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Abstract— In this paper we investigate partial response sig-
naling (PRS) systems that are intended to operate close to
capacity. We show that finding PRS systems with maximal
capacity is a rather easy optimization task. We give an alternate
way of defining bandwidth for PRS systems based on capacity
considerations; this differs considerably from the traditional
method based on transmission power. Practical PRS schemes are
derived, based on these ideas. Their bit error rate is significantly
better than earlier, distance-optimizing schemes.

I. INTRODUCTION

According to Shannon’s classical result, an AWGN channel
bandlimited to W positive Hz can support data rates up to
W log2(1+P/WN0) bits per second where N0/2 is the noise
spectral density and P is the input signaling power. Over the
years a major research effort has gone into finding practical
coding schemes that approach this limit. However, for single
carrier systems, achieving the limit carries with it at least two
practical difficulties, Gaussian input alphabet and use of a sinc
pulse. Usually a finite input alphabet and non-ideal transmitter
pulses are assumed. This implies that many of the best coded
modulation schemes today are still bounded well away from
Shannon’s capacity formula. For example, turbo trellis coded
modulation (TTCM), bit interleaved coded modulation and
other similar systems are all 1–3 dB away from the capacity
that applies to non ideal pulse shapes (C1(H) to be defined
in Section III-C).

When P grows in Shannon’s formula, the bit rate R, and
consequently the spectral efficiency R/W bits/Hz/s, can be
increased. The traditional method of accomplishing this is
by expanding the signaling alphabet, thus increasing R. This
method is by far the most common in literature as well as
in practice. But there exist other methods as well. A class of
methods is partial response signaling (PRS). Systems within
this class work by introducing a controlled amount of inter-
symbol interference (ISI). Its purpose is to achieve a correlated
signal in order to reduce bandwidth, i.e., W is reduced but R
is constant. Recently, it has been demonstrated that a method
called faster than Nyquist (FTN) signaling, which belongs to
the PRS class, can have fundamental advantages over its main
competitior, Nyquist signaling, since its information rate can
be significantly higher [1].

Let bn be the nth symbol in row vector b =
. . . , b−1, b0, b1, . . .. In this paper we consider PRS signals of

the form

sa(t) =

√
Es

T

∞∑
k=−∞

akh(t− kT ) (1)

in which a is a set of data symbols drawn from an alphabet
with unit average energy, Es is the average symbol energy.
The pulse h(t) is represented as

h(t) =
L−1∑
l=0

blψ(t− lT ) (2)

where ψ(t) is any unit energy T -orthogonal pulse shape and
b = b0, . . . , bL−1 is a vector of real valued coefficients
with unit energy, i.e. bb′ = 1. The objective in this and
previous papers is to optimize the pulse shape h(t) subject
to a bandwidth constraint. Most often the objective function
has been the system’s minimum distance d2

min. This problem
was attacked already in 1974 by Fredriksson [2]; subsequent
work appears for example in [3] and [4]. However, the problem
was finally solved by Said [5] in 1998 with his development
of optimal distance PRS (ODPRS).

Perhaps more important than d2
min is the bit error rate

(BER). Normally it is assumed that the pulse shape maxi-
mizing d2

min will also minimize the BER for high SNRs, but
that is not true for ODPRS. The multiplicity of the d2

min-
achieving error event is usually so small that it will not be the
dominating error event. Since there is no simple expression
for the BER the objective function in [6] was selected as the
(Forney) union bound. The outcome of that paper was pulse
shapes of the same type as ODPRS but with better BER; the
gain was typically 0.2–0.5 dB at BER 10−5. This type of PRS
is refered to as optimal BER PRS (OBPRS). Both ODPRS
and OBPRS are designed for the high energy/low bandwidth
region and operate relatively far from capacity. In this paper
we will focus on PRS systems that operate closer to capacity,
and we will demonstrate that neither distance nor BER are
proper objective functions.

II. BASIC PROPERTIES OF PRS SIGNALING

A. Optimization constraints

Assume that signals are generated according to (1) and (2).
Also assume equiprobable binary i.i.d. data symbols a.

