
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Low-Complexity Binary Morphology Architectures with Flat Rectangular Structure
Elements

Hedberg, Hugo; Kristensen, Fredrik; Öwall, Viktor

Published in:
IEEE Transactions on Circuits and Systems Part 1: Regular Papers

DOI:
10.1109/TCSI.2008.918140

2008

Link to publication

Citation for published version (APA):
Hedberg, H., Kristensen, F., & Öwall, V. (2008). Low-Complexity Binary Morphology Architectures with Flat
Rectangular Structure Elements. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 55(8),
2216-2225. https://doi.org/10.1109/TCSI.2008.918140

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/TCSI.2008.918140
https://portal.research.lu.se/en/publications/88558f88-aa71-4e07-8d4a-d841f44ad261
https://doi.org/10.1109/TCSI.2008.918140

2216 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008

Low-Complexity Binary Morphology Architectures
With Flat Rectangular Structuring Elements

Hugo Hedberg, Student Member, IEEE, Fredrik Kristensen, Student Member, IEEE, and Viktor Öwall, Member, IEEE

Abstract—This article describes and evaluates algorithms and
their hardware architectures for binary morphological erosion
and dilation. In particular, a fast stall-free low-complexity archi-
tecture is proposed that takes advantage of the morphological
duality principle and structuring element (SE) decomposition.
The design is intended to be used as a hardware accelerator in
real-time embedded processing applications. Hence, the aim is to
minimize the number of operations, memory requirement, and
memory accesses per pixel. The main advantage of the proposed
architecture is that for the common class of flat and rectangular
SEs, complexity and number of memory accesses per pixel is low
and independent of both image and SE size. The proposed design is
compared to the more common delay-line architecture in terms of
complexity, memory requirements and execution time, both for an
actual implementation and as a function of image resolution and
SE size. The architecture is implemented for the UMC 0.13- m
CMOS process using a resolution of 640 480. A maximum SE of
63 63 is supported at an estimated clock frequency of 333 MHz.

Index Terms—Application-specific integrated circuit (ASIC),
binary, dilation, erosion, field-programmable gate array (FPGA),
hardware, image processing, morphology, surveillance system.

I. INTRODUCTION

M ATHEMATICAL MORPHOLOGY (MM) is a set of
mathematical tools used to manipulate the shape or un-

derstand the structure of connected clusters of pixels [1]. MM
are set-theory based methods of non-linear image analysis and
plays an important role in many digital image processing appli-
cations, e.g., robot and computer vision, object recognition, and
automated surveillance systems. The methods were originally
developed for binary images, i.e., the 2-D integer space , but
were soon extended and now apply to several image representa-
tions, e.g., gray scale and various color spaces. However, since
binary MM is used in many applications, it is of special interest
to take advantage and exploiting the reduced complexity binary
filtering offers, which requires effective algorithm and hardware
architectures for this type of filtering.

Erosion and dilation are the two foundations in
MM, since all morphologic operations can be broken down
into these two basic operations [1]. For example, operations
such as opening, closing, gradient, and skeletonization are
performed with these two base functions. Thus, the need for
low complexity architectures to perform and is evident.

Manuscript received May 9, 2007; revised November 2, 2007. First published
February 8, 2008; current version published September 17, 2008. This work was
supported by the Competence Center for Circuit Design at Lund University. This
paper was recommended by Associate Editor A.-Y. Wu.

The authors are with the Department of Electrical and Information Tech-
nology at Lund University, Lind SE-221 00, Sweden (e-mail: hhg@eit.lth.se;
fkn@eit.lth.se vikt@eit.lth.se; hugo.hedberg@eit.lth.se).

Digital Object Identifier 10.1109/TCSI.2008.918140

Fig. 1. Conceptual overview of an automated digital surveillance system of
which the gray area is addressed in this paper. Input and output to the segmen-
tation algorithm and the result after the morphological filter is also visualized.

