi-
fiable if the optimization problem has a unique
solution. Examples of identifiable and non-
identifiable classes are also given.

The formulation of an identification problem as
an optimization problem also makes it clear that
there are connections between identification theory
and approximation theory. Many examples are
found in the literature, e.g. LAMPARD [13], KiTA-
MoRI [14], BARKER and HAWLEY [15], ROBERTS [16],
[17], and others, where covariance functions are
identified as coefficients in orthogonal series expan-
sions. Recent examples are SCHWARZE [18],
Gorecki and Turowicz [19], and DoNaTI and
MILANESE [207].
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Another type of identification problem is
obtained by imbedding in a probabilistic frame-
work., If & is defined as a parametric class, &
= {S,}, where f is a parameter, the identification
problem then reduces to a parameter estimation
problem. Such a formulation makes it possible to
exploit the tools of estimation and decision theory.
In particular it is possible to use special estimation
methods, e.g. the maximum likelihood method,
Bayes’ method, or the min-max method. It is
possible to assign accuracies to the parameter
estimates and to test various hypotheses.

Also in many probabilistic situations it turns out
that the estimation problem can be reduced to an
optimization problem. In such a case the loss
function '(1) is, however, given by the probabilistic
assumptions. Conversely to a given loss function
it is often possible to find a probabilistic interpreta-
tion. The problem can usually be handled analy-
tically under gaussian assumptions. An approxi-
mation technique in the non-gaussian case is dis-
cussed by RaiBmMAN and collaborators [215], [216].

There are several good books on estimation
theory available, e.g. DEUTSCH [20] and Nasr [21].
A summary of the important concepts and their
application to process identification is given by
EYKHOFF [22]. An exposé of the elements of estima-
tion theory is also given in Appendix A.

Also in the probabilistic case it is possible to de-
fine a concept of identifiability using the framework
of estimation theory. In AsTrROM and BoHLIN [23]
a system is called identifiable if the estimate is
consistent. A necessary condition is that the infor-
mation matrix, associated with the estimation
problem, is positive definite. Another concept of
identifiability has been given by BALAKRISHNAN
[24]. The question of identifiability has also been
pursued by Starey and YUE [25]. The concept of
determinable classes introduced by Root [228],
[229], [230] is also closely related to identifiability.

Relations between identification and control. The
separation hypothesis.

Whenever the design of a control system for
a partially known process is approached via identi-
fication it is an a priori assumption that the
design can be divided into two steps: identification
and control. In analogy with the theory of
stochastic control we refer to this assumption as
the separation hypothesis. The approach is very
natural, in particular if we consider the multitude
of techniques which have been developed for the
design of systems with known process dynamics
and known environments. However, it is seldom
true that optimum solutions are obtained if a
process is identified and the results of the identi-
fication are used in a design procedure, developed
under the assumption that the process and its

environment are known precisely. It can be
necessary to modify the control strategy to take
into account the fact that the identification is not
precise. Conceptually, it is known how these
problems should be handled. In the extreme case
when identification and control are done simul-
taneously for a system with time-varying para-
meters the dual control concept of FEL’DBAUM
[26] can be applied. This approach will, however,
lead to exorbitant computational problems even
for simple cases. C.f. MENDES [27] and the discus-
sion in section 7 of this paper.

It can also be argued that the problem of control-
ling a process with unknown parameters can be
approached without making reference to identifica-
tion at all. As a typical example we mention on-
line tuning of PID regulators. In any case it seems
to be a worthwhile problem to investigate rigorously
under what conditions the separation hypothesis is
valid. Initial attempts in this direction have been
made by SCHWARTZ and STEIGLITZ [28], ASTROM
and WITTENMARK [29]. Apart from the obvious
fact that it is desirable to choose a class of model &
for which there is a control theory available, there
are also many other interesting questions in the
area of identification and control, e.g.

Is it possible to obtain rational choices of model
structures and criteria for the identification if
we know that the results of identification will be
used to design control strategies ?

What “accuracy’ is required of the solution of an
identification problem if the separation hypo-
thesis should be valid at least with a specified
error?

Partial answers to these questions are given by
AsTROM and WITTENMARK [29] for a restricted class
of problems.

Accuracy of identification

The problem of assigning accuracy to the result
of an identification is an important problem and
also a problem which always seems to give rise to
discussions; e.g. QVARNSTROM [30], HEerres [31].
The reason is that it is possible to define accuracy
in many different ways and that an identification
which is accurate in one sense may be very inac-
curate in another sense.

For example in the special case of linear systems
it is possible to define accuracy in terms of devia-
tions in the transfer function, in the impulse
response, or in the parameters of a parametric
model. Since the Fourier transform is an un-
bounded operator, small errors in the impulse
response can very well give rise to large errors in the
transfer function and vice versa. A discussion of
this is given by UNBEHAUEN and SCHLEGEL [32]
and by STROBEL [5]. It is also possible to construct
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examples where there are large variations in a para-
metric model in spite of the fact that the corres-
ponding impulse response does not change much.
See e.g. STROBEL [42].

Many controversies can be resolved if we take
the ultimate goal of the identification into account.
This approach has been taken by STEPAN [33] who
considers the variation of the amplitude margin with
the system dynamics. Such an analysis is ideally
suited to analyse the case when the purpose of the
identification is to design a stable proportional
regulator. The following example illustrates the
difficulties in a universal concept of accuracy.

Example. Consider the process St given by

d—x—:u(t—T). (2)
dt
The transfer function is
1 —sT
HT(s)=—S ‘e (3)
and the unit step response is

Assume that the process Sy is identified as S,. Is
it possible to give a sensible meaning to the accuracy
of the identification? It is immediately clear that
the differences

0<1gT
1>T. “)

max |hT(t) - ho(t)[ (5
max [Hz(jo) — Ho( jo)] (6)

can be made arbitrarily small if T is chosen small
enough. On this basis it thus seems reasonable to
say that S, is an accurate representation of Sy if
T is small. On the other hand the difference

UOEHT(J'CU)_IOg Ho(jw), =oT Q)
i.e. the difference in phase shift, can be made arbit-
rarily large, no matter how small we choose T.
Finally, assume that it is desired to control the
system (2) with the initial condition

x(0)=1 (8)

in such a way that the criterion

14 =Jw {o?x*(1) +u?()}dt 9)

is minimal. Suppose, that an identification has
resulted in the model S, while the process is actually

Sr. How large a deviation of the loss function is
obtained? For S, the control strategy which mini-
mizes (9) is given by

u(t)y= —oax(t). (10)
The minimal value of the loss is
min V=c¢.

If @=1 it can be shown that a very slight increase
of the loss function is obtained if say T=0-001.
However, if @=2000 (>=/2T) the criterion (9) will
be infinite for the strategy (10) because the system
is unstable. We thus find that the same model
error is either negligible or disastrous depending on
the properties of the loss function.

Limitations in the possibilities of identification
are discussed by STEPAN [34].

3. CLASSIFICATION OF IDENTIFICATION
METHODS

The different identification schemes that are
available can be classified according to the basic
elements of the problem, i.e. the class of systems &,
the input signals %, and the criterion. Apart from
this it might also be of interest to classify them
with respect to implementation and data processing
requirements. For example: in many cases it might
be sufficient to do all computations off line, while
other problems might require that the results are
obtained on line, i.e. at the same time the measure-
ments are done. Classifications have been done
extensively in EYKHOFF [22], BALAKRISHNAN and
PETERKA [35].

The class of models &

The models can be characterized in many
different ways, by nomparametric representations
such as impulse responses, transfer functions,
covariance functions, spectral densities, Volterra
series and by parametric models such as state models

%#mmm

y=g(x, u, B) (11)

where x is the state vector, u the input vector, y the
output vector and f a parameter (vector). It is
known that the parametric models can give results
with large errors if the order of the model does
not agree with the order of the process. An
illustration of this is given in an example of section
5. A more detailed discussion of parametric model
structures 18 given in section 4. The nonparametric
representations have the advantage that it is not
necessary to specify the order of the process
explicitly. These representations are, however,
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intrinsically infinite dimensional, which means that
it is frequently possible to obtain a model such that
its output agrees exactly with the process output.
A typical example is given below.

Example. Suppose, that the class of models js
taken as the class of linear time-invariant systems
with a given transfer function. A reasonable
estimate of the transfer function is then given by

7 (oo y(®e dt
= e a

where u is the input to the process and y is the
output. To “climinate disturbances” we might
instead first compute the input covariance function

1 T—|t] )
R(7)= —fJ\ u(Hu{t +7)dt

[¢]

and the input-output covariance

T—1
lf WDyt +odi T>0
T) o
Ruy(’[)=

1T
7,‘[ u()y(t+7)ds <0

and then estimate the transfer function by

T —5T
HZ(S) =j; TR“y(T)e_st d‘C )
—rR (e ""dt

It is easy to show that H,=H,. The reason is
simply that the chosen transfer function will make
the model output exactly equal to the process out-
put, at least if the process is initially at rest.

Interesting aspects of parametric versus non-
parametric models are found in the literature on
time series analysis. See for example MANN and
WALD [36], WHITTLE [37], GRENANDER and ROSEN-
BLATT [38], JENKINS and WaATTs [39]. Needless to
say the models must, of course, finally be judged
with respect to the ultimate aim.

The class of input signals

It is well known that significant simplifications in

the computations can be achieved by choosing input

signals of a special type, e.g. impulse functions,
step functions, “colored” or white noise, sinu-
soidal signals, pseudo-random binary noise (PRBS),
etc. A bibliography on PRBS is given in NIKIFORUK
and GUPTA [40]. See also GoDFREY [41]. For the
use of deterministic signals c.f. STROBEL [42],
GITT [43], WILFERT [44], VAN DEN Bos [45], WEL-~
FONDER and HASENKOPF [46], CuMMING [47].

From the point of view of applications it seems
highly desirable to use techniques which do not
make strict limitations on the inputs. On the other

hand if the input signals can be chosen, how should
this be done? It has been shown by ASTROM and
Bonrin [23], AstroM [48], Aokl and STALEY [49]
that the condition of persistent excitation (of order
), i.e. that the limits

D= 1 1 X 0
1= lim — u(k
Nl—'ooNkZI &

and
N
R (D= lim — Y {u(k)—iu}{u(k+i)—u}
N-o NK=1

(12)
exist and the matrix 4, defined by

A,={a;=R(i—))} i,j=1,...,n (13)

is positive definite, is sufficient to get consistent
estimates for least squares, maximum likelihood
and maximum likelihood in the special case of
white measurement errors.

One might therefore perhaps dare to conjecture
that a condition of this nature wll be required in
general.

Notice, that if the “mean square fourier trans-
form” of the input, i.e.

i N
flwy=lm = [u(k)—ale™ (14)

N-wo /Ni=1

exists, then
R(7) =J|f.,(w)|26"“’dw (15)

and the matrix A4, given by (12) is automatically
nonnegative definite for arbitrary n. Moreover, if

Jilw)>0 (16)

the matrix A, is also positive definite for arbitrary
n. The condition (16) is thus sufficient to guarantee
that an input signal is persistently exciting of
arbitrary order. Also notice that if the input signal
is an ergodic stationary stochastic process then its
spectral density is given by

pu@)=|fl@)]* . (17)

The condition (16) then implies that the spectral
density of the input signal does not vanish for
any , a condition which is well known for corre-
lation analysis.

Apart from persistent excitation many applica-
tions will require that the output is kept within
specified limits during the experiment. The prob-
lem of designing input signals, energy and time
constrained, which are optimal e.g. in the sense
that they minimize the variances of the estimates,
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has been discussed by LEevapi [50], Aoki and
STALEY [49], [198], and Nawur [213]. The same
problem is also discussed in RAULT ef al. [51].
It is closely related to the problem of optimal
signal design in communication theory; see e.g.
MIDDLETON [52].

Many identification procedures require that the
input signal is independent of the disturbances
acting on the process. If this condition is not
fulfilled it might still be possible to identify the
parameters. Each specific case must, however,
be analyzed in detail. Typical cases where the
input may depend on the disturbances are when
normal operating records are used, and the system
is under closed loop control as in adaptive systems.