Let g denote the autocorrelation of b, i.e.

gk =
L−1∑
l=0

blbl+k. (3)



We can use g to normalize the energy of h(t):∫ ∞

−∞
|h(t)|2dt = g0 = 1. (4)

It is well known that the power spectral density (PSD) of
the transmission signal equals Es|H(f)|2/T . This PSD is a
linear function of g:

|H(f)|2 =
L−1∑
k=0

Ψ(f)bke−i2πfkT
L−1∑
l=0

Ψ∗(f)blei2πflT

= |Ψ(f)|2
L−1∑
k=0

L−1∑
l=0

bkble
i2πf(l−k)T

= |Ψ(f)|2
L−1∑

k=−(L−1)

gke
i2πfkT . (5)

Traditionally, bandwidth is defined via the spectral power
concentration (SPC)

Ch(W ) =

∫ W

−W |H(f)|2df∫ ∞
−∞ |H(f)|2df =

∫ W

−W

|H(f)|2df (6)

A fraction Ch(W ) of the transmission power is inside W Hz.
Carrying out the integral in (6) yields

Ch(W ) =
L−1∑

n=−(L−1)

gnχn (7)

where χn
.=

∫ W

−W
|Ψ(f)|2ei2πnfT df .

Up to now we have shown that when searching for some sort
of optimal PRS system, energy (4) and bandwidth (7) are linear
functions of the autocorrelation g. However, we must constrain
g to be a valid autocorrelation sequence, i.e. there must exist
a tap set b that has g as autocorrelation. The following infinite
set of linear constraints on g ensures that a tap set b exists:

L−1∑
n=−(L−1)

gnκn(f) ≥ 0, ∀f ∈ [0, 1) (8)

where κn(f) .= e−j2πnf . We now state the optimization
problem considered in this paper for an arbitrary objective
function Γ:

gopt = argmax
g

Γ(g) (9)

s.t.

⎧⎨
⎩

g0 = 1
gχ′ = Ch(W )
gκ′(f) ≥ 0 ∀f ∈ [0, 1)

B. Detection

The channel in this paper is assumed to be the AWGN
channel with one sided PSD N0/2; the signal at the input
to the decoder then becomes r(t) = sa(t) + n(t). Forney has
shown [7] that a set of sufficient statistics to estimate a is the
sequence

yn =
∫ ∞

−∞
r(t)h(t − nT )dt. (10)

Inserting the expression for r(t) into (10) yields

yn =
∞∑

n=−∞
angm−n + ηn (11)

where gm−n is defined in (3) and

ηn =
∫ ∞

−∞
n(t)h(t− nT )dt. (12)

The receiver model (11) is the so called Ungerboeck observa-
tion model. The autocorrelation of the noise sequence η is

E{ηnηm} =
N0

2
gn−m (13)

Some form of detector should now try to recover a from
y in (11). When a MAP detector is used a non-standard
approach must be taken; the non-causality of the ISI and the
colored noise prohibits the standard BCJR equalizer. But, in
a recent paper [8] a BCJR-type algorithm for the Ungerboeck
observation model was derived.

III. PRS OPTIMIZATION

We now present three different PRS objective functions to
optimize. Two of them, minimum distance and BER, have been
investigated in other papers but for completeness we briefly
review them. The third objective function is, to the best of our
knowledge, novel.

A. Minimum distance approach (ODPRS)

Optimization of d2
min of a PRS system with given input

alphabet has a long history. It was more or less closed when
Said [5] derived a linear theory of optimal PRS codes. Since
the codes have maximal d2

min they have optimal BER as SNR
→ ∞. For low SNRs there is no reason to believe that the
ODPRS class is optimal since minimum distance plays little
role there.

B. BER approach (OBPRS)

When setting Γ(g) in (9) equal to the BER of an uncoded
PRS system, better systems are possible since BER is what one
is really after. The problem is that there is no simple expression
for BER. However, for moderate or high SNR the well known
union bound can be used since it is then tight. It is easy to
show that the union bound is convex, which simplifies the
optimization. Unlike ODPRS, the OBPRS class is attractive
also for low SNR, but then there is no good objective function
to use.