There are numerous applications using different binary
morphological operations reported in literature, e.g., noise
filtering, boundary detection, and region filling [2]. The binary
image representation can emerge not only due to the nature
of the application, e.g., performing character recognition on a
black and white document, but also as output from an image
processing step, e.g., intensity thresholding, segmentation, or
thresholded convolution [3], [4]. As a detailed example of
such an application, a real-time automated surveillance system
incorporated in a network camera is described by Kristensen
et al. [5]. Since the system is intended for a self-contained
camera, low complexity and low power consumption are main
constraints due to limited hardware resources and to avoid
heat problems. A conceptual overview of this system when
implemented on a field-programmable gate array (FPGA) is
shown in Fig. 1. The camera feeds the image processing system
with a real-time image stream with 25 frames per second (fps).
A segmentation algorithm [6] preprocesses the image stream
and produces a binary motion mask in which zeros and ones
corresponds to background and foreground, respectively. In
theory, the moving parts of an image should be distinguished as
independent objects in the binary mask. However, in reality the
mask will be distorted with noise and single objects split into
multiple clusters of connected foreground pixels. In order to
remove noise and reconnect split objects, one or more opening
(followed by) and closing (followed by) operations are
performed on the mask. The result of an opening performed on
the motion mask is shown in Fig. 1, where the noise has been
reduced. The object classification part uses the mask to find
the moving objects in the color image, extract features, and
perform classification as well as tracking.

1549-8328/$25.00 © 2008 IEEE

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:26:03 EDT from IEEE Xplore. Restrictions apply.

HEDBERG et al.: LOW-COMPLEXITY BINARY MORPHOLOGY ARCHITECTURES 2217

When designing a morphological hardware unit, there are
many application specific questions and issues that have to be
addressed, e.g., required class of supported structuring elements
(SE) and issues related to the imposed bandwidth. Depending on
the answers, certain trade-offs can be made in the architecture.
However, there are some properties, apart from the obvious such
as low complexity and fast execution time, that are advantageous
and should be taken into consideration under any circumstance.
First of all, most images are acquired and stored in raster scan
order, i.e., starting in the upper left corner of the image and pro-
ceeding row by row down to the lower right corner. Therefore, to
easily incorporate the units into this type of system environment
and at the same time avoid intermediate data storage and random
memory accesses during the pixel processing, the architecture
should use the input and produce the output in raster scan order.
This allows burst reads from memory and the possibility to place
several units sequentially after each other (without intermediate
storage). Secondly, all morphological operations are based on
evaluating values contained in a local neighborhood of a pixel
defined by the SE. Naturally, extracting and performing calcula-
tions on large neighborhoods can become particularly computa-
tionally intensive. Therefore, the main obstacle when designing
a morphological hardware architecture is to extract this neigh-
borhood and perform the calculation with minimal hardware re-
source utilization and still preserve raster scan order. Further-
more, to increase the flexibility and thereby overall system per-
formance, it is desirable that the size of the SE can be changed
during run-time. As an example, in the automated surveillance
application [5], a flexible SE size can be utilized to compensate
for different types of noise and to sort out certain types of ob-
jects in the mask, e.g., high and thin objects (standing humans)
or wide and low objects (side view of cars).

A. Previous Work

Mathematical morphology is and has been a subject of exten-
sive research resulting in numerous books and articles, covering
both the theoretical and hardware aspects of this field. How-
ever, to put this work in perspective, only other important hard-
ware architectures performing binary erosion and dilation are
discussed here.

Fejes and Vajda [7] and Velten and Kummert [8] propose a
delay-line architecture for 2-D binary erosion or dilation. This
classical approach supports arbitrary shaped SEs, but the hard-
ware complexity is proportional to , where is a side
in the maximum supported square SE. The pixels that are to
be reused are stored in delay-lines, resulting in a memory re-
quirement proportional to , where is the image width.
Therefore, this type of implementation becomes unsuitable for
large SEs and high-resolution applications. In [9], an architec-
ture using the same type of delay-lines is proposed, thus having
the same memory requirement. However, based on the obser-
vation that many calculations between two adjacent pixels are
redundant and partial results can be reused, the number of com-
parators per output value can be reduced to for
certain SE shapes, e.g., rectangles.