The danger of identifying systems under closed
loop control deserves to be emphasized. Consider
the classical example of Fig. 1.

i
P _’Vy

HR <=z

Fi1G. 1. Identification of a process in a closed loop.

An attempt to identify Hp from measurements of

u and y will give
=1
Hy

i.e. the inverse of the transfer function of the feed-
back. In industrial applications the feedback can
enter in very subtle ways e.g. through the action
of an operator who makes occasional adjustment.
FisuER [53] has shown the interesting result that
the process may be identified if the feedback is
made non-linear.

The criterion

It was mentioned in section 2 that the criterion is
often a minimization of a scalar loss function. The
loss function is chosen ad hoc when the identifica-
tion problem is formulated as an optimization
problem and it is a consequence of other assump-
tions when the problem is formulated as an
estimation problem.

Mostly the criterion is expressed as a functional
of an error e.g.

T
V(s ym) =J e?(1)dt 18)
0
where y is the process output, y,, the model output,

and e the error; y, y,, and e are considered as
functions defined on (0, 7). Notice, that the

criterion (18) can be interpreted as a least squares
criterion for the error e. In the case

€=y—ym=y—'M(ll) (19)

where M (1) denotes the output of the model when

the input is u, e is called the output error. It is the

natural definition when the only disturbances are

white noise errors in the measurement of the output.
In the case

e=u—u,=u—M"1(y) (20)

where u,,= M ~*(y) denotes the input of the model
which produces the output y, e is called the inpur
error. The notation M ~! implies the assumption
that the model is invertible, roughly speaking that
it is always possible to find a unique input which
produces a given output. Rigorous definitions
of the concept of invertibility are discussed by
BROCKETT and MEsAROVIC [54], SILVERMAN [55],
SAIN and Massgey [56]. From the point of view of
estimation theory the criterion (18) with the error
defined as the input error (20) would be the natural
criterion if the disturbances are white noise entering
at the system input.

Since the output of a system depends not only
on the input but also on the state, the error as de-
fined by (19) and (20) will also depend on the initial
state of the model M. This creates little difficulty
in the case of finite dimensional state models since
the initial state can always be included in the
parameters. For nonparametric problems there
might, however, be some difficulties. The problem
has been discussed by SILVERMAN [57] in connection
with correlation methods.

In a more general case the error can be defined as

e=M;"'(y)—M,(u) 2D

where M, represents an invertible model. This
type of model and error (21) are referred to as
generalized model and generalized error EYKHOFF
[113]. A special case of the generalized error is the
“equation error” introduced by PotTTs, ORNSTEIN
and CLYMER [58]. Figure 2 gives an interpretation
of the different error concepts in terms of a block
diagram.

Computational aspects

All solutions to parametric identification prob-
lems consist of finding the extremum of the loss
function V considered as a function of the para-
meters f. The minimization can be done in many
different ways, e.g.

as a “onme-shot” approach, i.e. solving the rela-
tions that have to be satisfied for the extremum
of the function or functional ¥ or:
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g~ process

»~ model

a) e
output error

n
u b
process premmin

U nverse

= model
e
input error
u process y
generalized model
-1
M; (O M,
c) e

generalized error
FiG. 2. Some error concepts.

as an iterative approach, i.e. by some type of
hiflclimbing. In this case numerous techniques
are available, e.g.

(a) cyclic adjustment of the parameters one-by-
one, a.0. Southwell relaxation method

(b) gradient method:

BG+D)=FH)—-TV,[p()]  T>0
(c) steepest descent method:
pl+1)=piH-TOV,[pH)]  T(@H>0

I'(7) chosen such that ¥(f) is minimum in the
direction of the gradient.

(d) Newton’s method:

Bli+1)=p()— L) V5L B)]
T()=[Vp(B(iN] ™
{e) conjugate gradient method:
B(i+1)=pB(D)—T()s(i)
. . 1 Z2G0)]
S()=VBD) —ﬁgg((—f(_—)i‘%—”zs@ =)
['(7)>0 chosen to minimize V(B(7)— I'@)s()).

* 7 is used as a shorthand notation for the gradient of
B
V with respect to f:
de

f oV av
Vﬂ = VpV=|:(}ﬁ1 PECEEECTS a{—],

This method, applied to a positive definite
quadratic function of n variables, can reach the
minimum in at most » steps.

In these methods it has not been taken into ac-
count that in the practice of estimation the deter-
mination of the gradient is degraded through the
stochastic aspects of the problem. A method which
considers this uncertainty in the gradient-deetr-
mination is the:

(f) stochastic approximation method:

Bi+1)= (i) —T(DHVa(B())
where I'(7) has to fulfil the conditions:

T'()=0
Y T i)<oo
i=1
and
Y I(i)—» o
i=1
as n— 0.

In the scalar case I'(i)=1/i satisfies the above
conditions.

A good survey of optimization techniques is
found in the book by WILDE [59]. See also BEKEY
and McGee [60].

4, CHOICE OF MODEL STRUCTURE

The choice of model structure is one of the basic
ingredients in the formulation of the identification
problem. The choice will greatly influence the
character of the identification problem, such as:
the way in which the results of the identification can
be used in subsequent operations, the computa-
tional effort, the possibility to get unique solutions,
etc. There are very few general results available
with regard to the choice of structures.

Tn this section we will first discuss the concept
of linearity in the parameters and we will then dis-
cuss the structure of linear systems.

The concept of linearity in the parameters

In control theory the distinction between linear
and non-linear is usually based on the dynamic
behaviour, i.e. the relation between the dependent
and the independent time variables. For parameter
estimation another distinction between linearity
and nonlinearity is of as much importance, viz.
with respect to the relation between the dependent
variables and the parameters. To be specific a
system is said to be linear in the parameters if the
generalized error is linear in the parameters. Ap-
parently, these two notions of linearity have no
immediate relation as can be seen from the follow-
ing examples.



132 K. J. AstrOM and P. EYKHOFF

We assume a process with input signal u and
output signal y. Then the “model” may be chosen
to form an “error’” e between process and model
output in the following way.

Such non-linear expressions, that can be made linear
in the parameters through transformation, are
called intrinsically linear. If such a linearization is
not possible then intrinsically non-linear is used.

Model
linear in the non-linear in the
Process parameters parameters
e=y—w=y “
1 — _ —_ = _
= <
) 3 5 . D+o
yY+ay=u 5 = e=y+ay—u
< .
< wHoaw=u
8
.2 =
. £ § e=y—w=y—olu, o]
y+ay =u g = e=y+oy’—u
o .
= S WA aw?=u

Henceforth we will use the term “linear” for the
dynamic behaviour and use “linear in the para-
meters’ for the other type.*

In connection with estimation schemes the great
importance of linearity in the parameters will
become clear. Therefore it pays to try to find
transformations of the variables to obtain such a
tinearity if possible. Some simple examples may
illustrate this.

Example 1. The transformation
oy 1
——=Uy, —=Uy, —=—f, ——f,
X Xo Oy oy
brings the non-linear relation
Xy + X
7= 22 1
to the linear form
z=Lu+fou,.

Example 2. The transformation
logz—y, logx;—u;, logx,—u,

loge—fo, a3 —=py, = f

brings

to the linear form

y=PRo+ b+ Bau,.

* Note that also the term “‘order” may cause confusion.
In regression analysis this term refers to the highest degree
of the independent variable:
y=Bo+Bius+n models of the first
y=Bo+Pui+Pruiz+ ... +Pmtin+n  order
y="PBo+B1us +Pons2 model of the second

order

It may pay to make transformations even if the
system is intrinsically non-linear; see e.g. DISKIND
[61]. A typical example is the identification of
discrete-time linear system when the output is
measured with white measurement noise. The
representation of the system by the coefficients of
the pulse transfer function leads to a non-linear
regression problem while the representation of the
model by coefficients of a generalized model or by
the ordinates of the weighting function leads to an
estimation problem which is linear in the para-
meters.

Representation of linear systems

Linear time-invariant systems can be represented
in many different ways by input-output descrip-
tions, such as impulse response or transfer func-
tion H or by the state model S(4, B, C, D) defined
by

91\: =Ax+ Bu
dt

y=Cx+Du (22)

where x is an n-vector, the input u is a p-vector,
and the output yis an r-vector. Itis well-known that
the systems S(4, B, C, D) and S(TAT™!, TB,
CT™*, D) where T is a nonsingular matrix are
equivalent in the sense that they have the same
input-output relation. It is also easy to verify
that the systems S(4, B, C, D) and S(4, B, C, D)
are equivalent in the sense that they have the same
input-output relation if

D=D
CA*B=CA"B k=0,1,...,n. (23)

The relations between the different representations
were clarified by Kalman’s work; see e.g. KALMAN
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[62]. The impulse response and the transfer func-
tion only represent the part of the system S which is
completely controllable and completely observable.
It is thus clear that only the completely control-
lable and completely observable part of a state
model S(4, B, C, D) can be determined frominput-
output measurements. The impulse response and
the transfer function are easily obtained from the
state description. The problem of determining a
state model from the impulse response is more
subtle, even if we disregard the fact that only the
controllable and observable subsystem can be
determined from the impulse response. The prob-
lem of assigning a state model of the lowest possible
order which has a given impulse response has been
solved by Ho and KALMAN [63]. See also KALMAN,
Farp and ArsiB [64], and Bruni, Isipori and
RuserTi [201]. Again the solution is not unique.
The model S(4, B, C, D) contains

N =n*4np+nr+pr (24)

parameters. The fact that the input-output relation
is invariant under a linear transformation of the
state variables implies that all N, parameters cannot
be determined from input-output measurements.
To obtain unique solutions as well as to be able to
construct efficient algorithms it is therefore of great
interest to find representations of the system which
contain the smallest number of parameters, i.e.
canonical representations.

Canonical forms for linear deterministic systems

Canonical forms for linear systems are discussed
e.g. by KaimaN [62]. When the matrix A4 has
distinct eigenvalues canonical forms can be obtained
as follows. By a suitable choice of coordinates the
matrix A can be brought to diagonal form.

A0 ... 0
0 Ay ce 0
dx
— X
dt
0 0 2,
™ ]
ﬁll ﬁ12 e ﬁlp
521 ﬁ22 I :BZP
+

u

ﬁnl BnZ e ﬁnp

Y11 VY12 e Vin
Vat V22 c V2n

y= . R
Pr1 Vr2 e Yen

dig dis . dy,

d21 d22 s d2p

u. (25)

d.y d,, . d

rp

This representation contains 7+ np+nr+pr para-
meters. n of these are redundant since all state
variables can be scaled without affecting the input-—
output relations. The input-output relation can
thus be characterized by

Ny=n(p+»)+pr (26)

parameters. Since the system is completely control-
lable and observable there is at least one non zero
element in each row of the B matrix and of each
column of the C matrix. The redundancy in (25)
can thus be reduced by imposing conditions like

max[)’ij=1 i=1,2,...,n (27)
J
YIBil=1 i=1,2,...,n (28)
J

or similar conditions on the C matrix.

When the matrix 4 has multiple eigenvalues the
problem of finding a minimal parameter repre-
sentation is much more complex. If 4 is ¢yclic, i.e.
there exists a vector b such that the vectors b, Ab,
A%b, ..., A"~ b span the n-dimensional space, the
matrix can be transformed to companion form
and a minimal parameter representation is then
given by

—d; 1 0 0
—a, 0 1 0
dx
E: X
—d,_1 0 0 1
—a, 0 0 0
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T i
byy bya byp
by by, b2p
+ u
bn—l,l bn—-l,Z LA bn—-l,p
bnl bn2 bnp
€11 C12 con Cin
Cay Ca2 ce Cap
y= X
crl ch crn
diy dy, dlp
dyy dsy d2p
+ 1 . Clu (29)
dy dy ... d,

where n additional conditions, e.g. of the form (27)
or (28) are imposed on the elements of the matrices
Band C.