C. Maximum capacity PRS (OCPRS)

The third objective function is capacity related. On the most
basic level, capacity is defined for the underlying AWGN
channel. But equations (1)-(2) can be thought of as defining
another channel, whose capacity is not the same. Beyond this,
the signals in either of these can be constrained; for example
the inputs to either channel can be required to be i.i.d. binary.
The limit to the rate of coded systems is then less. We will
call such a limit an information rate, under the constraint.



Unfortunately, optimization of PRS information rates is not
tractable since there does not exist a closed form expression
for the information rate of ISI channels. In [9] lower and upper
bounds are given and in [10] a conjectured bound is given that
is remarkably tight. Today, accurate simulation based methods
to find the information rate are mostly used [11], [12]. But they
are not suitable in an optimization because function evaluation
is too costly. Capacity is in fact easily computed. This paper
seeks PRS systems with maximum capacity. Whether the
system bounds itself away from capacity by using a specific
input alphabet is of interest but is not addressed here.

We consider objective functions related to two capacities;
we then argue that for the cases of interest, the two functions
are virtually equivalent. By manipulation of Shannon’s formula
it is easy to show that signals with PSD shape Es/T |H(f)|2
in AWGN can only support data rates R (bit/s) satisfying

R ≤ C1(H) .=
∫ ∞

0

log2

[
1 +

2Es|H(f)|2
N0T

]
df. (14)

This is the first objective function. The second relates to (1)-
(2). From [9] signals of form (1) can only support data rates
up to

C2(H) .=
1
T

∫ 1/2

0

log2

[
1 +

2Es|B(f)|2
N0T

]
df (15)

where B(f) =
∑L−1

k=0 bke
i2πkf is the Fourier transform of b.

Capacity C1(H) cannot be reached with signals of form (1)
if there is excess bandwidth in the system, i.e., if Ψ(f) has
support outside of f = 1/(2T ). (One way to reach C1(H)
is to divide the PSD into small pieces and set up individual
sinc-pulse coding schemes for each piece). Despite this fact,
C1(H) still constitutes the absolute limit for systems with PSD
Es|H(f)|2/T and therefore works as a benchmark for any
system with this PSD. If the input process is Gaussian with
correlation g it is possible to approach C2(H) [9]. We have
therefore proven

Lemma 1:
C1(H) ≥ C2(H). (16)

The cases we are interested in are those with significant
bandwidth reduction, i.e. W < 1/(2T ) with spectral power
concentration Ch(W ) very close to 1. If Ψ(f) is flat for f ∈
[0,W ) then H(f/T ) ≈ B(f), f < 1/2, and H(f/T ) ≈
0, f > 1/2. Inspecting (14) and (15) shows that C1(H) ≈
C2(H) in this case and either of the two can be used. In the
sequel we use C2(H).

Next we prove

Lemma 2: C2(H) is a convex function of g.
Proof Let αn(f) = ei2πnfT and α(f) be the row vector

formed from αn(f), −(L − 1) ≤ n ≤ L − 1. Then |B(f)|2
in (15) can be written as

|B(f)|2 = gα′(f). (17)

To simplify notation, write

C2(g) .= C2(gα′(f)) = C2(H). (18)

Evaluating TC2(λg1+(1−λ)g2) gives

TC2(λg1+(1−λ)g2)=
∫ 1/2

0

log2

[
1+2

[λg1+(1−λ)g2]α
′(f)

N0T

]
df

=
∫ 1/2

0

log2

[
λ+(1−λ)+

+2
λg1α′(f)+(1−λ)g2α

′(f)
N0T

]
df

=
∫ 1/2

0

log2

[
λ(1+2

g1α
′(f)

N0T
)+

+(1−λ)(1+2
g2α

′(f)
N0T

]
df. (19)

The logarithm is convex, so we obtain

C2(λg1 + (1 − λ)g2) ≥ λC2(g1) + (1 − λ)C2(g2) (20)

and the proof is complete.