Źarandy et al. propose a cellular neural network approach to
perform binary erosion and dilation in [10]. It is shown that bi-
nary morphology apply to this type of structures but as for the

delay-line architecture, the computational complexity is propor-
tional to . This is due that the SE is mapped onto an array of
cells, in which each element requires a separate cell. In addition,
since the pixels needs to be reused they need to be stored, prefer-
able done in delay-lines, once more ending up with a memory re-
quirement proportional to . However, this approach opens
up for other possibilities considering the learning feature of such
networks to control the size and shape of the SE but this is not
further addressed in this article.

Malamas et al. presents a fast systolic architecture performing
a 1-D binary erosion or dilation (or a combination of these) in
[11]. The architecture can be extended to 2-D by parallel pro-
cessing of 1-D units. Processing each row in parallel makes it
fast but the drawback of this architecture is that the complexity
of each 1-D branch is proportional to the SE width making it
unsuitable for applications requiring large SEs.

The implementation by Van Herk [12] support large 1-D
(linear) SEs and performs each operation with only three com-
parisons per output pixel independent of the SE size. However,
the implementation requires two scans to complete each 2-D
operation, i.e., the 1-D filter first applied on rows then on
columns, thus requiring intermediate storage to transpose the
image. Although the implementation supports binary filtering,
it is more applicable in gray scale applications.

In [13], a low-complexity and low memory requirement
architecture performing a 2-D binary erosion or dilation that
takes advantage of the morphological duality and SE decom-
position is proposed. The main advantage of this architecture
is that it has constant computational complexity, i.e., each
output value is calculated with only 4 operations per pixel
independent of the SE size, and a memory requirement propor-
tional to . The class of supported SEs is limited to
rectangles of arbitrary size. However, in this architecture, the
input stream has to be stalled during padding which requires
additional memory.

B. Main Contribution

The main contribution of this article is to present a stall-free
hardware architecture for binary and , together with its eval-
uation and examples of its application context. Since the archi-
tecture is an extension of the one published in [13], they share
many hardware properties, e.g., only supports rectangular SEs
and requires the same number of operations per pixel. How-
ever, by parallel processing, the stall cycles during padding can
be avoided, thus no additional memory is required. This mod-
ification results in an architecture that uses a single clock do-
main and is superior both in terms of computational complexity
and memory requirement compared to the others discussed in
Section I-A. For evaluation purposes, the delay-line architec-
ture discussed above is presented and used as reference design.
Hardware requirements, measured in complexity, memory, and
execution time, for the different designs are compared both for
an actual implementation and as a function of image resolution
and SE size.

The remainder of this article is organized as follows:
Section II gives an introduction to morphology and certain
properties used in the proposed architectures. Section III dis-
cusses different hardware architectures for binary morphology

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:26:03 EDT from IEEE Xplore. Restrictions apply.

2218 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008

together with giving the context in which they can be used.
Implementation results of these architectures are then evaluated
in terms of computational complexity, execution time, and
memory requirements in Section IV and Section V, respec-
tively. The article is concluded in Section VI.

