LUND UNIVERSITY

Improving Requirements Selection Quality in Market-Driven Software Development

Karlsson, Lena

2003

Link to publication

Citation for published version (APA):
Karlsson, L. (2003). Improving Requirements Selection Quality in Market-Driven Software Development.
[Licentiate Thesis, Department of Computer Science].

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 20. Apr. 2024

https://portal.research.lu.se/en/publications/44cb0e66-c2cf-46af-b97f-c447446668c3

Improving Requirements Selection Quality in
Market-Driven Software Development

Lena Karlsson

LUND UNIVERSITY

Department of Communication Systems
Lund Institute of Technology

ISSN 1101-3931
ISRN LUTEDX/TETS--1063--SE+132P

Printed in Lund, Sweden by E-kop

November 2003

This thesis is submitted to Research Board FIME — Physics, Informatics, Mathematics and
Electrical Engineering — at Lund Institute of Technology (LTH), Lund University, in partial
fulfilment of the requirements for the degree of Licentiate of Technology in Software Engineering.

Contact Information:

Lena Karlsson

Department of Communication Systems
Lund University

PO. Box 118

SE-221 00 LUND

Sweden

Tel: +46 46 222 03 65
Fax: +46 46 14 58 23

E-mail: lena.karlsson@telecom.lth.se

Abstract

The thesis aims at finding means for assessing and improving the
requirements engineering (RE) process in order to enhance software
product quality and increase the competitive edge of software
organisations. Quality can be defined as the ability to satisfy the customers’
expectations. Thus, from an RE perspective, improved quality implies
improved requirements elicitation and prioritisation efforts.

The thesis focuses on software-developing organisations that release
their product in several releases on an open market. These market-driven
organisations do not have one single customer to negotiate a contract
with, but rather a set of potential customers with various wishes that need
to be prioritised.

The thesis is based on empirical research strategies, including both
quantitative and qualitative approaches. The research results include a
survey of current RE challenges in market-driven organisations in which
issues such as lack of communication, turbulent markets and problems
with release planning emerged. Process behaviour was explored in an ana-
lytical model using queuing theory to model three process phases: screen-
ing, evaluation and implementation. The model was validated in a survey.
Furthermore, a case study using model building and simulation visualises
relations between product quality and lead-time. A post-release analysis
method, called PARSEQ), was introduced in a case study, with the intent
to evaluate the requirements selection quality in prior releases and find
improvement suggestions. Finally, a controlled experiment comparing
two requirements prioritisation techniques was conducted, with the result
that the simple and intuitive technique was superior regarding time-con-
sumption, ease of use and accuracy.

Acknowledgements

This work was partly funded by the Swedish agency for Innovation Systems
(VINNOVA), under grant for the Center for Applied Software Research at
Lund University (LUCAS).

First and foremost, I would like to thank my supervisor Dr. Bjorn Regnell
for his great knowledge and support, and for always having time for a
chat. Thanks also to Dr. Per Runesson and Dr. Martin Hést for giving me
this opportunity and to Dr. Joachim Karlsson for valuable comments on
the thesis.

Furthermore, all my other current and former colleagues who have
contributed to a great place to work: Lic. Carina Andersson, Lic. Daniel
Karlstrom, Lic. Johan Natt och Dag, Lic. Thomas Olsson, Lic. Enrico
Johansson, Dr. Magnus C. Ohlsson, Dr. Thomas Thelin, Dr. Hikan
Petersson and Lic. Tomas Berling.

Great research collaborators and co-authors include Asa G. Dahlstedt
and Dr. Anne Persson (Skovde University), Patrik Berander and Prof.
Claes Wohlin (Blekinge Institute of Technology), Stefan Olsson and
Magnus Héglund (Focal Point AB), Torbjérn Séderberg, Stefan Bjurberg
and Peter Friberg (Axis Communications AB), Dr. Per Carlshamre
(Ericsson), and Lic. Bertil I. Nilsson (Lund Institute of Technology).

Finally, thanks to Mum and Dad for encouraging me to always strive
for more and to my brothers for teaching me their homework. And last,
but not least, Josef Nedstam - my colleague, friend and love. You make
me complete.

Contents

Introduction 5
1. Research Focus i 9
2.Research Areaot 10
3. Research Methodology 16
4. Research classification 19
5. Research Results 23
6. Referencesot 28

Paper I: Challenges in Market-Driven Requirements Engineering

- An Industrial Interview Study 31
L. Introduction oo 32
2. Research Method ..o 33
3. Analysisand Results L 35

4. Conclusions and Further Research 43

Paper II: Understanding Software Processes through System

Dynamics Simulation: A Case Study 47
L. Introduction i 48
2. Method oo 49
3. Developing the simulation model L. 49
4. Results from the simulation L L 57
5. DISCUSSION .ot e 58

Paper III: An Analytical Model for Requirements Selection Quality

Evaluation in Product Software Development 61
L Introduction ... i e 62
2. Requirements Selection i 63
3. Selection Quality e 65
4. Analytical Model 66
5. Parameter Estimation Survey L i 76
6. Using the Model in Practice i oo e, 81
7. Conclusions ... e 82

Paper IV: Post-Release Analysis of Requirements Selection Quality

- An Industrial Case Study 87
L. Introduction ... 88
2. The PARSEQ Method 90
3.CaseStudy ... 94
4. DISCUSSION o vttt e e 104

5. ConclUSIONS . oo it e 105

Paper V: Simple Is Better? -An Experiment on Requirements

Prioritisation 109
L. Introduction ... o o 110
2. Requirements Prioritisation il 110
3. Experiment Design 113
4.Results .o 119
5.DIscussion ... 127

6. Conclusionsttt 130

Introduction

The quality of a product can be defined as its ability to satisfy the needs
and expectations of the customers (Bergman & Klefsjo, 1994). These
needs may be hidden or difficult to communicate and different customers
may have different needs. Thus, the quality of a software product is to a
large extent determined by the quality of the requirements elicitation and
selection decisions, i.e. what requirements that are identified and chosen
for a product.

The goal of the research presented in this thesis is to enhance software
product quality and increase the competitive edge of software
organisations by exploring and discovering means for improved
Requirements Engineering (RE). By developing and applying methods
and techniques for assessing and improving the requirements process, the
software product quality is expected to improve. The thesis describes
several approaches to understand, represent and solve software problems,
with focus on RE challenges. All of the included papers have an empirical
clement, and most of the issues that are examined involves industry
partners.

Software continually becomes part of more and more products. Still,
the area of software engineering is young and immature and software
organisations need support in order to be successful (Sommerville, 2001).
The intangible and flexible nature of software causes software projects to
be overrepresented in project failure statistics. Typical project problems

Improving Requirements Selection Quality in Market-Driven Software Development

Introduction

include lack of functionality, poor quality, budget overruns and missed
deadlines (CHAQS, 1994). Even when the product is delivered on time
and on budget, a project may fail if the product does not meet customer
expectations. Therefore, we see a large range of potential improvements in
the area of software engineering.

Many software developing organisations release their products on an
open market with numerous potential customers and users. The thesis
focuses on such market-driven organisations, which experience special
challenges not recognised by organisations that develop customer-specific
products. Satisfying customers’ expectations is much more difficult when
the customers are less well-defined and have diverse opinions.

The thesis includes five papers. The first one investigates the special
challenges experienced by market-driven organisations and provides a
basis for the research questions which were explored in the other four
studies.

1. A survey of RE challenges in market-driven organisations

2. Asimulation study visualising the relations between product quality
and lead-time

3. An analytical model illustrating the relation between product
quality, process capacity and lead time

4. An introduction of a method for evaluating how well the
requirements are selected in market-driven organisations

5. An experiment that describes a comparison between requirements
prioritisation techniques

The thesis is structured as follows. Section 1 presents the research focus
and research questions examined in the thesis. Section 2 continues with a
description of the research area of market-driven RE and requirements
selection quality. Research methodology and validation issues are
described in Section 3, before the research focus is classified regarding the
methodology in Section 4. Finally, the research results and contributions
are presented and future plans are described in Section 5.

6 Improving Requirements Selection Quality in Marker-Driven Software Development

List of Papers
The five papers presented in this thesis are listed below.

PAPER I: CHALLENGES IN MARKET-DRIVEN REQUIREMENTS ENGI-
NEERING - AN INDUSTRIAL INTERVIEW STUDY.

Lena Karlsson, Asa G. Dablsteds, Johan Natt och Dag, Bjorn Regnell, Anne
Persson

Proceedings of the 8th International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ’02), Essen,
Germany, September 2002.

PAPER II: UNDERSTANDING SOFTWARE PROCESSES THROUGH SYSTEM
DYNAMICS SIMULATION: A CASE STUDY.

Carina Andersson, Lena Karlsson, Josef Nedstam, Martin Hést, Bertil 1
Nilsson

Proceedings of the 9th IEEE International Conference on the
Engineering of Computer-Based Systems (ECBS’02), Lund, Sweden,
April 2002.

PAPER III: AN ANALYTICAL MODEL FOR REQUIREMENTS SELECTION
QUALITY EVALUATION IN PRODUCT SOFTWARE DEVELOPMENT.
Bjorn Regnell, Lena Karlsson, Martin Host

Proceedings of the 11th IEEE International Requirements Engineering
Conference (RE’03), Monterey Bay, California, USA, September 2003.

PAPER IV: POST-RELEASE ANALYSIS OF REQUIREMENTS SELECTION
QUALITY - AN INDUSTRIAL CASE STUDY.

Lena Karlsson, Bjorn Regnell, Joachim Karlsson, Stefan Olsson

Proceedings of the 9th International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ’03), Velden,
Austria, June 2003.

PAPER V: SIMPLE IS BETTER? - AN EXPERIMENT ON REQUIREMENTS
PRIORITISATION.

Lena Karlsson, Patrik Berander, Bjirn Regnell, Claes Wohlin

Proceedings of the 3rd Conference on Software Engineering Research and

Practise in Sweden (SERPS’03), Lund, Sweden, October 2003.

Improving Requirements Selection Quality in Market-Driven Software Development

Introduction

Related Publications

UNDERSTANDING SOFTWARE PROCESSES THROUGH SYSTEM DYNAM-
ICS SIMULATION: A CASE STUDY.

(same as Paper II)

Carina Andersson, Lena Karlsson, Josef Nedstam, Martin Host, Bertil 1
Nilsson

Proceedings of the 1st Conference on Software Engineering Research and
Practise (SERP’01), Ronneby, Sweden, October 2001.

AN ANALYTICAL MODEL OF REQUIREMENTS SELECTION QUALITY IN
SOFTWARE PRODUCT DEVELOPMENT.

(shorter version of Paper II1)

Bjirn Regnell, Lena Karlsson, Martin Host

Proceedings of the 2nd Conference on Software Engineering Research
and Practise in Sweden (SERPS’02), Ronneby, Sweden, October 2002.

MARKET-DRIVEN REQUIREMENTS ENGINEERING PROCESSES FOR
SOFTWARE PRODUCTS - A REPORT ON CURRENT PRACTICES.

(based on the same interview material as Paper I)

Asa G. Dablsteds, Lena Karlsson, Johan Natt och Dag, Bjorn Regnell, Anne
Persson

Proceedings of the International Workshop on COTS and Product
Software (RECOTS’03), Monterey Bay, California, USA, September
2003.

8 Improving Requirements Selection Quality in Marker-Driven Software Development

1. Research Focus

1. Research Focus

The goal of this research is to find means for improving the requirements
process and activities in order to enhance software product quality and
increase the competitive edge of software organisations. The main
research questions that have been investigated are:

RQ1. Which are the RE challenges that need further investigation?

*Which are the current RE practices, concerning release planning
and requirements identification and specification?

*How can the increased understanding of the nature of RE help
us to identify new research questions?

RQ2. Can process modelling be used to visualise and communicate
RE process behaviour?

*How can a process model aid in resource allocation and project
planning?

*How can a process model help when reasoning about decision
quality and the relations between product quality, capacity and
project lead-time?

RQ3. How can requirements selection quality and release planning be
assessed and improved?

*Can retrospective analysis and prioritisation techniques be used
to improve requirements selection quality?

*Which are the differences between an elementary and an
claborate prioritisation technique regarding requirements
selection quality?

The three research questions represent three main parts of the research, as
shown in Figure 1: Problem understanding, Modelling and visualisation
and Solution proposals. The first research question was investigated in
Paper 1 by conducting a survey of Swedish software-developing
organisations. The survey laid the foundation for the research questions
and the papers that followed in the two other parts of the research. The
second question is examined in Papers II and III, both including model

Improving Requirements Selection Quality in Market-Driven Software Development 9

Introduction

RQ2:Modelling
and visualisation
RQ3:Solution
proposals

building, and focus on visualising different process relations. The third

RQ1:Problem
understanding

Figure 1. The main parts of this research

resecarch question regards comparing and developing techniques for
improved requirements selection quality and resulted in Papers IV and V.

2. Research Area

This section provides some theoretical background of requirements
engineering (RE) and describes the context of the five papers.

Software engineering is an engineering discipline whose goal is to cost-
effectively develop software systems. This includes all aspects of software
development, from the early stages of system specification through to
maintaining the system after it is put into use (Sommerville, 2001).
Software requirements are in SWEBOK (2003) defined as “properties that
must be exhibited in order to solve some problem of the real world”. In
other words, requirements define what the system should do, i.e. what
functionality the system shall include. Thus, requirements engineering
regards the process of identifying, analysing, prioritising, documenting,
validating and managing these software properties (Lauesen, 2002).

Software systems are products that consist of both hardware and
software, such as embedded products, or products that are pure software
applications (Thayer, 2002). Regarding RE, the issues that are dealt with
are mainly the same for pure software products and embedded products.
When developing embedded products it may not be decided at the RE
stage whether to implement functionality as hardware or as software.
Therefore, we may benefit from taking a system perspective. However,

10 Improving Requirements Selection Quality in Marker-Driven Software Development

2. Research Area

from here on we use the term products and refer to systems that partly or
completely consist of software.

2.1 Requirements Engineering

Traditionally, RE takes place in the beginning of every project, and results
in a specification that defines the product to be developed. This view is
based on the Waterfall model (Royce, 1970), where requirements
engineering is followed by design, implementation, testing and
maintenance activities. However, this cascade process may not be the
most appropriate in practice, since the flexible nature of software enables
the development process to be more iterative and evolutionary. The
possibility to adjust the product to new wishes and needs is often
exploited, which results in a volatile and unpredictable development
environment that calls for continuous RE efforts.

The six main activities in RE (Sommerville & Sawyer, 1997) are
illustrated in Figure 2. Elicitation, Analysis, Prioritisation, Specification
and Validation are often conducted in sequence, while Management is a
continual activity and is performed throughout the product life-cycle.
However, all these activities are in practice performed iteratively since it is
necessary to continually perform elicitation in order to keep up with the
customer expectations.

(v Dot

» i |

."‘ ¢ & \Iw
WMM

Specifi-
M cation aT

w
< L]

w.-%

Management |

Figure 2. The requirements engineering process

Improving Requirements Selection Quality in Market-Driven Software Development 11

Introduction

* Requirements elicitation or identification is the process of finding
and formulating the requirements for a software product. There are
different techniques applicable to different situations.

* Requirements analysis is concerned with investigating the
requirements for conflicts, overlaps, inconsistencies etc. It also
includes deciding system boundaries and assessing risks.

e Requirements prioritisation involves value and effort estimation of
the requirements and is the foundation for release planning.

* Requirements specification or documentation involves the
production of a product specification with requirements and system
models.

s Requirements validation includes the activities performed to ensure
that the requirements follow certain quality criteria, and
corresponds to the real user needs.

e Requirements management is the process of taking care of all
requirements changes and keeping track of interactions between
requirements and product documentation.

This thesis focuses on the earlier activities of RE: the identification,
analysis and prioritisation of requirements, with the goal of improving
these activities and thereby enhance product quality.

2.2 Market-Driven Requirements Engineering

Products can be divided into different categories depending on the type of
market where the product is vended. In the customer-specific case (also
called bespoke or contract-driven) the product is ordered by a specific
customer and the supplier develops and maintains the product for that
customer. The customer often represents a large organisation such as a
military, governmental or financial institution. A product contract is
negotiated with the customer, describing what the product shall include,
when it shall be delivered, and how much it will cost.

The case where the product is developed for an open market is usually
called market-driven development (or packaged software development).
The customer may be another organisation or a consumer and the
products may be, for example, computer packages or mobile phones. In

12

Improving Requirements Selection Quality in Marker-Driven Software Development

2. Research Area

both cases there is a large range of potential customers on a mass market
and suppliers need to take diverse needs into account.

Many organisations do in fact deal with both market-driven and
customer-specific projects. Depending on the product and situation, an
organisation may negotiate contracts with customers for one product at a
certain time, while another product is sold on a mass market. In this
thesis, we focus on the market-driven aspects of these organisations.

Among the early work that use the term market-driven are Lubars et al.
(1993) in their field study of requirements modelling. They investigated
differences between customer-specific and market-driven projects in the
areas of requirements definition, specification and validation. Later on,
Potts (1995) wrote about “invented requirements and imagined
customers” as key issues in market-driven RE. Some of the characteristics
expressed in those studies and in Carlshamre (2001) and Sawyer (2000)

are summarised below.

The characteristics of market-driven RE include, for example, that the
mass market product often has a life cycle with several consecutive releases
and lasts as long as there is a market for it. Therefore, release planning is
an important activity. A highly important issue is to have shorter time-to-
market than the competitors, in order to yield high market shares and be
successful on the market.

Requirements are often invented by developers or elicited from a set of
potential customers since there is no single, almighty customer to ask.
This may yield too many requirements with respect to the available
resources for one release, and it is necessary to make estimations of
implementation effort and market value in order to prioritise and select a
set that will fit the market and corporate strategy. Requirements are
prioritised within the developing organisation before release planning,
while in the customer-specific situation the requirements are negotiated
and contracted.

2.3 Requirements Prioritisation

The objective of requirements prioritisation is to aid in the requirements
selection and release planning process when a set of requirements is
selected based on effort and value estimates. Issues such as requirements
interdependencies and product scope are also taken into account and the
activity results in a sorted list of requirements.

Improving Requirements Selection Quality in Market-Driven Software Development 13

Introduction

The prioritisation requires accurate input estimates of cost and value,
and may be based on a certain prioritisation technique. There are several
prioritisation techniques to choose from, although many organisations
still use ad hoc techniques and just pick a set that seems reasonable
(Lubars et al., 1993). More elaborate techniques involve structured
sorting algorithms or pair-wise comparisons to obtain a sorted list of
requirements to use for release planning. This requires the product
requirements to be fairly well analysed and complete so that the
implications of each requirement are understood.

A common prioritisation technique in industry may be numeral
assignment, where each requirement receives a value, for example in the
range of 1 to 10 or High, Medium and Low. These values are compiled
and point out the most important requirements. However, this kind of
absolute judgements are less reliable than relative judgements such as pair-
wise comparisons (Karlsson et al., 1996). Another study by Karlsson et al.
(1998) examined different sorting algorithms involving pair-wise
comparisons. These techniques are rather time-consuming but tend to be
more accurate than techniques involving numeral assignment. The study
concluded that the Analytical Hierarchy Process (AHP) (Saaty, 1980) was
superior but also time-consuming.

In Extreme Programming (Beck, 2000), a technique called Planning
Game is used, which is based on categorisation. The requirements are
divided into three groups corresponding to different degrees of necessity
and risk. Then, a set of requirements is selected based on these groups and
the estimated implementation effort. This technique is fast and simple
but does not have the benefits of relative judgements.

Thus, there are several techniques that may support decision-makers in
the requirements selection process, some more elaborate than others. A
comparison of the AHP and the Planning Game is provided in Paper V.

2.4 Requirements Selection Quality

The quality and success of a software product often depends on the ability
to make correct decisions regarding requirements selections.
Requirements selection quality can be defined as the ability to provide a
high-quality set of selected items, ie. to make correct choices.
Requirements selection decisions are a part of the release planning
process, which aims at deciding the content of the next release

14 Improving Requirements Selection Quality in Marker-Driven Software Development

2. Research Area

sation tation

Elicitation Screening Analysis j Prioriti- E:i Implemen- =)

Figure 3. Requirements selection decisions are made ar several process stages

(Carlshamre & Regnell, 2000). Release plans are often revised and
changed through out development as more knowledge is gained about the
market and development progress.

The requirements selection decisions are often made in several stages of
the RE process. Starting out with a large set of potential requirements, the
selection brings the number down for each activity in the requirements
process, as illustrated in Figure 3. The discarded requirements are
typically stored in a database for investigation in future releases. During
elicitation, decisions concern which stakeholder representatives to consult
to elicit ideas for new features. Then there is often a screening activity
performed to make a first quick assessment to decide whether a
requirement is worth spending more time on. Requirements that are
clearly out of the scope of the next release are rejected in order to avoid an
overload in the requirements repository (Regnell et al., 1998). The
analysis activity regards identifying requirements that are in conflict or
requirements that are duplicates and can be discarded from the process.
During prioritisation, requirements are compared and judged based on,
for example, their estimated customer value and implementation cost
(Karlsson & Ryan, 1997). Finally, the requirements can be re-assessed
during implementation and decisions regarding postponing or removing
requirements can be made based on the information gained during the
development.

2.5 Project Evaluation

It is often not possible to know whether or not a product is a success, until
after it is released to the market. The implementation may have required
more effort than expected or the included functionality may not
correspond to the customer needs. After a release it is valuable to conduct
some kind of project evaluation in order to learn from mistakes and
improve the process before the next release. The evaluation can be
performed in different ways, for example through a post-mortem project

Improving Requirements Selection Quality in Market-Driven Software Development 15

Introduction

evaluation (Smith, 1996). This evaluation or review is usually an open-
ended discussion of the strengths and weaknesses of the project plan and
execution. Sometimes it is facilitated by an outside consultant or someone
with an objective view of the project. At the end of the session, a
postmortem report is prepared as a formal closing of the project, which is
then used in the project planning stage of future projects. The post-
mortem analysis is an excellent method for Knowledge Management,
since it captures experience and improvement suggestions from
completed projects (Birk et al., 2002; Rus & Lindvall, 2002).

Another type of project evaluation is the project retrospective (Kerth,
2000). Here, the emphasis is on constant reflection and improvement,
not just after a project is finished, but rather during the project. The
empbhasis is on sharing knowledge and one way is to select, for example,
three improvements and focus on them in order to share a common goal
throughout the organisation.

3. Research Methodology

This section gives an overview of the different research strategies and
approaches that are used in the thesis. It also describes certain validity
issues that need to be considered for each strategy.

3.1 Research Strategies

There are two main approaches to research: the fived and the flexible
design (Robson, 2002). The fixed design, also called quantitative, deals
with designs that are highly pre-specified and prepared. A conceptual
framework or theory is required in order to know in advance what to look
for. It is often concerned with quantifying a relationship or comparing
two or more groups and the results are often prescriptive, i.c. it suggests a
solution, method or tool that is more appropriate than others.

The flexible design, also called gualitative, relies on qualitative data
and require less pre-specification. The design is intended to evolve and
develop during the research process as the researchers gain more
knowledge. The flexible design is concerned with studying objects in their
natural setting and is often descriptive, i.c. it describes some issue of the
real world. Qualitative data may also include numbers, but are to a large
extent focused on words. Many times, however, a design may include

16 Improving Requirements Selection Quality in Marker-Driven Software Development

3. Research Methodology

both fixed and flexible methods and yield both quantitative and
qualitative data.

This section describes three major types of strategies: Survey, Case
study and Experiment. Surveys and Case studies can be both fixed and
flexible, while experiments are typically fixed (Wohlin et al., 2000). Pure
qualitative research designs include strategies such as Grounded theory
and Ethnography, which are not included in this thesis but are described
by Robson (2002).

Surveys

Surveys can be both flexible and fixed, i.e. include different degrees of
pre-specification. Surveys is a wide term that includes everything from
open-ended interviews to questionnaires with closed questions. While
questionnaires can reach a large set of people and provide data that is easy
to analyse, there is a risk of low response rates and questionnaires can be
prone to misunderstandings. Interviews have higher response rates and
the interviewer may explain and clarify questions during the session to
avoid misunderstandings. However, there are disadvantages such as high
time consumption and that the interviewer may impose a bias (Robson,
2002).

Surveys are often used within social sciences for opinion polls or
market research. A representative sample is taken from the population
under study, so that the results can be generalised to that particular
population. The purpose of surveys is to understand, describe, explain or
explore the population (Wohlin et al., 2000).

Case studies

A case study is conducted to investigate a single case within a specific time
space and can be either fixed or flexible. The researcher typically collects
detailed information on one single project, and different data collection
procedures may be applied. Case studies differ from experiments in that
the variables are not being manipulated, i.e. the case study samples from
variables representing the typical situation. A case study is easier to plan
than an experiment, but it is also more difficult to interpret and generalise
to other situations (Wohlin et al., 2000).

Improving Requirements Selection Quality in Market-Driven Software Development

17

Introduction

Experiments

Experiments are used when we want control over the situation and want
to manipulate the behaviour. Results are often reported as averages and
proportions, thus it is a quantitative design. Experiments involve more
than one treatment to compare the outcomes and enable statistical
analysis. As other fixed designs, the experiment is theory-driven and
requires a substantial amount of conceptual understanding from the start

(Robson, 2002).

The design of an experiment should be made so that the objects
involved represent all the methods or tools we are interested in. The
strength of an experiment is that we can investigate in which situation the
claims are true and they provide a context in which certain methods or
tools are recommended for use (Wohlin et al., 2000).

3.2 Validity

All research designs and strategies have certain validity issues that need to
be considered. In fixed designs there are mainly four types of validity
threats that need to be considered: conclusion, internal, construct and
external validity. In flexible designs there is a different set of validity
issues, which regards description, interpretation and theory (Robson,
2002). In addition to these, there are matters of respondent and
researcher bias, in which people involved in the research, deliberately or
not, affect the results.

Validity in fixed designs

Some of the validity problems encountered in fixed designs are briefly

described here, while more thorough presentations are available in
(Robson, 2002; Wohlin et al., 2000).

1. Conclusion validity is concerned with the relationship between the
treatment and the outcome. We want to make sure that there is a
statistical relationship, i.e with a given significance.

2. Internal validity is needed to make sure that the relationship
between the treatment and outcome is a causal relationship, i.e. that
the treatment actually caused the result.

18 Improving Requirements Selection Quality in Marker-Driven Software Development

4. Research classification

3. Construct validity is concerned with the relation between the theory

and the observation and refers to the extent to which the
experiment setting actually reflects the construct under study. Using
multiple strategies to measure the same thing may improve the
construct validity and ensure that the result is an effect of the
treatment.

4. External validity regards generalisation. If there is a causal

relationship between the cause and effect, can the result be
generalised outside the context of our study?

Validity in flexible designs

The three main validity issues in flexible designs are described here. A
more detailed presentation is available in Robson (2002).

4.

1. Description is regarding the accuracy and completeness of the data.

Thus, if interviews occur they should be audio-taped and possibly
transcribed in order to keep all data for reference and analysis.

. Interpretation implies that frameworks and theories shall emerge

from the knowledge gained during the research, instead of being
predetermined and thus biased. This is prevented by analysing and
demonstrating how the interpretation was reached.

. Theory is closely related to interpretation, but regards the threat of

not considering alternative explanations of the phenomena under
study. This is confronted by continuously revising and refining the
theory until it accounts for all known cases.

Research classification

This section presents how the research questions and the research designs

described earlier are represented in the different papers, see Table 1. It also
depicts the specific validity measures taken in each study.

Improving Requirements Selection Quality in Market-Driven Software Development

19

Introduction

Table 1. Research classification

Research Research Research

Question Strategy Design Paper

RQ1 Survey Flexible Paper [

RQ2 Case study Fixed Paper 11
Survey Fixed Paper III

RQ3 Case study Flexible Paper [V
Experiment Fixed Paper V

4.1 RQ 1: Which are the RE challenges that need further

investigation?