By variational calculus it can be shown that (15) is maximized
by the pulse shape

|Hmax(f)|2 =

⎧⎨
⎩

Ch(W )/(2WT ), |f | ≤WT
(1−Ch(W ))/(1−2WT ), WT ≤ |f | ≤ 1/2
0, otherwise

(21)
where Ch(W ) is the SPC constraint. Inserting (21) into (15)
gives

C2(Hmax) =
1
T

[
WT log2(1 +

Es

N0

Ch(W )
WT

) +

+(
1
2
−WT ) log2(1 +

Es

N0

1−Ch(W )
1/2−WT

)
]
(22)

The first term of (22) is the capacity contribution from
the passband and the second term is the contribution from
spectrum outside the nominal bandwidth W . It can be seen
that when WT → 0 we must let Ch(W ) → 1 if the first
term is to dominate (22). When the second term starts to
grow it means that a considerable amount of the information is
transmitted in the stopband. The second term is denoted out-
of-band capacity. It gives a quality measure on Ch(W ); when
there is too much out of band capacity the nominal bandwidth
W should not be considered as the signal bandwidth.

Therefore, we propose to design PRS systems by limiting
the out-of-band capacity instead of the out-of-band power. We
start by defining the capacity concentration function as

Θ(WT, Ch(W ), Es/N0) =
1
T WT log2(1 + Es

N0

Ch(W )
WT )

C2(Hmax)
.

(23)
This is the first term of (22) divided by the whole expression
(22), i.e., the relative amount of capacity located inside W
Hz for the optimal pulse. When there can be no confusion
we will refer to Θ(WT, Ch(W ), Es/N0) as Θ only. We will
define bandwidth as the frequency where Θ reaches a certain
value, such as .999.



An investigation of Θ in detail is important, but it is beyond
the scope of this paper. We give some facts as a lemma; the
proofs are simple exercises with limits.

Lemma 3:

Θ(WT, Ch(W ), Es/N0) →
⎧⎨
⎩

Ch(W ) Es/N0 → 0
2WT Es/N0 → ∞
0 WT → 0

(24)

It is assumed that Ch(W ) < 1 for the two last limits. The
first limit implies that for poor channels there is no difference
between the spectral power and capacity concentration. The
second limit basically prohibits PRS systems from operating
at high energy, as most of the capacity then lies outside
the nominal bandwidth. The third limit prohibits too much
bandwidth reduction.

Moreover, for almost all combinations of {WT, Ch(W )}, Θ
is a monotonically decreasing function for increasing E s/N0;
but for some setups, especially when Ch(W ) is small, Θ can
grow for increasing Es/N0. When Θ decreases for increasing
Es/N0 it usually decreases rapidly, making the spectral power
concentration useless as a bandwidth measure.

We give an example of the difference between the capacity
and spectral power concentrations. In [5, Fig. 6] an ODPRS
system based on 4 PAM is proposed. System parameters are
WT = 0.2, Es/N0 = 28dB and Ch(W ) = .999. This scheme
seems to achieve an impressive 12 dB gain over uncoded
QAM. But examining Θ(WT, Ch(W ), Es/N0) reveals that
only 83 % of the capacity is located inside W Hz. In order to
signal efficiently with PRS systems in this low bandwidth/high
energy region a much higher value for the spectral power
concentration must be used in the design.

It should be pointed out that bandwidth measures based
on the capacity concentration do not tell us anything about
disturbance to frequency bands outside [−W,W ]. To measure
this we must still use spectral power concentration. Moreover,
the capacity concentration idea is based on the optimal pulse
shape and a coding scheme that approaches capacity; thus,
it gives only rough insight into systems with non-ideal pulse
shape and coding.

The capacity concentration can also be used to estimate
performance in situations where there is interference in the
stopband. Assume that C2(Hmax) bit/s are transmitted error
free and that the stopband suddenly vanishes. Standard rate-
distortion theory states that the BER must be larger than β,
where β satisfies

Θ(WT, Ch(W ), Es/N0) = 1 − hb(β), (25)

where hb( ) is the binary entropy function. Evaluating (25) for
Θ = .999 gives β = 6 × 10−5; if smaller BER are desired Θ
must be increased. Evaluating (25) for the example ODPRS
system in [5] gives β = 2.5 × 10−2; thus WT can definitely
not be regarded as the bandwidth for that parameter setup.