In the case of processes with one output the
additional conditions are conveniently introduced
by specifying all elements of the vector C, e.g.
C'=[10...0]. The canonical form (29) then be-
comes

n—1 n—2
Y(s)=[d11+bns +by s +b"1:|U1(s)

s"+a st L. +a,

b n—1 b n—2 L
. +[d1,,+ S tha TE - by ()
sS+as T+ ... +a,

(30)

where Y and U, denote the Laplace transforms of
y and u;. A canonical representation of a process
of the nth order with p inputs and one output can
thus be written as

dny dn—ly
— 4 a4 —
ds 1dtn—l

d"u
+ .o Fay=| by —rt .
y [ ldt"

' , " ,
+b,,1u1:|+ +[b"pdtu"p+ +b,,pu,,:|. (31)

An analogous form for systems with several outputs
is

dny dn - ly
dr 1dtn -1

d"u 1

—t ..
dr

+ P +Any=[B01

+B”1Ll1jl+ e +l:ngEi-d—l:;l£+ e +Bnpup] (32)

where y is a r-vector and 4; r x ¥ matrices.

This form was introduced by KogpckE [65]. It has
been used among others by WONG ef al. [66] and
Rowe [67]. The determination of the order of the
process (32), which in general is different from »,
as well as the reduction of (32) for state form has
been done by TUEL [68]. Canonical forms for linear
multivariable systems have also been studied by
LuenBerGER [69] and Bucy [205]. Analogous
results hold for discrete time systems. When the
matrix 4 has multiple eigenvalues and is not cyclic
it is not clear what a “minimal parameter repre-
sentation”” means. The matrix 4 can, of course,
always be transformed to Jordan canonical form.
Since the eigenvalues of A4 are not distinct, the
matrix A can, strictly speaking, be characterized by
fewer than n parameters. The one’s in the super-
diagonal of the Jordan form can, however, be
arranged in many different ways depending on the
internal couplings. This leads to many different
structures.

Canonical forms for linear stochastic systems

We will now discuss canonical forms for stocha-
stic systems. To avoid the technical difficulties
associated with continuous-time white noise we
will present the results for discrete-time systems.
The analogous results are, however, true also for
continuous-time systems. Consider the system

x(k + 1) = ®x(k) + Tu(k) + v(k)
(k) =0x(k) + Du(k) + e(k) (33)

where k takes integer values. The state vector x,
the input u and, the output y have dimensions #,p,
and r; {v(k)} and {e(k)} are sequences of indepen-
dent equally-distributed random vectors with zero
mean values and covariances R, and R,. Since the
covariance matrices are symmetric the model (33)
contains

Ny=n*+np+nr+pr+in(n+1)+ir@r+1)

=n(%n+%+p+r)+r(p+§+%> 34

parameters. Two models of the type (33) are said
to be equivalent if: (i) their input-output relations
are the same when e=0 and v=0, and (ii) the sto-
chastic properties of the outputs are the same when
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u=0. The parameters of ®, I, and 0 can be reduced
by the techniques applied previously to deter-
ministic systems.

It still remains to reduce the parameters repre-
senting the disturbances. This is accomplished e.g.
by the Kalman filtering theorem. It follows from
this that the output can be represented as

#(k +1) =®£(k) + Tu(k) + Ke(k)
(k)= 05(k) + Du(k) +e(k) (35)

where £(k) denotes the conditional mean of x(k)
given y(k—1), y(k—2), . . ., and {e(k)} is a sequence
of independent equally distributed random variables
with zero mean values and covariance R.

The single output version of the model (35) was
used in AsTROM [199]. KaiLatH [71] calls (35) an
innovations representation of the process. A detailed
discussion is given in AsTrOM [72]. The model (35)
is also used by MeHRaA [73].

Notice, that if the model (35) is known, the
steady state filtering and estimation problems are
very easy to solve. Since K is the filter gainitis not
necessary to solve any Riccati equation. Also no-
tice that the state of the model (35) has physical
interpretation as the conditional mean of the state
of (33). If ® is chosen to be in diagonal form and
if conditions such as (27) are introduced on I" and
6 the model (35) is a canonical representation
which contains

N4=n(p+2r)+r<p+§+%> (36)

parameters.

For systems with one output, where the addi-
tional conditions are as ' =[10. . . 0],the equation
(35) then reduces to

yk)+ayk—D)+ ... +a,y(k—n)

=[blu )+ ... +byue—n)]+ ...
+ [ (k) + . .. + DU Sk—m)]+e(k)
+egk—1D+ ... +eelk—n). 37

By introducing the shift operator ¢ defined by
qy(k)=y(k+1) (3%)
the polynomials

AP=q"+a " '+ ... +a,

B(q)=Dbpq"+b1,q" "+ ... +byy
i=1,2,...,p

C(@)=q"+c1g" '+ ... +¢, (39)

and the corresponding reciprocal polynomials

AN =q"A(q™ )
BYq@)=q"B{q™ ")
CHg)=q"C(qg™") (40)

the equation (37) can be written as

A= ¥, BEa 0+ Cog e
G7)

or
A(gy(k)= .i B(@ul)+C(ge(k). (37"

This canonical form of an nth order system was
introduced by ASTROM, BOHLIN and WENSMARK [74]
and has since then been used extensively. The
corresponding form for multivariable systems is
obtained by interpreting y and u; as vectors and
A, B, and C as polynomials whose coefficients are
matrices. Such models have been discussed by
EatoN [75], KasHyAP [76], Rowe [67] and VALIS
[219].
The following canonical form

w0 =B1Dy, 19+ BLD, a4 .

4:(9) Az(a)
B,(9) C@),
+ Ap(q)u oK) +A(q) 3} 41)

has been used by BoHLIN [77], and STEIGLITZ and
MCcBRIDE [94] as an alternative to (37).

The choice of model structure can greatly in-
fluence the amount of work required to solve a
particular problem. We illustrate this by an
example.

A filtering example. Assume, that the final goal
of the identification is to design a predictor using
Kalman filtering. If the process is modeled by

x(k+1)=®x(k)+v(k)
y(k)=0x(k)+ e(k) (42)
where {e(k)} and {v(k)} are discrete-time white
noise with covariances R; and R,, the likelihood

function for the estimation problem can be written
as

—logL=% y [v'()RT Yo(k)+e€'(k)R; ‘e(k)]

k=1

+ 'leog(det R, -detR,)+-const. 43)
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where the system equations are considered as con-
straints. The evaluation of gradients of the loss
function leads to a two point boundary value prob-
lem. Also when the identification is done, the
solution of the Kalman filtering problem requires
the solution of a Riccati equation.

Assume instead that the process is identified using
the structure

z(k+1)=®z(k) + Ke(k)
y(ky=0z(k) + ¢(k) (44)

the likelihood function then becomes

H

—logL=4% a’(k)R"la(k)—}—glogdetR. (45)

k=1

The evaluation of gradients of the loss function in
this case is done simply as an initial value problem.
When the identification is done the steady state
Kalman filter is simply given by

H(he+ 1) =080+ K[ y(k)—0%(k)].  (46)

Hence if the model with the structure (44) is known
there is no need to solve a Riccati equation in order
to obtain the steady state Kalman filter.

5. IDENTIFICATION OF LINEAR SYSTEMS

Linear systems naturally represent the most
extensively developed area in the field of systems
identification. In this section we will consider linear
systems as well as “linear environments”, i.e.
environments that can be characterized by linear
stochastic models. In most control problems the
properties of the environment will be just as impor-
tant as the system dynamics, because it is the pre-
sence of disturbances that creates a control prob-
lem in the first place.

To formulate the identification problem using the
framework of section 2 the class of models &, the
inputs %, and the criterion must be defined. These
problems were discussed in sections 3 and 4. If
classical design techniques are to be used, the model
can be characterized by a transfer function or by an
impulse response. Many recently developed design
methods will, however, require a state model, i.e.
a parametric model.

Several problems naturally arise:

Suppose the impulse response is desired. Should
this be identified directly or is it “better” to
identify a parametric model and then compute the
impulse response ?

Assume, that a parametric model is desired.
Should this be fitted directly or is it “better’ to first
determine the impulse response and then fit a
parametric mode] to that?

Since a parametric model contains the order of
the system explicitly what happens if the wrong
order is assumed in the problem formulation ?

A linear stochastic system can be decomposed
into a deterministic dynamic system with additive
noise corrupting the ideal output. Is it “better”
to determine the deterministic model separately
and then (if required) the statistical characteri-
stics of the additive noise, or should the overall
model be determined first and then decomposed,
if necessary ?

There are not yet any general answers to these
problems. Special cases have been investigated by
GuUsTAVSSON [78] in connection with identification
of nuclear reactor and distillation tower dynamics
as well as on simulated data. Since correlation
techniques, their properties and applications by
now are very well known we will not discuss these
here. Let it suffice to mention the recent papers by
RAKE [79], WELFONDER [80], BucHTA [81], HAYASHI
[82], Rem [83], [84], StassEN [85], GERDIN [86],
Brown [202], KOSZELNIK et al. [203], and RATBMAN
et al. [204]. Instead we will concentrate on the
more recent results on the identification of para-
metric models.

Least squares identification of a parametric model

Consider a linear, time invariant, discrete-time
model with one input and one output. A canonical
form for the model is

ym(k) + alym(k_— 1) + ...+ anym(k_ I’l)
=bjutk—-1)+ ... +bu(k—n) 47N
where 1 is the input and y,, the output of the model.

Using the notation introduced in section 4 the
model (47) can be written as

A(q)y.(l) = B(q)u(k) (47"
or

A*g™yu(k)=B*(q ™ Yu(k). (47")

Let the criterion be chosen as to minimize the loss
function (1), i.e.

N+n

V=V, y)= Y. eXk) (48)

k=n

where e is the generalized error defined by

e(l)=A*(q~Hy(k) — (k)]

or
e(k)=A*(g"y(k)—B*(g~Hu(k)  (49)

and the last equality follows from (47""). The main
reason for choosing this particular criterion is that
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the error e is linear in the parameters a; and b,.
The function V is consequently quadratic and it is
easy to find its minimum analytically. Notice that
(49) implies

yk)+a, yk—D+ ... +a,y(k—n)
=bu(k—1)+ ... +bulk—n)+e(k). (50

The quantities e(k) are also called residuals or
equation errors. The criterion (48) is called mini-
mization of “equation error”. In Fig. 3 we give a
block diagram which illustrates how the generalized
error can be obtained from the process inputs and
outputs and the model parameters @; and b; in the
least squares method.

utk) process
a)
| B’fq")
INCR)
n(k}
ulk) process | ytk)
b)

+

B'q" T &q)
e(k)

FiG. 3. Definition of the “equation error”.

To find the minimum of the loss function V we
introduce

y(n+1)
y(n+2)
Y= .
y(n+N)
—y(m) —y(n-1)
—y(n+1) —y(n)
(D:
—y(N+n~-1) —y(N+n-2)

ﬁ,=[a1a2 anblbz “ e bu].

=y(@) 1u(m) un—1) ... u(l)
~y@) {u(n+1) O
YN uN4n=1) ... ... u(N)

The equation defining the error (49) then becomes
e=y—0f, (52)

The minimum of the loss function is found through
V V=0. If ®'® is not singular then this minimum
is obtained for f=f:

p=[o@] '@’y (33)

It is thus a simple matter to determine the least
squares estimate. The matrices @’y and ®'® are
given in (54) and (55). Notice that ®'® is sym-
metric.

N+n

- 2 . y(k)yk—1)

k=n+

N+n

- ) y(K)y(k—2)

k=n

N+n

= 2, y(ly(k—n)

k=n+1

e N — (54)
> Yulle—1)

k=n+

N+n

2, Yuk=2)

k=n+

N+n

k=;+] y(u(k—n)

&Y
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For literature on matrix inversion the reader is
referred to WESTLAKE [87].

Notice, that the technique of this section can
immediately be applied to the identification of non-
linear processes which are linear in the parameters,
e.g.

Y+ ay(k—1)=bu(k—1)+bu*(k—1). (56

A probabilistic interpretation

Consider the least squares identification problem
which has just been discussed. Assume, that it is
of interest to assign accuracies to the parameter
estimates as well as to find methods to determine
the order of the system if it is not known. Such
questions can be answered by imbedding the prob-
lem in a probabilistic framework by making suitable
assumptions on the residuals. For example if it is
assumed that

The input-output data is generated by the model
wheretheresiduals {e(k)} are independent,equally
distributed have zero mean values and finite
fourth order moments;

The input u is independent of e and persistently
exciting of order n;

All the roots of the equation
2"+az" 4 . +a,=0 (57)
have magnitudes less than one.