The first research question was investigated by conducting a flexible
survey at five different Swedish companies involved in market-driven
development. Seven respondents participated in interviews, which were
recorded and later transcribed and analysed. The interviews were open-
ended and had a flexible structure, and took different shape depending on
the respondents.

The data was stored both on tape and as printed transcriptions in order
to keep data complete and accurate. Thus, the description validity is taken
into consideration. In most cases two to three researchers conducted the
interviews and notes were taken during the interviews. During analysis,
three researchers with different research interests dug into the data and
made different conclusions that were later discussed. Such discussions
from different angles help to ensure that conclusions were not emerged
through prejudices, but through the knowledge gained during the study.
Thereby, we believe that the interpretation validity is regarded.

The five companies were of different size and age, and from different
business areas, and at two of the companies, interviews were held with
two people in different organisational positions. In that manner, we
believe that the gained knowledge is multifaceted and the results reflect a
broad image of the reality. The selection of companies from different
categories of age, size and business were made with the intent to regard

theory validity.

Since the study is based on a flexible design we do not intend to
generalise the results to a larger population. The intention with the survey

20

Improving Requirements Selection Quality in Marker-Driven Software Development

4. Research classification

was to gain understanding of RE in order to formulate different research
hypotheses, which were then further investigated in other research studies.

4.2 RQ 2: Can we use process modelling to visualise and

communicate RE process behaviour?

The second question regards process issues such as product quality,
process capacity and project lead-time, and was first investigated in a case
study where we used simulation as a means for visualisation. The
modelling and simulation was rather fixed in its nature since it required a
lot of background knowledge and preparation.

The main validity matter in case studies is external validizy. In this case,
the simulation model and the factors included in the model are rather
general, and can probably be used by other organisations. However, the
model may need some adaptation in order to be calibrated to other
specific cases. The study did not involve any kind of treatment (for
example introduction of a method or tool) and therefore there are no
threats to internal validity.

Secondly, an analytical model was built, illustrating the requirements
selection process. The model takes different issues into account, such as
selection quality in different phases, work capacity, time-to-market and
final product quality. The analytical model was validated in a survey, in
which a questionnaire was filled out by several practitioners, such as

product managers and requirements engineers.

The main validity issues in fixed surveys is conmstruct validity and
external validity. If the questions in the questionnaire are misinterpreted
or not understood by the respondents, the construct validity is
challenged. In this case, the questionnaire included more questions than
parameters, and therefore it was possible to check if the parameters were
consistently estimated. Thus, we believe that the answers of the consistent
respondents reflect the questions that were asked. External validity is
problematic since it is impossible to ask the whole population, and thus
the sample might not be representative. In this case, we used a convenient
sample (Robson 2002) hence the result may not be possible to generalise
to a larger population. However, the intention was to validate the model
and not to make generalised conclusions.

Improving Requirements Selection Quality in Market-Driven Software Development 21

Introduction

4.3 RQ 3: How can requirements selection quality and
release planning be assessed and improved?

The third research question was investigated in two different studies. First
a case study was conducted, which was rather flexible and took place
during a one day session. A post-release analysis method, called PARSEQ,
was applied and it was elaborated in cooperation with the participating
organisation. The results were compiled and analysed afterwards.

In flexible case studies, there are mainly the same validity issues as in
flexible surveys. However, since it regards one single case the threat to
theory validity is handled by creating alternative explanations within that
case, for example by asking different persons within one organisation. In
this case, three staff members from the small organisation participated,
one marketing person and two developers. Audio-taping the one-day
conversation would have been impractical as a means for data collection,
and instead extensive notes were taken to regard description validity.

Then the question was examined in a controlled experiment where 16
academics participated in a comparison of requirements prioritisation
techniques. The design was fixed, i.e. prepared and well-defined and the
experiment itself was conducted during a half-day session and was
followed by several days of analysis.

Experiments are fixed in nature and applies to all four validity issues
carlier. Internal validity is considered by isolating the treatment from
other influencing factors to ensure that the outcome is actually caused by
the treatment. A typical example of threats to internal validity is that the
groups given different treatments already differ from each other in one
way or another. This was regarded by sampling the subjects based on a
pre-test so that the groups’” characteristics were as similar as possible and
additionally the subjects were given treatment in different orders.

Conclusion validity was regarded by conducting hypothesis tests when
possible and indicates significance of the results. The experiment was
performed with a rather small and specific set of subjects, hence there is a
threat to external validity. However, we believe that the subjects’ (in this
case mainly Ph D students) views are rather similar to the practitioners’

who are intended to use the techniques examined in the experiment (Hést
et al., 2000).

22

Improving Requirements Selection Quality in Marker-Driven Software Development

5. Research Results

5. Research Results

This thesis uses several research strategies to investigate and solve
questions regarding requirements selection quality: a survey, an analytical
model, a simulation study, a proposed evaluation method and an
experiment. In this section, the main research results and contributions
are summarised and plans for further work are described.

5.1 Main Contributions

The research presented here has lead to the conclusion that many
organisations find RE difficult. Among the issues that were discovered in
the survey (Paper I) the most interesting ones regard communication
problems, difficulties with decision-making, and lack of reflection due to
time pressure. However, these are not specific to RE but the contributions
that are presented here aim at reducing these problems with an RE
perspective.

Communication problems may be decreased by using models to
reason about RE issues and try out different possible solutions in order to
come to an agreement. Such models are presented in Papers II and IIL
Making appropriate decisions regarding, for example, release plans,
requires good estimation skills and domain knowledge but also techniques
to aid in the selection of requirements. Two such techniques are compared
in Paper V. Project management literature often stresses the importance of
reflection of prior work in order to learn for the future. However, few
organisations actually perform such post-mortem analyses. Paper IV
proposes such an analysis aiming at reflecting on the requirements
decisions made during prior releases.

This research can hopefully help organisations improve their
communication and decision-making with the goal to increase product

quality.

Report on current RE challenges (RQ 1)

The first research contribution is the industrial survey conducted at five
Swedish software-developing companies, which is described in Paper I
The survey gave insights into how requirements engineering is handled in
the studied organisations, and the challenges they face. It generated
research questions and laid the foundation for the studies that followed.

Improving Requirements Selection Quality in Market-Driven Software Development 23

Introduction

The survey presents typical challenges managed by market-driven
software organisations and can be used by other organisations to review,
and avoid, the traps that the surveyed organisations have fallen into. It
also provides the foundation for conducting a larger survey of
requirements challenges in software organisations.

Some of the challenges that were encountered are special to market-
driven organisations, for example that the requirements change constantly
during development due to market fluctuations. A turbulent market also
forces new demands on the requirements specification. It can no longer be
a pre-defined document, but has to be flexible to cope with constant
changes. Another challenge appears when more requirements than can be
managed are proposed to the organisation, since it creates an overload in
the requirements repository. These challenges probably originates from
the flexible and complex nature of software.

Other challenges are more ubiquitous and also faced by organisations
that develop physical products. These challenges include for example
lacking communication between departments, which may cause
requirements to be misunderstood. There is also a constant trade-off
between cost and value and between requirements that correspond to
perceived user needs and requirements that are inventive and technology-
driven (Ulrich & Eppinger, 2000).

Modelling and visualisation of factors that affect quality, capacity and
lead-time (RQ 2)

The second contribution is described in two papers. Paper II describes a
simulation model that was built in a case study at a large Swedish
company. It illustrates the relationship between different factors that
affects the project lead time and product quality. It also describes a
relationship between the requirements phase and the test phase. It can
help project managers in project planning and allocation of resources to
different development activities and act as a foundation for discussion. It
would be possible to adapt the simulation model to other organisations
using organisational-specific parameters.

Paper III describes an analytical model of a requirements selection
process which can be used to reason about decision-quality and
investigate hypothetical changes in process parameters. Given certain
organisation-specific parameters, it is possible to calculate for example the
minimal capacity in different phases, mean time-to-market and average

24 Improving Requirements Selection Quality in Marker-Driven Software Development

5. Research Results

share of all project effort put on RE. The model is intended to be used for
making a diagnosis of the organisation’s current state of RE and to provide
a platform for testing improvement proposals.

Methods for assessing and improving the requirements selection

quality (RQ 3)

The third contribution is also investigated in two papers. Paper IV
presents a novel post-release analysis method (PARSEQ), which was
applied in a case study, aiming at investigating the requirements selection
quality and finding process improvement proposals. The method can help
organisations gain knowledge of how to improve decision-making by
looking at decision outcomes in retrospect. The improvement proposals
that emerged included improving estimations of development effort and
competing products’ market-value as well as enhancing the overall picture
of related requirements and trimming the division of large requirements
into smaller increments. However, the benefit is not only the resulting
improvement proposals, but also the opportunity to reflect, discuss and
learn from other members of the organisation before entering another
release cycle.

Paper V regards requirements prioritisation, which is an important
means for improving requirements selection. Two prioritisation
techniques, the elaborate Analytical Hierarchy Process and the elementary
Planning Game, were compared in an experiment regarding time-
consumption, ease of use and accuracy. It resulted in the elementary
Planning Game technique appearing as superior regarding all three
aspects. However, the conclusion was that a combination of the two
techniques may be even better in order to make use of the techniques’
different benefits.

5.2 Further Research

This section describes how the research can be continued and evolved in
the future. All five papers have possibilities of deeper investigation, which
is further detailed in the different papers. The research is intended to
continue with basically the same focus as in this thesis. The main goal is
to provide methods and techniques that may improve product quality and
therefore the plan is to continue and intensify the studies performed so

Improving Requirements Selection Quality in Market-Driven Software Development 25

Introduction

far. Below is a description of four research studies of interest. They are
presented in the order of precedence, although they will probably be

conducted in parallel to some extent.

FR 1: Post-release analysis in industry

We intend to apply the PARSEQ method in additional organisations to
examine its possibilities and lay the ground for finding more general
improvement areas. Each organisation’s decision quality will be assessed
and possibly compared. A set of general root cause categories may be
compiled and, if possible, some common improvement proposals may
emerge. The method can be extended to also include rejected
requirements to investigate if some of them are rejected based on incorrect
decisions. It would also be interesting to investigate the limitations of the
method in order to develop and expand it to a more general method that
can easily be applied on organisations in different areas and with different
processes.

FR 2: Deeper analysis of survey results

RQ 1 is difficult to investigate in full, and Paper I only takes a first step
towards creating an understanding of requirements challenges in industry.
We intend to do further investigation in an enlarged interview study with,
12-15 interviews (including the interviews already conducted). This
would result in a broader spectrum of interviewees and organisations and
thereby a wider range of RE activities and challenges.

All interviews will be transcribed and thoroughly analysed in a
qualitative analysis tool. Since Paper I was written, a focus group meeting
have taken place which aimed at discussing the issues that emerged during
the first set of interviews. The results from the focus group meeting
revealed a set of additional challenges, which may be taken into
consideration in the next stage of the study.

FR 3: Simulating the analytical model

The analytical model described in Paper III would benefit from a more
dynamic approach and therefore we intend to create a simulation model
and investigate it in a case study. The simulation will be used to try out
and evaluate possible changes to the process. The analytical model is

26

Improving Requirements Selection Quality in Marker-Driven Software Development

5. Research Results

limited by its static characteristics and there are several aspects of reality
which a simulation model could take into account, such as requirements
dependencies, and requirements decomposition and bundling.

The model structure will be used as the basis for a discrete-event
simulation model where the three process activities screening, evaluation
and implementation are illustrated as three queues. Model parameters can
be derived from empirical data within an organisation using
questionnaires and interviews to capture subjective assessments and, when
available, archive analysis to obtain quantitative data. Paper Il and Host et
al. (2001) will act as valuable input to the model building and simulation.

FR 4: Further experimentation on prioritisation techniques

The experiment presented in Paper V will be performed on a larger
number of subjects in order to increase the data set. It can be conducted
within an RE course, using students as subjects. Since Paper V indicates
that the results do not differ depending on the number of requirements in
the prioritisation, it may be sufficient to use a rather small set of
requirements in order to ease the subjects’ burden. Furthermore, we
would like to try a combination of the two techniques in practice by, for
example, conducting a case study.

Time frame and priorities for continued research studies

The main focus in the PhD thesis will be on the post-release analysis
method and its refinement and adaptation. It can be tried out in several
case studies, each one during one-day sessions and a number of weeks of
analysis. The survey expansion will be rather extensive and time-
consuming and therefore it will be conducted over a large period of time
and in cooperation with other researchers. The simulation of the
analytical model will be performed in master’s project and therefore we
expect to have a running simulation model within a year. However, the
project may not include performing the case studies and adapting the
model to specific organisations. The experiment on prioritisation
techniques may be performed in a few months, although the analysis of
the experiment is expected to be rather time-consuming. However, a case
study with a combination of techniques may be performed at a later stage.

Improving Requirements Selection Quality in Market-Driven Software Development

27

Introduction

6. References

CHAOS report (1994) http://www.standishgroup.com/sample_researchchaos_1994
_1.php (visited 2003-09-20)

Beck, K. (2000) Extreme Programming Explained, Addison-Wesley.

Bergman, B., Klefsjs, B. (1994) Quality from Customer Needs to Customer Satisfaction,
Studentlitteratur.

Birk, A., Dingsoyr, T., Stilhane, T. (2002) “Postmortem: Never Leave a Project without
1t”, IEEE Software, pp.43-45, May/June.

Carlshamre, P, Regnell, B. (2000) “Requirements Lifecycle Management and Release
Planning in Market-Driven Requirements Engineering Processes”, Proceedings of the
111h International Workshop on Database and Expert Systems Applications, pp. 961-965.

Carlshamre, P. (2001) A Usability Perspective on Requirements Engineering — From Meth-
odology to Product Development (Dissertation No. 726), Linkoping University.

Hast, M. Regnell, B., Natt och Dag, J., Nedstam, J., Nyberg, C. (2001) “Exploring Bot-
tlenecks in Market-Driven Requirements Management Processes with Discrete-Event
Simulations”, Journal of Systems and Software, Vol 59, pp. 323-332.

Hast, M. Regnell, B., Wohlin, C. (2000) “Using Students as Subjects - A Comparative
Study of Students and Professionals in Lead-Time Impact Assessment”, Empirical Soft-
ware Engineering, vol. 5, pp. 201-214.

Karlsson, J., Ryan, K. (1997) “A Cost-Value Approach for Prioritising Requirements”, JEEE
Software, pp. 67-74, Sept/Oct.

Katlsson, J. (1996) “Software Requirements Prioritising”, Proceedings of 2nd Interna-
tional Conference on Requirements Engineering (ICRE), pp. 110-116.

Katlsson, J., Wohlin, C., Regnell, B. (1998) “An Evaluation of Methods for Prioritising
Software Requirements”, Information and Software Technology, Vol 39, pp. 939-947.

Kerth, N.L. (2000) Project Retrospectives: A Handbook for Team Reviews, Dorset House
Publishing,.

Lauesen, S. (2002) Software Requirements — Styles and Techniques, Addison-Wesley.

Lubars, M., Potts, C., Richter, C. (1993) “A review of the state of the practice in require-
ments modelling”, Proceedings of IEEE International Symposium on Requirements Engi-
neering, pp. 2-14.

28 Improving Requirements Selection Quality in Marker-Driven Software Development

6. References

Potts, C. (1995) “Invented Requirements and Imagined Customers: Requirements Engi-
neering for Off-the-Shelf Software”, Proceedings of the Second IEEFE International Sym-
posium on Requirements Engineering, pp. 128—130.

Regnell, B. Beremark, P, & Eklund, O. (1998) “A Market-Driven Requirements Engi-
neering Process — Results from an Industrial Process Improvement Programme”,
Requirements Engineering, Vol. 3, pp. 121-129.

Robson, C. (2002) Real World Research (2nd ed.), Blackwell.

Royce, W. W. (1970) “Managing the development of large software systems: concepts
and techniques”, Proceedings of IEEE WESTCON, pp. 1-9.

Rus, L., Lindvall, M. (2002) “Knowledge Management in Software Engineering”, [EEE
Software, pp.26-38, May/June.

Saaty, T. L. (1980) The Analytical Hierarchy Process, McGraw Hill.

Sawyer, P. (2000) “Packaged Software: Challenges for RE”, Proceedings of Sixth Interna-
tional Workshop on Requirements Engineering: Foundation for Software Quality (REFSQ
2000) pp. 137-142.

Smith, P G. (1996) “Your Product Development Process Demands Ongoing Improve-
ment”, Research Technology Management, Vol. 39, March/April.

Sommerville, I. (2001) Soffware Engineering, Addison-Wesley.

Sommerville, I., Sawyer, P. (1997) Requirements Engineering - A Good Practice Guide,
John Wiley & Sons.

SWEBOK, http:/fwww.swebok.org (visited 2003-09-25)
Ulrich K.T., Eppinger, S.D. (2000) Product Design and Development, McGraw-Hill.

Thayer, H. (2002) “Software System Engineering: a Tutorial”, IEEE Computer, pp. 68-
73, April.

Wohlin, C., Runeson, P, Hést, M., Ohlsson, M. C., Regnell, B., Wesslén, A. (2000)
Experimentation in Software Engineering — An Introduction, Kluwer.

Improving Requirements Selection Quality in Market-Driven Software Development 29

Introduction

30 Improving Requirements Selection Quality in Marker-Driven Software Development

PAPER 1

Challenges in Market-Driven Requirements
Engineering - An Industrial Interview Study

Lena Karlsson, Asa G. Dablsteds, Johan Natt och Dag, Bjirn Regnell, Anne Persson

Proceedings of the 8th International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ02), Essen, Germany, September 2002.

Abstract

Requirements engineering for commercial off-the-shelf software packages
entails special challenges. This paper presents preliminary results from an
empirical study investigating these challenges through a qualitative
approach using semi-structured interviews. The survey is exploratory with
the objective of eliciting relevant topics for further research. Seven
employees at five software companies with a market-driven development
focus were interviewed. The areas of interest include process-related issues
on release planning, requirements quality and decision support, as well as
artefact-related issues regarding requirements as discrete entities and their
representation. The paper also contains a characterization of each
company, regarding aspects such as products, processes and customers. A
number of challenging issues were elicited, including communication
gaps between marketing and development, the problem of balancing the
influence between marketing and development on requirements
decisions, as well as the limited value of monolithic requirements
specifications and the problem requirements overloading.

Improving Requirements Selection Quality in Market-Driven Software Development 31

Challenges in Market-Driven Requirements Engineering - An Industrial Interview Study

1. Introduction

This paper reports on preliminary results from the first stage of an
industrial survey, focusing on current practice and challenges concerning
requirements engineering (RE) in Swedish software industry. Before
problems related to inefficient RE can be properly addressed, more
research is needed to better understand the challenges that the software
industry is currently facing. This survey aims at discovering hypotheses
for future research and complementing existing surveys in the area of RE.

The study focuses on market-driven development, which is currently
gaining increased interest compared to development of customer-specific
systems. This is due to the emergence of the market for off-the-shelf or
packaged software [17, 4]. Market-driven RE differs from customer-
specific in several ways. Sawyer [17] concludes that the major differences
between market-driven and customer-specific RE are the characteristics of
stakeholding and schedule constraints. In market-driven projects, the
main stakeholder is the developing organization and therefore
requirements are znvented by the developers, since there are no discrete set
of users who can articulate their requirements. There is also a major
pressure on time-to-market for these software products. Other
characteristics of market-driven RE are release planning and
prioritization, and the use of requirements specifications [4, 10, 15].

There are several surveys that concern or include RE issues [5, 6, 7, 8,
9, 13, 14]. However, none of these have a primary focus on market-driven
development. Furthermore, in most of these surveys the participating
projects and organizations are fairly large, in terms of number of persons
and requirements involved, as well as in terms of the duration of the
projects. This survey provides characteristics from a number of small,
market-driven development companies.

The survey presented in this paper aims at understanding the
conditions and practices that characterize modern software industry,
particularly with regard to requirements identification, requirements
specification, and product management. In this initial survey, seven
persons at five different companies participated. The forthcoming stages
of the study include workshops with RE experts and an extended
interview survey based on these initial results.

The paper includes a characterization of the companies involved,
regarding company facts, typical projects and development processes. The
result of the study is a set of interesting issues that may indicate the

32

Improving Requirements Selection Quality in Marker-Driven Software Development

2. Research Method

direction of further research. However, the small number of interviews
implies that a larger survey needs to be performed in order to generalize
the results and to be able to formulate relevant research hypotheses.

The remainder of the paper is organized as follows. In Section 2 the
research method is described. Section 3 presents the results uncovered
through the study. Section 4 concludes the paper and discusses future
work and further research issues.

2. Research Method

The study was carried out using a qualitative interviewing approach has
been used. This approach is useful to explore an area of interest, to obtain
an overview of a complex area, and to discover diversities rather than
similarities [16]. As the purpose of the study is to gain an improved
understanding of the nature of requirements engineering within market-
driven software companies, the qualitative approach is considered
suitable. Furthermore, interviewees in different roles from both large and
small companies were interviewed in order to collect different viewpoints
and perspectives on the nature of RE.

The research procedure is illustrated in Figure 1. The initial stage of
the study involved a brainstorming and planning meeting to identify
different areas of interest and plan the study.

In order to gain an insight into the area of market-driven requirements
engineering, aim at interviewing a large number of software-developing
companies. However, it was concluded that this initial stage of the study
would benefit from selecting a handful of companies before adjusting the
interview instrument and carry out the full study. Therefore seven
interviewees within five Swedish software companies were asked to
participate. The interviewees were selected among our industrial partners.

Interviewee
Selection
Brainstorm Execution and
— .
and plan - - Analysis
Interview Interview
Instrument [—® Testand
Design Improvement

Figure 1. The research procedure used in the presented interview study

Improving Requirements Selection Quality in Market-Driven Software Development 33

Challenges in Market-Driven Requirements Engineering - An Industrial Interview Study

The companies all have a market-driven development focus. They have
had at least one market release of a software product or are just about to
release their first.

The interview instrument was designed with respect to the different
areas of interest and with inspiration from other requirements engineering
surveys [13, 7]. The questions in the interview instrument were divided
into three groups in order to give a structure to the interview:

o Characterization — facts about the company, its products, and the
interviewee.

o Process issues — questions on the development procedure, require-
ments activities, and decision support.

« Artefact issues — questions on requirements as entities, how require-
ments are documented, tool usage, and requirements interdepend-
encies.

To test the interview instrument, two pilot interviews were carried out.
Some questions were clarified and the structure was improved before
proceeding. A summary of the interview instrument is available in
Appendix A.

The study has a semi-structured interviewing strategy, where the set of
questions were the same for all interviewees [16]. However, the order of
the questions varied depending on the interviewees” knowledge and role
in the company. This meant e.g. that some issues were discussed more in-
depth with certain interviewees. In order not to steer the interviewee,
additional questions were asked depending on the interviewee’s answers
until all areas of interest were covered.

All interviews involved one interviewee and three interviewers. One of
the three interviewers ran the interview process while the other two posed
additional questions, in order to cover all areas of interest. The duration
of the interviews was 90 to 150 minutes. All interviews were recorded on
tape and extensive notes were taken in order not to lose information.

Afterwards, the interviews were transcribed in order to facilitate and
improve the analysis. The size of the transcripts was 7 to 23 pages of text
depending on the length of the interview.

The analysis was performed mainly through marking and discussing
interesting sections in the transcripts [16]. The interviewers examined the
transcripts from different perspectives and searched for explicitly stated or
concealed RE challenges. Another researcher, who did not attend the

34 Improving Requirements Selection Quality in Marker-Driven Software Development

3. Analysis and Results

interviews, also analysed the transcripts to ensure the quality of the study
and to enhance confirmability [12].

2.1 Validity

It is almost impossible to achieve an unbiased interview analysis; all
interviewers have expectations and interpretations affecting the analysis of
the interviewees’ answers. Furthermore, notes and transcripts may be
insufficient, since accentuations and gestures are difficult to reproduce.
The analysis hence relies on the researchers’ perceptive skills and good
memory. Recording the interviews on video-tape would cover these
details and probably improve the analysis. In our study, using three
interviewers with different background and experience has reduced the
risk of bias and misinterpretations.

The results presented in the paper are first and foremost issues and
suggestions for further research, which have surfaced during the analysis
of the interviews. However, there may be several other important issues in
the transcripts, not yet discovered.

Evidently the interviews only capture the subjective opinion of each
interviewee. A larger number of employees should be interviewed to
capture the general view of each company. We have chosen companies of
different size and maturity to manage the issue of transferability [12].
However, we do not attempt to generalize to a larger population, but
merely to discuss some interesting issues discovered during the interviews,
and present some hypotheses for future research.

3. Analysis and Results

This section presents some interesting issues discovered during the
analysis of the interviews. Each issue is concluded by a conjecture to
summarize our thoughts on the subject. These conjectures may be topics
of further research.

Section 3.1 corresponds to the characterization questions in the
interview, and includes other facts to widen the description of the
companies. Section 3.2 corresponds to the process issues and discusses
some issues concerning the development process. Section 3.3, finally,
deals with the artefact issues in the interview instrument.

Improving Requirements Selection Quality in Market-Driven Software Development 35

Challenges in Market-Driven Requirements Engineering - An Industrial Interview Study

3.1 Company characterization

Table 1, which summarizes the characteristics of each company, is
inspired by [18]. The companies’ age range from 1 to 20 years. The
companies also vary in size, from 12 employees to 1200, which means
that the results include challenges for both large and small companies.

Two managing directors and one product leader were interviewed to
gain the managers view, and three project leaders and one head of
developers were interviewed as development representatives. The
responsibilities of the project leaders differ. In the small companies,
project leaders tend to have more overall responsibilities such as process
introduction and business analysis. In contrast, the large company uses a
project leader to co-ordinate resources and work with requirements. All
companies use natural language on a high level of abstraction to specify
requirements. Two companies use UML at a later stage for modelling the
system, one of which also creates state charts. In three of the five
companies, databases are used to collect suggestions from users and
developers.

Only two of the companies have a well-defined, elaborate process with
defined phases and regular evaluation and improvement efforts.

3.2 Process issues

This section addresses questions on the development process and
development decisions. It also focuses on the requirements engineering
procedures and activities. These questions revealed some interesting issues
concerning the process and the challenges companies face in requirements
engineering.

Living with changing requirements. Market-driven projects do not
have a defined customer. However, customer representatives and retailers
may be employed to validate the product. Challenges these companies
face are for example that the market changes, competitors improve and
customers are not certain of their requirements. Company C and D use a
strategy to develop functions to only 60-90 % and then release a beta-test,
because, as the project leader at Company D states, “customers will always
change their minds”. In this manner, it may be possible to receive
customer opinions earlier and with less effort spent on the project.

36

Improving Requirements Selection Quality in Marker-Driven Software Development

3. Analysis and Results

Conjecture: Requirements are volatile and it is necessary to find methods to
cope with changes. Although these market-driven companies do not have a
single well-defined customer, it is important to obtain feedback from potential
customers. Beta-test releases make it possible to receive customer feedback at an
early stage.

Market-driven vs. technology-driven requirements. The interviewees
at Company B and C estimate their requirements sources to be 50 %
users and market department and 50 % internal developers. The project
leader at Company B concludes that some developers see themselves as
“artists” who enjoy coding but do not reflect on whether the code solves
customer problems or not. The same interviewee identifies a problem in
the company focus; since the company is new and inventive the focus has
been on development and coding instead of marketing and sales.
Therefore there have been difficulties when introducing the products to
an open market, since the products do not live up to the users
expectations. On the other hand, too much marketing may result in
unrealistic requirements, which are not possible to implement with the
resources available, and hence new and creative requirements may be
ignored.