When optimizing over a finite L taps we have already shown
that the objective function is convex. Since the domain is given
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Fig. 1. Outcome of the capacity optimization plotted against WT , for
Ch(W ) = .999. C(Hmax) is included for comparison.

by linear constraints, the domain is also convex. Moreover, the
domain is compact and the objective function is continuous,
which implies that the optimization problem indeed has a
solution. When performing the optimization we have used the
routine fmincon.m in MATLAB. It should be pointed out that
the capacity optimization is considerably easier than the BER
or distance optimizations as it has fewer constraints [5], [6].

In Figure 1 we show some results of this optimization and
how they compare to the ODPRS and OBPRS classes. We plot
capacity C(H) versus the nominal bandwidth WT based on
spectral power, where Ch(W ) = .999 in all cases. The cases
L = 8 and L = 15 are plotted. Also shown is C2(Hmax),
which is an upper bound. As the number of taps increases
the OCPRS approaches C2(Hmax), i.e. the optimization tries
to create a pulse with a brickwall spectrum. The OCPRS has
higher capacity than both OBPRS and ODPRS, but as the
nominal bandwidth decreases the gap gets smaller. For L = 8
and WT = .28 the gap actually closes. This happens because
the bandwidth constraint gets more restrictive and the domain
gets smaller, and consequently there is not much freedom
when optimizing the pulse shape. The most striking result is
that as WT grows the capacity of the OBPRS and ODPRS
classes start to flatten out. When computing the capacities in
Figure 1 we used Es/N0 = 1; the outcome of the optimization
will of course change when Es/N0 is changed. Moreover,
due to the low value of Es/N0 in Figure 1, the capacity
concentration is by Lemma 3 close to Ch(W ) (it is always
above .9975).

IV. SOME CONCATENATED CODING SCHEMES

Even if OCPRS has higher capacity than ODPRS, it is not
certain that coding schemes where PRS is used as modulation
will perform better when OCPRS is used. To analyze this,
we calculate some EXIT charts for the PRS systems. Recall
that if system A has an EXIT curve that is strictly higher than
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Fig. 2. EXIT curves for two parameter setups. For both setups the EXIT
curves for both OCPRS and ODPRS are plotted.

system B, then system A will converge at lower SNR and thus
is more suitable for iterative decoding. By standard arguments
it is also plausible that system A has higher information rate
than system B. For more about EXIT charts see [13].

In Figure 2 we show EXIT charts of both OCPRS and
ODPRS for two parameter setups. For both we use L = 6 and
Ch(W ) = .999. For the first setup (I) we use WT = .40 and
Es/N0 = 0 dB. For the second setup (II) we use WT = .30
and Es/N0 = 4 dB. From the curves it is seen that the
OCPRS systems have considerably better EXIT curves and
we therefore expect much better performance from them. As
we would expect from Figure 1, OCPRS and ODPRS differ
more when WT is large (system I); for the smaller WT = .30
the ISI responses b are quite similar for OCPRS and ODPRS.
EXIT curves for OBPRS lie in between those of ODPRS and
OCPRS.

A problem that arises is that the decoding complexity grows
exponentially with the number of ISI taps L. This effectively
prohibits L larger than 6 − 8 for binary signaling. However,
an interesting result is that if the PRS code b is designed for,
e.g., 15 taps, but the decoder only considers, say, the first 6
taps of b, the EXIT curves of the truncated decoder are often
still above those of a PRS code designed with 6 taps. The
taps not considered by the decoder act as noise; if there are
many ignored taps the noise is approximately Gaussian. But
these ignored taps will help the transmitter to create a pulse
satisfying the bandwidth criteria.

There exists an interesting connection between the reduced
complexity detection of PRS and the faster than Nyquist
(FTN) signaling mentioned in Section I. An FTN system can
sometimes be seen as a PRS system with system model as in
(1) but with infinite length, i.e., L = ∞, and 100 % spectral
power concentration, Ch(W ) = 1. Clearly, an FTN scheme
cannot be decoded with full MAP/MLSE decoding as the
complexity would be infinite. Yet, in [1] there are examples of

u Precode

Precode

Π

u′
c′

c Map
00 → 1 + j

01 → 1 − j

10 → −1 + j

11 → −1 − j

a
PRS sa(t)

Fig. 3. System model for the parallel coding scheme. j denotes the imaginary
unit. The PRS block implements (1)-(2).

ub

u1

v1

vc

c a
sa(t)

R = b/c
convolutional

code
Π

0 → +1

1 → −1
PRS

Fig. 4. System model for serial concatenation. The PRS block implements
(1)-(2).

coding schemes based on FTN that outperform the information
rates of coding schemes built on 8 PSK and 16 QAM signals.