Then it is possible to show that the least squares
estimate f§ given by (53) converges to the true
parameter value as N—co.

The special case of this theorem when ;=0 for
all i, which correspond to the identification of
the parameters in an autoregression, was proven by
MANN and WALD [36]. The extension to the case
with b;#0 is given in ASTROM [48].

For large N the covariance of j is given by

cov[f]=c*[®'®]?

where 62 is the variance of e(?).

Estimates of the variances of the parameter
estimates are obtained from the diagonal elements
of this matrix.

If it is also assumed that the residuals are gaussian
we find that the least squares estimate can be inter-
preted as the maximum likelihood estimate, i.e. we
obtain the loss function (48) in a natural way.

It has been shown that the estimate § is asympto-
tically normal with mean B and covariance o2
[®'®]~ L. Notice, that this does not follow from the

general properties of the maximum likelihood esti-
mate since they are derived under the assumption
of independent experiments.

In practice the order of the system is seldom
known. It can also be demonstrated that serious
errors can be obtained if a model of the wrong order
is used. It is therefore important to have some
methods available to determine the order of the
model, i.e. we consider . as the class of linear
models with arbitrary order.

To determine the order of the system we can fit
least squares models of different orders and analyse
the reduction of the loss function.

The loss function will of course always decrease
when the model parameters are increased. To test
if the reduction of the loss function is significant
when the number of parameters are increased from
ny to n, we can use the following test quantity.

_VI_VZ N_nz

t= (58)

V, ny—m

where V; is the minimum value of the loss function
for a model with », parameters (i=1, 2) and N is the
number of input-output pairs. It can be shown that
the random variable ¢ for large N is asymptotically
F(ny—ny, N—n,) distributed.

If follows from the properties of the F-distribu-

tion that (n,—n,) ¢ is also asymptotically x2
distributed.
When applying the least squares method to a single-
input single-output system and the order of the
model is increased from » to n+1 the number of
parameters is increased by two. We have

F(2, 100)=3-09=>P{t>3-09} =0-05

F(2, 00)=3-00=>P{t>3:00} =0-05.

Hence at a risk level of 5 per cent and N> 100 the
quantity ¢ should be at least 3 for the corresponding
reduction in loss function to be significant.

The idea to view the test of order as a decision
problem has been discussed by ANDERSON [89].
It is also a standard tool in regression analysis.
Other techniques for testing order are discussed in
WOoODSIDE [88].

Notice, that the least squares method also in-
cludes parametric time series analysis in the sense
of fitting an autoregression, This has been dis-
cussed by WoLp [90] and WHITTLE [37]. Recent
applications to EEG analysis have been given by
GerscH [91]. Using the probabilistic framework
we can also give another interpretation of the least
squares method in terms of the general definition
of an identification problem given in section 3.
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First observe that in the generalized error defined
by (49) another y,, can be used:

e(k)=A*(q ™ Hy(k)—B*(q~ "u(k)
= y(k) - ym(k) . (59)

Consequently:
Yul)=9(k|ke—1)=[1~-A*(g~ H]y(k)

+B*(q ™ u(k)
=—ayk—1)— ... —a,y(k—n)

+buk—D+ ... +bu(k—n). (60)

Notice, that p,(k)=p(k|lk—1) has a physical
interpretation as the best linear mean squares
predictor of y(k) based on y(k—1), y(k—=2), ...
for the system (50). The generalized error (49) can
thus be interpreted as the difference between the
actual output at time k and its prediction using the
model (60).

The least squares procedure can thus be inter-
preted as the problem of finding the parameters
for the (prediction) model (60) in such a way that
the criterion

VO, 3= 3 D=0 (6D

is as small as possible. Compare with the block
diagram of Fig. 4. This interpretation is useful,
because it can be extended to much more general
cases. The interpretation can also be used in
situations where there are no inputs, e.g. in time
series analysis.

nlk)
ulk) o] process __’é_ ylk)
YulK

model

+ e (k)

F1G. 4. Interpretation as predictor model.

[R0) R/1) R(n—1)!
R(O) ... R(n—2)i-
R(0) |

Comparison with correlation methods

Now we will compare the least squares method
with the correlation technique for determining the
impulse response. When determining process
dynamics for a single-input single-output system
using correlation methods the following quantities
are computed:

i N

N-
Z u(lyulk +1)

1
u(l _"]v—‘
1 N-—-
Ry()=r— ; $()y(le-+1)
R > . (62)
Ryu(i) = e—_ Z y(k)”(k + l)
N—ix=1

1 N-—-i
R,(1)= N k; u(k)y(k+1)

-

Comparing with the least squares identification of
process dynamics we find that the elements of the
matrices ®'® and @'y of the least squares procedure
given by (54) and (55) are essentially correlations or
cross-correlations. Neglecting terms in the begin-
ning and end of the series we find

- Ryu(o) - Ruy(l) LR Ruy(n - 1)_
Ryu(l) - Ryu(o) uy(n 2)
yu(n - ) - Ryu(n 2) Ryu(o)
""""""""""""""""""""" (63)
Ru(o) Ru(l) oo Ru(n - 1)
R"(O) N Ru(n - 2)
R0)
) —R,(1) i
- Ry (Tl)
Oy=N | ~———— . (64)
R,(1)
Ruy(z)
Ruy(n)
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Hence if a correlation analysis is performed, it is
a simple matter to calculate the least squares esti-
mate by forming the matrices ®'® and @'y from the
values of the sample covariance functions and
solving the least squares equation. Since the order
of the system is seldom known a priori it is often
convenient to compute the least squares estimate
recursively using the test of order we have described
previously.

Correlated residuals

Many of the nice properties of the least squares
method depend critically upon the assumption that
the residuals {e(k)} are uncorrelated. It is easy
to find reallife examples where this assumption
does not hold.

Example. Consider a noise-free first order system
x(k+ 1)+ ax(k)=bu(k).

Assume that x is observed with independent
measurement errors (additive noise), i.c.

y(k)y=x(k) + n(k)
th n
y(k+ D)+ ay(k)=bu(k)+n(k+1)+an(k).

We thus get a system similar to (50) but with cor-
related residuals.

When the residuals are correlated the least
squares estimate will be biased. Asymptotically
the bias is given by

E(p—b)=[E@'®)]'E(®'e) (65)

where f is the estimate and b is the true value of
the parameter. The reason for this bias can be
indicated as follows; c.f. Fig. 5.

uti process

Fig. 5. Parameter estimation using a generalized
model.

The estimate results from a minimization of the
loss function

N
V=Y e(k).
k=1

Necessary conditions are:

Z_Iﬁ/ - ki e(lyu(k—1)=0 (66)
N
‘Z_Z= Y, elly(k—1)=0. (67)

In (67) the additive noise is present both in e and y;
this leads to a term

N

Y n¥(k—1)

k=1

which causes a bias.
To see how this works out consider an example.
Example. Assume, that the process is actually
described by the model

y(k+1)—0-5y(k)=1-0u(k)+n(k+ 1)+ 0-1n(k)

where {n(k)} is a sequence of independent normal
(0, 1) random variables, but that the system is
identified using the least squares method under the
assumption that the residuals are uncorrelated.
Below we give a typical result obtained from 500
pairs of inputs and outputs

Process

parameters Estimates
a=-05 8= —0-64340-029
b= 10 B= 1-018+0-062

We are apparently in a very bad situation; not
only is the estimate & wrong but we have also a
great deal of confidence in the wrong result. Note,
that the true value 0-500 deviates from the estimate
with about 5o.

The correlation of the residuals can thus easily
lead to wrong conclusions. Several techniques
have been suggested to deal with correlated resi-
duals, viz:

(a) repeated least squares

(b) generalized least squares

(c) the maximum likelihood method
(d) instrumental variables

(e) Levin’s method

(f) tally principle.

(a) Repeated least squares. Suppose that we did
not know the order of the system discussed in the
previous example. It would then be natural to
continue the least squares procedure and to test
the order of the system. The results for the parti-

cular example are shown in Table 1. Assuring a risk
level of 5 per cent and using the test quantity of
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(58) we find from Table 1 that the increase of the

TABLE 1

n o+o(o)

Bto(B) |4 t

1 —0-643+0029 1-0184+0-062 59265

2 —1-01540-045 1-086+0:056 46964 5094
0:377+0-039 —0-520+0-072

3 —1-118+0:050 1-115+0-055 44725 9-67
0:624+0-068 —0-660+0-078
—0-178£0-043  0-263+0-076

4 —1-1574+0050  1-085-+0-055
0-756 £0-074 —0-733+0-078
—0:412+0:074  0-409+0-083
0:187+0-044 —0-146+0-076

5 -—1-1854+0-051 1-080+0-054  418-72 351
0-814+0-077 —0-745+0-078

426-40 943

—0-5184-0:083  0:475+0-086
0-349+0-076 —0-252+0:086
—0:1174+0-044  0-123+0-076

6 —1:19540-051 1:079+0-055 41656 0-99
0-339+0-079 —0-751+0-078

—0-5554+0-088  0-487+0-087
0-410+0-088 —0-290+0-090
—0-208+0:079  0-183+0-087
0:061+0-045 —0-080+0:076

7 414-62 0-89

model order from 5 to 4 gives a significant reduc-
tion in the loss function (¢=3-51) but that the
reduction in the loss function when the order is
increased from 5 to 6 is not significant (¢=0-99).
The order test will thus indicate that a fifth order
model is appropriate.
A*(q ™ Yy(k)=B*(q~ "Yu(k)+ Ae(k)
where
A*(g H=1-1-19¢"'+0-81g7%—0-52¢ 3
+0:35¢7%—0-129°
B*(g™1)=1-08¢71—0-754"24+0-48¢ 3
—0:25¢74+012¢"°

Dividing A by B we find

1-084(z)
B(z)
0:03z3 —0:0722 +0-122z—0-06

24~ 06923 + 04422 — 023z +0-11

z—0495

Taking the uncertainties of the coefficients « and f
into account it does not seem unreasonable to
neglect the rest in the above expression. We find
that the system under test can be represented by

A
A*q™h

=20 ey +

7205 e(k) .

We can thus conclude that if we choose &% not as the
class of linear first order systems but as the class
of linear systems of arbitrary order it is at least
possible to overcome the difficulty of correlated
residuals in the specific example. This idea was
mentioned briefly in AsTrOM [92]. It has, however,
not been pursued in general.

(b) Generalized least squares. Another way to
overcome the difficulty with correlated residuals
is to use the method of generalized least squares.
See e.g. CLARKE [93].

The basic idea js as follows. Let the process be
governed by

A*q (k) =B*(q Yulk)+o(k)  (68)

where 4* and B* are polynomials and {v(k)} a
sequence of correlated random variables. Suppose
that the correlations of the residuals are known.
Say that {v(k)} can be represented as

v(k)y=G*(g ™ )e(k) (69)

where {e(k)} is a sequence of uncorrelated random
variables and G a pulse transfer function. The
equation describing the process can then be written
as

A¥(q™Yy(R)=B*g™ Yu(k)+G*(g~ )e(k)  (70)

or
A¥g~HP(k)=B*(q k) +e(k) (1)
where
!
)=, s 1)y(k) (72)
N 1
(k)= —G_*(—q_—‘l) u(k). (73)

Hence if the signals # and § are considered as
the inputs and outputs we have an ordinary
least squares problem. Compare with (49). We
thus find that the generalized least squares can be
interpreted as a least squares identification problem
where the criterion is chosen as (48) with the genera-
lized error defined as

_AgY, . BHgTY
o= S 100~ )

1
k
" )}

=A*gq"~ 1)[

~B*(q—1)[ﬁ5u<k>]. (74)
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Compare with the block diagram of Fig. 6. This
shows how the generalized error can be obtained
from the process inputs and outputs and the model
parameters o and f in the generalized least squares
method.

ntk)

utk) y (k)
process

B (q) AHg
G*@)|-T+| 6¥(g~

elk)

F1G. 6. Parameter estimation using “whitening
filters” G*.