Conjecture: It is necessary to find good trade-off between requirements
corresponding to perceived user needs and new, inventive ones that may
provide a competitive advantage. The decision regarding which aspect to focus
on may depend on the maturity of the market. To succeed on a stable market it
may be necessary to create technical inventions, while on an immature market
it is important to satisfy customer needs.

Gap between marketing staff and developers. When interviews were
held with two persons at the same company, some different views were
discovered. For example, in Company C, the Managing Director claims
that it is not difficult to understand requirements written by different
people, while the head of developers regards that particular issue to be the
greatest challenge in his daily work.

There are also different views with regard to what is a “good
requirement”. From the company perspective, represented by the
Managing Director or marketing, a good requirement is something that
makes money for the company. In contrast, project leaders and developers
focus on the way requirements are described, for example completeness
and understandability.

Improving Requirements Selection Quality in Market-Driven Software Development

37

Challenges in Market-Driven Requirements Engineering - An Industrial Interview Study

“Suruuerd
SBI[2I PUE ‘SIOEIUOD

‘sisd[eue ssoutsnq pue

‘syuauraInbar
21BLUIISI-IWITI PUE TUIWIIL
-00p “15233ng "s1odofasap
U22M19q JI0M NBIO[[Y T

*So[es PuUE SunONIEW

"syudua1mbar M11M pue
15233ng ‘uononpoid pue
wswdopaasp Sunarewr
U2MIq SIETIPIOOD) '
‘uonedyads syuour
-o1rmbar o) umop Wea1q

‘syuaurarmbar aznmorrd

pue suyap “4Jirepd pue

(s)oomoraralur 9 JO

Towoisnd ‘Gunayrely T | Lirqsuodsor ssavo1d ‘T | ‘Guruue(d asea[ay ' | pue ssed01d 2onponu] ‘| | $301n0s21 21eUIp1o-00) *T|| Lnprqsuodsaijajoy
s1odofaaap jo pesq ¢
1070011p 3ut 1070011p U1 193euewr 19NpoI] 7 1opea] 109lo1d pue 190U
-Zewewr pue 1apunoy ‘| 1opea) 19lo1g ' -Geuewr pue 1dpuUNO] '] 1opea) 109fo1g ' -13ud sauowImbay *1 (s)2omarararuy
sassa001d ssoursnq ‘sorueduwros Surdopasp “sarueduwroo ur
STIOID2[D 21eI3AIUT | 2TeAIJOS [eINNID A19es 18 | -dO[2Adp 2TeMIJOS T8 12 ‘[puuosiad ao1jj0 ‘soreduroo Surdopaasp
e s1odo[aadp aremyjog | s1adopasp pue siodeue]y | -Seuew pue s1odo[aad(] SIUIPIMS ‘ST URY -o1eM1J0s 1 s1adopaaag 1asn puyg
“Ansnpur
*ssa001d ssou UONEITUNUUIOI3[)
-1snq pasoxdurr we paou | saruedurod Surdoassp ‘saruedurod *SIOINQINSIP PUE SI9[TRIAI | 9y ut Asow ‘sojuedwiod
e soruedwoo o8re7 | oremijos [eonid L195es Surdopasp aremiyog SOTUOIIDI? IPWINSUOY) Surdopasp aremijog JowoIsn,)
SNdOJ UT
(sauty onpoid ¢ e ur) 1npoid a1 Ut pasjoaut
71 / €1 <9 08 saa401dwd Jo TquNN
*$2$53001d ssautsnq uawdo usw
OTUOND9[? JO UONEBIZNUT | -[oAdp aremyos s Jur | -afeuew siuswsrmbar ‘souty onpoid ¢ “Gur
103 [00) UOTIBZITENSIA PUE | -5j10M sdN013 paInqunsTp | o paseq [oo1 110ddns | -ssodo1d sSewr wo snoog "Jool
AWAO[243P 2TEMIJOS | 10J [001 UONEDTUNTIWIOY) | WWAUWIO[2A9P 21eMIJOS | PIM dTeAIjos pappaqury | 1uawdopasp aTem1jos STIDOJ UJ 10NPOIJ
! 4 S S 0T By
$92
[4! Sl ¢l ¢9 0021 -£ordura jo roquinu [er0],
7 Auedwon) q Luedwony N Auedwon) g Luedwon) v Auedurony

Improving Requirements Selection Quality in Marker-Driven Software Development

38

3. Analysis and Results

‘[oo

a1 ur snoog ssavoxd o
01 syyue Auedwod oy
ut snooj ssa001d uong

“2oue]
~[fPAINS JWIN TeNPIAIPUT
‘swp[qoid sxpam o dn
wns 01 s3uneau AP

-a3uer
sSNJe1s oY) Pa1sn(pe daeL]
*9SBI[AI OB 191JE SINOD()
*ss9001d 211 UT papnpou]

“Sur
-1591 pue syuswarmboar
JO ssaudIEME pUR JUT
{UTY) SWNSAS PaseaIdut
QABJ] "asn uT 124 10N

ENEN|
-elep pasea1nd(] duod
-150J pue ‘Ysix ISnjA

$917059185 UI UOTIEZ

-17ou1d 191[1RY "ssoudTEME
syuswarmbar pasearour

ae}] AJTETNSa1 10N

UONEN(EAD
ssaooxd 10 192(01

"1y
£q san1anoe o1 smouy
Jge1s paoudiradxe o
INq ‘PAIUSWNO0P 10N

“papnpoxe Surururerd
-o1d ared ‘Gurururexd
-01] UIIIXY "IEIOqe[y

“STIBIS SIUIW
-a11nbar wo paseg *asn
pue dopasp Lot [oo1
ot} UT pareIdaul pue

PRIUAWNIOP “DIRIOqR[

JJEIS PAOUD
-11adxa a1 01 sy[uRY)
ssprom ssadoid sot] pe

a1 T, *ssa001d Suronponuy

Jes ﬁuuﬁwmuwﬁxw o1 01
syueyl —uwgozom A—UOHGOE
|SUO~U ou Ing pauge(J

$83201

*23e1s
1978 ® 78 TIN[) PUE sUON
-eoy1oads syuswanmbas
ot ur adendue] fernyeN

$53

->01d a1 y3norya mojog
UeD YOI SPIED 1038
[emiiA uo suonsa33ns
siuowaImbar sowol
-sn7) *adendue] eImeN

‘syuowarmbaz
PpE ued saakojdure
PUE SIDWI0ISND 21o7M
[001 211 UT papn[ouT aseq
-eye(] "adendue] [ernyeN]

“parusmNOOp
AJprer a1e wonedyads
o 01 se8uey)) "uon
-eoy1oads syuswarmbar

ST UL T[] PUE SITEYD
a1e1s “odenGue] enieN

"[0A9] uoTIORIISR
Y31 © UO U1 35I[2I
1USIITD 33 10§ SIUO 33
TIM 2118 qOM Y *SIUdW
-a1mbor ppe s1adoassp
PUE SIWIOISTIO d19yMm
aseqerep waisds 11od
-dng -o8en3ue[[emyeN

UOHBIUAWNOOP
sjuswaImbay

“paynuapr
120q aaey syuowRIMbar
10 s3nq Auew uLTM
soafo[dwa e Surpnpour
19fo1d © 101p2507
sind ‘saseayar rem3a1 oN

“puOTT L1949 3SBI[AI
U0 1583 Ty "SUOTIEI0]
7 e saafojdws / Tre Sur
-ajoaur s10fo1d poyrered ¢

"$Pam - 10J
saafordurs ¢-1 Surapoaur
SUOTIOUNJ 01UT PIPIAI(]
‘Sqauow 9 L1049 Aj1ewr
-xo1dde aseqeiep oy ut
PAPPE U22q JART] SI011d
10 syudwaImbar ydnous
UM 9SBIAT MON]

.ﬁuuUOHQ—U JTe SI0119 Auewd

uaym 10 studwarmbal
3T JO 3NEBIIq PAIE
-n1uy “npoid Junsixo
JO UOTSIOA MAU © 10
saa4o1dud ¢1-¢ pue Jun|
1npoid mau e 10§ $22
~fordurs (¢-¢g sopnpou]

'S99
-Aopdurd (g e seAJoAUT
*SI0113 P31D3IAP 3091
-100 pue syusuraImbar
AU SPN]PUT 01 STIUOW
9 £1249 25€2[21 MAN]

10901]

7 Luedwon)

(Luedwon

) Luedwon)

g Luedwon

Vv Luedwron

39

Improving Requirements Selection Quality in Market-Driven Software Development

Challenges in Market-Driven Requirements Engineering - An Industrial Interview Study

Furthermore, the project leader at Company A describes a gap between
marketing staff and developers. The marketing department’s task is to
write requirements, which in their opinion means writing down ideas for
the next release. Concurrently, developers expect the requirements to be
written down clearly enough to start coding,.

Conjecture: When marketing and developers have different views on
requirements engineering, better communication and more collaboration may
decrease the gap. A reduced gap may increase the requirement quality and
thereby the quality of the final product.

Elaborate vs. elementary processes. Two of the new and small
companies express no need for an elaborate process. In fact, the product
leader at Company B expressed a wish for “a simple tool”, which may be
interpreted as a wish for “a simple process”. The project leader at the same
company mentioned that many of the developers are reluctant to
introduce a process, because they believe that it would limit their freedom
and creativity. Others, working with an elaborate process, for example the
head of developers at Company C, find the process valuable since it
structures the work and all employees are aware of their respective
responsibilities.

Conjecture: It is difficult to balance between elaborate and elementary
development processes. Opinions differ on whether the process limits or
simplifies development. The necessary degree of elaboration depends on the
maturity of the company. Immature and small companies may succeed with
an elementary process while more mature companies need an elaborated
process to accomplish their goals.

Organizational stability and market turbulence. Companies that use
an ad hoc process still manage to get sufficient results, to a large extent
due to the skills of their staff. A low staff turnover and skilful developers
are needed to survive. “The project’s success depends on the individuals”
was mentioned in Company B, which had recently gone through a large
downsizing process. Companies without a defined process take a
significant risk if key persons leave the organisation, since they lack the
necessary documentation and structure. “Some projects would die if
certain people leave” is another quotation from this interviewee.

Conjecture: A low staff turnover will help companies succeed even in times
of instability and business environment turbulence, since the knowledge
remains with the skilful developers in the company.

40

Improving Requirements Selection Quality in Marker-Driven Software Development

3. Analysis and Results

Relation between time estimates and release plans. Release planning
decisions are mostly taken by marketing or management departments.
The project leader at Company A claims that the release plan is very
much dependent on accurate time estimates, since the estimates affect
how many of the requirements that are selected. This is especially
important in companies with regular releases, since under-estimation may
result in an exceeded deadline while over-estimation may exclude valuable
requirements. Time estimates are mostly performed by developers, since
the requirements have to be carefully examined and partitioned in order
to make a reasonable estimate.

Conjecture: The better time estimates, the better requirements and
products. Improved communication between marketing and developers may
increase release planning quality.

3.3 Artefact issues

Artefact issues deal with requirements as entities and include questions on
the documentation of requirements, requirements interdependencies and
tools for requirements engineering. This section discusses some artefact
issues that emerged during the interview.

Traditional requirements specifications. Market-driven development
companies have to deal with a steady stream of new requirements as well
as select an optimal part of these requirements to implement in the next
version [2]. Among the interviewed companies, two use a traditional
requirements specification to structure and store the requirements prior to
every new project. It is interesting to note that these two companies are
also the ones with the least elaborate and structured RE process.

The companies with more eclaborate RE processes manage their
requirements as single units, one by using Extreme Programming story
cards [1] and the other by using their own requirements management
tool. In both cases, the requirements are continuously managed, time
estimated and prioritized.

Conjecture: The classical, monolithic requirements specification is best
suited in cases where the requirements are reasonably few and sufficiently
stable. In the market-driven situation, the requirements specification is of
limited value when managing a steady stream of incoming requirements of

varying qualizy.

Improving Requirements Selection Quality in Market-Driven Software Development 41

Challenges in Market-Driven Requirements Engineering - An Industrial Interview Study

Requirements overload. Company A has had substantial problems with
an overload in the requirements database, since more requirements were
added than could be managed [11]. This resulted in difficulties when
prioritizing requirements for the next release, since there were thousands
of requirements to consider. The problem has been temporarily solved by
the requirements manager through creating a “TOP 10-list” with the ten
most important requirements for the next release. There is an apparent
risk that the selected requirements are not the most important ones, and
that some of the requirements left in the database should have been
included instead.

There is also a risk that customers and developers, using the database,
feel neglected since they are not given any feedback on their requirement
suggestions. The project leader at Company D stresses the importance of
customer feedback, because “if they are neglected they never come back”.

Conjecture: Requirements suggestions from developers and customers are
essential. However, too many requirements suggestions complicate release
planning. Furthermore, the important feedback to those who suggest
requirements may be overlooked. There is a need for a method to prevent
databases from being flooded with requirements in order to facilitate release
planning.

Simple techniques for basic needs. All the interviewed companies use
natural language to define their requirements. Two of the companies use
UML at a later stage and one of these creates state charts. The smaller
companies have fewer requirements to handle, and therefore do not
express the need for CASE tools to manage the requirements. The
number of requirements is small enough to be handled manually, typically
a few hundred. The main challenges at the small and immature
companies are at the moment to understand the requirements and to
make all requirements complete, easy to understand as well as to follow a
certain standard — not to manage a massive set of requirements. The
product leader at Company B requests a simple tool, since the ones
considered would have a too large introduction overhead and a too steep
learning curve. The head of developers at Company C wants a checklist to
control that certain items or attributes are considered when different
stakeholders write requirements in different ways.

Conjecture: There is a lack of tools and techniques simple enough to be
introduced in small and immature companies. Such simple techniques and
tools could increase requirements completeness and understandability.

42 Improving Requirements Selection Quality in Marker-Driven Software Development

4. Conclusions and Further Research

Requirements bundling. Requirements relate to and affect each other in
various ways, which affects for instance release planning [3]. All
companies acknowledge this, but few have routines to document and take
these relations into account. Instead, they tend to group related
requirements, i.e. by bundling requirements which should be
implemented together. Bundling is usually made based on the fact that
the requirements deal with the same part of the system, e.g. the user
interface or the same part of the software code. Requirements bundling is
used to facilitate release planning and implementation.
Interdependencies, such as conflicting requirements or duplicates, are
managed manually when the requirements are planned for a new release.

Conjecture: Dependencies between requirements are managed through
bundling. This could imply that the complexity of requirements
interdependencies is not well understood. On the other hand it could imply
that bundling is sufficient enough to make the decisions needed and that a
deeper understanding of requirements interdependencies is not needed.

Living with design in requirements. The nature of requirements differs;
some concern the user, some concern the developer. Requirements are
expressed at many levels of abstraction, ranging from abstract ones such as
“usable” to more detailed ones concerning, for example, memory capacity.
Since requirements specifications also often concern the design, it is
difficult to draw a clear line between the phases.

Conjecture: Requirements specifications often partly concern design issues
and there is a risk that the specification is not flexible enough to create a good
design. However, the line between requirements and design is thin and design
issues will always concern requirements. The key is to make requirements
management flexible enough to handle it.

4. Conclusions and Further Research

This paper reports on interesting issues discovered in the interview study
on market-driven requirements engineering. These are divided into three
sections: Characterization, Process issues and Artefact issues complying
with the interview structure. The issues discussed in this paper are
preliminary results of a continuing study, and will be used to find
hypotheses for our future research.

Improving Requirements Selection Quality in Market-Driven Software Development 43

Challenges in Market-Driven Requirements Engineering - An Industrial Interview Study

Although Curtis et al. [6] performed their survey on large systems
development and that it was performed 14 years ago, the presented study
indicates that some problems remain. Communication is still a corner
stone in software development and the projects success depends on the
staff. Another recent survey [8] also confirms that organizational
problems, for example lack of skilled personnel and high staff turnover,
have a larger impact than technical problems on requirements
engineering.

In agreement with Lubars et al. [13], Company C and D manage
requirements changes by tracking them through the development to
locate the effect of each requirements change. Furthermore, the same
companies have a strategy to develop functions to less than 100% in order
to get customer feedback earlier.

As a complement to other surveys the presented study describes a
communication gap between marketing and developers, resulting in
insufficient time estimates and requirements quality. The balance between
marketing and developers’ requirements is also recognized as a dilemma.
The use of a requirements database rather than a traditional, monolithic
requirements specification is also salient, as well as the urge to group
requirements into bundles to ease requirements structuring and work
partitioning.

This paper concludes the first stage of a research project, which is
planned in four stages. The next stage is one or more workshops where
the results from the interview study are discussed and further validated
with a selection of RE experts. Then an extended interview study will be
carried out, involving additional companies. And, finally, in order to even
further validate, quantify and generalize the results, a quantitative survey
is planned, involving a larger number of companies.

Acknowledgement

This work is partly funded by the Swedish Knowledge Foundation (KK-stiftelsen) and the Swedish
Agency for Innovation Systems (VINNOVA) under grant for The Centre for Applied Software
Research at Lund University (LUCAS), Sweden. We would like to direct a thank to participating
interviewees, without whom this paper would not have existed. We would also like to thank Pir
Carlshamre for his support during the first stages of this study and Carina Andersson for reviewing
the paper.

44

Improving Requirements Selection Quality in Marker-Driven Software Development

4. Conclusions and Further Research

References

(11 Beck, K., Extreme Programming Explained, Addison-Wesley, 2000

[2] Carlshamre, P, Usability Perspective on Requirements Engineering - From Methodology to Prod-
uct Development, Ph D Dissertation No. 726, Department of Computer and Information Sci-
ence, Linkdping University, Sweden, 2001.

[3] Carlshamre, P, Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J., “An Industrial Sur-
vey of Requirements Interdependencies in Software Product Release Planning”, Fifth Interna-
tional Symposium on Requirements Engineering, pp. 27-31, Toronto, Canada, August 2001.

[4] Carmel, E., Becker, S., “A Process Model for Packaged Software Development”, [EEE Trans-
actions on Engineering Management, Vol. 42, No. 1, pp 50-60, 1995.

[5] Chatzoglou, P. D., “Factors Affecting Completion of the Requirements Capture Stage of
Projects with Different Characteristics”, Information and Software Technology, Vol. 39, No. 9,
pp 627-640, 1997.

[6] Curtis, B., Krasner, H., Iscoe, N., “A Field Study of the Software Design Process for Large
Systems”, Communications of the ACM, 31(11) :1268-1287, Nov. 1988.

[7]1 El Emam, K., Madhavji, N.H., “A Field Study of Requitements Engineering Practices in
Information Systems Development, Second IEEE Int. Symposium on Requirements Engineering
(RE95), pp 68-80, 1995.

[8] Hall, T., Beecham, S., Rainer, A., “Requirements Problems in Twelve Software Companies:
An Empirical Analysis”, Proceedings of the Conference on Empirical Assessment in Software Engi-
neering (EASE), 2002

[9] Hofmann, H.E, Lehner, F, “Requirements Engineering as a Success Factor in Software

Projects”, IEEE Software, pp 58-66, July/August 2001.

Honour, E., “Principles of Commercial Systems Engineering”, Proceedings from Fifth

Annual International Symposium of the National Council on Systems Engineering, St Louis,

MO, July 24-27, 1995.

[11] Hést, M., Regnell, B., Natt och Dag, J., Nedstam, J., Nyberg, C., “Exploring Bottlenecks in

Market-driven Requirements Management Processes with Discrete Event Simulation”, 7he

Journal of Systems and Software, Vol. 59, pp 323-332, 2001.
[12] Lincoln, Y., S, Guba, E., G., Naturalistic Enquiry, Newbury Park and London, 1985

[13] Lubars, M., Potts, C., Richter, C., “A Review of the State of the Practice in Requirements
Modelling”, First IEEE Int. Symposium on Requirements Engineering (RE‘93), pp2-14, 1993.

[10

=

[14] Nikula, U., Sajaniemi, J., Kilvidinen, H., “A State-of-the-Practice Survey on Requirements
Engineering in Small- and Medium-Sized Enterprises”, TBRC Research Report 1, Telecom
Business Research Center Lappeenranta, Lappeenranta University of Technology, 2000.

[15] Potts, C., “Invented Requirements and Imagined Customers: Requirements Engineering for
Off-the-Shelf Software”, Int. Proceedings: 2nd IEEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, pp. 128-130, 1995.

[16] Robson, C., Real World Research, Blackwell USA, 1997.

[17] Sawyer, P, “Packaged Software: Challenges for RE”, Proceedings of the sixth Int. Workshop on
Requirements Engineering: Foundations of Software Quality (REFSQ’00), pp 137-142, 2000.

[18] Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P, “Scenarios in System Development: Cur-
rent Practice”, IEEE Software, pp 34-45, March/April 1998.

Improving Requirements Selection Quality in Market-Driven Software Development

45

Challenges in Market-Driven Requirements Engineering - An Industrial Interview Study

Appendix: The interview instrument

Characterization

11

Tell us about the company (number of employees, age, business area, etc.)

12

Tell us about the company’s product/products (time on the market, typical customer/end-
user, size of product projects, etc.)

13

Tell us about your position in the company (role, daily tasks, responsibility, etc.)

Processissues

21

\What is the procedure when developing a product? (kind of process, activities performed,
documentation developed, evaluations performed, etc.)

22

What is a*requirement” to you?

2.3

In what way are requirements handled? (requirements process, activities, etc.)

24

\What challenges do you face when working with requirements? What has been successful
regarding requirements engineering?

25

How much resources are spent on requirements engineering? How much would be opti-
mal?

2.6

\What is a “good requirement” to you? And to the company? Is the quality of the require-
ments assessed? How?

2.7

\What kinds of decisions are taken during the devel opment of a product? What kind of sup-
port is needed in those decisions?

2.8

Isit possible to make decisions too late? What can be the effect in that case?

29

How is it decided what to include in the product? How are the requirements prioritized?
What is difficult when deciding what to include in the product?

Artefact issues

31

How are requirements documented? What information and attributes are documented
about the requirements?

3.2

What support and what tools do you use to document your requirements? What pros and
cons does these tools have?

33

How many requirements are handled in atypical project? Who suggests the requirements?

34

What kinds of dependencies between the requirements have you come across? Are
dependencies documented? Are dependencies actively looked for?

35

How do dependencies affect product development? How is it handled?

46

Improving Requirements Selection Quality in Marker-Driven Software Development

PAPER 11

Understanding Software Processes through System
Dynamics Simulation: A Case Study

Carina Andersson, Lena Karlsson, Josef Nedstam, Martin Hést, Bertil I Nilsson

Proceedings of the 9th IEEE International Conference on the Engineering of Computer-Based
Systems (ECBS02), Lund, Sweden, April 2002.

Abstract

This paper presents a study with the intent to examine the opportunities
provided by creating and using simulation models of software
development processes. A model of one software development project was
created through means of system dynamics, with data collected from
documents, interviews and observations. The model was simulated in a
commercial simulation tool. The simulation runs indicate that increasing
the effort spent on the requirements phase, to a certain extent, will
decrease the lead-time and increase the quality in similar projects. The
simulation model visualizes relations in the software process, and can be
used by project managers when planning future projects. The study
indicates that this type of simulation is a feasible way of modelling the
process dynamically although the study calls for further investigations as
to how project or process managers can benefit the most from using
system dynamics simulations.

Improving Requirements Selection Quality in Market-Driven Software Development 47

Understanding Software Processes through System Dynamics Simulation: A Case Study

1. Introduction

This study was performed in cooperation with Ericsson Mobile
Communications AB and is based on a development project carried out
in 1999.

As a step in the constantly ongoing work with quality improvements at
Ericsson this study was made to show if simulation can be used for
visualizing how different factors affect the lead-time and product quality,
i.e. number of faults. One of the most important factors that affect the
lead-time of the projects and the product quality is the allocation of
human resources to the different process phases. Thus, the focus of this
simulation study is on resource allocation.

Simulation is commonly used in many research fields, such as
engineering, social science and economics. That is, simulation is a general
resecarch methodology that may be applied in many different areas.
Software process modelling and improvement is, of course, no exception
and simulation has started to gain interest also in this area. For example,
in [4] a high-maturity organization is simulated with system dynamics
models, and in [6] a requirements management process is simulated with
a discrete event simulation model. In [8] an overview of simulation
approaches is given.

There are several advantages of building and simulating models of
software processes. By simulation new knowledge can be gained that can
help to improve current processes. Simulation can also be used for
training and to enforce motivation for changes.

The objectives of the study that is presented here are to investigate if it
is possible to develop a simulation model that can be used to visualize the
behaviour of selected parts of a software process, and to evaluate the
usefulness of this type of models in this area. The objective of the model is
to identify relationships and mechanisms within a project. The study is
focused on the tendencies of the simulation results and not the
quantitative aspects.

The outline of the paper is as follows: In Section 2 the method used in
this study is described. Section 3 describes the execution of the simulation
study. Section 4 presents the results of the simulation and Section 5
discusses and summarizes the results of the study.

48

Improving Requirements Selection Quality in Marker-Driven Software Development

2. Method

2. Method

This project was designed as a case study. Case studies are most suitable
when data is collected for a specific purpose and when a subgoal of the
study is establishing relationships between different attributes. A main
activity in case studies is observational efforts.

With support from existing results in literature [3, 16], the research
approach was created in three consecutive steps: problem definition,
simulation planning and simulation operation. This methodology is
based on the process chain concept, but due to lack of enough available,
reliable data, the process in practice went into an interactive pattern.

In the first phase, problem definition, the problem was mapped. Then
through deeper definition and delimitation, an agreement was created
around the study’s purpose.

The main part in the second phase of the study, simulation planning,
was to identify factors influencing the product quality. The assigner of
this study wished to test the idea of using simulation models and this was
governing in the details of the study. This was natural as most of the ideas
to the quality factors were picked up from the organization’s project,
through interviewing the project staff and through documents. To add a
broader perspective, results and ideas were taken from software literature.
Influence diagrams were built including the different quality factors’
relation to each other, but primary their effects on lead-time and product
quality.

The third phase, operating the simulation model, started with
translating a small part of the theoretical model into the simulation tool.
A short test showed that the simulation tool worked properly. More
features were added from the theoretical model into the simulation tool
and more test runs were performed. The verification and validation of the
model was made stepwise through the input of the whole model into the
simulation tool, and the yardstick to compare with was given by
documents and discussions with the assigner.

3. Developing the simulation model

In the simulation domain there are two main strategies: continuous and
discrete modelling. The continuous simulation technique is based on
system dynamics [1], and is mostly used to model the project

Improving Requirements Selection Quality in Market-Driven Software Development

Understanding Software Processes through System Dynamics Simulation: A Case Study

environment. This is useful when controlling systems containing dynamic
variables that change over time.

The continuous model represents the interactions between key project
factors as a set of differential equations, where time is increased step by
step. In the standard system dynamics tools, these interconnected
differential equations are built up graphically. A system of interconnected
tanks filled with fluid is used as a metaphor. Between these tanks or levels
there are pipes or flows through which the variables under study are
transported. The flows are limited by valves that can be controlled by
virtually any other variable in the model. Both this mechanism and the
level-and-flow mechanism can be used to create feedback loops. This
layout makes it possible to study continuous changes in process variables
such as productivity and quality over the course of one or several projects.
It is however more problematic to model discrete events such as deadlines
and milestones within a project [9, 10].

In the discrete model, time advances when a discrete event occurs.
Discrete event modelling is for example preferred when modelling
queuing networks. In its simplest form, one queue receives time-stamped
events. The event with the lowest time-stamp is selected for execution,
and that time-stamp indicates the current system time. When an event
occurs an associated action will take place, which most often will involve
placing a new event in the queue. Since time always is advanced to the
next event, it is difficult to integrate continually changing variables. This
might result in instability in any continuous feedback loops [9, 10].