Next, we construct tentative coding schemes where the PRS
system is used as the inner encoder. We wish to find out
whether OCPRS indeed outperforms ODPRS and OBPRS. The
first coding structure is shown in Figure 3. A bit sequence u is
to be transmitted. The sequence is first interleaved to produce
the sequence u prime. The two sequences are then precoded
by a recursive precoder which produces the sequences c and
c′. These two are then transmitted by two independent PRS
systems with independent AWGN, here taken as an I/Q QPSK
scheme. The recursive precoder used in Figure 3 works as
follows. Output bit ck is formed as

ck = uk

N∏
l=1

ck−lνl (26)

where the coefficients νk, 1 ≤ k ≤ N , νk ∈ {0, 1},
completely characterize the precoder. When N ≤ L no
additional decoding complexity is added by the precoder.

The EXIT curves in Figure 2 do not have the property that
IE = 1 for IA = 1. This property is however crucial; it is
easy to see that the coding scheme in Figure 3 completely
fails if this is not satisfied. But the precoder transforms the
EXIT curves such that IE = 1 for IA = 1 regardless of the
SNR. This comes with a penalty for lower SNRs where the
new curves fall below the non-precoded curves. The system
will converge when the EXIT curve is above the line IE = IA.

The second structure is shown in Figure 4. A bit sequence
u is encoded with a convolutional code of rate b/c. An
interleaver and BPSK mapping follows and finally PRS mod-
ulation. Decoding is done by ordinary turbo equalization. For
more details on the coding schemes and decoding of them we
refer to [14].

Simulations of the parallel system in Figure 3 are shown in
Figure 5. System parameters are WT = .40, L = 6, Ch(W ) =
.999, and the interleaver blocksize is 10000. The precoder has
νk = 1, 1 ≤ k ≤ 5. We tested all three classes of PRS.
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It can be seen that the OCPRS class performs much better
than the other two. We believe that this is due to its superior
capacity, which the system operates relatively near. Moreover,
since WT is quite large and Eb/N0 is small we expect a large
value for Θ and thus the bandwidth measure is considered
appropriate. For Eb/N0 =1.6 dB the actual value for Θ is
.9983. We consider this system setup as a proper use of PRS.

Simulations of the serial system in Figure 4 are shown in
Figure 6. It can be shown [14] that the system can never
perform better than the underlying convolutional code, in this
case the rate 1/2 convolutional code (74, 54) in octal notation.
The performance of the code alone is included in Figure
6. We test all three classes of PRS. System parameters are
WT = .35, L = 6, Ch(W ) = .999 and the interleaver
blocksize is 2048 bits. It is seen that OCPRS has the smallest
BER for a given Eb/N0. As Eb/N0 grows all three classes
more or less have the same performance. This is natural;
as Eb/N0 grows all possible PRS systems will converge to
the convolutional code performance and there is no way to
improve that without changing the system. The region where
different PRS codes can give different performance is at small
Eb/N0, and there OCPRS is best.

V. CONCLUSIONS

We have investigated optimal partial response signaling.
We have considered three objective functions, two previously
investigated and a new one based on capacity. The outcome
is that PRS codes with optimal capacity perform better at low
SNRs than other types of optimal PRS. The associated opti-
mization problem is also easier than for other types of optimal
PRS. We have introduced the capacity concentration function,
which measures the capacity inside the nominal bandwidth. In
the low bandwidth/high energy region, where PRS codes are
usually intended to operate, there is a major difference between
the capacity concentration and the traditional spectral power
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Fig. 6. Simulations for a serial concatenated scheme. Outer encoder is the
(74,54) convolutional code, random interleaver with blocklength 2048 and a
6 tap PRS modulator with WT = .35 and Ch(W ) = .999.

concentration. The capacity concentration function seems to
be very important for PRS.
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