The correlation of the residuals and the pulse
transfer function G are seldom known in practice.
CLARKE [93] has proposed an iterative procedure to
determine G which has been tested on simulated
data as well as on practical measurements (distil-
lation column identification).

The procedure consists of the following steps:

(1) Make an ordinary least squares fit of the model
Af(q~Hy(k)=Bj(g~ Hu(k)+o(k).  (75)

(2) Analyze the residuals v and fit an autoregression
ie.
Dj(g ™ Hu(k)=e(k) (76)

where {e(k)} is discrete-time white noise.
(3) Filter the process inputs and outputs through

¥()=Dj(a ™ Hy(k);
(k)= D} (g™ "u(k). an

(4) Make a new least squares fit to the filtered
inputs and outputs and repeat from 2.

Another approach along these lines is the algorithm
of StEiGLITZ and McBRIDE [94]. They use at the
Jjthiteration:

D¥g™H=Aj-1(q7")
thus making a least squares fit of the model
A*gq™h B(a™h)
e(k)= ———5 (k) — L ——u(k)
A5-4(@™h AT1(@™")

Biq™"Y .~ 147@™H)
=| y(k)— =2 k) |-=2 . 78
[y() Aj'-‘(q”‘)u( )JA?-l(q") 7%

The non-linearity in the parameters can also be
handled by means of quasilinearization, c.f.
Scrurz [218]. The techniques proposed in [111]
and [217] can also be interpreted as generalized
least squares methods.

These procedures have the drawbacks that there
are no systematic rules for the choice of order of the
model (75) and of the autoregression (76). Neither
are any convergence proofs yet available. It has,
however, been shown to work very well with rea-
sonable ad hoc choices of order in specific examples.

The following observation might also be worth-
while. Assume, that the generalized least squares
procedure will converge. Say 4;—4, B;—B, and
D;—D. We will then obtain

A*(q™)D*(q ™ My(k)
=B*(q")D¥(q" Du(k)+e(k) (79

i.e. a description of the process with uncorrelated
residuals. It thus appears that the differences bet-
ween the repeated least squares and the generalized
least squares are small.

(¢) The maximum likelihood method. Another
way to deal with the problem of correlated residuals
is to postulate a system with correlated residuals,
e.g. a canonical representation of an n:th order
system with one input and one output

A*(q™y(k)=B*(g Yu(k)+AC*(g )e(k) (80)

where u is the input, y the output and {e(k-} a
sequence of independent normal (0, 1) random vari-
ables. Compare with section 4. The parameters
of (80) can be determined using the method of
maximum likelihood. This has been discussed in
[74], [23], [97], [78], [199].

The likelihood function L is given by

1 N
—logL(8, )=— Y &k
g L(0, ») 2;12,(;1 (k)
+Niogi+Niogan  (81)
2 2
where

CH(g™Me(k)=A*(g™Yy(k)—B*(g~ Du(k)  (82)

and {w(k), k=1, 2, ..., N} is the applied input
signal and {y(k), k=1, 2, ..., N} is the observed
output signal. The likelihood function is considered
as a function of 0 and A, where 0 is a vector whose
components are the parameters dy, dy, ..., 4,
b, by ..., by, 3, .. ., ¢, and the n initial con-
ditions of (82). Notice, that the logarithm of the
likelihood function is linear in the parameters a;
and b, but strongly non-linear in c;.
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Also notice, that the optimization of L with res-
pect to 0 and A can be performed separately in the
following way: First determine 0 such that the loss
function

N
V()= k; &*(k) (83)

is minimal with respect to 6. The optimization with
respect to A can then be performed analytically.
We get

12 =% main V(). (84)

The maximum likelihood estimate can be shown
to have nice asymptotic properties. Estimates of the
accuracy of the parameters can also be provided.
See ASTROM, BOHLIN and WENSMARK [74], AsTROM
and BoHLIN [23]. A test for possible violation of
prerequisites of ML estimation is given by BOHLIN
991

The maximum likelihood procedure can also be
interpreted as finding the coefficients of the pre-
diction model

V #( 41

_A¥gTH=Ca™Y) s
S ) 9

in such a way that the criterion
N
V=V ym= ¥ [k

N
—nF= 3. 20 (86)

is as small as possible.
Notice, that (80) can also be written as

! y(k)]

A*(q_l‘)[m

- 1
=B*(q 1)[E:?(.é___l)u(k):l+/le(k). 87
This means that the maximum likelihood method
can also be interpreted as a generalized least squares
method where the filter function G=1/C is deter-
mined automatically.

It has been shown that predictors and minimal
variance control algorithms are easily determined
from the model (80); c.f. Astrom [72], [92]. The
maximum likelihood method has been applied
extensively to industrial measurements. See e.g.
AstrOM [92], [199], and GusTAvssoN [100] in this

paper comparisons with other techniques such as
correlation methods and generalized least squares
are also given. The maximum likelihood method
has also been applied to time series analysis (put
B=0). The maximum likelihood estimate is a
strongly non-linear function of the parameters.
Since time series analysis is mostly concerned with
quadratic functions, such as covariances and spec-
tral densities, one might expect that the estimates
can be expressed as non-linear functions of the
sample covariances. Estimates of this nature which
are asymptotically equivalent to the maximum
likelihood estimates for parametric time series
analysis have been given by ZETTERBERG [101]. The
generalization of the maximum likelihood method
to the multivariable case has been done by Woo
[97] and CaINgs [222].

(d) Instrumentalvariables. Repeatedleastsquares,
generalized least squares and the maximum likeli-
hood method all give a model of the environment in
terms of a model for the disturbances as a filter
driven by white noise. If we are only interested in
the system dynamics there are other methods to
avoid the difficulties with correlated residuals, e.g.
the instrumental variable method.

The equation for the least squares estimate can
be obtained from the equation

y=0f+e (83)

by premultiplying with @, neglecting the term ®’e
and solving the equation

O'y=0'0p. (89)

The estimate f will be unbiased if the term ®'e
has zero mean. When the residuals are correlated
it is easy to show that E®’es£0.

In the instrumental variable method, [102], [103],
the equation (83) is multiplied with W’ where W,
called the instrumental matrix, is a matrix whose
elements are functions of the data with the proper-
ties

EW'® nonsingular (50)
EW'e=0. 91

The parameter estimate obtained from
W'y=W'op (92)
will then be unbiased. It is also possible to find
instrumental variables such that the estimate has
optimal properties. The schemes proposed by

PeterkA and Smuk [104], HsiA and LANDGREBE
[105] are closely related to the instrumental variable
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technique. VuSkovi¢, BiNGurac and Djorovic
[106] indicate the use of pseudo sensitivity functions
as instrumental variables.

(e) Levin’s method. A particular method for
estimating the bias due to correlated residuals has
been proposed by Levin [107], [210], [211] for the
case of a deterministic system with independent
observation errors. Levin’s results are based on a
technique due to Koopmans and it gives the esti-
mates in terms of an eigenvalue problem for the
matrix ®'®. A careful analysis of Levin’s method
which includes convergence proofs and error esti-
mates has been done by Aoki and YUE [108]. The
method has also been used by SmiTH [109].

(f) Tally principle. This estimation procedure as
described by PrTErkA and HALOUSKOVA [110] starts
from the canonical fo 'm of an nth order process
given by equation (37). Now the terms with ¢ are
combined to a random variable d(k):

8k =21+ 3 cielle—i).

Based on the knowledge that {e(k)} is a sequence of
uncorrelated random variables it is found that

E[0(k)y(k—i)]=0 for i>n
E{8(kyu(k—i)]=0 for i>0. (93)

For any estimate of the unknown parameters one
finds a sequence 6%(k). Now

1

k

N
§l o*(ku(k —1i) 94)
and

L 3 svioytk—i &
L3 5wy (o)

have to “tally”’ (duplicate) the corresponding expec-
tations (93) as well as possible in a least square
sense.

In the special case of time series analysis the
“tally” principle reduces to the well-known tech-
nique of fitting the parameters of the Yule-Walker
equation to the sample covariances. See e.g. Ref.
[224].

Multivariable systems

The essential difficulty in the identification of
multivariable systems is to find a suitable repre-
sentation of the system. Once a particular repre-
sentation is chosen it is a fairly straight-forward
procedure to construct identification methods
analogous to those given for the case of systems
with one input and one output. We refer to section

4 for a discussion of structures for multivariable
systems, Also c¢.f. GRAUPE, SWANICK and CASSIR
[112]. For the structure (35) the likelihood function
is given by

—log L(8, R)=glog detR
1Y, -1 nN
+- ) (k)R e(k)+—log2m. (95)
2k=1 2

Even for multivariable systems the maximization
of L(0, R) can be performed separately with respect
to 6 and R. It was shown by EaTon [75] that the
maximum of L(8, R) is obtained by finding § which
minimizes

N
V(0)=det[ > e(k)s’(k)]. (96)
k=1
The maximization with respect to R can then be
done analytically to yield

~ 1 X

R=_7% e(k)e'(k). CH))
Ni=1

This fact is also mentioned in Rowe [67]. The
identification problem for linear multivariable
systems is also closely related to the problem of
simplifying a large linear system. See e.g. DAVISON
[70].

6. IDENTIFICATION OF NON-LINEAR SYSTEMS

Representation of non-linear systems

Note again, that non-linearity does not neces-
sarily imply a non-linearity in the parameters too
(c.f. section 4).

For linear systems the impulse response offers
a non-parametric system description that does not
depend on specific a priori assumptions. For a wide
class of non-linear systems a Volterra series ex-
pansion offers analogous possibilities, using im-
pulse responses of increasing dimensionality.
Approximation of these functions by a finite num-
ber of points leads to a model that is linear in the
parameters; c.f. EYknorr [113], ALPER [114], RoY
and SHERMAN [115]. For many practical cases the
number of parameters needed for this description
is too large.

Another approach for non-linear model building,
called group method of data handling, is given
by IvAKHNENKO [116], [117].

When considering non-linear systems as well as
linear systems with multiple inputs and multiple
outputs it therefore is necessary to make specific
assumptions concerning the model structure. It is
usually assumed that the system equations are
known except for a number of parameters b.



146 K. J. AstrOM and P. EYKHOFF

In a typical case the identification problem can
then be formulated as follows:

Let the class of models be all systems described by
the state equation

dc_i');=f(x’ u, B, 1)

Ym=8(x, u, B, 1) (98)

where the parameter vector f# belongs to a given set.
Let the criterion be given by the loss function

T
V(y, ym)=V(p)= J . [y(k) = yulle, P12dt - (99)

where y is the process output and y,, the model
output.

Estimation for a parametric model

The estimation problem for a non-linear para-
metric model thus reduces to a non-linear optimiza-
tion problem. As was discussed in section 3—
Computational aspects, there are many techniques
available for the solution of the non-linear estima-
tion problem.

Techniques which exploit the particular struc-
ture of the problem is discussed by MARQUARDT
{120}

The particular case when the non-linear system
can be separated into linear dynamics and non-
linearities without memory are discussed by BUTLER
and Boun [118] and NARENDRA and GALLMAN [119].
BeLLMaN and KALABA[121]have used quasilineariza-
tion to solve the non-linear optimization problem.

Interesting applications of this technique are
found in BueL, KaGgiwapa and KarLABa [122], BUEL
and KArLaBA [123]. A fairly general computer
program to solve the problem has been written by
BugL. Also c.f. VANECEK and FEssL [124].

Another method to solve the non-linear optimiza-
tion problem has been given by TAYLOR, ILIFF and
PowEers [125] in connection with application to
inflight determination of stability derivatives.

Again the criterion (99) can be given a probabili-
stic interpretation if it is assumed that the only
disturbances are white noise measurement errors.
A technique which admits the measurement errors
to be a stationary process with unknown rational
spectral density has been proposed by ASTROM,
BoHLIN and WENSMARK [74].

Due to specific assumptions that are made con-
cerning the structure of (98) one might expect that
serious mistakes can be made if these assumptions
are not true. Results which prove or disprove this
are not known,

Rather few publications have appeared on the
use of Bayes’ method (c.f. Appendix A) in identifi-
cation techniques; MasrLov [126], GALTIERT [127].