To suit the purpose of this study, which is to visualize process
mechanisms, continuous modelling was used. The continuous model was
chosen in order to include systems thinking [13] and because it is better
than the discrete event model at showing qualitative relationships.

3.1 Problem definition

The study is based on a process that is similar to the waterfall model [14].
The whole process is shown in [1], but the simulation model was focused
on the requirements phase and the test phase. The other phases, with
broken lines in [1], were excluded to get a less complex model. The
requirements phase includes the pre-study phase and the feasibility study
phase. The test phase involves the unit, system and acceptance tests. All
these types of tests are included, since the data available did not separate
between test types and they overlapped in terms of time.

50

Improving Requirements Selection Quality in Marker-Driven Software Development

3. Developing the simulation model

| - o
| Co g .
| Co s
l B 9 Y
I3} [y \ o | <
@ "g . - g ' 3 = £
= o [Q [g ! E ~ (a9
~ (97} \ E Vo E ' = 2 y
. o . %
& ;;* ; ~ - U ' @ B 5
E — ' a T E | [i‘.) E S
=) \ 50 " © \ = o,
f I ' o [' = o
7] [o¥ = b7 Q
8 8 [) [E ! o (g\ Q
~ o : - Do — - w <
Figure 1. Process description

3.2

This step included identifying factors that affect the quality of the
developed software and the lead-time of the project. This was made

Simulation planning

through interviews with project staff and based on information in
literature [5, 7].

The relevant project staff consisted in three persons with whom
discussions were held continually during the entire study. Among the
factors discovered during interviews, only those considered relevant to
software development processes were selected. The identified factors are
listed in Table 1. Discussions with concerned personnel pointed out the

Table 1. Factors that affect quality and lead-time

Number of personnel in the project

Amount of new market requirements

Level of personnel education

Amount of requirements changes

Level of personnel experience

Level of inadequate requirements

Level of personnel salary

Amount of review

Level of personnel turnover

Amount of rework

Communication complexity

Level of structure in the project organization

Geographical separation of the project

Standards that will be adhered to e.g. ISO
and IEEE

Software and hardware resources

Amount of software functionality

Environment, e.g. temperature, light, ergo-
nomics

Testing and correcting environment and tools

Amount of overtime and workload

Productivity

Level of schedule pressure

Amount of program documentation

Level of budget pressure

Level of reusable artefacts, e.g. code and doc-
umentation

Improving Requirements Selection Quality in Market-Driven Software Development

Understanding Software Processes through System Dynamics Simulation: A Case Study

most important factors in respect to both quality and lead-time. The

factors considered to affect quality and lead-time the most were chosen to
be included in the influence diagrams, see [2].

Influence diagrams [12] for the requirements and the test phase were
built to show how the chosen factors affect the lead-time and the software
quality. Each factor’s importance for each phase was considered together

with the relationships between the factors. The influence diagram for the

requirements phase is shown in [2]. The factors in the influence diagram

are further explained below.

Amount of functionality is estimated software funtionality to be
developed.

Amount of new market requirements is a measure of the change in
market expectations.

Amount of requirements changes is a measure of the changes made in
the requirements specifications.

Amount of review involves reviewing requirements specifications.

Amount of rework is the effort spent on reworking both new and
inadequate requirements.

Communication complexity is an effect in large project groups where
an increasing number of participants increases the number of com-
munication paths.

Level of inadequate requirements is a measure of the requirements
specification quality.
Level of personnel experience is a measure of knowledge of the current

domain.

Level of schedule pressure is the effect of the project falling behind the

time schedule.

Number of personnel is the number of persons working with require-
ments specifications in the project.

Productivity is a measure of produced specifications per hour and
person.

Time in requirements phase is the lead-time required to produce the
requirements specifications in this project.

52

Improving Requirements Selection Quality in Marker-Driven Software Development

3. Developing the simulation model

Time in Requirement

Amount of New Phase
Market ——Jp» Amount of
Requirements Requirement ——p Amount of /
Changes Rework
f Amount of
Level of Review
Inadequate
Requirements
Number of
v\ / Personnel
Level of
Schedule

Pressure

Communication
Amount of Complexity
Functionality

Level of
Personnel
Experience

Productivity

Figure 2. Influence diagram for the requirements phase

It is beyond the scope for this paper to present all details of the simulation
model. In this paper the simulation model and related models, such as
influence diagrams, are presented in some detail for the requirements
phase. The requirements phase is by its nature more intuitive and easy to
understand than the test phase. For a presentation of details of the
complete simulation model with all related models refer to [2]. For
example, the influence diagram for the test phase is presented in [2] and
not here.

At the same time as the influence diagrams were constructed, causal-
loop diagrams were built to get a basic understanding of the feedback
concepts. Causal-loop diagrams are often used in system dynamics to
illustrate cause and effect relationships [1]. When examining these

Improving Requirements Selection Quality in Market-Driven Software Development

Understanding Software Processes through System Dynamics Simulation: A Case Study

S Schedul
pressure

Error Productwlty
generation
k' Time
S 0)

Figure 3. Causal-loop diagram

relationships isolated, they are usually very easy to understand. However,
when they are combined into long chains of cause and effect, they can
become complex. The causal-loop diagrams increase the understanding of
these complex relations. [3] illustrates how the schedule pressure affects
the time spent in the requirements phase. An increased schedule pressure
increases the error generation, due to a higher stress level. A high error
density increases the amount of necessary rework and thereby increases
the time in the requirements phase, which in turn increases the schedule
pressure. At the same time, high schedule pressure increases the
productivity because of its motivational role. Increased productivity
decreases the time spent in the requirements phase, which in turn
decreases the schedule pressure.

Information about the relationships between the factors in the causal-
loop diagram is shown by adding an “O” or an “S” to the arrows. An “O”
implies a change in the opposite direction, while an “S” implies a change
in the same direction.

3.3 Simulation operation

The simulation model was built based on the knowledge gained from
creating influence diagrams and causal-loop diagrams. The idea behind
the model of the requirements phase is based on a flow of tasks, from
customer requirements to finished specifications. In the requirements
phase there is a transformation from uncompleted to completed tasks by
the production of specifications. A fraction of the specifications are not
acceptable and needs to be taken care of in the rework loop, see [4].

The test phase in the model is based on the same idea as the
requirements phase and is built in a similar way. A flow of test cases is

54

Improving Requirements Selection Quality in Marker-Driven Software Development

3. Developing the simulation model

ol
Rework Rate

O i o = v &

Uncompletad Campleted
Customer Caompletion Rate Finished
Fequirements Specifications

Symbol description

Flow controlled by a
valve

Level that is emptied and
filled by the flows

Limitless destination
¢ ororigin

Figure 4. Basic model of the requirements phase

performed, a certain percentage of the functionality has to be corrected
and retested, and the rest is supposed to be acceptable.

This basic model was built in the Powersim simulation tool [11] and
further developed with help from the factors in the influence diagrams.
Factors from the influence diagrams were added to the model in order to
affect the levels and flows. The causal-loop diagrams were also considered
during the development, to ensure that the model was adapted to systems
thinking.

To avoid getting a too complex model, all of the factors in the
influence diagrams were not included in the simulation model. Some
factors were included indirectly in the parameters in the model. These can
be extracted from the parameters and are thereby possible to affect from
the user interface, for example the communication complexity which is
included in the productivity. The construction was made step by step, by
adding a few factors at a time and then running the simulation. The
values of the parameters were taken from project documentation except
one that was taken from [7], Amount of new market requirements. This
parameter was not available in project documentation but the value from

Improving Requirements Selection Quality in Market-Driven Software Development

Understanding Software Processes through System Dynamics Simulation: A Case Study

[7] is an average from several software projects and was considered to be
valid also for this project. Some values were estimated by iteration and
verified by discussions with concerned personnel at the organization. The
verification of the simulation model was made through checking that the
amount of code that is used as an input to the model is the same as the
output amount of code. The verification also included comparing the
time in the simulation to the time according to the project
documentation to ensure that the estimations were correct.

The final model for the requirements phase is seen in Appendix A. The
flows in [4] is the base of the final model, which is then further
developed. To get a measure of the quality of the specifications, another
flow was included, which counts the inadequate specifications. This
measure affects the amount of defect code that is produced in the design
and implementation phases which in turn affects the test phase. The
design and implementation phases are in the simulation model modelled
as a delay. A second flow is added to the basic model to terminate this
phase and start the following phases.

The rest of the additions to the basic model can be described in four
groups, where each group originates from the influence diagram.

o The first group, Lines of code and Functionality, describes the func-
tionality of the code to be developed. This group controls the
inflow to the phase.

o The second group is Percentage, Effort and Duration. The Percentage
allocates a percentage of the planned total effort to the requirements
phase and is controlled from the user interface. This makes it possi-
ble to study how the amount of resources in the requirements phase
affects the lead-time and quality.

o The third group, Productivity and Duration, controls the comple-
tion rate of the specifications. The Duration also affects the amount
of inadequate specifications because of the schedule pressure that
might increase during the project’s duration.

« The fourth group, Amount of rework and Functionality, decides how
much of the specifications that needs to be reworked after the
reviews.

Note that some factors are part of more than one group. This is because
some factors affect more that one other factor.

56

Improving Requirements Selection Quality in Marker-Driven Software Development

4. Results from the simulation

4. Results from the simulation

The final model was simulated to show how a relocation of resources to
the different process phases affects the quality of the software products
and the lead-time of the project. This model included both the
requirements phase and the test phase. The model was run several times
with different values of the percentage of the planned project effort, spent
on the requirements phase. The results are given in precise figures but
since there are a number of uncertainties they should be broadly
interpreted. For example, the results are uncertain because of the difficulty
in measuring the values of the included factors. It is the tendencies in the
results that are important and not the exact figures.

The simulation runs indicate that the effort spent on the requirements
phase has a noticeable effect on the lead-time of the project. The decrease
in days, when increasing the effort in the requirements phase, arises from
the increased specification accuracy. A more accurate specification
facilitates the implementation and decreases the error generation and will
result in a higher product quality from the start. This decreases the
amount of necessary correction work and thereby shortens the time spent
in the test phase. At a certain point the total lead-time will start to
increase again because the time in the test phase stops decreasing while the
time in the requirements phase continues to increase. The time in the test
phase stops decreasing because there is always a certain amount of
functionality that needs to be tested at a predetermined productivity. The
number of days in [5] is the total lead-time for the whole project.

In the same manner, the quality increases when increasing the effort in
the requirements phase to a certain extent. The simulation runs indicate
that the quality optimum appears in the same area as the lead-time

630

600

570

Number of days

540 \ \ T \
8% 9% 10% 1% 12% 13%

Percentage of planned effort in the requirements phase

Figure 5. Simulation results for the total lead-time

Improving Requirements Selection Quality in Market-Driven Software Development

Understanding Software Processes through System Dynamics Simulation: A Case Study

optimum. The increase in quality originates from a higher specification
accuracy, which is explained above. However, if too much effort is spent
in the requirements phase, the quality will start to decrease again because
there is less effort left for design, implementation and test tasks.

As a step in the verification of the results, they were compared to
results in the software literature [7, 15]. This literature points at the same
magnitude of effort in the requirements phase for a successful project as
the simulation results.

To summarize, the simulations indicate that there is an optimum for
both the quality and the lead-time. If the effort in the requirements phase
is lower than the optimal value, increasing it towards the optimum will
result in increased quality of the developed software and decreased lead-
time.

5. Discussion

One result of this study is a simulation model that visualizes different
relations in a software development process. A simulation of this kind can
contribute to enhancing the systems thinking in an organization. Thereby
it is easier for the members of the organization to understand the
relationships between the quality factors in the process.

The results from this kind of simulation shall not be interpreted
precisely since there, of course, are a number of uncertainties. It is the
tendencies and the behaviour in the results that are important and by
changing the parameters in the model it is possible to get a picture of how
the process mechanisms interact. This is a simplified model of the reality
and therefore there are a number of sources of uncertainty. The included
factors might not be the ones that affect the model the most, the assumed
relations between the factors might not be correct and the values of the
factors can be incorrectly estimated. However, the results, that there is an
optimum for the effort that is spent in the requirements phase, can be
intuitively expected for many projects in software organizations.

A simulation of this kind can also be used to increase the motivation of
the organization to work with quality issues and to increase the product
quality early in the project.

One part of the knowledge gained from simulations is received in the
model building process. The procedure to build the model forces the

58

Improving Requirements Selection Quality in Marker-Driven Software Development

5. Discussion

participants to communicate their mental models and to create a
common image of the organization’s direction.

To summarize, it seems to be feasible to build and use this kind of
model for this kind of process. There are, however, a number of
uncertainties which are important to take into account when the results
are interpreted. This is a first model, based on one project, that needs to
be further elaborated in order to obtain a model that can be applied on
other projects. Thus, the model has not been empirically validated in real
projects after it was developed. As far as the authors know, the model is
not currently in use at Ericsson.

The impression after developing and getting feedback on the model is
that it is uncertain whether most knowledge is gained by developing the
model or using it. This is one of a number of issues that need to be further
investigated in the area of software process simulation.

The model could cither be used, for example by a project manager, by
only changing the parameters, or it could be used by changing also the
structure of the model, for example by adding or deleting factors and
adding or deleting relationships between factors. It may be that users of
the models need to understand the internal structure of the model and
not only the interface to it. This would limit the choice of modelling
techniques, and it would for example mean that models with an internal
design, that is not easy to understand for the users of the models, would
not be suitable in all cases.

Acknowledgement

The authors would like to thank Wladyslaw Bolanowski and Susanne S. Nilsson at Ericsson
Mobile Communication AB for all their help with this study. This work is partly funded by the
Swedish Agency for Innovation Systems (VINNOVA) under grant for Centre for Applied Software
Research at Lund University (LUCAS).

References

[1] Abdel-Hamid, T., Madnick, S.E., Soffware Project Dynamics: An Integrated Approach, Pren-
tice Hall, 1991.

[2] Andersson, C., Karlsson, L., “A System Dynamics Simulation Study of a Software Develop-
ment Process”, CODEN:LUTEDX(TETS-5419)/1-83/(2001)&local 3, Department of
Communication Systems, Lund Institute of Technology, 2001

Banks, J., Carson, J.S., Nelson B.L., Discrete-Event System Simulation, Prentice Hall, 1996

—
8
[}

[4] Burke, S., “Radical Improvements Require Radical Actions: Simulating a High-Maturity
Software Organization”, Technical Report CMU/SEI-96-TR-024, Software Enginecring
Institute, Carnegie Mellon University, Pitesburg, USA, 1996.

Improving Requirements Selection Quality in Market-Driven Software Development

Understanding Software Processes through System Dynamics Simulation: A Case Study

[5] Fenton, N.E., Pfleeger, S., Soffware Metrics: A Rigorous ¢ Practical Approach, International
Thomson Computer Press, 1996

[6] Hast, M., Regnell, B., Natt och Dag, J., Nedstam, J, Nyberg, C., “Exploring Bottlenecks in
Market-Driven Requirements Management Processes with Discrete Event Simulation”,
Accepted for publication in Journal of Systems and Software, 2001.

[71 Jones, T.C., Estimating Software Cost, McGraw-Hill, 1998

[8] Kellner, M.I., Madachy, R.J., Raffo, D.M., “Software Process Simulation Modelling, Why?
What? How?”, Journal of Systems and Software, Vol. 46, No. 2-3, pp. 91-105, 1999.

[9] Martin, R, Raffo, D., “A Model of the Software Development Process Using both Continu-

ous and Discrete Models”, International Journal of Software Process Improvement and Practice,

5:2/3, June/September, pp. 147-157, 2000.

Martin, R., Raffo, D., “Application of a Hybrid Process Simulation Model to a Software

Development Project”, proceedings of PROSIM 2000, July 12-14, London, UK

[11] Powersim corporation, www.powersim.com, 010903

[10

[l

[12] Rus, L., Collofello, J.S., “Assessing the Impact of Defect Reduction Practices on Quality, Cost
and Schedule”, proceedings of PROSIM 2000, July 12-14, London, UK

[13] Senge, PM., The fifit discipline, Random House Business Books, 1990
[14] Sommerville, 1., Soffware Engineering, Addison-Wesley, 1996

[15] Stewart, R.D., Wyskida, R.M., Johannes, J.D., Cost Estimator’s Reference Manual, John Wiley
& Sons Inc, 1995

[16] Wohlin, C., Runeson, P, Hést, M., Ohlsson, M.C., Regnell, B., Wesslén, A., Experimenta-
tion in Software Engineering: An Introduction, Kluwer Academic Publisher, 2000

60 Improving Requirements Selection Quality in Marker-Driven Software Development

PAPER II1

An Analytical Model for Requirements Selection
Quality Evaluation in Product Software Development

Bjirn Regnell, Lena Karlsson, Martin Host

Proceedings of the 11th IEEE International Requirements Engineering Conference (RE03),
Monterey Bay, California, USA, September 2003.

Abstract

In market-driven development of product software, a crucial decision for
cach candidate requirement is whether or not to select it for
implementation in the next release. This paper presents an analytical
model of the requirements selection process, which is used for reasoning
about decision quality. A network of queues, with two classes of jobs,
models the selection of requirements of different quality. The feasibility of
model parameter estimation is validated in a survey involving product
managers and system engineers. The results show that some of the
respondents have made internally consistent parameter estimations,
indicating that the model is relevant and its parameters understandable. It
is also shown that a majority of the consistent respondents estimate that
most of their implemented product requirements are incorrectly selected.
The main objective of the model is to provide tools for evaluation of
improvement proposals by estimating the impact of process change.

Improving Requirements Selection Quality in Market-Driven Software Development 61

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

1. Introduction

This paper describes an analytical model of a market-driven Requirements
Engineering (RE) process for product software. Market-driven RE differs
from customer-specific RE in several ways, for example in the
characteristics of stakeholding and the pressure on time-to-market [12,
13]. Requirements are often invented by the developers and elicited from
a set of potential customers with scattered wishes [9]. A requirements
repository is continuously enlarged with new candidate requirements [4,
11]. Commonly, market-driven software-developing organisations
provide successive releases of the software product and release planning is
an essential activity [2, 3].

A major challenge in market-driven RE is to select and prioritize the
right set of requirements to be implemented in the next release [9], while
avoiding congestion in the selection process [11]. A previous study has
shown that capacity issues can successfully be investigated using
simulation [5]. However, that study concentrated on different work load
situations without taking neither requirements quality nor selection
decision quality into account.

This paper presents a novel analytical model representing a condensed
view of the requirements selection process.

There are three main purposes of the model:

1. An idealistic and simplified view of reality can be used for principal
reasoning about both quality and capacity in requirements selec-
tion. The general properties of complex processes is modelled
through careful choices of appropriate approximations.

2. The analytical power of the model can provide theoretical limits on
the highest possible product quality that is achievable given specific
parameter settings of input to the process, the quality of the deci-
sions in the process, and the capacities of the different parts of the
process.

3. The analytical model can act as a baseline for further empirical
research using simulations of more elaborate models of require-
ments selection that are intractable using analytical methods.

The goal is to be able to answer questions such as: “How good is a specific
organisation at selecting the right requirements?”, “What capacity is
needed in order to achieve a certain quality?”, “How long does it take to

62 Improving Requirements Selection Quality in Marker-Driven Software Development

2. Requirements Selection

get good ideas released to the market?” “How long must our customers
wait until they get feedback on their proposals?”

The presented model is based on queuing theory [8]. Queuing theory
is good for modelling systems with a steady flow of discrete jobs that are
waiting in queues to be served by a number of servers and allows for
calculations of attributes such as serving time, system load, and stability
criteria. The model applies queuing theory for networks with multi-class
jobs [7], which allows for modelling that requirements are of different
quality classes.

Related work include queuing models for staffing of the software
maintenance process [1, 10], but these studies do not take decision
quality into account.

The paper is structured as follows. Section 2 presents the context of
requirements selection and proposes a simplified, generic model of the
selection process. Section 3 introduces a fundamental model of
requirements selection quality using a contingency table. Section 4
proposes the novel analytical model based on queuing theory, and also
presents analytical results derived from the model. Section 5 reports on an
industrial survey where the feasibility of model parameter estimation
using expert judgement is validated. Section 6 explains how the presented
model can be used by practitioners. Section 7 concludes the paper and
provides directions for further research.

2. Requirements Selection

When developing product software for a large, open market with many
customers and users, there is a potential of eliciting numerous candidate
requirements from a plurality of sources. A typical way of handling this
situation is to store continuously incoming requirements in a repository
and, as candidate requirements arrive, continuously evaluate them based
on their estimated construction effort and predicted market value. Release
plans are decided based on a cost-benefit trade-off in relation to the
specific business strategy. In order to prevent the process from being
overloaded [6], it may be a good idea to have an initial screening function.
Screening is a quick assessment of whether a new candidate is worth
spending more time on, or if it should be rejected before proceeding to a
deeper evaluation. The evaluation stage includes further requirements
analysis, specification, validation and prioritisation. Previous studies have

Improving Requirements Selection Quality in Market-Driven Software Development 63

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

—=| Screening |—=»| Evaluation | Construction

N

v

Repository
N

Figure 1. A simplified requirements selection process

shown evidence of screening and evaluation stages in industrial RE
practice [2, 6, 11].

A simplified requirements selection process is illustrated in Fig. 1. The
screening activity prevents a portion of all incoming requirements from
being allowed to reach the evaluation activity. The screening is based on
the product profile and business strategy. The selected requirements are
evaluated with respect to estimated market value and development effort.
Those considered fruitful are planned for construction. The construction
phase includes designing, implementing, and testing the requirements
that are selected based on the result of the evaluation.

A corresponding state model of requirements refinement is shown in
Fig. 2. (More state-based models of the requirement life-cycle is described
in [2].) Newly issued requirements are in the state issued. After being
screened, each requirement can either be put aside to the state early reject,
or propagated to the state accepred, implying that the requirement is
accepted for evaluation. In order for a requirement to advance to the state
planned, it has to be considered profitable by the evaluation activity. If the
requirement is considered to be of low commercial value, it will continue
to the state late reject. Finally, when the planned requirements are
completed by the construction activity they will enter the state

late reject
early reject

Figure 2. A state model of requirements refinement.

64 Improving Requirements Selection Quality in Marker-Driven Software Development

3. Selection Quality

constructed. The requirement states are stored in the requirements
repository, and changes in requirements states imply an update of the
repository.

3. Selection Quality

In principle, if perfect information about a requirement was given, it
would be possible to, in advance, tell if it is a good decision to include a
requirement for implementation in the software product. This basic
assumption can be used to make the following definitions:

 o-requirements are the requirements that under perfect decision-

making should be selected.

+ PB-requirements are the requirements that under perfect decision-

making should be rejected.

The o-requirements represents the “golden grains” of all incoming
requirements and all other requirements are termed “poor” B-
requirements. In reality, decision-making is imperfect, and the real nature
of the requirements can not be estimated with high accuracy until after
product release, when the implemented requirement has been on the
market for a while. However, this ideal view allows for the definition of
ratios that can be used to assess the decision quality of the requirements
selection process, as shown in Table 1. The four different ratios of correct
and incorrect decisions are denoted A to D. Obviously it is favourable to
maximize the correct selection ratios A and D, and minimize the incorrect
selection ratios B and C.

Table 1. A contingency table for assessing requirements selection quality

Decision
Selected Rejected

§ o A B

R correct selection ratio incorrect rejection ratio
Y

8 3 C D

3

§ S incorrect selection ratio correct rejection ratio

Improving Requirements Selection Quality in Market-Driven Software Development

65

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

In all stages of the selection process it is desirable to select requirements
of type o and reject requirements of type B. However, the knowledge
about the market, competitors and customers is limited, insight into all
possible relations and dependencies among requirements is restricted, and
effort estimation is error prone. These facts of reality lead to decision-
making that is far from perfect. Therefore, some B -requirements will be,
incorrectly, selected whereas some o -requirements will be rejected. This is
reflected in Table 1, where an o -requirement is either correctly selected or
incorrectly rejected, and a B-requirement is either incorrectly selected or
correctly rejected.

4. Analytical Model

In Fig. 3, a queuing network model is presented, that is based on the
refinement model in Fig. 2. Each refinement step is modelled by a
number of queues with one server per queue. In order to enable analytical
calculation, arrival processes are assumed to be Poisson processes, the
service rates are exponentially distributed, which gives that each queue is
(in queuing theory terms) M/M/1 [8]. The M/M/1 case is favourable
from an analytic viewpoint, as its properties are derivable from rather
simple formulas. (In general, if the arrival process is resulting from many
different sources then Poisson tends to be a good approximation, as the
sum of a large number of different arrival distributions converge towards a
exponential distribution. However, if the traffic is very bursty in nature
with bulk arrivals, this assumption may be inadequate and other
distributions can then be treated using simulation.)

Each server in the model represents one employee of the software
product provider, for example a requirements engineer or developer, while

Screening Evaluation Construction
u u
A — b > 30 <> 30
eo co
- - —_FO —2|Rel
. 1 =Dy . 1-peq S | Release
O] ? Peg 1O >Pep 1O

mg 1 ~Pep m, 1 ~Pep mg

o
.. . %
Flicitation g
B

Figure 3. A quening network model of the requirements selection process.

66 Improving Requirements Selection Quality in Marker-Driven Software Development

4. Analytical Model

cach queue represents a work repository for the server. To simplify
calculations, all servers are assumed to have the same service rates within
one phase. The service rates of each phase models the average time for one
engineer to do the work of that phase. The work is divided randomly
among servers, with equal probability. This simplification does not take
different competencies and productivities into account, but if an
empirical grounded average is used, this may be adequate in a basic
model.

After screening, a fraction of the requirements are discarded and the
remaining ones are propagated to evaluation. The requirements selected
for evaluation includes both o and B requirements. The average
evaluation effort is estimated to be the same for all requirements,
regardless of quality. Finally, after disposing some of the evaluated
requirements, the construction phase is entered.

It is assumed that the requirements repository is only investigated once
during a release, i.e. once a requirement is disposed it can not return into
the process. This simplification does not take requirements
decomposition into account. If there is a large number of new
requirements generated within the selection process, this can be modelled
by increasing the arrival rate correspondingly.

There are many aspects of a real, complex requirements selection
process that are not taken into account here, as we aim for a clear and
uncomplicated model that is easy to understand and allows for analytical
treatment. Intricate aspects of reality that has been excluded from the
model include: deadline and budget restrictions, competition between
requirements analysis and construction resources, disposed requirements
during construction, dependencies between requirements, requirements
decomposition into “sub-requirements”, etc. More complex models that
take such aspects into account can be further analysed using simulation,
which is a matter of further research (see Section 7).

4.1 Model parameters

In order to analytically reason about the presented model, a number of
parameters are defined. Common notation from queuing theory is used
for arrival and service rates, denoted & and p respectively. The number of
servers in each stage is denoted m, and the propagation probabilities
between stages are denoted p. Using indices of o and B for the two
different classes of requirements, as well as indices s, ¢, ¢, for screening,

Improving Requirements Selection Quality in Market-Driven Software Development 67

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

Table 2. Model parameters

A Total arrival rate of requirements
issued from elicitation.

Ao> hg Arrival rates of o - and B -require-

o
ments.

Hos Hes Mg Service rates in screening, evaluation
and construction.

m Number of servers in screening, evalu-

m e’ c

m
ation and construction.

Pea> Peo Probabilities for an o -requirement to
continue to evaluation and construc-
tion.

Peps Pep Probabilities for a B -requirement to
continue to evaluation and construc-
tion.

g Golden-grain-ratio.

8 max Maximum allowed work load.