This is probably due to the computational prob-
lems when evaluating the conditional expectations.
McGee and WALFORD [128] propose a solution by
using a Monte Carlo approach.

7. ONLINE AND REAL-TIME IDENTIFICATION

In many applications it is highly desirable to
obtain the result of the identification recursively
as the process develops. For example it might be of
interest to proceed with the experiment until a
specified parameter accuracy is achieved. The
problem is then as follows. Assume, that an esti-
mate By is obtained based on N pairs of input—
output samples. Is it necessary to repeat the whole
identification procedure from the beginning, using
the whole string of input-output data in order
to obtain f, , or is it possible to arrange the com-
putations recursively? An identification scheme
which is recursive and which does not require that
the whole string of input-output data is broughtin
at each step is called an on-line method.

On-line identification can thus be looked upon as
a convenient way of arranging the computations.
Apart from being of practical interest this point of
view on identification problems will also make it
possible to establish connections with other fields,
e.g. non-linear filtering, stochastic approximation,
learning and adaption.

If the parameters of the process are truly time
varying it is, of course, meaningless to do anything
else but track the parameters in real-time. This is
called real-time identification. One may recognize
two computational procedures: an accumulative
solution, open loop with respect to the parameter
estimate, and a recursive solution, closed loop with
respect to the parameter estimate; c¢.f. Genin [129].

There are many different ways to obtain al-
gorithms for real-time identification. Practically
all methods, however, will yield algorithms with
the structure

BN+ 1)=B(N)+T(N)e(N) (100)

where e(V) is the generalized error discussed earlier
and T'(N) is a gain factor which can be of varying
complexity.

Model reference techniques

The on-line identification problem is sometimes
formulated as a model tracking problem. A simple
case is illustrated in Fig. 7. Note, that this is an
example of a recursive, closed loop, approach.

The input is simultaneously fed to the process
and to a model with adjustable parameters. The
adjustable parameters are changed by an adjust-
ment mechanism which receives the process output
v and the model output y,, as inputs. This formula-
tion of the on-line identification problem was first
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considered by WHITAKER [130]. The essential
problem is to determine the adjustment mechanism
such that the model parameters in some sense will
be close to process parameters. There are many
ways to obtain suitable adjustment mechanisms.
One way is to introduce a criterion in terms of a
loss function as was done in section 2 and to change
parameters in such a way that the loss function
decreases. Since there are so many different ways
to define both the generalized error and the loss
function we will not enumerate all cases but just
illustrate the principle. For example, if the loss
function is based on e(N)=y(N)—y,(N) and a
least squares structure is used, it follows that the
optimal choice of gain I'(N) of the adjustment
mechanism (100) is proportional to

N
u(N) / Suh).

This was e.g. shown by Kaczmarz [131] and has
later been exploited by several authors, e.g. NAG-
uMo and Nobpa [132], BELANGER [133], RICHALET
[134].

The effect of working with a quantized signal
sign u is discussed in CrRum and Wu [135]. In
simple cases the adjustment mechanism makes the
rate of change of the parameter adjustment pro-
portional to the sensitivity derivatives. See e.g.
MEISSINGER and BEKEY [136]. A recent application
of this idea is given by Rosg and LANCE [137]. The
requirement that the closed loop is stable is a neces-
sary design criterion. Since the system consisting of
the adjustable model, the process and the adjust-
ment mechanism is highly non-linear the stability
problem is not trivial. Using Liapunov methods,
LioN [138], SHACKCLOTH and BUTCHART [139],
PARks [140], PAZDERA and POTTINGER [142] have
designed stable systems. Lion’s results have recently
been generalized to stochastic systems by KUSHNER
[143]. The powerful stability tests developed by
Porov [144] and Zames [145] have given new tools
to design adjustment mechanisms which will result
in stable systems. Initial efforts in this direction
have been done by LANDAU [146] who has proposed
stable model reference systems using the Popov
criterion.

On-line least squares

The conversion of any identification method to an
on-line technique consists of showing that the
estimate satisfies a recursive equation. This is easily
done for the least squares method. Consider the
least squares model of section 5, i.e.

yl)+ayk—D+ ... +a,y(k—n)
=bjuk—D+ ... +bu(k—n). (101)

_ Define

B=[as, as ..., a5, by, by...,b] (102)

and
e(N+1D)=[—-y(N), —=y(N-1),...,
—y(N—n+1), u(N), u(N~1), ...,
u(N—-n+1)]. (103)

The least squares estimate is then given by (53). It
can be shown by simple algebraical manipulations
that the least squares estimate satisfies the recursive
equation

BN +1)=p(N)+T(N)[y(N+1)
—o(N+D(N)] (104

where f(IV) denotes the least squares estimate based
on N pairs of input~output data and

T'(N)=P(N)p'(N + D[+ (N + 1)P(N)p'(N
+1)]7!
(105)

P(N +1)=P(N)— P(N)¢'(N + D[«
+o(N+DP(N)p(N+1)]7! - o(N
+DP(N)=P(N)~-T(N)p(N +1)P(N)

=[I-T(N)p(N +1)]P(N) (106)

P(N)=a[ @'(NJR(N)]™* (107)

where N, is a number such that ®'(N,)DP(N,) is
positive definite.

The recursive equation (104) has a strong intui-
tive appeal. The nextestimate S(N+1)is formed by
adding a correction to the previous estimate. The
correction is proportional to p(N+1)—@(N+1)
B(N). The term ¢f would be the value of y at
time N+ 1 if the model were perfect and there were
no disturbances. The correction term is thus pro-
portional to the difference between the measured
value of y(N+1) and the prediction of y(N+1)
based on the previous model parameters. The
components of the vector I'(N) are weighting
factors which tell how the corrections and the pre-
vious estimate should be weighted.
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Notice, that in order to obtain the recursive
equations it is necessary to introduce the auxiliary
quantity P. The state of the systems (104), (105)
and (106) governing the on-line estimator is thus
the vector B, which is the current estimate, and the
symmetric matrix P. The pair (8, P) thus repre-
sents the smallest number of variables, characteri-
zing the input-output data, which are necessary
to carry along in the computations.

If the model of the system is actually given by
(50) where {e(k)} are independent residuals with
variance ¢2, the matrix P can be interpreted as the
covariance matrix of the estimate if « is chosen as
o2. A special discussion is needed about the start
of the iterative procedure. That can be done by:

using possible & priori knowledge about § and P;

by using a “one-shot” least squares estimation
procedure using the first series of observations;

by starting with P(0)=c¢/ c.f. KLINGER [147].

Notice, that since f(N) given by (104) is the least
squares estimate the convergence of the equations
(104)—(106) follows directly from the consistency
proofs of the least squares estimate.

Recursive versions of the generalized least squares
procedure have been derived by Younc [148].
Recursive versions of an instrumental variable
method has been derived by PETERKA and SMuK
[104]. An approximative on-line version of the
maximum likelihood method has been proposed by
PANUSKA [96].

A discussion of on-line methods is also given in
LEATHRUM [149], STANKOVIC, VELASEVIC and
CARAPIC [150].

Contraction mappings

A technique of constructing recursive algorithms
have been suggested by Oza and Jury [151], [152].
We will explain the technique in connection with
the least squares problem. Instead of solving the
equation

Q(NYD(N)F(N)=D'(N)y (108)

for each N and showing that (V) satisfies a recur-
sive equation, Oza and Jury introduce the mapping

Tn(B)=B—y[@'(NO(N)F— D' (N)y]  (109)

where y is a scalar. It is then shown that the
sequence )

BN +1)=Ty(B(N)) (110)

under suitable conditions converges to the true
parameters as N—co. When applied to the ordinary
least squares problems the algorithm (109) is not

efficient in contrast with the recursive least squares
method. To obtain an efficient algorithm it is
necessary to make y a matrix.

With the choice

y=[@'Mo@m]™* (111)

the algorithm becomes equivalent to the least
squares.

The method of Oza and Jury can be applied to
more general cases than the least squares. It was
actually proven for the case when there are errors
in the measurements of both inputs and outputs,
provided the covariance function of the measure-
ment errors are known. The assumption of known
covariances of the measurement errors severely
limits the practical applicability of the method.

Stochastic approximations
The formula for the recursive least squares is

plk+1)=pk)+T(k)Ly(k+1)

—o(k+D(RY] (112

where I was chosen by the specific formula (105).
It can be shown that there are many other choices
of T for which the estimate f will converge to the
true parameter value . Using the theory of stocha-
stic approximations it can be shown that the choice

(k) =£Ago’(k+ 1 (113)

will ensure convergence if A4 is positive definite.
See e.g. ALBERT and GARDNER [153]. A particul-
arly simple choice is e.g. A=17. The algorithms
obtained by such choices of T" will in general give
estimates with variances that are larger than the
variance of the least squares estimate. The algo-
rithms are, however, of interest because they make
it possible to reduce computations, at the price of a
larger variance. Using stochastic approximations
it is also possible to obtain recursive algorithms in
cases where the exact on-line estimate is either very
complicated or very difficult to derive. There are
excellent surveys available on stochastic approxi-
mations. See e.g. ALBERT and GARDNER [153] and
TsypxiN [154]. Recent applications are given by
SAKRISON [155], SAriDIS and StrEIN [156], [157],
HoLmes [158], Erciort and SwoRDER. [159],
NEeAL and Bekgy [160].

Real time-identification
The recursive version of the least squares method
is closely related to the Kalman filtering theory.
Kalman considers a dynamical system
x(k+1)=0x(k)+ e(k)
y(k)=Cx(k)+v(k) (114)
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where {e(k), k=1,2, ...} and {v(k), k=1,2,...}
are sequences of independent equally distributed
random vectors with zero mean values and covari-
ance matrices R, and R, respectively. Kalman has
proven the following theorem.

Theorem (Kalman). Let the initial condition of
(114) be a normal random variable (m, R,). The
best estimate of x(k), in the sense of least squares,
given the observed outputs y(1), ¥(2), ..., ¥(k) is
given by the recursive equations

(k)= 0L(k—1)+T (k)] y(k)— COL(k—1)]
HO)=m (115)
where
T'(k)=S(k)C'[CS(K)C' +R,]~!
S(k)=0P(k—1)® + Ry
P(k)=S(k)—T(k)CS(k)
S)=R,. (116)
The matrix S(k) has a physical interpretation as
the covariance matrix of the a priori estimate of
x(k) given y(1), ..., y(k—1) and the matrix P(k)

as the covariance of the posterior estimate of x(k)

given y(1), . . ., y(k).
Now consider the least squares identification of
the system

yly+ayk—1)+ ... +a,y(k—n)
=bu(k—D+ ... +bu(k—n)+e(k) (117)
where {e(k)} is a sequence of normal (0, 4) random
variables.

Introduce the coeflicients of the model as state
variables

xy(k)=a4
xy(k)=a,
xll(lc) =a"
X,+1(k)=Dby
Xn+2(k)= b2
xln(k)z bn (118)

and define the following vector

Cly=[—-yk=1),..., —ylk—n),
u(k—1), ..., u(k—n)]. (119)

Since the coeflicients are constant we have
x(k+1)=x(k). (120)
The equation (117) can now be written as
vy = C(k)x (k) + e(k) (121

and the least squares identification problem can be
stated as a Kalman filtering problem with ® =/,
R,=0, R,=/%

The recursive equations of the least squares
estimate can thus;be obtained directly from Kalman’s
theorem. This has an interesting consequence be-
cause it turns out that if the parameters a; are not
constants but gauss-markov processes, i.e.

a(k+ 1) =aa (k) +v,(k) (122)

the Kalman theorem can still be applied. (This
requires a slight generalization of Kalman’s proof
since the parameters of the C vector are stochastic
processes.)

BouLin [161] has extended the argument to
processes of the structure (117) with coefficients
which are processes with rational spectral densities.

It thus is possible to obtain parameter estimators
for linear models with time varying parameters. It
is in fact not necessary to assume a first order
process but the parameters a; can be chosen to be
stationary processes with rational spectral densities.

In this way it is possible to obtain identifiers for
processes with rapidly varying parameters. This
has been discussed by BoHLIN [77] and WIESLANDER
[163]. The method proposed by SEGERSTAHL [164]
can be considered as the special case v;=0. Notice,
that with this approach it is necessary to know the
covariances of the processes {v;} characterizing the
variations in the model parameters. Such assump-
tions will, of course, limit the practical applicability
of the methods. One way to overcome this diffi-
culty is to use the approximative techniques for
estimating the covariances in a Kalman filter
proposed by MeHRA [73] and SAGE and Husa [1635].
Techniques for validating the assumptions of the
Kalman filtering problem have been proposed by
BerkOVEC [166]. Recursive estimation of the transi-
tion matrix is discussed by PEArRsoN [167]. An
analog implementation is given by HSsIA and
VIMOLVANICH [168].

Non-linear filtering

The relationship between the recursive least
squares and the Kalman filtering theory was ob-
tained by introducing the parameters of the identi-
fication problem as state variables. We thus find
that there are in principle no differences between
parameter estimation and state estimation. A
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parameter estimation problem can be extended to a
state estimation problem by introducing the para-
meters as auxiliary state variables. A constant
parameter b corresponds to the state equation

db
—=0 123
% (123)

for continuous time systems and

b(k+1)=b(k) (124)

for discrete time systems. The (state) estimation
problem obtained in this way will, however, in
general be a non-linear problem since the para-
meters frequently occur in terms like bx(f) in the
original problem. In the general continuous time
case we are thus faced with a filtering problem for
the model

dx=f(x, f)dt+o(t, x)dv
dy=g(x, H)dt+ u(t, x)de (125)

where {¥(£)} and {e(r)} are Wiener processes with
tncremental covariances I,dr and I,dz. Some of the
components of x are state variables and others are
parameters of the identification problem. The non-
linear filtering problem is completely solved if the
conditional probability of x(¢) given {y(s), 7, <s< 1}
can be computed. The maximum likelihood
estimate is e.g. obtained by finding the value of x
for which the conditional density has its maximum,
The least squares estimate is given by the condi-
tional mean etc. Compare the resumé of estimation
theory in Appendix A.

It is in principle easy to obtain a recursive for-
mula for the conditional probability distribution
simply by applying Bayes’ rule. For the model (125)
the problem is, however, technically difficult and
great care must be given to the appropriate inter-
pretation of the equation (125). It has been shown
by KusHNER [172] and STRATONOVICH [223] that
under suitable regularity conditions the conditional
probability density of x(¢) given {y(s), f,<s<1}
satisfies the following functional equation.

LI n 62
ant 9= §Zom+s 3 Lo i

J

+[dy—fg(x, Dpx, Hdx] Tup] ™!
x[dy—fg(x, Op(x, H)dx] (126)

where the differential d,p is interpreted in the Ito
sense.

In the special case of linear systems with gauss-
markov parameters, discussed before, the functional

equation has a solution which is a gaussian distri-
bution. Apart from this special case the solution of
the functional equation is an extremely difficult
numerical problem even in simple cases. For a
system of second order with two parameters the
vector x will have four components. If we approxi-
mate crudely, e.g. by quantizing each state variable
in 100 levels, the storage of the function p(x, ) for
a fixed ¢ will require 1004==108 cells.

Contributions to the theory of non-linear filter-
ing are also given by Bucy [170], SHIRYAEV [171],
FisHEr [226], MORTENSEN [227], WonNHAM [174],
{220]. A survey is given in the book [225].

Approximations

From the functional equation for the conditional
distribution it is possible to derive equations for
the maximum likelihood estimate (the mode), the
minimum variance estimate (the conditional mean)
etc. It turns out that these equations are not well
suited for numerical computations. If we want to
compute the conditional mean we find that the
differential equation for the mean will contain not
only covariances but also higher moments. It is
therefore of great interest to find approximative
methods to solve the nonlinear filtering problem.
Approximative schemes have been suggested by
Bass and ScHWARTZ [175], NISHIMURA et al. [176]
SUNAHARA [177], KusaNErR [178], JASZWINSKI
[179],[180], LARMINAT and TALLEC [181]. Kushner’s
article contains a good survey of many of the diffi-
culties associated with the approximative tech-
niques.

The following type of approximation has been
suggested by several authors. Estimate x of (125)
by % given by

dg=f(%, Ddt+TO[dy—g(%, Hdf]. (127)

The estimate £ is referred to as the extended Kalman
filter. The gain matrix I" of (127) can be chosen in
many different ways, e.g. by evaluating the optimal
gain for the linearized problem or simply by choos-
ing

r(t)=tlg D) (128)

in analogy with stochastic approximations. See
e.g. ATHANS et al. [200], Cox [182] and JASZWINSKI
[225]. The essential difficulty with all the approxi-
mative techniques is to establish convergence. In
practice it is often found that the algorithms con-
verge very well if good initial conditions are avail-
able, i.e. if there are good initial estimates of the
parameters, and if suitable computational “‘tricks”
are used. A computational comparison of several
non-linear filters is given by SCHWARTZ and STEAR
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[183]. A technique allowing second order non-
linearity in system measurements is discussed in
NEAL [184].

The application of (127) to system identification
was first proposed by Korp and ORForD [185].
It has recently been applied to several industrial
identification problems, e.g. nuclear reactors in
HABEGGER and BAILEY [186], stirred tank reactors
in WELLS [187], and head box dynamics in SASTRY
and VETTER [188]. The use of the extended Kalman
filter in connection with reduced models is dis-
cussed by BAGGERUD and BALCHEN [189].

8. CONCLUSIONS

In the previous sections applicable identification
techniques as well as (yet) unsolved problems have
been mentioned. Particularly from the point of
view of the practising engineers (being university
professors we are really sticking our necks out now)
there are many important questions that remain to
be answered. For example how should the sampling
interval be chosen? What is a reasonable model
structure? How should an identification experi-
ment be planned? How can it be ensured that the
a priori assumptions required to use a particular
method are not violated? If we leave the area of
general problems and study specific methods the
situation is better.

Linear time-invariant systems. There are good
techniques available for identifying linear stationary
systems as well as linear environments, stationary
stochastic processes. The relations between dif-
ferent techniques are reasonably well understood
and the choice of methods can be done largely on
the basis of the final purpose of the identification.
There are, however, unresolved problems also in
this area, for example convergence proofs for the
generalized least squares method.

Multivariable systems. The essential difficulty
with multivariable systems is to choose a suitable
canonical form. A few such forms are available but
the structural problems are not yet neatly resolved.
For example there are few good techniques to
incorporate a priori knowledge of the nature that
there is no coupling between two variables or that
there is a strong coupling between two other vari-
ables. If a muiltivariable system is identified as a
conglomerate of single-input single-output systems,
how should the different single-input single-output
systems be combined into one model. How do we
decide if a particular mode is common to several
loops taking uncertainties into account.

Once a particular structure is chosen the solution
of the multivariable identification problem is
straightforward.

Non-linear systems. The techniques currently

used simply convert the identification problem to an
approximation problem by postulating a structure.
The few non-parametric techniques available are
computationally extremely time consuming.

On-line and real-time identification. This is a
fiddler’s paradise. Much work remains to be done
to prove convergence as well as to devise approxi-
mation techniques.

Empirical knowledge available. The extensive
applications of identification methods which are
now available provide a source of empirical
information which might be worth a closer analysis.

One of the most striking facts is that most
methods yield very simple models even for complex
systems. It seldom happens that models of a single-
input single-output system are of an order higher
than 5. This fact, which is extremely encouraging
from the point of view of complexity of the regu-
lator, is not at all well-understood.

Most methods seem to work extremely well on
simulated data, but not always that well on actual
industrial data. This indicates that some methods
might be very sensitive to the a priori assumptions.
It therefore seems highly desirable to develop tests
which insure that the a priori assumptions are not
contradicted by the experimental data. It also
means that it is highly desirable to have techniques
which are flexible with respect to a priori assump-
tions. A typical example is the assumption that the
measurement errors or the residuals have a known
covariance function. It is, of course, highly un-
natural from a practical point of view to assume
that we have an unknown model but that the resi-
duals of this unknown model have known statistics.

Comparison of different technigues

In spite of the large literature on identification
there are few papers which compare different
techniques. The exceptions are VAN DEN BooM and
MeLis [190], CeHeruy and MEeNENDEZ [191],
GuUSTAVSSON [78], [100], SMuk [192]. Of course,
it is more fun to dream up new methods than to
work with somebody else’s scheme. Nevertheless,
for a person engaged in applications it would be
highly desirable to have comparisons available.
It would also be nice to have a selection of data to
which several known techniques are tried which can
be used to evaluate new methods.

Where is the field moving?

It is our hope and expectation that the field is
moving towards more unification and that there
will be more comparisons of different techniques.
The textbooks which up to now have been lacking
will definitely contribute to that; forthcoming are
EvkHOFF [193], SAGE and MELSA [194]. The area of
identification will certainly also in the future be
influenced by vigorous development of other fields
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of control systems theory. One may guess that the
presently active work on multivariable systems will
result in a deeper understanding of such systems
and consequently also of the structural problems.
The recent results in stability theory might influence
the real time identification algorithms. Pattern
recognition, learning theory and related theories
will contribute also to the field of identification;
e.g. TsypkiN [195-197]. Also after the IFAC,
Prague, 1970 symposium much work remains to
be done.
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APPENDIX A

A resumé of parameter estimation
As a tutorial resumé of the statistical methods
the following example of utmost simplicity may
suffice. Consider the situation of Fig. 8 where an

n(k)
ulk) yik)

(. — !
~y—

observed signals

Fic. 8. The simplest example of parameter
estimation,

estimate f§ has to be found for parameter b. This
estimate has to be derived from a number of signal
samples u(k) and y(k) where

y(ky=bu(k)+n(k) (AD)

and where the average (expected) value of n(k) is
Zero.

Using the least squares method the estimate is
chosen in such a way that the loss function, defined
as

V)= }; [y = Bu()]* = (y — Bu) (v — Bu)

is a minimum.

In Fig. 9 the differences between the observations
y and the ‘“‘predictions” fu are indicated. The
minimization can be pursued analytically; a neces-
sary condition for the minimum is

d _ 2l
T ; (k)= Bu(k)]*) =0
p=p (A.2)

or
Su()Ly(k) — fu(k)] =0 (A3)
or k
k)
b= S (Ad)

k

B is the optimal estimate under the conditions given.
Note from (A.3) that the terms y(k)-—pu(k) are
weighted with respect to u(k); quite naturally the
larger the input signal, the more importance is
assigned to the deviation between observation y(k)
and “prediction” Pu(k)! Equation (A.4) refers to
the correlation methods. For the extension to the
more-parameter case and to the generalized least-
squares method c.f. section 5.

Y
1 y& -ulp
YR [ [P

Pl
Jle®l |
J,{/I \ ulk) oy

/]/ i arctanp

FiG. 9. Interpretation of least-squares estimation.

Using the maximum-likelihood method for the
same case as before, we have to know p,, the
probability density function of n(k). In that case the
measurement of u(k) provides us with the know-
ledge sketched in Fig. 10, the a priori probability

ply:b=0) =p,

FiG. 10. Interpretation of maximum-likelihood
estimation; a priori knowledge.

density of y(k) with b as parameter. Now the
measurement, or a posteriori knowledge, of y(k)
brings us to the situation indicated in Fig. 11. The
function L(y(k) ; p) is called likelihood function.
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Fic. 11. Interpretation of maximum-likelihood
estimation; a posteriori knowledge.

We have to assign an estimate j from this function
L. A reasonable and popular choice is to take that
value B, for which L(y(k); B) has its maximal
value. Again this can be generalized to more-
parameter cases.