«» C,» €, The total work capacity in screening,

evaluation and construction.

evaluation, and construction, respectively, gives the model parameters
summarized in Table 2. The maximum allowed work load is denoted
8,.» which should be less than 1 in order to ensure stability. The

ma
capacities of a queuing network stage is denoted C and correspond to the
number of servers 7 multiplied by the service rate p.

An interesting parameter is the relation between high- and low-quality
requirements. This relation is defined by the constant g, called the golden-
grain-ratio, and describes the proportion of the requirements that are of
high quality. The golden-grain-ratio is defined as:

A A

- o _ Pt
& hothy A

o

68

Improving Requirements Selection Quality in Marker-Driven Software Development

4. Analytical Model

4.2 Parameter Estimation

A major benefit of an analytical model is the possibility to study different
“what if”-scenarios, e.g. to investigate what happens if the early rejection
ratio of low-quality requirements is increased or decreased. When
studying such scenarios, it is enough to have rough approximates of the
parameter values as the directions of changes are of more interest than the
actual values. Nevertheless, the accuracy of parameter estimation is an
important issue and the more accurate the parameters can be estimated,
the more reliable are the analytical results.

One way to estimate the values of the model parameters defined above,
is to base them on historical data from development of earlier product
releases. Another possibility is to estimate the parameters subjectively,
using expert judgement by experienced professionals within the software
developing organisation under study.

Measurements from earlier development can be used if a
measurements programme is installed where the life-cycle of each
requirement is stored in a requirements repository and the actual
requirement quality is recorded after being released to a market and its
quality in terms of market value versus development cost is clearer.
Consequently, it is necessary to determine and record if each
implemented requirement actually should have been selected for
implementation or not. And, accordingly, it is necessary to determine if
every discarded requirement actually should have been discarded or if it in
fact was a golden grain. If these metrics are too difficult to obtain in a
specific organisation, subjective judgement by experts may be a more
tractable approach to the calibration of an analytical model.

Section 5, reports on an industrial survey, in which the parameters of
the proposed model are subjectively estimated by product managers and
system developers.

Improving Requirements Selection Quality in Market-Driven Software Development 69

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

4.3 Analytical Results

Using the parameters in Section 4.1, we can describe the rate of
requirements entering the different refinement states in Figure 2.

Issued =)LOL+7\4B: A

Accepted = Ayp.o + Agpeg

Planned= Constructed = Ayp.qPeq + AgPepPep

EarlyReject = Ag(1—peg) + Ag(1 = pep)

LateReject = Ag P peg(1=pog) + Ag P pep(1—pep)

From the rates in different states it is possible to derive rates A to D in
Table 1, i.e. the correct and incorrect decision rates.

A = xtx'pe(x'pc(x
Aot Ag
— 7“0('(1_pe(x)+7"oc'pe(x'(1_pc(x)
Aot hg
c = B PepPep

Ao+ Mg

D = Mg (1=peg) *Ag-peg - (1=pcp)
Aot g

where A+B+C+D =1

With the definition of g from section 4.1 it is possible to simplify the
equations for the selection and rejection ratios.

A = g Peg Peq

B = g(1-peg - Pee)
C= (1_g)'pe[3'pc[i
D= (1—g)'(1—Peﬁ'ch)

70 Improving Requirements Selection Quality in Marker-Driven Software Development

4. Analytical Model

According to the definitions in Table 1, it is desired to maximize A+D,
i.e. the ratio of correct decisions, and minimize B+C, i.e. the ratio of
incorrect decisions. The ratio A/(A+C) is the fraction of correct selections.

The criteria for stability are based on the fact that the total capacity C
of the servers in one stage must be larger than the arrival rate from the
previous stage, in order for the queuing network not to be overloaded.
The stability criteria for the different stages are:

Cy =mg-U>A, +Ag

C. = me'“e>7“a'peo¢+7“ﬁ'pe[3

@
1

c mc'“c>7"ot'pe(x'pc(x+7“[i'pe[3'pc[i

When considering that it is unrealistic to have a server occupation of
100%, we can adjust the equations with the maximum allowed work load
for each phase, §,, . The desired value of §,, depends on the tolerance
of a high probability that queues may be very long and hence risking very
long waiting times.

The golden-grain-ratio g and maximum allowed work load

8max SA/C can be inserted into the equations for capacity above, which

gives the following lower bound of capacities in the different stages of

requirements refinement:

A
Cemin = Sw(peag + peﬁ(l -g))

max

A
Ccmin = 8_(pe(xpc(xg + pech[}(l _g))

max

In a system of m parallel M/M/1 queues with a total capacity of

=m-p, the results from queuing theory allows us to calculate the
average number of customers, denoted /V, and the average time in the
system, denoted T (see for example [8]).

Improving Requirements Selection Quality in Market-Driven Software Development 71

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

Let x denote each step s, ¢, ¢, for screening, evaluation and construction
respectively. The arrival rate of each step is given by:
Ay = hgthy = A

A

e = x(gpea*-(l_g)pe[})

Ao = A (8 Peg Peg T (1—8) - Peg * Pep)

By using the results from queuing theory [8], it is possible to calculate

N and T for each step as:

t 1

C C

N = m - — T, = m, ’;L
1-= 1-=
CX CX

Based on the 7 and NNV entities, we define the following three
interesting metrics:

¢ Mean Time To Market, MTTM, defined as the sum of the average
times in screening, evaluation and construction. MTTM represents
the average time from that a requirement is issued until it is finally
constructed. MTTM = T +T, +T,

+ Mean Response Time, MR7; defined as the time for a requirement
to either be rejected in screening or pass through evaluation. MRT
represents the average time from that a requirement is issued until a
decision can be communicated back to the issuer, informing the
issuer whether or not the requirement will be implemented. MRT
can be obtained using Little’s result [8] which says that in general
N = AT, and thus we can say that MRT = (N +N,)/ (A, +2g)

 Requirements engineering Effort Share, RES, defined as the average
share of all service effort that is put on screening and evaluation. Let
8, = \/(m -n) denote the load in one of the 7, parallel queues

in step x. RES is defined as:

RES = 8lsms-'-sleme

8lsms + 8leme + 8lcmc

72 Improving Requirements Selection Quality in Marker-Driven Software Development

4. Analytical Model

Table 3. Parameter assumptions of four example cases.

Proba- Case Case Case Case
blllty RANDOM LOW HIGH IDEAL
Peo 0.5 0.6 0.7 1
Pes 0.5 0.4 0.3 0
Peo 0.5 0.8 0.9 1
Pep 0.5 0.2 0.1 0

Table 4. Parameter assumption, same for all examples.

A g | o mg | m, | mg | U [T [

max S (5 C

3 10 80 1 2 20 4 2 0.05

req/ | % % req/ | req/ | req/
day day | day | day
4.4 Example

To make the presented model and its analytical results more concrete,
four examples are given, where the values of the propagation probabilities
varies. As shown in Table 3, the LOW case has lower probabilities of
selecting o -requirements than the HIGH case. The RANDOM case
corresponds to a case where the screening and evaluation work is no better
than flipping a coin when deciding to reject or propagate a requirement.

The RANDOM case illustrates an example where it is equally probable
to select o- and B-requirements, i.e. half of each requirement type is
selected and no discrimination between o- and B -requirements are made.
It is also equally probable to select and reject requirements in evaluation,
meaning that the decision quality is not improved over time.

In the LOW, HIGH and IDEAL cases it is more probable to select o-
requirements than B-requirements, which hopefully comply with a real-
world situation. Furthermore, in the LOW and HIGH cases, the
probability of selecting high-quality requirements increases over time, i.c.
the probability of selecting o -requirements in the evaluation phase is
larger than in the screening phase, which is reasonable as more effort is
put on evaluation than screening. Furthermore, the increasing probability

Improving Requirements Selection Quality in Market-Driven Software Development 73

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

models that more knowledge is gained through out the process, and this
knowledge is assumed to increase selection quality.

Case HIGH is preferable over case LOW, since the probabilities of
selecting o -requirements is higher in Case HIGH. Both cases HIGH and
LOW are superior to the RANDOM case, which can be seen as a baseline
case. Having probabilities that are lower than 0.5 for propagating o
requirements and higher than 0.5 for propagating B requirements,
implies that the organisation is systematically favouring bad requirements,
and this is hopefully not realistic.

The IDEAL case is special, as no o requirements are rejected, and no
B requirements are selected. Screening is hence perfect, thus providing the
evaluation step only with o requirements. IDEAL is optimal in the sense
that the product only includes high-quality requirements. This case is not
likely to occur in practice, but represents an upper limit of what is
achievable in terms of selection quality.

Table 4 shows the other parameter assumptions that are kept constant
for all four example cases. In the simulation study in [5] the mean arrival
rate, A, was approximately 3 requirements per day, and the same arrival
rate is chosen for all cases. The golden-grain-ratio is chosen to be 10%,

Table 5. Results based on parameter assumptions

Case Case Case Case

Eﬂl’lly RAN- LOW HIGH IDEAL
DOM
minimal C . 3.75 3.75 3.75 3.75
. smin
screening
capacity req/day
minimal C . 1.88 1.58 1.28 0.375
evaluation emin
capacity req/day
minimal C . 0.94 0.45 0.34 0.375
cmin

construction

caparity req/day

covrect A 10% 40% 70% 100%
selections A+C

mean time to MITT 81.8 33.0 29.1 30.1

market M
days
mean response MRT 1.40 1.31 1.23 1.05
time days
RE cffort RES 9% 16% 19% 13%
share

74 Improving Requirements Selection Quality in Marker-Driven Software Development

4. Analytical Model

i.e. one tenth of the arriving requirements are of high quality and 90% are
is set to 80% to avoid
overload and prevent too long queue lengths (a work load closer to 1 gives

of low quality. The maximum work load, §_,_,
a much higher risk of very long queues). The number of servers in
screening, evaluation, and construction is set to 1, 2, and 20 respectively,
meaning that 1 engineer is working with initial requirements screening, 2
engineers work with requirements evaluation including analysis,
specification, validation, prioritisation, and 20 engineering deal with
construction including design, implementation, and testing. The service
rates of each phase is chosen to be 4, 2, and 0.05 requirements per day
respectively, which implies that for each requirement on average,
screening takes 0.25 days, evaluation takes half a day, and construction
takes 20 days.

Given the parameter values in Table 3 and 4, it is possible to calculate
the minimum capacities required in the different steps in order to ensure
stability. It is also interesting to investigate the decision quality from
Table 1. Furthermore, the metrics MTTM, MRT, and RES reveals
interesting properties of the different cases. The results are assembled in

Table 5.

The minimum capacity in the screening phase is equal in all cases, as
this value only depends on the arrival rates and the maximum work load.
The minimum capacities in both evaluation and construction is lower in
case HIGH than in case LOW, as the proportion of o -requirements is
higher. This is because fewer requirements propagate when a higher
percentage of o -requirements (which is only a tenth of the total number
of requirements) and a lower percentage of B -requirements (which
comprises nine tenths of the requirements) is selected. For similar reasons,
the minimum capacities in RANDOM are higher than in the other cases.

The ratio of correct selections is defined as A/(A+C), and the LOW
case results in a product with 40% correctly selected requirements, while
the HIGH case has as much as 70%. The IDEAL case has 100% correct
selections, and the RANDOM case has only 10% correctly selected
requirements, which is equal to the golden-grain-ratio.

The Mean Time To Market decreases from 81.8 days to 29.1 days,
comparing RANDOM, LOW, and HIGH. There is a slight increase of
MTTM to 30.1 days for the IDEAL case, which is caused by the larger
number of o -requirements selected for construction compared to the
HIGH case. The Mean-Response-Time ranges from 1.05 days in the
IDEAL case to 1.40 days in the RANDOM case.

Improving Requirements Selection Quality in Market-Driven Software Development 75

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

The share of effort spent on requirements engineering is minimal 9%
in the RANDOM case, and maximal 19% in the HIGH case. The
IDEAL case has a RES of only 13%, as a higher share of the effort is spent
on construction of o -requirements as a result of the perfect selection
process.

5. Parameter Estimation Survey

In order to validate the feasibility of subjective estimation of model
parameters, a questionnaire survey has been conducted. The survey is
based on a questionnaire that is constructed to allow for checking if
experts can make internally consistent estimations. If the practitioners are
able to make consistent parameter estimations, it is an indication that the
model is understandable and relevant to these practitioners. The values of
the parameters themselves are interesting, but the survey is rather small,
which makes generality of the values questionable.

5.1 Survey design and operation

The survey questionnaire is shown in Fig. 4. The questions were selected
so that parameters were estimated in different ways. There are more
questions than parameters, making it possible to check if the parameters
are consistently related. In Fig. 5, the relations between the questions and
the model parameters are given. These relations are not shown to the
participants in the survey. Question g) and h) are used as “control”
questions and can be compared with questions a)-¢) using the equations
in Fig. 5. (The survey included 4 additional questions not analysed in this
study).

The survey was conducted in two steps. Firstly, it was run in a class
room session during an industrial course in software architecture for
practising chief architects. The course had 12 participants and 11
responded. All respondents were from companies developing software
products for open markets except one, leaving 10 relevant responses.
Secondly, the questionnaire was handed out during a national industry
conference on software product management with around 65
participants, of which 25 responded, with companies developing
software-intensive products for open markets. The respondents were from
both marketing and development and had positions such as product

76 Improving Requirements Selection Quality in Marker-Driven Software Development

5. Parameter Estimation Survey

Questionnaire

a) How many requirements on “user level” do you get from all different sources?
(number of requirements per week)

Least possible value: 1 5 10 20 50 100 500 1000

Most probable value: 1 5 10 20 50 100 500 1000

Largest possible value: 1 5 10 20 50 100 500 1000

b) Of all incomming requirements, how large is the share of “golden grains”, i.e. requiremencs that
should be implemented with regard to market opportunity, product strategy and development
resources?

0% 5% 10% 20% 25% 33% 50% 67% 75% 80% 90% 95% 100%

¢) How many of all incomming requirements are rejected in an carly quick screening?
0% 5% 10% 20% 25% 33% 50% 67% 75% 80% 90% 95% 100%

d) How many of the “golden grainsare incorrectly rejected in an catly quick screening?
0% 5% 10% 20% 25% 33% 50% 67% 75% 80% 90% 95% 100%

¢) How many of the requirements that undergo a deeper analysis are rejected?
0% 5% 10% 20% 25% 33% 50% 67% 75% 80% 90% 95% 100%

) How many of the “golden grains” that undergo a deeper analysis are incorrectly rejected?
0% 5% 10% 20% 25% 33% 50% 67% 75% 80% 90% 95% 100%

g) How many of all requirements that are finally implemented in a typical release, should
actually noz have been implemented with regard to the real outcome of development cost
and market value?

0% 5% 10% 20% 25% 33% 50% 67% 75% 80% 90% 95% 100%

h) How many of the requirements that were #os implemented, should actually have been implemented,
if knowing the facts given after the product has been out on the market for a while?
0% 5% 10% 20% 25% 33% 50% 67% 75% 80% 90% 95% 100%

Figure 4. Questionnaire for parameter estimation.

Questionnaire expressions

a) A

b) g

o g(1=pgg) + (1 -g)(1 —pep)
d) 1-p.q

g Peq (1 =Peo) +(1-8) P~ (1 -pp)
e)
8Peq * (1 -8)Pep
H1 ~Peo
g) C/(A+C)
h) B/(B+D)

Figure 5. Eguivalent parameter expression for each survey question
(not shown to respondents).

Improving Requirements Selection Quality in Market-Driven Software Development 77

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

* 1 1 1 1 1
30 B ! | | | |
- | | | | |
| | | | |
- | l 1 1 1
—*— | | | I I
25 p [w | | |
H— | | | | |
[| | | | |
& | | | | |
—— 1 1 1 1
20+ | | | I I
= —— | | | | |
% JI— I I I I I
S s | | | | |
DR S R R R
) 15 r K T T T T [
o #* | | | | |
04 * I I I | |
IR | | | | |
L I | | | |
10 i i i i i
ﬁ% | | I I
I 1 1 1 j
[| | | |
si—
T | | | | |
o | | | I I
S I I | |
—%— | | | | |
0 | | | | |

0 100 200 300 400 500

Arrival intensity [reqs/week]
Figure 6. Number of issued requirements per week.

managers, system managers, sales managers, and requirements engineers.
In total, from both survey occasions, we thus obtained 36 responses, of
which 3 were directly discarded due to incomplete responses to many
questions, leaving 33 responses as input to the survey analysis.

5.2 Survey Results

Fig. 6 shows a scatter plot of the answers to question a) regarding the rate
of arriving requirements. In order to give a view of the range of the arrival
rates, three values were requested: minimum, most probable, and
maximum. This is illustrated in Fig. 6 by a solid line between minimum
and maximum, and with an asterisk at the most probable value. Two
responses were discarded as they had misunderstood the range questions
and gave a maximum that was less than minimum. The minimal values
range from 0 to 20 and the maximum values range from 5 to 500. The
most probable values range from 1 to 50 with a mean of 13.6 reqs/week,
which corresponds to an average A of 2.7 reqs/day.

78 Improving Requirements Selection Quality in Marker-Driven Software Development

5. Parameter Estimation Survey

Golden-grain-ratio. The responses on the golden-grain-ratio in
question b) ranges from 5% to 67% with a mean value of 21%, as shown
in the box-plot in Fig. 7. The box has lines at the lower quartile, median,
and upper quartile values. This result is based on 30 responses, discarding
incomplete responses and one that responded a g of zero.

Internal estimation consistency. By using the equations of Fig. 5, it is
possible to derive the propagation probabilities of each step. It is also
possible to use the propagation probabilities to calculate C/(C+A) and B/
(B+D) and compare with the control questions g) and h). The internal
consistency of each respondent is calculated as the absolute difference
between the calculated values and the responses to question g) and h).
These two differences are denoted d; and d, respectively. A respondent
with both d; and d; below 0.5 is considered reasonably consistent, and
assumed to have understood the questions. Among the 33 survey
responses, as many as 12 were internally consistent by this definition. The
calculated values of the propagation probabilities and the differences
between calculated and responded values are shown in Table 6, together
with a calculated value of the ratio of correct selections for each of the 12
consistent responses.

Propagation probabilities. The average propagation probabilities are
Peo =0-84, p.,, =0.87, p 3 =0.61 and p ;3 =0.56. This is in line with what can
be expected, as it is reasonable for the o-probabilities to increase over
time and for the B-probabilities to decrease over time in order to reflect
the fact that a greater effort put on evaluation compared to screening will
yield a better ability to discriminate good requirements from bad. By

o —— 1]

01 02 03 04 05 06 0.7

Figure 7. A box plor of the golden-grain-ratio of 30 responses.

Improving Requirements Selection Quality in Market-Driven Software Development 79

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

Table 6. Calculated model parameter values based on 12 respondents with
reasonable internal consistency.

A
Id € Pea Pep Pco Pcp d 4, A+C

4| 0,50| 0,90| 0,77 0,95| 0,52| 0,22| 0,09 0,68

6| 0,25 0,80| 0,32] 0,95| 0,86| 0,19| 0,10 0,48

7| 0,33 0,95| 0,52] 0,95| 0,67| 0,24| 0,13 0,56

10| 0,33| 0,90| 0,72| 0,95| 0,87| 0,35| 0,06 0,40

111 0,05| 0,67 0,12| 0,80| 0,41| 0,12 0,08 0,37

13| 0,50 0,90| 0,77] 0,95| 0,52| 0,12| 0,09 0,68

27| 0,20 0,50| 0,46 0,67| 0,24| 0,23| 0,09 0,44

28| 0,33| 0,90| 0,72{ 0,95| 0,50| 0,21 0,05 0,54

29| 0,20 0,90| 0,83| 0,67| 0,45| 0,38| 0,11 0,29

30| 0,20 0,90| 0,83| 1,00| 0,75| 0,40| 0,01 0,27

34| 0,50| 1,00| 0,90| 0,75| 0,22 0,11| 0,14 0,79
35| 0,20 0,75| 0,39| 0,80| 0,73| 0,46 0,21 0,34

mean 0,30 0,84 0,61 0,87 0,56 0,25 0,10 0,49

sorting the propagation probability values in the order of p,, pegs Peps
and p.y, we should ideally get a monotonic decrease. The plot in Fig. 8
shows the four propagation probabilities in this order for all 12 consistent
respondents. Solid lines connect the corresponding values for each
response. Only 5 of 12 respondents estimate that the propagation
probabilities are monotonously decreasing, indicating that the effort spent
in evaluation does not pay off for the other 7 respondents.

Correct selection distribution. Fig. 9 shows the distribution of the
calculated values of A/(A+C), 1. e. the ratio of correct selections for the 12
consistent responses. The figure shows that a majority of respondents
indirectly estimate that their organisations have less than half of the
product content that is based on correctly selected requirements. Only
one respondent provides answers that give a calculated ratio of correct
selections above 75%. This is rather surprising and the results of this
survey suggest that there is an opportunity of significantly improving
requirements decision quality in industrial practice.

80 Improving Requirements Selection Quality in Marker-Driven Software Development

6. Using the Model in Practice

Propagation probabilities

0.8+

0.6

0.4+

0.2t

Pca Pea Pep Pep

Figure 8. Propagation probabilities.

6. Using the Model in Practice

Practitioners can use the presented model to investigate process
improvement scenarios, by calculating the consequences of hypothetical
changes in productivity, staffing capacity, requirements elicitation yield
and selection quality. By estimating the model parameters, a specific
organisation can get valuable decision support in requirements planning,
resource allocation, and training.

To illustrate the practical implications of the model, two improvement
scenarios for a hypothetical organisation are given. The scenarios are

; Correct selections

6 4

number of responses

: Bl

0-25% 25-50% 50-75% 75-100%

Figure 9. Distribution of correct selections.

Improving Requirements Selection Quality in Market-Driven Software Development 81

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

based on the mean parameter estimations from the industrial survey in
Section 5.

A decision quality improvement target. The ratio of correct selections,
A/(A+C) in Table5, is a measure of the decision quality in the
organisation. This ratio can, for example, be increased by improving the
elicitation process and thereby increasing the golden-grain-ratio so that
less low-quality requirements enter the requirements repository in the first
place. In practice this can be done by early eliminating duplicates and
discussing the product strategy so that less irrelevant requirements are
entered. An organisation with characteristics based on the mean values of
the survey results from Table 6 would, e.g., need an increase in the
golden-grain-ratio from 30% to 65% if demanding an increase in the
ratio of correct selections from 48% to 80%. The selection quality would
also benefit from improved propagation probabilities. For example, a
target of 80% correct selections with a golden-grain-ratio of 30% will be
satisfied by the propagation probabilities p,,=0.9, p.,=0.95, p,z=0.35
and p,;=0.26. Better decisions will hopefully result in product releases
with a higher share of profitable features.

A Mean-Time-To-Market improvement target. Assume that the
number of employees working with screening, evaluation and
construction are m=1, m,= 3, and m,= 20 respectively. Also, set the
productivity of each employee to be p=25, p=5, p =05
requirements per week. Then the MTTAM for this particular organisation
can be calculated using the presented model. The time in each phase is
0.09, 0.52 and 5.31 weeks respectively, which sums up to 5.92 weeks, i.e.
the MTTM is approximately 30 working days. There are two possibilities
to decrease MTTM: increasing the number of employees or increasing
each employee’s productivity. For example, increasing the number of
employees to 2, 4 and 30 respectively will result in a M7TM of 3,85
weeks, i.e. 19 days. A shorter time to market will hopefully increase the
chance of reaching a higher market share.

7. Conclusions

The modelling of creative and innovative processes with a high degree of
variation based on human judgement such as requirements engineering is

82 Improving Requirements Selection Quality in Marker-Driven Software Development

7. Conclusions

difficult. However, any relevant model that can help practitioners in
abstracting the general properties of such a process is valuable. On the
basis of a set of carefully chosen approximations, the presented work
introduces an analytical model of requirements selection in product
software development, which considers not only the capacity of the
selection process, but also the quality of the decisions. The model is
represented by a queuing network, comprised of three phases
corresponding to general stages of a continuous process for product
software development.

The requirements in the model are of either high or low quality and
decisions about selecting or rejecting requirements are made in two steps:
firstly a quick screening, and secondly a deeper evaluation. Some
decisions may be incorrect and therefore some high-quality requirements
may be incorrectly rejected and some low-quality requirements may be
incorrectly selected. The quality of these decisions is critical to the success
of any software product. The analytical model gives the possibility of
expressing the following interesting properties of the process that are
linked to the success of its products:

 The ratio of correct selections, giving the product quality as its
share of rightly chosen requirements.

o« The mean time to market, measured as the time taken from
requirements issue to release of implementation.

 The mean response time, giving the time from requirements issue
until feedback can be given to stakeholders.

+ The lowest level of productivity and staffing needed to avoid an
unstable, overloaded process.

The presented model has been validated in an industrial survey, where
experts were asked to make a series of non-trivial parameter estimations.
The fact that 12 out of 36 respondents were able to make internally
consistent estimations indicate that the model is understandable and
relevant. Surprisingly, the survey also revealed that a majority of
respondents had products with less than 50% rightly selected

requirements.

The presented model includes several assumptions and approximations
that are needed to make the model tractable analytically. Future research
is needed to investigate how these approximations affect the accuracy of

Improving Requirements Selection Quality in Market-Driven Software Development 83

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

the model, in particular application domains and specific product
software development organisations.

Simulation can be used when the analytical model is limited by
approximations. For example, simulation can make it possible to let
disposed requirements be reconsidered and re-entered into the process. It
is also possible to allow for requirements decomposition into sub-
requirements, as well as to take requirements bundling and dependencies
into account. Industrial case studies using simulation of models, with
some of the approximations removed, is thus an interesting area of further
research.

Acknowledgements

This work is partly funded by the Swedish Agency for Innovation Systems (VINNOVA) under
grant for The Centre for Applied Software Research at Lund University (LUCAS), Sweden. We
would like to thank Dr. Christian Nyberg for his theoretical expertise and outstanding ability to
explain complex queuing theory in an understandable way.

References

[1] Antoniol, G., Casazza, G., Di Lucca, G. A., Di Penta, M., Rago, E, “A Queue Theory-Based
Approach to Staff Software Maintenance Centers”, IEEE International Conference on Software
Maintenance (ICSM2001), pp. 510-519, 2001.

[2] Carlshamre, P, Regnell, B., “Requirements Lifecycle Management and Release Planning in
Market-Driven Requirements Engineering Processes”, IEEE International. Workshop on the
Requirements Engineering Process (REP’2000), Greenwich, UK, September 2000.

[3] Carshamre, P, Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J. “An Industrial Survey
of Requirements Interdependencies in Software Release Planning”, JEEE International Con-
Jerence on Requirements Engineering (RE'01), pp. 84-91, 2001.

[4] Higgins, S. A., de Laat, M., Gieles, P. M. C., Guerts, E. M., “Managing Product Require-
ments for Medical IT Products”, JEEE International Conference on Requirements Engineering
(REX02), pp. 341-349, 2002.

[5] Héost, M., Regnell, B., Natt och Dag, J., Nedstam, J., Nyberg, C., “Exploring Bottlenecks in

Market-Driven Requirements Management Processes with Discrete Event Simulation”, Jour-
nal of Systems and Software, Vol. 59, pp 323-332, 2001.

[6] Karlsson, L., Dahlstedt, A.G., Natt och Dag, J., Regnell, B., Persson, A., “Challenges in Mar-
ket-Driven Requirements Engineering - an Industrial Interview Study”, International Work-

shop on Requirements Engineering: Foundations of Software Quality (REFSQ’02), Essen,
Germany, September 2002.

[71 King, P, J., B., Computer and Communication Systems Performance Modelling, Prentice Hall,
1990.

[8] Kleinrock, L., Queneing Systems, John Wiley & Sons, 1975.

[9] Potts, C., “Invented Requirements and Imagined Customers: Requirements Engineering for
Off-the-Shelf Software”, Proceedings of the Second IEEE International Symposium on Require-
ments Engineering (RE’95), pp. 128-30, 1995.