Using the Bayes’ method for the same case, one
needs, as before, p,, but also the a priori probability
density function p, of b. Note, that previously b
was an unknown constant, and that now & is a
random variable. From Bayes’ rule

bl = 2O B) _ p(y|D)p(b)
P p(y) p(y)

This can be interpreted as: the probability density
function of the parameter b, given the result of the
measurement on p. This can be rewritten as
d(y—ub
p(y, b)=p(y—ub, b)'—(y——-)
ay

1

= pu(y —ub)py(b)

since b and n are statistically independent. p, and
P, give a probability density function as indicated
in Fig. 12. Note, that this is the a priori knowledge,
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Fic. 12. Interpretation of Bayes’ estimation.

available before the measurement of u(k) and y(k).
These measurements provide us with a “cut”
through the probability-density function, from
which ‘the a posteriori probability function for b
follows. This new probability function now may be

used as the a priori knowledge for the following
measurement. In this way the development of p,
with increasing number of observations can be
followed; c.f. Fig. 13. Note, that p,, the additive
noise being stationary, does not change.
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Fic. 13. Interpretation of Bayes’ estimation.

The reader is invited to consider special cases
like u(k)=0 and u(k)—co. Again the method can be
generalized to more parameters; its vizualization
has severe limitations, however. Note that in this
case the knowledge on b is given in terms of p,, a
function. In practice the reduction from a function
to a single value (estimate) can be done by using
a cost or loss function, providing a minimum cost—
or minimum loss estimate.

The problem of input noise. The simple example
of Fig. 8 also serves very well to illustrate the so-
called “problem of input noise”. Consider the
system illustrated by the block diagram in Fig. 14
where neither the input nor the output can be
observed exactly.

n(k}

y(k)

vik)

pi(3] ytk)

observed signals

Fi1G. 14. The problem of input noise.

It is well-known in statistics (see e.g. LINDLEY
[212]) that, unless specific assumptions are made
concerning the variations in u, », and v, it is not
possible to estimate the dynamics of the process.
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Consider e.g. a, a, b,
k-1 -1 . —2)=1-0u(k—1
()= bu(k) + n(k) y(k)—1-5p(k—1)+0-Ty(k —2) =1-Ou(k — 1)
o b,
(k) = u(k)+ v(k). +0-5u(k —2) + Ae(k) (A.5)
Assume, that v(k) and n(k) INPUT
are independent stochastic !
variables with zero mean 0
values. If v(k)=0 we find -1 10 20 30 40 50 60 70 80 90 100
that the estimate of 4 is given oUTPUT —k
by (A.3) 10 >
X i(9y(00)
B_—.. k 2 M

g [
Zk:ﬁ(k)ﬁ(k) /\J \\

However, if n(k)=0 we find  °
by the same argument that
the estimate of b is 5

[\\\ i
v

5 Z09¥(0)

Zy(kyy(k)’ jo
This corresponds to choos- g</

ing f such that the difference 10 20
between the observations
u(k) and the predictions
(k)| are assmallaspossible
in the least squares sense.

See Fig. 15.
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F1G. 15. The problem of input noise.

Without additional information it is, of course,
impossible to tell which estimate to choose.

APPENDIX B

An example of least squares identification of a para-
metric model

To illustrate the least squares method, its appli-
cations and some numerical problems which might
arise, we provide an example. The computations
are carried out on input-output data from a known
process.

In Fig. 16 we show input-output pairs which are
generated by the equation

0 40 50 60 70 80 S0 100

—_— k

Fic. 16. Input and output signals of the example.

where {e(k)} is a sequence of independent normal
(0, 1) random numbers generated by a pseudo
random generator. The following values of A have
been used: 0, 0-1, 0-5, 1-0 and 5-0.

In Table B.1 we show the results obtained when a
model having the structure (B.1) is fitted to the
generated input-output data using the least squares
procedure.

The estimates are calculated recursively for
models of increasing order to illustrate the very
typical situation in practice when the order of the
model is not known. In Table B.1 we have shown
the least squares parameter estimates and their
estimated accuracy, the loss function and a con-
ditioning number of the matrix ®'®. The condi-
tioning number u=2n{max (4);;} max{4™"),;} is
chosen rather arbitrarily.

We will now analyse the result of Table B.1.
Let us first consider the case of no disturbances
A=0. In this case we find that it is not possible to
compute the third order model, we find that the
matrix ®'® is singular as would be expected. The
conditioning number is 1:3x10°. We also find
that the estimated standard deviations of the second
order model are zero.

To handle the numerical problems for a model of
third order in a case like this, we must use numeri-
cal methods which do not require the inversion of
@'® e.g. the reduction of @ to triangular form using
a QR algorithm. A reduction based on a sequence
of plane rotations has been pursued by PrrERKA
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and Smuk [104]. They have shown that this calcu-
lation can also be done recursively in the order of
the system.

Proceeding to the case of A=0-1, i.e. the standard
deviation of the disturbances is one tenth of the
magnitude of the input signals, we find that the
matrix ®'® is still badly conditioned when a third
order model is computed.

Analysing the details we find, however, that the
Gauss Jordan method gives a reasonable accurate
inverse of ®'®. Pre- and postmultiplying the matrix
with its computed inverse, we find that the largest
off-diagonal element is 0-011 and the largest
deviation of diagonal elements from 1-0001s 0-0045.
We also find that the estimates &; and f; do not
differ significantly from zero.

We will also discuss some other ways to find the
order of the system. We can e.g. consider the
variances of the parameters. We find e.g. from
Table B.1 that the coefficients &; and §; do not
differ significantly from zero in any case. In Table
B.2 we also summarize the values of the loss func-

TABLE B.2. GIVES THE VALUES OF THE LOSS FUNCTION V,

THE CONDITIONING NUMBER P OF ®'® AND A TABLE OF

t-VALUES WHEN IDENTIFYING MODELS OF DIFFERENT ORDER
TO THE EXAMPLE OF FIG. 16

case 1 A=0 Ha

n 14 I m 1 2

0 266623 0 4424

1 285-86 59 1 %)

2 0-00 205

case 2 A=0-1 "y

n Vv u m 1 2 3

0 2644-15 0 472 57000 42100

1 248-447 60 1 12000 5900

2 0-587 205 2 0191

3 0-983 35974

case 3 A=0-5 "y

n 14 1l m 1 2 3 4

0 2701:35 0 532 2616 1715 1283

1 227-848 63 1 397 195 130
2 24-558 206 2 02 01

3 24-451 1518 3 0-8

4 24006 2982

case 4 A=1-0 i)

n 14 i n 1 2 3 4 5
0 316678 0 455 734 487 365 292
1 308-131 212 1 100 50 33 25
2 99-863 476 2 0-55 072 0-80
3 98-698 873 3 0-88 092
4 96-813 1351 4 0-96
5 94-800 1647

case 5 A=50 1"y

n 14 1 m 1 2 3 4 5

0 21467-64 0 156 185 122 92 75
1 5131-905 520 1 52 26 18 14
2 2462220 1174 021 094 12
3 2440-245 2031 3 12 15
4 2375624 2910 4 16
5 2290-730 3847

tion as well as the values of the test variable (58)
when testing the reduction of the loss function for
a model of order n, compared to a model of order
n, as was discussed before. We have

F(2, 100)=3-09=>P{¢>3-09} =0-05.

Hence at the 5 per cent risk level we find in all cases
that the loss function is significantly reduced when
the order of the system is increased from 1 to 2
but that the reductions in the loss function by a
further increase of the loss function are not signifi-
cant.

We thus find that by applying the F-test in this
case we get as a result that the system is of second
order for all samples. The actual parameter values
of Table B.1 as well as the estimated accuracies
give an indication of the accuracy that can be
obtained in a case like this.

1t should, however, be emphasized that when the
same procedure is applied to practical data the
results are very seldom as clearcut as in this simu-
lated example. See e.g. GusTAvSsON [100].

Résumé—Le domaine de I'identification et de I’estimation
des parametres de processus s’est rapidement developpé
durant la décade passée. Dans cette revue, ’état de art de
cette science est présenté d’une manilre systématique, Une
attention est accordée aux proprietés générales et a la
classification des problemes d’identification. Les structures
des modeles sont discutées; leur choix depend du but de
I’identification et des informations disponibles & priori.
Pour P'identification des modéles qui sont linéaires dans les
parameétres, la revue explique la méthode des moindres
carrés et plusieurs de ses variantes qui peuvent resoudre le
probléme des résidus correlés, telles que les moindres carrés
iterés et généralisés, la méthode de vraisemblance maximale,
la méthode de la variable influente, le principe de pointage.
Rebemment, la situation non-linéaire, Pidentification dans
la boucle et I'identification en temps réel ont donné lieu
a des developpements considerables qui sont décrits d’une
maniére cohérente.

Plus de 230 références sont données, la plupart en ce qui
concerne des publications récentes. Un appendix contient
un résumé des principes d’estimation de paramétres et un
autre donne un exposé plus détaillé d’'un exemple d'une
estimation au moyen des moindres carrés,

Zusammenfassung—Das Gebiet der Identifikation und
ProzeBparameterschitzung entwickelte sich im letzten
Jahrzehnt sehr schnell. In dieser Ubersicht ist der Stand
dieses Wissenschaftsweiges systematisch dargestellt. Auf-
merksamkeit wurde allgemeinen Eigenschaften und der
Klassifikation der Identifikationsprobleme geschenkt.
Modellstrukturen werden diskutiert; ihre Wahl dreht sich
um den Zweck der Identifikation und um die verfiigbare a



162 K. J. AstrOM and P. EYKHOFE

priori-Kenntnis. Fiir die Identifikation von Modellen, die
die Methode der kleinsten Quadrate und verschiedene ihrer
Varianten, die das Problem der korrelierten Gleichungs-
fehler, ndmlich wiederholter und verallgemeinerter Methoden
der kleinsten Quadrate, Maximum likelihood Methode,
“tally”—Prinzip charakterisieren. Neuerdings legte die
nichtlineare Situation, die on-line und die real-time Identi-
fikation ausgedehnte Entwickiungen nahe, iiber die zusam-
menhéngend berichtet wird. Mehr als 230 Literaturstellen
sind angegeben, die sich meist auf neue Arbeiten beziehen.
In Anhdngen wird eine Zusammenfassung der Prinzipien
zur Parameterschitzung und ein genauer behandeltes
Beispiel einer Schidtzung nach der Methode der kleinsten
Quadrate angefiihrt.

Pesrome—O0OnacTh ONO3HABAHMA H OLUECHKH HapaMeTpoB
nporeccoB OBICTPO pa3BHNACh, B TEYEHHHM HNPOMLIOro
JecaTmiieTdsi. B HacrosmeM 0030pe CHCTEMATHYECKH
MIPENCTaBIIEHO HACTOIIICE COCTOSHUE 3TON HAYKH. YV AemsaeTca

BHHMaHMe OOIIMM CBOMCTBAM H KIIACCHMDHKAIHMH NpobieM
onosHaBaHms. OOCYXHAaroTCsA CTPYKTYpH MOENeH; - HMX
BBIOOD 3aBHCHT OT HENIM OHO3HABAHHS M OT 3apaHee HOCTY-
NHEIX cBeneHHH. [Ins omo3HaBaHuwsa Mopeneil JuHEHHBIX B
mapamMeTpax, o0030p OOBJICHRET MeTol HAMMEHBINHX
KBAApaToB ¥ HEKOTOPHIE W3 €ro0 BAPHAHTOB MOIYIIHX
penmTs OpobieMy KOPpEeNHpOBAHHBIX OCTATKOB, K4K HA
IpHEMep TOBTOPHTENBHBIE HAWMEHBINUE KBALPATEI, METOI
HaubonbIIero MNpaBRONONONMS, METOX BIMSIOMEl mepe-
MEHHOM, DpPHHUMN noxcuéta. HemaBHO  HenmwHEHHOe
COCTOsIHAC, OIIO3HABAHWE B KOHTYpE W OIIO3HABAHHE B
OeHCTBUTEILHOM BpPEMEHH NPHUBEIH K 3HAYATE)ILHEIM
Pa3sBATHAM KOTOpBEIE ONHCHIBAIOTCA CHCTEMATHYECKHM
obpazom.

Ilpuseneno cBeunme 230 pedepeHIMit OTHOCAIIAXCH
raaBEEIM  o0pa3soM K HeOaBHBIM  IIyGIHKANMAM,
Ilprnoxerus cozepXarT CBOOKY HPUHLANOB OLECHKH
mapamMerpos u 0OoJsiee IeTambHOE OMMCAHWE IIpHMeEpa
OLEHKU IPH NOMOIIM HAHMEHBIIINX KBAAPATOB,