84 Improving Requirements Selection Quality in Marker-Driven Software Development

7. Conclusions

[10] Ramaswamy, R., “How to Staff’ Business-Critical Maintenance Projects”, IEEE Software,
17(3):90-94, May/June 2000.
[11] Regnell, B., Beremark, P, Eklundh, O., “A Market-Driven Requirements Engineering Proc-

ess - Results from an Industrial Process Improvement Programme”, Reguirements Engineering,
3:121-129, 1998.

[12] Sawyer, P, “Packaged Software: Challenges for RE”, Proc. 6th Int. Workshop on Requirements

Engineering: Foundations of Software Quality (REFSQ’00), Stockholm, Sweden, pp 137-142,
June 2000.

[13] Yeh, A., “Requirements Engineering Support Technique (REQUEST): A Market Driven
Requirements Management Process”, IEEE Second Symposium of Quality Software Develop-
ment Tools, pp. 211-223, New Orleans USA, May 1992.

Improving Requirements Selection Quality in Market-Driven Software Development 85

An Analytical Model for Requirements Selection Quality Fvaluation in Product Software Development

86 Improving Requirements Selection Quality in Marker-Driven Software Development

PAPER IV

Post-Release Analysis of Requirements Selection
Quality - An Industrial Case Study

Lena Karlsson, Bjorn Regnell, Joachim Karlsson, Stefan Olsson

Proceedings of the th International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ03), Velden, Austria, June 2003.

Abstract

The process of selecting requirements for a release of a software product is
challenging as the decision-making is based on uncertain predictions of
issues such as market value and development cost. This paper presents a
method aimed at supporting software product development organisations
in the identification of process improvement proposals to increase
requirements selection quality. The method is based on an in-depth
analysis of requirements selection decision outcomes after the release has
been launched to the market and is in use by customers. The method is
validated in a case study involving real requirements and industrial
requirements engineering experts. The case study resulted in a number of
process improvement areas relevant to the specific organisation and the
method was considered promising by the participating experts.

Improving Requirements Selection Quality in Market-Driven Software Development 87

Post-Release Analysis of Requirements Selection Quality - An Industrial Case Study

1. Introduction

This paper presents a method for identifying improvement areas of the
requirements selection process in a market-driven software product
development context. The method is called PARSEQ (Post-release
Analysis of Requirements SElection Quality) and is based on retrospective
examination of decision-making in release planning, at a time when the
consequences of requirements selection decisions are visible. PARSEQ is
applied in a case study where the requirements selection for a particular
release of a specific software product is analysed and improvement areas
that are relevant to the studied software organisation are identified.

PARSEQ is intended to be used by software organisations that operate
in a market-driven context, offering software products to many customers
on an open market. Market-driven requirements engineering (RE) differs
from customer-specific RE in several ways, for example in the
characteristics of stakeholders and schedule constraints [17, 19].
Requirements are often invented by the developers as well as elicited from
potential customers with different needs [14], and it is common to use a
requirements database that is continuously enlarged with new candidate
requirements [7, 15]. Commonly, market-driven software developing
organisations provide successive releases of the software product and
release planning is an essential activity [3, 4]. A major challenge in
market-driven RE is to prioritise and select the right set of requirements
to be implemented in the next release [14], while avoiding congestion in
the selection process [15]. This decision-making is very challenging as it is
based on uncertain predictions of the future, while crucial for the
product’s success on the market [3, 11].

Given issues such as uncertain estimations of requirements market
value and cost of development, it can be assumed that some requirements
selection decisions are non-optimal, which in turn may lead to software
releases with a set of features that are not competitive or satisfy market
expectations. It is only afterwards, when the outcome of the development
effort and market value is apparent, it is possible to tell with more
certainty which decisions were correct and which decisions were less
accurate. But by looking at the decision outcome in retrospect,
organisations can gain valuable knowledge of how to improve the
requirements selection process and increase the chance of market success.

In [18, 5], post-mortem evaluations are discussed in a project
management context. An evaluation of the project’s performance after it

88 Improving Requirements Selection Quality in Marker-Driven Software Development

1. Introduction

has been completed is useful both for personal and organisational
improvement and can be conducted as an open discussion of the strengths
and weaknesses of the project plan and execution. Furthermore, much can
be learned about organisational efficiency and effectiveness by this kind of
evaluation, which offers an insight into the success or failure of the
project. The lessons learned can be used when planning forthcoming
projects to improve project performance and prevent mistakes.
Continuous process improvement is important in the maturity of
software development and, in particular, requirements engineering is
pointed out as a critical improvement area in a maturing organisation
[13]. A recent process improvement study based on analysis of defects in
present products is reported in [12]. The post-mortem analysis is also an
excellent method for Knowledge Management, since it captures
experience and improvement suggestions from completed projects [I,
16].

The PARSEQ method is evaluated in a case study, where requirements
selection decisions for an already released software product were revisited
by the decision-makers of the specific organisation. The market value and
development cost of the requirements that were candidates for a previous
release that was launched 18 months earlier, were re-estimated based on
the knowledge gained during the two following releases. The re-
estimation resulted in a new priority order, which in turn suggested that
some selected requirements should have been postponed and some
deferred requirements should have been selected for that release. Each
such suspected inappropriate selection was analysed in order to
understand the grounds for each decision, which in turn lead to the
identification of several areas of process improvements.

The paper is structured as follows. Section 2 presents the PARSEQ
methods and its main steps. In Section 3, the case study operation is
described and the main results are reported. Section 4 discusses the
validity of the findings and the generality of the approach outside the
specific case study context. Conclusions and directions of further research
are given in Section 5.

Improving Requirements Selection Quality in Market-Driven Software Development

89

Post-Release Analysis of Requirements Selection Quality - An Industrial Case Study

2. The PARSEQ Method

Retrospective evaluation of software release planning may give a valuable
input to the identification of process improvement proposals. In
particular, post-release analysis of the consequences of previous decision-
making may be a valuable source of information when finding ways to
improve the requirements selection process.

The PARSEQ method is based on a systematic analysis of candidate
requirements from previous releases. By identifying and analysing a set of
root causes to suspected incorrect requirements selection decisions, it is
hopefully possible to find relevant improvements that are important when
trying to increase the specific organisation’s ability to plan successful
software releases.

In order to perform the PARSEQ method the following foundation

practices are required:

+ A database with continuously incoming requirements that are dated
at arrival and tagged with a refinement state.

¢ Methods for estimating each requirements’ cost and value. The esti-
mations are saved in the database.

+ Multiple releases of the product and the requirements from prior
releases are saved in the database.

« Employees who have decision-making experience from prior
releases are available.

PARSEQ is divided into 4 steps: requirements sampling, re-estimation of
cost and value, root cause analysis, and elicitation of improvements, as
shown in Fig 1. The method uses a requirements database as input and
assumes that information is available in the database regarding when a
requirement is issued and in which release a requirement is implemented.
The output of the method is a list of process improvement proposals.
Each step in PARSEQ is subsequently described in more detail.

Requirements sampling. The main input to the post-release analysis is a
list of requirements that were candidates for a previous product release
that now has been out on the market for a time period long enough to
allow for an assessment of the current market value of its implemented
requirements. First, such a relevant previous release is selected

90

Improving Requirements Selection Quality in Marker-Driven Software Development

2. The PARSEQ Method

Requirements
database

A
Requirements
sampling Sub-_set of
previous
candidates

—

A
Re-estimation of Post
value and cost ost-
release
priority
list
Root cause
analysis Root
causes
Elicitation of p
improvements rrocess
improvement
proposals

Figure 1. An outline of the activities and products of the PARSEQ method.

(subsequently called reference release). Secondly, the requirements database
is examined and those requirements that were candidates for the reference
release are retrieved. The previous candidates are requirements that were
suggested and dated prior to the reference release, but were not
implemented before the reference release, i.e. the candidate requirements
were cither implemented in the reference release or in a subsequent
release, or they were rejected.

The purpose of the sampling is to compose a reasonably small but
representative sub-set of requirements, since the complete database may
be too large to investigate in the post-release analysis. The sample should
include requirements that were selected for implementation in the
reference release as well as postponed or rejected requirements. The
requirement set is thereby useful for the analysis as it consists of typical
examples of release planning decisions.

Improving Requirements Selection Quality in Market-Driven Software Development 91

Post-Release Analysis of Requirements Selection Quality - An Industrial Case Study

The requirements sampling can be performed in a number of ways,
such as concentrating on a special market segment or on a difficult part of
the product or on particularly difficult decisions. However, if the sample
is supposed to represent the whole product and its market, the sample
should be as broad as possible. The following types of requirements may

then be excluded:
+ Very similar requirements, since they do not extend the sample.

 Requirements dated several releases ago, as they may have evolved
out of scope.

 Requirements dated recently, since their cost and value are not yet
estimated.

¢+ Requirements estimated to have a very long or very short imple-
mentation time, as they are atypical and likely to be split or joined.

The output from the requirements sampling is a reasonable amount of
requirements, high enough to be representative, yet low enough to allow
the following steps of PARSEQ to be completed within reasonable time.

Re-estimation of value and cost. The requirement sample is input to
the next step of PARSEQ, where a re-estimation of current market value
and actual development cost is made in order to find suspected
inappropriate decisions that can be further analysed. As the reference
release has been out on the market for a while, a new assessment can be
made, which applies the knowledge gained after the reference release was
launched, which presumably should result in more accurate priorities.
The re-estimation is made to find out how the organisation had decided
for the reference release, i.e. which requirements that would have been
selected, if they knew then what they know now. With todays knowledge,
about market expectations and development costs, a different set of
requirements may have been selected for implementation in the reference
release. If this is not the case, either the organisation has not learned
anything since the planning of the reference release, or the market has not
changed at all.

The implemented requirements have a known development cost
(assuming that outcome of the actual implementation effort is measured
for each requirement), but the postponed or rejected requirements need
to be re-estimated based on the eventual architectural decisions and the
knowledge gained from the actual design of the subsequent releases.

92

Improving Requirements Selection Quality in Marker-Driven Software Development

2. The PARSEQ Method

By using, for example, a cost-value prioritisation approach with
pairwise comparisons [9, 10], an ordered priority list can be obtained
where the requirements with a higher market value and a lower cost of
development are sorted in the priority order list before the requirements
with a lower market value combined with a higher development cost.

The purpose of the re-estimation is to apply the knowledge that has
been gained since the product was released, to discover decisions that
would have been made differently today. The discrepancies between the
decisions made in the planning of the reference release and the post-
release prioritisation are noted and used in the root cause analysis. The
output of this step is thus a list of requirements that was given a high post-
release priority but were not implemented in the reference release, as well
as requirements with a low post-release priority but still implemented in
the reference release.

Root cause analysis. The purpose of the root cause analysis is to
understand on what grounds release-planning decisions are made. By
discussing the decisions made in prior releases, it may be possible to create
a basis for the elicitation of process improvement proposals.

The output of the re-estimation, i.e. the discrepancies between the
post-release prioritisation and what was actually selected for
implementation in the reference release, is analysed in order to find root
causes to the suspected inappropriate decisions. This analysis is based on a
discussion with persons involved in the requirements selection process.
The following questions can be used to stimulate the discussion and
provoke insights into the reasons behind the decisions:

« Why was the decision made?

+ Based on what facts was the decision made?
 What has changed since the decision was made?
+ When was the decision made?

« Was it a correct or incorrect decision?

Guided by these questions, categories of decision root causes are
developed. Each requirement is mapped to one or several of these
categories to illustrate the decision disposition. This mapping of
requirements to root cause categories is the main output of this step
together with the insights gained from the retrospective reflection.

Improving Requirements Selection Quality in Market-Driven Software Development 93

Post-Release Analysis of Requirements Selection Quality - An Industrial Case Study

Elicitation of improvements. The outcome of the root cause analysis is
used to facilitate the elicitation of improvement proposals. The objective
of this last step of PARSEQ is to arrive at a relevant list of high-priority
areas of improvement. The intention is to base the discussion on strengths
and weaknesses of the requirements selection process and to identify
changes to current practice that can be realised. The following questions
can assist to keep focus on improvement possibilities:

« How could we have improved the decision-making?
o What would have been needed to make a better decision?

« Which changes to the current practices can be made to improve
requirements selection in the future?

The results of PARSEQ can then be used in a situated process
improvement programme where process changes are designed, introduced
and evaluated. These activities are, however, out of the scope of the
presented method.

3. Case Study

PARSEQ was tried out in a case study to investigate its feasibility and gain
more knowledge for future research on post-release analysis of
requirements selection as a vehicle for process improvement. In the first
section of this chapter, the case study site and context is described as well
as the tool used in the study. Next, the realisation of the PARSEQ method
is described, i.e. how each step of the method was carried out in the case
study. Finally, the results from the case study are reported, including a
number of improvement proposals.

3.1 Background

The case study site is a small-sized organisation developing stand alone
software packages. The organisation stores the requirements for the
software package in a database that contains already implemented
requirements as well as suggestions for new requirements. Each
requirement is tagged with a certain state to describe its level of
refinement. Examples of states include New, Accepted for prioritisation,

94 Improving Requirements Selection Quality in Marker-Driven Software Development

3. Case Study

Accepted for

implementation

Figure 2. A simplified version of the requirement state model in the database.

Accepted for

prioritisation

Accepted for implementation and Done, see Fig. 2. When a requirement
for some reason is not appropriate for the package, its state is set to
Rejected. Other states include Clarification needed, Insignificant
improvement, Badly documented, Duplicate and Draft.

To analyse the requirements in the database a commercial tool for
product management and requirements management, Focal Poi nt! was
applied. Focal Point has capabilities for eliciting, reviewing, structuring,
and prioritising requirements as well as for planning optimal releases that
maximise the value for the most important customers in relation to
development time and available resources. One prioritisation method in
Focal Point is pair-wise comparisons [9]. It is helpful for keeping up
concentration and objectivity and Focal Point also provides solutions for
reducing the number of comparisons and motivating the priorities. This
tool also aids in visualising the decision in a number of different chart
types. Due to redundancy of the pair-wise comparisons, the tool also
includes capabilities such a consistency check that describes the amount
of judgement errors that are made during the prioritisation.

3.2 Operation

The participating anonymous organisation was given the task to use
PARSEQ to reflect on a set of decisions made during prior releases. The

1. For more information see www.focalpoint.se.

Improving Requirements Selection Quality in Market-Driven Software Development 95

Post-Release Analysis of Requirements Selection Quality - An Industrial Case Study

case study was executed during a one-day session, with approximately 5
hours of efficient work.

Requirements sampling. A release that was launched 18 months ago
was selected as reference release, and since then another release has been
launched and yet another one is planned to be released in the near future.

The requirements database contains more than 1000 requirements
that were issued before the reference release and implemented in either
that release or postponed to one of the following ones. Of these
requirements, 45 was considered a reasonable number to extract. The
requirements were equally allocated over the three releases: A, B and C,
i.e. 15 were implemented in the reference release A, 15 in release B and
another 15 were planned for release C.

Note that the releases were not equally large in terms of number of
requirements, i.e. the samples are not representative. The 15 requirements
from release A were selected among 137 requirements, while the releases B
and C only consisted of 28 and 26 requirements, respectively as shown in
Fig. 3.

The requirements were selected randomly from a range where the ones
estimated as having a very high, or very low, development effort had been
removed, since they are not considered as representative. Very similar
requirements had also been excluded to get an as broad sample as possible,
as well as very new ones as development costs had not been estimated.

All market changes, architectural decisions and new knowledge gained
during the 18 months between the reference release A and release C could

150
135 +
120 -
105 -
90
75 -
60 -
45 -
30 -

5 B B

A B Cc

Figure 3. Number of implemented requirements (dark grey) in each release
compared to the sample (light grey).

96

Improving Requirements Selection Quality in Marker-Driven Software Development

3. Case Study

be applied. The selected requirements are all in the states Done or
Accepted for implementation; no rejected or postponed requirements
were considered in the analysis. The requirements sampling took
approximately one hour and was performed by a developer before the
session.

Re-estimation of cost and value. The re-estimation was performed to
find out what requirements the organisation would have selected for
release A if they knew then what they know now. With the knowledge
gained since the reference release was planned, it is possible that a
different set of requirements would have been selected. However, it is
important to note that one additional requirement in the release would
imply that another one has to be removed, in order to keep the budget

and deadline.

The market value was estimated using pair wise comparisons and the
cost was estimated in number of hours, based on expert judgement. The
following question was used in the pairwise comparison of the candidates
to the reference release: “Which of the requirements would, from a
market perspective, have been the best choice for release A?”. This
question was carefully chosen with the objective of enforcing focus on the
retrospective nature of the estimation. Thus, the assessment concerned
the market value given what is known today, and not whether the
decisions made during the reference release were correct or not, given the
knowledge available at that time.

The 45 requirements were re-estimated by using the Focal Point tool
and pair-wise comparisons to prioritise them based on the selected
question. The prioritisation was performed by a marketing person, who
has good knowledge of customer demands, guided by a developer, and
was attended by the two researchers. Note that both the marketing person
and developer had performed the original estimations as well, otherwise
the results may be biased by differences in personal opinions rather than a
desired effect of changes in priorities over time. When uncertainties or
disagreements of a comparison were discovered, the issue was briefly
discussed to come to an agreement. The consistency check showed that
the prioritisation was carefully performed and only two comparisons had
to be revised and changed.

The total time of the prioritisation was just over one hour, in which 70
comparisons were made. The short time is thanks to the algorithms in the
tool, which reduces the number of comparisons and points out the

Improving Requirements Selection Quality in Market-Driven Software Development

97

Post-Release Analysis of Requirements Selection Quality - An Industrial Case Study

inconsistencies among the comparisons [2, 8]. Otherwise, the number of
comparisons would have been n(n-1)/2, which in this case equals 990.

The development cost of the requirements that were actually
implemented was known, while the development cost of the requirements
that are planned for a coming release had to be re-estimated. However, it
was decided to use the available cost estimations, since the estimates
recently had been reviewed and updated.

A bar chart was created in the Focal Point tool to visualise and facilitate
analysis of the decisions, see Fig. 4. The grey bars illustrate the
requirements implemented in release A, and the white bars represent
requirements implemented or planned for release B or C. The
prioritisations were performed on a ratio scale with nine steps including a
neutral value. The pair-wise comparisons were input to matrix
calculations implemented in Focal Point and used to calculate cigen-
values, averages and normalised relative priorities in the range between 0
and 1 (for more information on the details, see [8, 9]). Thus, it is possible
to subtract the cost from the value, getting a resulting priority, which is
marked by the black arrows in the bar chart [6]. The bars are sorted on
their resulting priority from top down. Thus the bar chart shows the ideal
order in which requirements should be implemented if only customer
value and development costs were to be considered. The bar chart does
not take requirements dependencies into account.

Some of the requirements were not identified in release A, but turned
out to be important when they later were identified. Furthermore,
requirements interdependencies, release themes and architectural choices
complicate the situation and thus this ideal order is not the most suitable
in reality.

In an ideal case, the requirements at the top of the bar chart would
have consisted of requirements from release A. The requirements at the
top of the bar chart are estimated as having the highest value and the
lowest cost and should therefore be implemented in an as early release as
possible. The requirements at the bottom are estimated as having the
lowest value and the highest cost and should therefore be implemented in
a later release or, in some cases, not at all.

The bar chart illustrates the discrepancies between the two estimation
occasions and points out the requirements to discuss.

Root cause analysis. The bar chart is used in the Root cause analysis, to
find out the rationale for the release-planning decisions. The discussion

98 Improving Requirements Selection Quality in Marker-Driven Software Development

3. Case Study

Specially ordered by I | Req 266 N
customer. | | Req 867 ol -
\ Req 143 \
[Req 733 |
Why were not some of [reaioro
the requirements imple- [[Reases
mented earlier? Their pri- | Req 761

orities are apparently very

high.

Req 1052
Red 980

Legend:

I:I Implemented in the reference release

|:| Postponed to later releases

I Resulting priority (value minus cost)

Req 479
Reda1g
| | Reaara

Reg 109

R 192

Reqg 382

J Req 15
| Feaam

Why were some of the

Req 271

| requirements

Red 226

| Reassn

Reg 11

Req 946

Red 1004

Req 3#9

- *

Reqg 820

Req 1064

Regdl |

> % 4

Reqg 372

implemented so early?
Their priorities
apparently very low.

are

Re-estimated relative cost

Figure 4.
the Focal Point tool.

Re-estimated relative value

Bar chart from the post-release analysis of the requirements in the database using

Improving Requirements Selection Quality in Market-Driven Software Development

99

Post-Release Analysis of Requirements Selection Quality - An Industrial Case Study

was attended by three representatives from the organisation: one
marketing person and two developers, as well as the two researchers.

The top 15 requirements were scanned to find the ones that were
estimated differently in the re-estimation, i.e. the ones that originate from
release B or C. These were discussed to answer the main question “Why
wasn't this implemented earlier?” and motivations to the decision was
stated by the participants. In a similar manner, the 15 requirements at the
bottom of the bar chart were investigated, to find the ones that originate
from release A and B. These requirements were discussed concerning the
question “Why did we implement this so early?”. Notes were taken of the
stated answers for later categorisation of the release-planning decision root
causes.

After the meeting, the researchers classified the stated decision root
causes into a total of 19 different categories, inspired by the notes from
the meeting. A sheet with the requirements that had been discussed
during the root cause analysis was compiled, which the organisation
representatives used to classify the requirements. The result from the
classification is displayed in Table 1 and Table 2, where 4 categories have

been removed as they were not used.

Elicitation of improvements. Another purpose of the case study was to
capture improvement proposals by encouraging the participants to, in
connection with each requirement, state some weak areas in need of
improvement. This also appeared to be difficult since each decision was
dependent on the specific context or situation. Therefore, no list of
improvement proposals was compiled at this stage. Instead, more generic
improvement proposal areas were elicited by investigating Table 1 and
Table 2 and the notes taken from the root cause analysis discussion. This
is described below.

3.3 Results

The case study showed that it was possible to use the proposed method in
practice. The release-planning decisions that were made in prior releases
could be categorised and analysed and process improvement areas could
be identified. The results indicate that the organisation has gained a lot of
knowledge since the planning of the reference release, which is a
promising sign of evolution and progress.

100 Improving Requirements Selection Quality in Marker-Driven Software Development

3. Case Study

Table 1. “Why was this requirement implemented so early?”

N [— e N N
[*2Y «©Q w D~ o~ N D~ —
— 138 — o~ o~ o0 o <
T 5/ 8|8/ 8|%|%
Root Causes A A A
RC1: Under-estimation of development effort
E) &| RC2: Part of release theme
o @»
w2 . .
B RC3: A qtpck fix to provide customers oppor-
tunity to give feedback
RC4: Requirement ordered by a specific cus-
tomer
RC5: Requirement specifically important for a
key customer
-
L . .
£ 2| RC6: Over-estimation of customer value
S z
2w .
5 2| RC7: Impressive on a demo
RC8: Competitors have it, therefore we must
also have it
RC9: Competitors do not have it; gives com-
petitive advantage
Table 2. “Why was this requirement not implemented earlier?”
=) [\
o©y o0 [— ') < NS o D~
~F o0 < \o < 0 D~ | \D \o
o [enl o [enl ot [enl o [enl o
Root Causes A AR AR
RC10: Over-estimation of develop-
ment effort
- RC11: Insufficient understanding
.2 | of scale-up effects
5
- . .
£ & RC12: No good design solution
£ 4| available
2 | RC13: Sub-optimal decision based
. on requirements partitioning
RC14: Only partial implementa-
tion in a first increment
. | RC15: Requirement ordered by a
(22} = .
32 specific customer

Improving Requirements Selection Quality in Market-Driven Software Development 101

Post-Release Analysis of Requirements Selection Quality - An Industrial Case Study

The causes for implementing requirements earlier than necessary are
shown in Table 1. Most of the root causes originate from wishing to
satisfy customer demands, cither one specific customer or the whole
market. However, the evaluation showed that the customer value was not
as high as expected. On the other hand, it is difficult to measure “good-
will” in terms of money, and therefore these decisions may not be
essentially wrong. Other root causes of implementing requirements earlier
than necessary concern implementation issues, such as incorrect effort
estimations, which lead us to believe that estimations ought to be more
firmly grounded. Another reason concerns release themes which is a kind
of requirements interdependency that is necessary to respect. Developing
and releasing small increments of requirements, in order for customers to
give feedback early, is a good way of finding out more exactly what
customers want, while assigning a low development effort.

As Table 2 shows, the reasons for implementing requirements later
than optimal mainly apply to implementation issues. The category
complying with the most requirements regards partial implementation in
a first increment, which means that it was implemented earlier, but only
partially and therefore the requirement remains.

The root cause tables and the material from the discussion were used
in the investigation of possible improvement areas. Five areas were found,
which could be linked to the root causes, which are described below.

Trim the division of large requirements into smaller increments.

The manner in which large requirements, affecting several components or
having a large implementation effort, are divided into smaller increments
can be more thoroughly investigated. The division can be done for several
reasons: to get customer feedback at an early stage, to investigate
alternative design solutions or to make small incremental improvements
of the functionality. Root causes number 3 and 14 deal with requirements
developed in increments and the discussions resulted in the idea that the
organisation would benefit from an improved increment planning.

Enhance the overall picture of related requirements

Some requirements were acknowledged as being related to other
requirements due to involving the same feature. These would probably
have benefited from creating an overall picture of the release so that all

102 Improving Requirements Selection Quality in Marker-Driven Software Development

3. Case Study

aspects of the specific feature were accounted for. In some cases a feature
involved several requirements and after implementing some of them the
developers felt content. The related requirements could instead have been
designed concurrently in one larger action to avoid sub-optimal solutions.
It would also have helped in identifying the most important requirements
for that feature. These requirements relations could be taken into
consideration more carefully as root cause number 13 describes.

Additional elicitation effort for usability requirements

It was recognised that the requirements dealing with the user interface did
not fulfil some special customer needs, as described by root cause number
11. The problem concerned scale-up effects and could have been
discovered through a more thorough requirements elicitation. Actions to
take include building prototypes and asking customers with special user
interface needs.

Improve estimations of market-value of features in competing
products

It seems that many requirements were implemented with the objective of
outperforming competitors, as reflected in root cause number 7, 8 and 9.
However, looking too much at what competitors have or what may look
nice on a prototype or demo may bring less value to the product than
expected. The value estimations of the competitors’ products may need to
be improved.

Improve estimations of development effort

Root causes number 1 and 10 concern over- and underestimations of the
development effort. Results from an earlier study indicate that the release
plan is very dependent on accurate time estimates, since the estimates
affect how many of the requirements that are selected [11]. Under-
estimation may result in an exceeded deadline and over-estimation may
exclude valuable requirements. Improving this area may enhance release-
planning and requirements selection quality.

Improving Requirements Selection Quality in Market-Driven Software Development 103

Post-Release Analysis of Requirements Selection Quality - An Industrial Case Study

4. Discussion

The case study participants found the one-day exercise interesting and
instructive. They all agreed that it was valuable to reassess previous
releases and reflect on the decisions made. It was during the root cause
analysis that the most learning occurred since the discussions between the
participants were very fruitful. A set of improvement issues to bear in
mind during requirements selection was assessed as valuable for future
releases.

Despite the fact that 20 out of 45 requirements were assessed as
belonging to the wrong release, there were few decisions that were
essentially wrong. Keeping in mind the knowledge available at the time of
the reference release, most release-planning decisions were correct, i.c.
market opportunities and risks have to be taken, incremental
development is applied and only a limited amount of time can be assigned
to requirements clicitation and evaluation. However, no matter how
successful organisation or product, there are always room for
improvements.

There are a number of validity issues to consider in the case study. First
of all, the data was not extracted from a representative sample because the
releases varied in size. Therefore there are probably many more
requirements from the largest release that would be interesting to
consider. Since the data only included requirements that were
implemented or postponed and no rejected requirements, there would be
more decisions to consider in a more thorough evaluation.

The criterion that was used to capture the true value of the
requirements appeared to be somewhat difficult to use. Since the
development cost was known in most cases, it was difficult for the
participants to concentrate on the customer value only, without implicitly
taking the cost into account. It was also difficult to, in retrospect, consider
the reference release and the value at that particular time without regard
of the situation today.

The prioritisation itself is also a source of uncertainty; when not
performed thoroughly, the bar chart may not show the appropriate
requirements priorities. Since the prioritisation is based on subjective
assessments, it is highly dependent on the persons involved. Nevertheless,
the consistency check proved that the prioritisation was performed
carefully and few judgment errors were made [9, 10].

104 Improving Requirements Selection Quality in Marker-Driven Software Development

5. Conclusions

As discussed in [1], it is important to consider the organisation’s
situation. If there are unfinished activities or underlying conflicts, the
atmosphere may not be appropriate for discussing the project’s problems.
Then the post-release analysis may cause participants to blame each other
instead of learning from the mistakes.

Finally, the decision categories that emerged during the root cause
analysis may not reflect the typical kinds of decisions. A different set of
requirements would probably generate a different set of categories, and
therefore these shall not be used by themselves. It is also possible that the
categories are formulated vaguely or incorrectly, so that their
interpretations differ.

The presented improvement areas are specific to the particular case
study organisation and need to be examined in further detail to point out
the exact measures to take. However, the participants state that the
exercise itself, imposing thought and reflection, may be more fruitful than
the particular improvement proposals.

5. Conclusions

The presented method for post-release analysis of requirements selection
quality, called PARSEQ, was tested in a case study where candidate
requirements for a previous release were evaluated in retrospect. The case
study demonstrated the feasibility of the method in the context of the
specific case and the results from the case study encourage further studies
of the method. This may support the hypothesis that the method is
generally applicable in the improvement of industrial processes for
market-driven requirements engineering in product software
development.

The following areas are interesting in further investigations of

PARSEQ:

o Include rejected requirements. The case study only included require-
ments that were planned for implementation in the reference
release or postponed to coming releases. It would be interested to go
through the set of rejected requirements and see if there exist sus-
pected inappropriate rejections, which may be of valuable input to
the elicitation of improvements.

Improving Requirements Selection Quality in Market-Driven Software Development 105

Post-Release Analysis of Requirements Selection Quality - An Industrial Case Study

o Selection quality metrics. Given that the requirements sample is rep-
resentative to the distribution of appropriate and inappropriate
decisions, it may be possible to use PARSEQ to provide numerical
estimations of the selection quality in terms of fractions of “good”
and “bad” decisions.

« Connect improvement proposals and root-causes. It is fairly easy to
extract root-causes from the discussion on misjudged requirements.
However, advancing from root-causes to improvement proposals
appeared more difficult. More investigation into support for find-
ing improvement proposals is needed.

* Generalisation of root cause categories. If many case studies applying
PARSEQ are carried out in various contexts, it may be possible to
derive a complete and generally applicable set of root cause catego-
ries that are common reasons for inappropriate decisions. This
knowledge may be very valuable in the research of requirements
engineering methods in the product software domain.

Acknowledgements

The authors would like to thank the participating anonymous organisation for the industrial
requirements engineering expertise and confidential data, without which this study would not
have been possible. We would also like to thank Magnus Hoglund at Focal Point for contributing
to this work with his valuable time and knowledge.

References

(1]

(2]

Birk, A., Dingsoyr, T., Stilhane, T., “Postmortem: Never Leave a Project without It”, IEEE
Software, pp.43-45, May/June 2002.

Carmone, EJ., Kara, A., Zanakis, S.H., “A Monte Carlo Investigation of Incomplete Pairwise
Comparison Matrices in AHP”, European Journal of Operational Research, Vol 102, pp. 538-
553, 1997.

Carlshamre, P, Regnell, B., “Requirements Lifecycle Management and Release Planning in
Market-Driven Requirements Engineering Processes”, IEEE International. Workshop on the
Requirements Engineering Process (REP’2000), Greenwich, UK, September 2000.

Carlshamre, P, Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J., “An Industrial Sur-
vey of Requirements Interdependencies in Software Release Planning”, IEEE International
Conference on Requirements Engineering (RE’01), pp. 84-91, 2001.

Cleland, D.1., Project Management, McGraw-Hill, 1995.

Fenton, N.E., Software Metrics - A Rigorous Approach, Chapman & Hall, 1994.

Higgins, S. A., de Laat, M., Gieles, P. M. C., Guerts, E. M., “Managing Product Require-
ments for Medical 1T Products”, JEEE International Conference on Requirements Engineering
(RE02), pp. 341-349, 2002.

Karlsson, J., Olsson, S., Ryan, K., “Improved Practical Support for Large-scale Requirements
Prioritising”, Requirements Engineering, Vol 2, pp. 51-60, 1997.

106

Improving Requirements Selection Quality in Marker-Driven Software Development

5. Conclusions

[9] Karsson, J., Ryan, K., “A Cost-Value Approach for Prioritizing Requirements”, JEEE Sofi-
ware, pp. 67-74, Sept/Oct 1997.

[10] Karlsson, J., Wohlin, C., Regnell, B. “An Evaluation of Methods for Prioritizing Software
Requirements”, Information and Software Technology, Vol 39(14-15): 939-947, 1998.

[11] Karlsson, L., Dahlstedt, A.G., Natt och Dag, J., Regnell, B., Persson, A., “Challenges in Mar-
ket-Driven Requirements Engineering - an Industrial Interview Study”, International Work-
shop on Requirements Engineering: Foundations of Software Quality (REFSQ’02), Essen,
Germany, September 2002.

[12] Lauesen, S., Vinter, O., “Preventing Requirements Defects: An Experiment in Process
Improvement”, Requirements Engineering Vol 6:37-50, 2001.

[13] Paulk, M. C., Weber, C. V., Curtis, B., The Capability Maturity Model: Guidelines for Improv-
ing the Saftware Process, Addison Wesley, 1995.

[14] Potts, C., “Invented Requirements and Imagined Customers: Requirements Engineering for
Off-the-Shelf Software”, Proceedings of the Second IEEFE International Symposium on Require-
ments Engineering (RE’95), pp. 128-30, 1995.

[15] Regnell, B., Beremark, P, Eklundh, O., “A Market-Driven Requirements Engineering Proc-
ess - Results from an Industrial Process Improvement Programme”, Requirements Engineering,
3:121-129, 1998.

[16] Rus, I, Lindvall, M., “Knowledge Management in Software Engineering”, [EEE Software,
pp.26-38, May/June 2002.

[17] Sawyer, P, “Packaged Software: Challenges for RE”, Proc. 6th Int. Workshop on Requirements
Engineering: Foundations of Software Quality (REFSQ’00), Stockholm, Sweden, pp 137-142,
June 2000.

[18] Ulrich K.T., Eppinger, S.D., Product Design and Development, McGraw-Hill, 2000.

[19] Yeh, A., “Requirements Engineering Support Technique (REQUEST): A Market Driven
Requirements Management Process”, IEEE Second Symposium of Quality Software Develop-
ment Tools, pp. 211-223, New Orleans USA, May 1992.

Improving Requirements Selection Quality in Market-Driven Software Development 107

Post-Release Analysis of Requirements Selection Quality - An Industrial Case Study

108 Improving Requirements Selection Quality in Marker-Driven Software Development

PAPER 'V

Simple Is Better? -An Experiment on Requirements
Prioritisation

Lena Karlsson, Patrik Berander, Bjirn Regnell, Claes Woblin

V

Proceedings of the 3rd Conference on Software Engineering Research and Practise in Sweden
(SERPS03), Lund, Sweden, October 2003.

Abstract

The process of selecting the right set of requirements for a product release
is highly dependent on how well we succeed in prioritising the
requirements candidates. There are different techniques available for
requirements prioritisation, some more elaborate than others. In order to
compare different techniques, a controlled experiment was conducted
with the objective of understanding differences regarding time
consumption, ease of use, and accuracy. The requirements prioritisation
techniques compared in the experiment are the Analytical Hierarchy
Process (AHP) and a variation of the Planning Game (PG), isolated from
Extreme Programming. The subjects were 15 Ph.D. students and one
professor, who prioritised mobile phone features using both methods. It
was found that the straightforward and intuitive PG was less time
consuming, and considered by the subjects as easier to use, and more
accurate than AHP.

Improving Requirements Selection Quality in Market-Driven Software Development 109

Simple Is Better? -An Experiment on Requirements Prioritisation

1. Introduction

Software requirements need to be prioritised when the elicitation process
has yielded more requirements than can be implemented at once. There
exist a number of different techniques and tools to use for requirements
prioritisation. However, some software organisations may not have
enough resources to buy or develop a tool and therefore it is interesting to
investigate techniques that do not need computer support.

This paper describes an experiment aimed at comparing two
requirements prioritisation techniques. The intention with the
experiment is to compare a rudimentary prioritisation technique
(Planning Game) with a more elaborate one (Analytical Hierarchy
Process). The main variables that were investigated were the difference in
time-consumption, accuracy, and ease of use. The experiment was
performed during a one-day session with 15 Ph.D. students and one
professor as subjects. Instead of real requirements, the subjects prioritised
features of mobile phones, which is a well-known product with a range of
features to choose from.

In order to investigate the trade-off between low price and high value,
the prioritisation was performed with respect to both Price and Value.
The experiment also aimed at investigating if the preferred choice of
prioritisation technique depended on the number of features involved.

As expected, the results indicate that the more rudimentary technique
was less time-consuming and a majority of the subjects found it easier to
use. Most subjects also found the results from the rudimentary technique
more accurate, which is a bit surprising.

The paper is structured as follows. Section 2 explains and discusses the
matter of requirements prioritisation in general and the two compared
techniques in particular. Section 3 describes the design of the experiment
and brings up some validity issues. Further, Section 4 presents the results
discovered in the experiment while Section 5 discusses what the results
may imply. Finally, the paper is concluded in Section 6.

2. Requirements Prioritisation

The ultimate goal of any software organisation is to create systems that
meet the stakeholder demands. Since there are usually more requirements
than can be implemented, decision makers must face the dilemma of

110 Improving Requirements Selection Quality in Marker-Driven Software Development

2. Requirements Prioritisation

selecting the right set of requirements for their next product release. In
order to select the correct set of requirements, the decision makers must
understand the relative priorities of the requested requirements [18]. By
selecting a subset of the requirements that are valuable for the customers,
and can be implemented within budget, organisations can become more
successful on the market. There are several different techniques to choose
from when prioritising requirements. Some techniques are based on more
or less structured sorting algorithms, while others use pair-wise
comparisons or numeral assignment [6].

The two techniques compared in this paper are (1) the Analytical
Hierarchy Process (AHP) that is based on pair-wise comparisons [14],
and (2) the Planning Game (PG) [1] that uses a sorting algorithm. The
two techniques are further described below.

2.1 Analytical Hierarchy Process (AHP)

AHP is a decision-making method that involves comparing all possible
pairs of requirements, in order to determine which of the two is of higher
priority, and to what extent. If there are 7 requirements to prioritise, the
total number of comparisons to perform is n(n-1)/2. This relation results
in a dramatically increasing number of comparisons as the number of
requirements increases. However, due to redundancy of the pair-wise
comparisons, AHP is rather insensitive to judgement errors. Furthermore,
AHP includes a consistency check where judgement errors can be identified
and a consistency ratio can be calculated.

In AHD, any system structure can be abstracted into a hierarchy that
explains the system’s components and their functions. Hence, AHP takes
the whole system into account during decision-making since it prioritises
the components on each level in the hierarchy [14].

Karlsson et al. [10] performed an evaluation of six different
prioritisation techniques based on pair-wise comparisons, including AHP.
The authors concluded that AHP was the most promising approach
because it is based on a ratio scale, is fault tolerant, and includes a
consistency check. AHP was the only technique in the evaluation that
satisfied all these criteria. Furthermore, it includes a priority distance, i.e.
a ratio scale, while the other approaches only provided the preferred order.
However, because of the rigour of the technique, it was also the most
time-consuming one in the investigation.

Improving Requirements Selection Quality in Market-Driven Software Development 111

Simple Is Better? -An Experiment on Requirements Prioritisation

Since the major disadvantage of AHP is the time consumption for
large problems, different investigations have been performed in order to
decrease the number of comparisons, and thus the time needed [4, 15].
The results of these have been that it is possible to reduce the number of
comparisons with as much as 75 % [7]. However, when reducing the
number of comparisons, the number of comparisons that are redundant is
also reduced, and hence the possibility to identify inconsistent
judgements [10].

2.2 Planning Game (PG)

In the last years, there have been an increased use and interest in agile
methodologies, such as Extreme Programming (XP). Agile methodologies
are based on streamlined processes, attempting to reduce overhead such as
unnecessary documentation. The interest and use of agile methodologies
have been both from industry and academia. Tom De Marco has aligned
to this interest and have expressed that “XP is the most important
movement in our field today” [2].

XP is composed of 12 fundamental practices and the Planning Game
(PG) is one of them. For the purpose of this experiment we have isolated
PG despite that the practices affect each other according to [1].

PG is used in planning and deciding what to develop in a XP project.
In PG, requirements (written on so called Story Cards) are elicited from
the customer. When the requirements are elicited, they are prioritised by
the customer into three different piles: (1) those without which the
system will not function, (2) those that are less essential but provide
significant business value, and (3) those that would be nice to have [1].

At the same time, the developers sort the requirements by risk into
three piles: (1) those that they can estimate precisely, (2) those that they
can estimate reasonably well, and (3) those they cannot estimate at all.
Further, the developers estimate the time required to implement each
requirement.

Based on the time-estimates, or by choosing the cards and then
calculating the release date, the customers prioritise the requirements
within the piles and then decide which requirements that should be
planned for the next release [12].

The result of this easy and straightforward technique is a sorted vector
of requirements. This means that the requirements are represented as a

112 Improving Requirements Selection Quality in Marker-Driven Software Development

3. Experiment Design

ranking on an ordinal scale without the possibility to see how much more
important one requirement is than another.

2.3 Cost-Value Trade-Off

When prioritising requirements, it is often not enough to just prioritise
how much value the requirement has to the customers. Often other
factors such as risk, time, cost and requirements interdependencies should
be considered before deciding if a requirement should be implemented
directly, later, or not at all. For example, if a high-priority requirement
would cost a fortune, it might not be as important for the customer as the
customer first thought [11]. This means that it is important to find those
requirements that provide much value for the customers at the same time
as they cost as little as possible. Or as Wiegers puts it: “Prioritisation means
balancing the business benefit of each requirement against its cost and any
implications it has for the architectural foundation and future evolution of the
product” [18].

Karlsson and Ryan [8] use AHP as an approach for prioritising both
Value and Cost in order to implement those requirements that give most
value for the money. The data can be further used to provide graphs to
visualise the Value-Cost ratio between the requirements.

In PG, a similar approach is taken when requirements are prioritised
based on both customer value and implementation effort. The
information that could be extracted from PG should hence be possible to
use in the same way as it was used in [8] with the difference that the result
from PG is based on an ordinal scale instead of a ratio scale.

3. Experiment Design

This section describes the experiment approach and execution as well as
the analysis performed by the researchers. Finally, it is concluded with a
number of validity issues.

3.1 Experiment Approach

The experiment was carried out with a repeated measures design, using
counter-balancing [13, 19]. The 16 subjects in the convenient sample
included 15 Ph.D. Students in their first or second year, and one

Improving Requirements Selection Quality in Market-Driven Software Development 113

Simple Is Better? -An Experiment on Requirements Prioritisation

professor. The experiment was carried out during a one-day session,
which included an introduction to the task, the experiment itself, a post-
test, and finally a concluding discussion of the experiment
implementation. In addition, before the experiment a pre-test was
performed, and a few weeks after the experiment a second post-test was
conducted.

The two requirements prioritisation techniques described above
(Section 2.) were used as input to the experiment, but were modified in
order to be further comparable. The system aspect of AHP was not
considered, and thus there is only one level of the hierarchy in this
investigation. [14]

In PG, the piles were labelled according to Value and Price: (1)
Necessary, (2) Adds to the value and (3) Unnecessary, and (1) Very high
price, (2) Reasonable price and (3) Low price, respectively. In practice, PG
is performed by a customer representative and a developer, but in this
experiment each subject had to play both roles.

3.1.1 Research Hypotheses. The goal of the experiment is to compare
two prioritisation techniques and to test the following hypotheses:

1. The average time to conclude the prioritisations is larger when
using AHP.

2. The ease of use is considered higher for PG.
3. AHP reflects the subjects’ views more accurately.

The objective dependent variable average time to conclude the
prioritisations was captured by measuring each subject’s time to conclude
the tasks. The subjective dependent variables ease of use and reflecting the
subjects’ views were captured by questionnaires after the experiment.

3.1.2 Pilot Experiment. A pilot experiment was performed before the
main study to evaluate the design. Six colleagues participated and they
prioritised ten features each, with both techniques. After this pilot
experiment, it was concluded that the experiment should be extended to 8
and 16 features in order to capture the difference depending on the
number of factors to prioritise. Another change was to let the subjects use
the techniques and criteria in different orders to eliminate order effects.
Further, changes to the AHP sheets included to remove the scale and
instead use the “more than” and “less than” signs so that the participants

114 Improving Requirements Selection Quality in Marker-Driven Software Development

3. Experiment Design

would not focus on the numbers, and to arrange the pairs randomly on
each sheet.

3.1.3 Pre-Test. Before the session, the subjects were exposed to a pre-test
in order to get a foundation for sampling. A questionnaire was sent out by
e-mail in order to capture the knowledge about mobile phones and the
subjects’ knowledge and opinion of the two prioritisation techniques. The
pre-test was used to divide the subjects by random into two groups with
as similar characteristics as possible.

Another objective with the pre-test was to investigate how well the
subjects could apprehend the price of mobile phone features. Nine of the
16 subjects stated that they consider buying a new mobile phone at least
every second year, and therefore we believe that their knowledge of mobile
phone prices is fairly good.

3.1.4 Experiment Execution. The domain in this experiment was
mobile phones and according to the pre-test, all subjects were familiar
with this context. The factors to prioritise were mobile phone features, for
example SMS, Games, WAP, Calendar, etc. In this experiment, the
prioritisation criteria were Value for me, which corresponds to how
important and interesting the subject find the feature, and Added price on
the phone, which is an estimation of how much the feature might add to
the actual mobile phone price. Note that this is not the same as
development cost, which would be difficult for laymen to estimate.

The Value criterion has probably been regarded by most of the subjects
when buying or considering buying a mobile phone. The Price criterion
may also be accounted for since considering buying and comparing
mobile phones gives a clue of how much the features add to the price.
Thus, there is a trade-off between Value and Price when buying a mobile
phone.

One intention of the experiment was to investigate if a different
number of requirements would affect the choice of preferred technique.
Therefore, half of the subjects were asked to prioritise 8 features, while the
other half prioritised 16 features. Another intention was to investigate if
the order in which the techniques were used would affect the choice of
preferred technique. Therefore, half of the subjects started with AHP and
half started with PG. The order of the Value and Price was also
distributed within the groups in order to eliminate order effects.

Improving Requirements Selection Quality in Market-Driven Software Development 115

Simple Is Better? -An Experiment on Requirements Prioritisation

The experiment was conducted in a classroom with the subjects spread
out. Each subject was given an experiment kit consisting of the AHP

sheets and the PG cards.

For AHP, one sheet per criterion and person had been prepared, with
all possible pair-wise combinations of the features to compare. For the
purpose of eliminating order effects, the order of the pairs was randomly
distributed so every subject got different order of the comparisons. With
16 features to compare, there was 16(16-1)/2 = 120 pair-wise
comparisons for Value and Price, respectively. With 8 features, there was
8(8-1)/2 = 28 pair-wise comparisons for both Value and Price. In between
cach pair in the sheets there was a scale where the difference of the
requirements’ Value or Price was circled, see Figure 1. In order to be able
to try different scales, no scale numbers were written on the sheets.
Instead, a scale with 9 different “more than”, “equal” and “less than”
symbols was used. The further to the left a symbol was circled, the more
valuable (or expensive) was the left feature than the right one. If the
features were equally valuable (or expensive) the “equal” symbol was
circled.

For PG, the subjects were given two sets of cards (one for Value and one
for Price) with one mobile phone feature written on each. The cards were
sorted into three piles, separately for the Value criterion and the Price
criterion, see Figure 2. The piles represent (1) Necessary, (2) Adds to the

Which of the two features are most valuable to you?
Alarm <<<< <<< << < > >> >>> >>>> Timer
WAP <<<< <<< << < > >> >>> >>>> SMS

Figure 1. Example of AHP sheet

1 2 3
o i
i SMS | WaAP u Games
1 2 3
1 L 1 1 . 1
Timer _l MMS i WAP

Figure 2. Example of PG cards

116 Improving Requirements Selection Quality in Marker-Driven Software Development

3. Experiment Design

value and (3) Unnecessary, for the Value criterion, and (1) Very high
price, (2) Reasonable price and (3) Low price, for the Price criterion.

Within the piles, the cards were then arranged so that the most
valuable (or expensive) one is at the top of the pile and the less valuable
(or expensive) are put underneath. Then the three piles were put together
and numbered from 1 to 8 and 1 to 16 so that a single list of prioritised
features was constructed for each criterion.

The subjects were given approximately 2 hours to conclude the tasks,
which was enough time to avoid time-pressure. During the experiment,
the subjects were instructed to note the time-consumption for each
prioritisation. Further, the subjects had the possibility to ask questions of
clarification.

3.1.5 Post-Test 1. The subjects handed in their experiment kit after
finishing the tasks and were then asked to fill out a post-test. This was
made in order to capture the subjects’ opinions right after the experiment.
The test included the questions below, as well as some optional questions
capturing the opinions about the techniques and the experiment as a
whole. The questions were answered by circling one of the symbols “more
than”, “equal” or “less than”.

1. Which technique did you find easiest to use?
2. Which technique do you think gives the most accurate result?

3. Which technique do you think is most sensitive to judgemental
errors?

3.1.6 Post-Test 2. After completing the analysis, the subjects were, in a
second post-test, asked to state which technique they thought gave the
most accurate result. They were sent two sheets (one for Value and one for
Price) with two different lists of features, corresponding to the results
from PG and AHP prioritisation. The post-test was designed as a blind-
test, thus the subjects did not know which list corresponded to which
technique, but were asked to select the list that they felt agreed the best
with their views. The ratio scale from AHP was not taken into
consideration, and neither was the pile distribution from PG. This was
necessary in order to get comparable lists.

Improving Requirements Selection Quality in Market-Driven Software Development 117

Simple Is Better? -An Experiment on Requirements Prioritisation

3.2 Analysis

The analysis of the experiment was divided between two independent
researchers, in order to save time and to perform spot checks in order to
further improve validity. The analysis was performed with Microsoft
Excel™ and the computing tool MATLAB™.

Two different scales were tried for the AHP analysis: 1-5 and 1-9.
According to Zhang [20] the scale 1-5 is better than 1-9 at expressing
human views and therefore the scale 1-5 was used when compiling the
prioritisation ranking lists. However, in section 4.6 we present consistency
ratios for both scales.

Furthermore, Saaty [14] has calculated random indices (RI) that are
used in the calculation of the consistency ratios. Unfortunately, this
calculation only includes 15 factors while this experiment included as
many as 16 factors. However, the RI scale was extrapolated and the RI for
16 factors was set to 1.61.

3.3 Validity

The experimental design involves some threats to validity, which we have
tried to prevent. Using the counter-balancing design, the order effects have
been balanced out since the subjects were randomly given different orders
to perform the techniques and using the criteria. Therefore, we believe
that the order of the techniques and criterion will not affect the results.

It is also possible that the subjects could become fatigued during the
experiment. Especially the subjects who perform the tasks with 16
features may get tired or bored, which in turn may affect the
concentration. This has been tested during the analysis, by calculating the
consistency for AHP and the results indicate that there is no significant
difference in consistency depending on the number of features (see Table
7).

Another possibility is that the subjects get practice during the
experiment and unconsciously get an opinion on the context using the
first technique, which will affect the result for the second technique.
Especially when using PG first, it may affect the AHP performance. This
is in fact the case, which is illustrated by the consistency ratio being better
for those who started with PG (see Table 9).

Group pressure and the measure of each subject's time to complete the
task might impose time-pressure, which can affect the results. However, it

118 Improving Requirements Selection Quality in Marker-Driven Software Development

4. Results

may not be a large problem since there is no major correlation between
the time and the consistency in the results (see Section 4.5). Therefore we
can argue that time-pressure will not affect the performance of the
prioritisation.

The number of subjects was only 16, which reduces the
generalisability, i.e. there is a threat that the findings are specific to this
particular group or context. On the other hand, Ph.D. students may have
similar views as the requirements engineers and customers who are
intended to use the techniques in practice [5]. It is also likely that the
subjects are not taking the prioritisation as seriously as a requirements
engineer or customers would in a real project (see Section 4.7).

Unfortunately, the scales with “more than” and “less than® in the AHP
sheets were accidentally switched so that it could be interpreted in the
opposite way than was intended (see Figure 1). This caused some
confusion during the experiment. However, the interpretation was
explained and clarified and therefore this should not be considered a
threat to validity.

It would have been valuable to start the session with an introduction
explaining each feature in the prioritisation since some subjects were
unfamiliar to some of them. However, the subjects had their own
interpretation of the features, which was the same throughout the
experiment and therefore this should not affect the result.

4, Results

This section presents some of the results found during analysis. First, the
three hypotheses are discussed, then some other interesting findings are

described.

4.1 Hypothesis 1: The average time to conclude the
prioritisations is larger when using AHP.

As expected, the time to conclude the prioritisation is larger with AHP
than with PG, for both criteria. As Table 1 shows, the difference in time
between the two techniques is 6.1 minutes for 8 features and 14.7
minutes for 16 features. The time increase in percent from 8 to 16

features for AHP is 88 %, while the same for PG is only 48 %. Thus, a

Improving Requirements Selection Quality in Market-Driven Software Development 119

Simple Is Better? -An Experiment on Requirements Prioritisation

Table 1. Average time consumption for the prioritisation

Nbr of fea- | Criteria | AHP PG Diff.
tures
8 Value 7.8 min 3.6 min 4.2 min
Price 6.4 min 4.5 min 1.9 min
Total 14.2 min 8.1 min 6.1 min
16 Value 12.6 min 6.5 min 6.1 min
Price 14.1 min 5.5 min 8.6 min
Total 26.7 min | 12.0 min | 14.7 min
% increase 88 % 48 %

Table 2. Time consumption per feature

Nbr of | AHP PG

features
8 53.5 s/feature 30.5 s/feature
16 50.0 s/feature 22.5 s/feature

larger number of objects to prioritise affect the time-consumption for
AHP more than for PG, at least with 8 and 16 features.

As Table 2 suggests, the subjects have in average put less time per feature
when they had more features to prioritise. It is particularly interesting to
see that it takes less time per feature to perform PG with 16 features than
with 8. One could expect that it should be more complex to perform PG
with more features but this result show that it is even faster with more
features. However, there might be a breakpoint when the number of
features is too great and it becomes hard to obtain an overview.

Four hypothesis tests (see Table 3) were performed, for 8 and 16
features respectively, and one for each criterion. Due to the small, and not
normally distributed, sample we chose a nonparametric test, the Wilcoxon

Table 3. Wilcoxon tests for the time difference

Nbr of | Criteria | p=0.05
features

8 Value 0.0117

Price 0.0781

16 Value 0.0098

Price 0.0039

120 Improving Requirements Selection Quality in Marker-Driven Software Development

4. Results

test. The hypothesis tests show that on the 5 %-level there is a significant
time difference for three of the four cases. In the fourth case, the Price
criterion on 8 features, the test shows that the difference is only significant
on a higher level. This is illustrated in Table 3, where the p-value is higher

than the critical values on the 5 %-level in three of the four cases.

4.2 Hypothesis 2: The ease of use is considered higher
for PG

Immediately after the experiment the subjects filled out the first post-test
that, among other things, captured the opinions of the techniques’ ease of
use. Among the 16 subjects, 12 found PG more or much more easy to use
than AHP. Only 3 found them equally easy and 1 stated that AHP was
more easy to use, see Table 4. Hence, 75 % of the subjects found PG
easier to use.

It seems as if the subjects prioritising 16 features are a bit more
sceptical to PG than those prioritising 8 features. This could indicate that
the more features the more difficult to keep them all in mind.

Table 4. Results from the first post-test: Ease of use

Nbr of | AHP PG
features | poo More | Equal More | Much
more more
8 0 0 1 3 4
16 |o 1 2 1 4
Total 0 1 3 4 8

4.3 Hypothesis 3: AHP reflects the subjects’ views more

accurately

Right after the experiment, the subjects performed the first post-test that
captured which technique the subjects expected to be the most accurate.
As Table 5 illustrates, a majority of the subjects expected PG to be better,
while less than a fifth expected AHP to be better.

For most subjects, the actual ranking that was captured in the analysis
differed somewhat between the two prioritisation techniques. In order to
evaluate which technique that gave the most accurate results, a second

Improving Requirements Selection Quality in Market-Driven Software Development 121

Simple Is Better? -An Experiment on Requirements Prioritisation

Table 5. Results from the first post-test: Expected accuracy

Nbr of | Favour AHP | Equal Favour PG
features
8 1 3 4
16 2 5
Total 3 4 9
Total % 19 % 25 % 56 %

post-test was sent out to the subjects. This was done a few weeks after the
experiment was performed, when the analysis was finished.

As Table 6 shows, the most common opinion was that PG reflects the
subjects views more accurately. Half of the ones that have stated that both
techniques are equally accurate actually had the same order in the lists. An
interesting observation is that this implies that PG was actually not as
good as the subjects expected even if it was clearly better than AHP.

Table 6. Results from the second post-test: Perceived accuracy

Nbr of | Criteria Favour Equal Favour PG
features AHP
8 Value 0 2 6
Price 4 3 1
16 Value 3 1 4
Price 2 2 4
Total 9 8 15
Total % 28 % 25 % 47 %

4.4 Judgement Errors

Another question at the first post-test was which technique the subjects
expected to be most sensitive to judgemental errors. The objective was to
find out the subjects’ views, although it has been shown that AHP is
insensitive to judgemental errors due to the redundancy in the pair-wise
comparisons [10, 14]. However, among the subjects 75 % expected AHP
to be most sensitive. Perhaps this is because the AHP-technique “feels like

122 Improving Requirements Selection Quality in Marker-Driven Software Development

4. Results

pouring requirements into a black-box” as one of the subjects stated. It
may be difficult to trust something that you are not in control of.

4.5 Consistency Ratio

The consistency ratio (CR) describes the amount of judgement errors that
is imposed during the pair-wise comparisons. The CR is described with a
value between 0 and 1 and the lower CR value, the higher consistency.
Saaty [14] has recommended that CR should be lower than 0.10 in order
for the prioritisation to be considered trustworthy. However, CR
exceeding the limit 0.10 is used frequently in practice [8].

The CR limit above is only valid for the scale 1-9, and in this
experiment the scale 1-5 was used instead. Therefore, the limit for
acceptable CR will be lower. The average consistency ratios for scale 1-5
are presented in Table 7. Calculations show that the 0.10 limit for scale
1-9 correspond to approximately 0.04 in scale 1-5. However, it was
decided not to exclude any of the prioritisations, even though CR was

high, in order to keep all available data.

In order to investigate if the time spent on each comparison affects the
consistency, the correlation between the parameters was calculated. There
is a minor correlation between the time and the consistency, positive for
the Value criterion and negative for the Price criterion, see Table 8.
However, since the correlation coefficients are so small, no conclusions

Table 7. Mean consistency ratio

Nbr of | Criteria | Scale 1-5
features
8 Value 0.11
Price 0.10
16 Value 0.08
Price 0.12

Table 8. Correlation between time and consistency

Value Price
8 Features 0.06 -0.25
16 Features 0.26 -0.21

Improving Requirements Selection Quality in Market-Driven Software Development 123

Simple Is Better? -An Experiment on Requirements Prioritisation

can be drawn except that the consistency is not particularly influenced by
the time consumption.

4.6 Order Effects

There is a chance that the order in which the two techniques are used can
influence the result. Table 9 shows that the mean consistency ratio is
lower for the subjects who used PG before AHP. This shows that using
PG may provide an image of ones preferences that are not possible to get
from using AHP. Therefore it may be easier to be consistent when PG
precedes AHP.

Table 9. Order effect on consistency

Mean con-
sistency

AHP-PG 0.23
PG-AHP 0.18

However, the hypothesis tests show that the difference is not
significant on the 5 %-level. Due to the small, and not normally
distributed, sample we chose a nonparametric test, the Mann-Whitney
test, see Table 10. The critical values on the 5%-level are all larger than the
p-value, and therefore we can draw the conclusion that there is no
significant difference depending on the order. This finding validates that
the experiment analysis have not suffered from any order effects since
there is no difference between the two groups.

Table 10. Mann-Whitney test for the order effects

Nbr of | Criteria | p=0.05
features
8 Value 0.2429
Price 0.2429
16 Value 0.6571
Price 0.7571

124 Improving Requirements Selection Quality in Marker-Driven Software Development

4. Results

4.7 Distribution in Piles

In PG the subjects were supposed to distribute the features in three
different piles, dependent on Value and Price. In average, the respondents
distributed 41 % of the features in the middle pile (independent of
criterion). This is a result that might not correspond well to how the
features would have been distributed in a real case. One could assume that
customers would put most of the features in the highest priority pile,
which is often the case when customers need to prioritise between their
wishes [11, 17, 18]. Therefore, this result might be somewhat misleading
and further studies should clarify if this assumption is correct.

4.8 Prioritising the Price Criterion

One of the problems that was identified before the experiment, was that
the respondents may find it difficult to prioritise the Price criterion, since
it is hard to know the price of different features. However, the results
show that the mean standard deviation in PG was lower when prioritising
the Price criterion than the Value criterion, see Table 11. This result
shows that the respondents have been more united when prioritising Price
than Value, which is a rather expected result since the Price is a somewhat
more objective criterion. Therefore, it is concluded that the suspicion of
the Price criterion as a threat, might have been overstated.

Table 11. Mean standard deviation

8 Features 16 Features
Value 1.73 3.02
Price 1.25 2.79

4.9 Qualitative Answers

In the post-test performed right after the experiment, the subjects had the
opportunity to answer some optional questions about their general
opinion. Opinions about AHP include “effort demanding but nice”, “it
feels like a black-box wherein you pour requirements”, “good but boring”,
“it feels like you loose control over the prioritisation process”, and
“straightforward”. Opinions about PG are for example “fast and ecasy”,
“lets the respondent be creative”, “intuitive”, “prone to errors”, “good

Improving Requirements Selection Quality in Market-Driven Software Development 125

Simple Is Better? -An Experiment on Requirements Prioritisation

overview”, and “logical and simple”. These opinions correspond well to
the results of the captured subjective dependent variables: ease of use and
expected accuracy, discussed in prior sections.

4.10 Price-Value Graphs

In order to illustrate the possibility of using the Cost-Value approach
for requirements selection, two examples of Cost-Value graphs are
available in Figure 3 and 4 (AHP and PG with 8 features). However, in
this experiment, we use the term Price instead of Cost. The graphs are
made in order to visualise the results from the experiment and to see how
much the two techniques differ in Price-Value graphs.

The three areas in the graphs represent different grades of contribution
[9] and the lines visualise which Value-Price ratio each requirement has, as
explained in [8]. The upper line in each graph divides those features that
had more than 2 in Value-Price ratio from those that had between 2 and
0.5. The lower line in each graph divides those features that had between
2 and 0.5 from those with a ratio below 0.5 [8]. The Price and Value
markings for AHP are based on the mean of the subjects’ relative weight
of the features. In PG, the markings are based on the median of the
subjects’ ranking number.

In the case with 8 features, the two methods provide the same result
when it comes to which feature that are located in which area of the
graph. The features Alarm and Vibrating call alert have in average a high
Value-Price ratio (above 2) and therefore they would give high
contribution to the fictive product. The features Colorscreen and WAP
have a low Value-Price ratio (below 0.5), and would bring low
contribution to the product. Finally, Calendar, Games, Notebook and
Timer bring medium contribution (between 0.5 and 2 in Value-Price
ratio).

The results indicate that it is possible to provide Value-Price (and
Cost-Value) graphs with both PG and AHP. However, further studies are
needed in order to validate if this result applies to other prioritisations.

In practice, the Cost-Value diagram would be used to guide the
decision-maker in the difficult requirements selection. Other factors such
as market segmentation, product focus and time constraints, will also
influence the requirements selection.

126 Improving Requirements Selection Quality in Marker-Driven Software Development

5. Discussion

& Alarm
m Calender
A Colorscreen
X Games
X Notebook
@ Timer
+WAP
=Vibrating Call Alert

Value

o
o
&

0,1 0,15 0,2 0,25 03

Figure 3. Price-Value graph for AHP with 8 features

& Alarm

m Calendar

A Colorscreen

X Games

X Notebook

@ Timer

+Wap

= Vibrating call alert

Value

Figure 4. Price-Value graph for PG with 8 features

5. Discussion

Prioritisation is a very important activity in requirements engineering
because it lays the foundation for release planning. However, it is also a
difficult task since it requires domain knowledge and estimation skills in

Improving Requirements Selection Quality in Market-Driven Software Development 127

Simple Is Better? -An Experiment on Requirements Prioritisation

order to be successful. The inability to estimate implementation effort
and predict customer value may be one of the reasons why organisations
use ad hoc methods when prioritising requirements. For a prioritisation
technique to be used it has to be fast and easy to manage since projects
often have strict time and budget pressure. Therefore, a strong argument
for PG is that the time consumption is reasonable and the usage easy and
intuitive.

In this experiment two groups prioritised 8 and 16 features,
respectively, in order to investigate if there is a breakpoint between 8 and
16 where one of the methods is more efficient than the other. It was
suspected that a greater number of requirements would eliminate the
valuable overview in PG, since it would be difficult to keep all features in
mind. However, this experiment only shows a slight tendency of less
overview when prioritising 16 features. Therefore, it is suspected that the
breakpoint is at an even higher number of features.

Another interesting observation in this experiment was that the time-
consumption did not affect the consistency in AHP. One could assume
that if someone stresses through the comparisons, the consistency would
be worse. However, this is only initial results and with more difficult
features to prioritise, the results might be different.

In practice, it is common that a larger number of requirements need to
be prioritised. When the number of requirements grow, it is hard to get an
overview. Therefore, visualisation is very important in order to share
information. This experiment showed that it should be possible to

visualise the result of both AHP and PG. However, it should be further
evaluated how the ordinal scale in PG affects the visualisation.

In a real project, it may also be more valuable to use the ratio scale in
order to, in more detail, differentiate requirements from each other. Thus,
it may not be sufficient to determine which requirement that is of higher
priority, without knowing to what extent. However, without tool support,
AHP will be very time-consuming with a greater number of requirements,
both to perform and to analyse.

Due to the small sample and the specific domain the results cannot be
generalised to an industrial situation. Although the subjects may have
opinions similar to decision-makers in industry, the context of mobile
phone features is a bit too simplistic. The main weakness is that mobile
phone features are on a high level and rather independent, while
requirements in a real case often have interdependencies.

128 Improving Requirements Selection Quality in Marker-Driven Software Development

5. Discussion

In the experiment performed by Karlsson e /. [10], AHP was ranked
as the superior technique in relation to the others. The main reasons were
that AHP had reliable results, was easy to use, was fault tolerant and was
based on a ratio scale. This experiment shows that PG is superior to AHP
on all of these criteria except for that it is not based on a ratio scale.
Therefore, it is interesting to imagine a combination of the two
techniques.

In order to decrease the number of comparisons, AHP could be used
on the three piles, separately. Another possibility is to use AHP only on
those requirements that end up in the middle pile in PG. This would
imply that PG is used first, to divide the requirements into three groups
according to the PG approach described earlier. The high priority group
of requirements will most certainly be implemented, the low priority
group will be postponed and looked into in a following release, while the
ones in the middle need special treatment to determine the outcome.

This approach agrees with what Davis [3] has written about the
requirements triage where he recommends requirements engineers to focus
on the difficult requirements and skip the ones that will either be
implemented or rejected anyway. In this manner, AHP can be used on the
requirements that are difficult to estimate and need a more precise scale
for determining its cost and value. The technique’s ratio scale and fault
tolerance would then come to its right.

The discussion above is based on the assumption that most
requirements are not put into the same pile, which might be common in
an industrial situation. Therefore, some constraints might be needed in
order to force the piles to be rather evenly distributed. With three piles,
this could for example mean that no pile is allowed to have less than 25 %
of the requirements.

Based on the results from this experiment, it could not be concluded if
a combination of the two techniques is efficient or not, or how such a
combination should look like. However, we strongly believe that such a
combination could be valuable and that it is worth evaluating. Therefore,
it is recommended that a combination is tried in a separate experiment or
case study, with more data points.

Improving Requirements Selection Quality in Market-Driven Software Development 129

Simple Is Better? -An Experiment on Requirements Prioritisation

6. Conclusions

This paper describes an experiment aimed at comparing two requirements
prioritisation techniques regarding time consumption, ease of use and
accuracy in the result. The investigated techniques are the elaborate
Analytical Hierarchy Process (AHP), which is based on pair-wise
comparisons and has a ratio scale, and the elementary Planning Game
(PG), which is based on pile sorting and has an ordinal scale.

The results reveal that the intuitive and quick PG technique is superior
with regard to time consumption, ease of use, and accuracy. The mean
time consumption was higher when using AHP and the result was
statistically significant in three of four cases. PG was considered easier to
use by 75 % of the subjects, although the results indicate that AHP is
more preferred by those who prioritised a greater number of
requirements. A blind-test performed after the experiment showed that
47 % found the priority order from PG more accurate, while 28 %
favoured the order from AHP. 25 % found both priority orders equally
accurate. However, it was concluded that a combination of the two
techniques would further improve prioritisation. By first using PG to get
an overall picture of the problem and then use AHP for the most difficult
decisions, you would, with reasonable effort, get an accurate priority list.

The generalisability of the study is limited due to the small sample and
the specific context. A real project has requirements interdependencies,
and time and budget pressure to consider, which cause the decision-
making to be far more difficult. However, we believe that PG is valid as
prioritisation technique, although it does not have the same elaborate and
valuable attributes as AHP.

The main disadvantage of the experiment being the difficulty to
generalise to industrial projects, it would be valuable to try the experiment
out in a case study. The participating organisation would then get
knowledge about prioritisation and perhaps find a technique that suits
their needs.

The presented experiment design could also be used on more subjects
to get a larger data set and thereby a stronger basis for conclusions. There
are, as discussed, several other prioritisation techniques that would be
interesting to look into and compare to the presented techniques as well.

130 Improving Requirements Selection Quality in Marker-Driven Software Development

6. Conclusions

Acknowledgements

The authors would like to thank the subjects, without which this study would not have been pos-
sible. The authors would also like to thank Daniel Karlstrém for giving valuable comments on an
earlier version of the paper.

References

[1] Beck, K., Extreme Programming Explained, Addison-Wesley, 1999.

[2] Beck, K., Fowler, M., Planning Extreme Programming, Addison-Wesley, 2001.

[3] Davis, A., M., “The Art of Requirements Triage”, IEEE Computer, Vol. 36, pp. 42-49, 2003.
[4] Harker, P. T., “Incomplete Pairwise Comparisons in the Analytical Hierarchy Process”, Mathl.

Modelling, Vol 9, pp. 837-848, 1987.

[5] Host, M., Regnell, B., Wohlin, C., “Using Students as Subjects - A Comparative Study of
Students and Professionals in Lead-Time Impact Assessment”, EASE 00 - Empirical Software
Engineering, Vol. 3, Issue 3, pp. 201-214, 2000.

[6] Karlsson, J., “Software Requirements Prioritizing”, Proceedings of ICRE, pp. 110-116, 1996.

[7]1 Kadsson, J., Olsson, S., Ryan, K., “Improved Practical Support for Large-scale Requirements
Prioritising”, Requirements Fngineering, Vol 2, pp. 51-60, 1997.

[8] Karsson, J., Ryan, K. “A Cost-Value Approach for Prioritising Requirements”, /EEE Sofi-
ware, pp. 67-74, Sept/Oct, 1997.

[9] Kardsson, J., Ryan, K. “Supporting the Selection of Software Requirements”, Proceedings of
IWSSD, pp. 146-149, 1996.

[10] Kardsson, J., Wohlin, C., Regnell, B., “An Evaluation of Methods for Prioritising Software
Requirements”, Information and Software Technology, Vol 39, pp. 939-947, 1998.

[11] Lauesen, S., Soffware Requirements - Styles and Techniques, Addison-Wesley, 2002.

[12] Newkitk, J. W., Martin, R. C., Extreme Programming in Practice, Addison-Wesley, 2001.

[13] Robson, C., Real World Research, Blackwell, 1997.

[14] Saaty, T. L., The Analytical Hierarchy Process, McGraw-Hill, 1980.

[15]

15] Shen, Y., Hoerl, A. E., McConnell, W., “An Incomplete Design in the Analytical Hierarchy
Process”, Mathl. Comput. Modelling, Vol 16, pp.121-129, 1992.

[16] Siegel, S., Castellan, J. N., Nonparametric Statistics for the Behavioral Sciences, 2nd edition,
McGraw-Hill International Editions, 1988.

[17] Sommerville, 1., Sawyer, P, Requirements Engineering - A Good Practice Guide, John Wiley &
Sons Ltd, 1997.

[18] Wiegers, K., Software Requirements, Microsoft Press, 1999.

[19] Wohlin, C., Runeson, P, Hést, M., Ohlsson, M. C., Regnell, B., Wesslén, A., Experimenta-
tion in Software Engineering - An Introduction, Kluwer Academic Publishers, 2000.

[20] Zhang, Q., Nishimura, T., “A Method of Evaluation for Scaling in the Analytical Hierarchy
Process”, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,
Vol. 3, pp. 1888-1893, 1996.

Improving Requirements Selection Quality in Market-Driven Software Development 131

Simple Is Better? -An Experiment on Requirements Prioritisation

132 Improving Requirements Selection Quality in Marker-Driven Software Development

Reports on Communication Systems

101 On Overload Control of SPC-systems
Ulf Kérner, Bengt Wallstrom, and Christian Nyberg, 1989.
CODEN: LUTEDX/TETS- -7133- -SE+80P

102 Two Short Papers on Overload Control of Switching Nodes
Christian Nyberg, Ulf Kérner, and Bengt Wallstrsm, 1990.
ISRN LUTEDX/TETS- -1010- -SE+32P

103 Priorities in Circuit Switched Networks
Ake Arvidsson, Ph.D. thesis, 1990.
ISRN LUTEDX/TETS- -1011- -SE+282P

104 Estimations of Software Fault Content for Telecommunication Systems
Bo Lennselius, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1012- -SE+76P

105 Reusability of Software in Telecommunication Systems
Anders Sixtensson, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1013- -SE+90P

106 Software Reliability and Performance Modelling for Telecommunication Systems
Claes Wohlin, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1014- -SE+288P

107 Service Protection and Overflow in Circuit Switched Networks
Lars Reneby, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1015- -SE+200P

108 Queueing Models of the Window Flow Control Mechanism
Lars Falk, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1016- -SE+78P

109 On Efficiency and Optimality in Overload Control of SPC Systems
Tobias Rydén, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1017- -SE+48P

110 Enhancements of Communication Resources
Johan M. Karlsson, PA.D. thesis, 1992.
ISRN LUTEDX/TETS--1018- -SE+132P

111 On Overload Control in Telecommunication Systems
Christian Nyberg, Ph.D. thesis, 1992.
ISRN LUTEDX/TETS- -1019- -SE+140P

112 Black Box Specification Language for Software Systems
Henrik Cosmo, Lic. thesis, 1994.
ISRN LUTEDX/TETS- -1020- -SE+104P

113 Queueing Models of Window Flow Control and DQDB Analysis
Lars Falk, Ph.D. thesis, 1995.
ISRN LUTEDX/TETS- -1021- -SE+145P

114

115

116

117

118

119

120

121

122

123

124

125

126

127

End to End Transport Protocols over ATM
Thomas Holmstrom, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1022- -SE+76P

An Efficient Analysis of Service Interactions in Telecommunications
Kristoffer Kimbler, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1023- -SE+90P

Usage Specifications for Certification of Software Reliability
Per Runeson, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1024- -SE+136P

Achieving an Early Software Reliability Estimate
Anders Wesslén, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1025- -SE+142P

On Ovetload Control in Intelligent Networks
Maria Kihl, Zic. thesis, June 1996.
ISRN LUTEDX/TETS- -1026- -SE+80P

Overload Control in Distributed-Memory Systems
Ulf Ahlfors, Lic. thesis, June 1996.
ISRN LUTEDX/TETS- -1027- -SE+120P

Hierarchical Use Case Modelling for Requirements Engineering
Bjsrn Regnell, Lic. thesis, September 1996.
ISRN LUTEDX/TETS- -1028- -SE+178P

Performance Analysis and Optimization via Simulation
Anders Svensson, Ph.D. thesis, September 1996.
ISRN LUTEDX/TETS- -1029- -SE+96P

On Network Oriented Overload Control in Intelligent Networks
Lars Angelin, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1030- -SE+130P

Network Oriented Load Control in Intelligent Networks Based on Optimal Decisions
Stefan Pettersson, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1031- -SE+128P

Impact Analysis in Software Process Improvement
Martin Host, Lic. thesis, December 1996.
ISRN LUTEDX/TETS- -1032- -SE+140P

Towards Local Certifiability in Software Design
Peter Molin, Lic. thesis, February 1997.
ISRN LUTEDX/TETS- -1033- -SE+132P

Models for Estimation of Software Faults and Failures in Inspection and Test
Per Runeson, PA.D. thesis, January 1998.
ISRN LUTEDX/TETS- -1034- -SE+222P

Reactive Congestion Control in ATM Networks
Per Johansson, Lic. thesis, January 1998.
ISRN LUTEDX/TETS- -1035- -SE+138P

128

129

130

131

132

133

134

135

136

137

138

139

140

141

Switch Performance and Mobility Aspects in ATM Networks
Daniel Sobirk, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1036- -SE+91P

VPC Management in ATM Networks
Sven-Olof Larsson, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1037- -SE+65P

On TCP/IP Traffic Modeling
Pir Karlsson, Lic. thesis, February 1999.
ISRN LUTEDX/TETS- -1038- -SE+94P

Overload Control Strategies for Distributed Communication Networks
Maria Kihl, P5.D. thesis, March 1999.
ISRN LUTEDX/TETS- -1039- -SE+158P

Requirements Engineering with Use Cases — a Basis for Software Development
Bjorn Regnell, Ph.D. thesis, April 1999.
ISRN LUTEDX/TETS- -1040- -SE+225P

Utilisation of Historical Data for Controlling and Improving Software Development
Magnus C. Ohlsson, Lic. thesis, May 1999.
ISRN LUTEDX/TETS- -1041- -SE+146P

Early Evaluation of Software Process Change Proposals
Martin Hést, Ph.D. thesis, June 1999.
ISRN LUTEDX/TETS- -1042- -SE+193P

Improving Software Quality through Understanding and Early Estimations
Anders Wesslén, Ph.D. thesis, June 1999.
ISRN LUTEDX/TETS- -1043- -SE+242P

Performance Analysis of Bluetooth
Niklas Johansson, Lic. thesis, March 2000.
ISRN LUTEDX/TETS- -1044- -SE+76P

Controlling Software Quality through Inspections and Fault Content Estimations
Thomas Thelin, Lic. thesis, May 2000
ISRN LUTEDX/TETS- -1045- -SE+146P

On Fault Content Estimations Applied to Software Inspections and Testing
Hikan Petersson, Lic. thesis, May 2000.
ISRN LUTEDX/TETS- -1046- -SE+144P

Modeling and Evaluation of Internet Applications
Ajit K. Jena, Lic. thesis, June 2000.
ISRN LUTEDX/TETS- -1047- -SE+121P

Dynamic traffic Control in Multiservice Networks — Applications of Decision Models
UIf Ahlfors, Ph.D. thesis, October 2000.
ISRN LUTEDX/TETS- -1048- -SE+183P

ATM Networks Petformance — Charging and Wireless Protocols
Torgny Holmberg, Lic. thesis, October 2000.
ISRN LUTEDX/TETS- -1049- -SE+104P

142

143

144

145

146

147

148

149

150

151

152

153

Improving Product Quality through Effective Validation Methods
Tomas Betling, Lic. thesis, December 2000.
ISRN LUTEDX/TETS- -1050- -SE+136P

Controlling Fault-Prone Components for Software Evalution
Magnus C. Ohlsson, Ph.D. thesis, June 2001.
ISRN LUTEDX/TETS- -1051- -SE+218P

Performance of Distributed Information Systems
Niklas Widell, Zic. thesis, February 2002.
ISRN LUTEDX/TETS- -1052- -SE+78P

Quality Improvement in Software Platform Development
Enrico Johansson, Lic. thesis, April 2002.
ISRN LUTEDX/TETS- -1053- -SE+112P

Elicitation and Management of User Requirements in Market-Driven Software Development
Johan Natt och Dag, Lic. thesis, June 2002.
ISRN LUTEDX/TETS- -1054- -SE+158P

Supporting Software Inspections through Fault Content Estimation and Effectiveness
Analysis

Hakan Petersson, Ph.D. thesis, September 2002.

ISRN LUTEDX/TETS- -1055- -SE+237P

Empirical Evaluations of Usage-Based Reading and Fault Content Estimation for Software
Inspections

Thomas Thelin, Ph.D. thesis, September 2002.

ISRN LUTEDX/TETS- -1056- -SE+210P

Software Information Management in Requirements and Test Documentation
Thomas Olsson, Lic. thesis, October 2002.
ISRN LUTEDX/TETS- -1057- -SE+122P

Increasing Involvement and Acceptance in Software Process Improvement
Daniel Karlstrém, Lic. thesis, November 2002.
ISRN LUTEDX/TETS- -1058- -SE+125P

Changes to Processes and Architectures; Suggested, Implemented and Analyzed from a
Project viewpoint

Josef Nedstam, Lic. thesis, November 2002,

ISRN LUTEDX/TETS- -1059- -SE+124P

Resource Management in Cellular Networks -Handover Prioritization and Load Balancing
Procedures

Roland Zander, Lic. thesis, March 2003.

ISRN LUTEDX/TETS- -1060- -SE+120P

On Optimisation of Fair and Robust Backbone Networks
Pal Nilsson, Lic. thesis, October 2003.
ISRN LUTEDX/TETS- -1061- -SE+116P

154

155

Exploring the Software Verification and Validation Process with Focus on Efficient Fault
Detection

Carina Andersson, Lic. thesis, November 2003.

ISRN LUTEDX/TETS- -1062- -SE+134P

Improving Requirements Selection Quality in Market-Driven Software Development
Lena Karlsson, Lic. thesis, November 2003.
ISRN LUTEDX/TETS- -1063- -SE+132P