II. MORPHOLOGY

All morphological operators are based on evaluating subsets,
or neighborhoods, of connected pixels in the input frame , de-
termined by a kernel referred to as SE. The SE has two tasks:
determine which pixels from to include in the neighborhood
and define the position of the output, , in the resulting frame,
which usually corresponds to the center position of the SE. Let
the 2-D SE be flat, i.e., , and the input
image binary, i.e., . The SE slides over so that the su-
perimposed visits each coordinate in once. This results in an
output image with the same dimension as and a content based
on the evaluation of the subsets determined by the SE. In words,
a binary produces a ONE at every position where the superim-
posed SE has the same geometrical shape as , equivalent to a
logical AND operation. A binary is the dual of an , i.e., a ONE

is produced at all locations where the locally superimposed SE
has at least one element equal to , corresponding to a logical
OR operation. Mathematically, the and of by SE, denoted

and respectively, are defined as

and one is the dual of the other according to

(1)

(2)

where is bit inversion and is the reflection of SE [14].
Sliding window operations (including and) are prone to

boundary problems. These occur when the SE reaches outside
of the boundaries of , as shown in Fig. 2(a). There are several
methods to address this issue. Simply omitting these values from
the calculation is the most straightforward. Another frequently
used method is to insert extra pixels outside the image, which is
called padding. This can be seen as temporarily increasing the
resolution until a well defined output is obtained, as shown in
Fig. 2(a). In case of and , the padding should not affect the
output result and the inferred bits are therefore defined as ONES

and ZEROS for and [14], respectively. With these definitions,
information around the boundaries of will not be corrupt since
the output only depends on the image content.

III. ARCHITECTURE

A. Delay-Line Architecture

The delay-line architecture is a direct mapping of the or
operation [7], [15]. The main idea is to store pixels to the left and
right of the SE as long as they are to be used in future output cal-
culations, i.e., all consecutive pixels from the upper left corner
to the lower right corner of the SE are stored in one long memory
chain, as shown in Fig. 3(a). As an incoming pixel is shifted in,

Fig. 2. (a) Iillustration of the boundary problem where the SE stretches outside
of the image borders and where the padding is inserted. (b) Example of padding
values using an �� � �� �. � marks a don’t care position. Padding to the east
and south is inserted in the data stream which is shown by the gray arrow. The
west and north padding are not part of the data stream and is only used as initial
values for the memory.

Fig. 3. (a) Illustration of the incoming pixel stream and pixels stored in memory
in a direct mapped implementation. (b) Delay-line architecture of a morpholog-
ical erosion block. The gray dashed line indicates the pixels covered by the SE.
�� and �� is the height and width of the SE. Control logic is omitted for
clarity.

the oldest pixel currently in the architecture is shifted out. An
example of such an architecture that implements this function-
ality for erosion is shown in Fig. 3(b), and is used as a reference
throughout the paper. All pixels covered by the SE are stored
in flip-flops and are thus individually accessible and all pixels
in between two rows of the SE are stored in first in first out
(FIFOs). This allows the SE to be moved to the next position
by reading a new input and moving all other pixels one step in

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:26:03 EDT from IEEE Xplore. Restrictions apply.

HEDBERG et al.: LOW-COMPLEXITY BINARY MORPHOLOGY ARCHITECTURES 2219

Fig. 4. Decomposition of a flat SE of size 3� 7 into �� � ��� and �� �

� � �.

the memory chain, achieved by either shifting data or changing
memory pointers. The major benefit of this architecture is its
ability to support streaming input data and arbitrary shaped SEs.
Control logic to manage the enable signals for each element in
the SE () and to change the morphological operation to
dilation is omitted in Fig. 3(b).

In addition, to handle the boundary issue, the ability to con-
trol each position in the SE is used. The parts of SE that extend
outside the image are forced to ONE in accordance with the def-
inition, see Section II. Practically, the control signal in
Fig. 3(b) is set to ONE for the parts of the SE that are outside of
the image.

B. Low-Complexity Architecture

In order to improve the delay-line architecture in terms of op-
erations per pixel and memory requirements, a low-complexity
architecture based on decomposition and duality was initially
proposed in [13].

The morphological operation is associative, which means
that if the SE can be decomposed into smaller SEs according to

(3)

and shown in Fig. 4, dilating by SE gives the same result as
when first dilating with and then dilating the result with

according to:

(4)
With a decomposed SE, the number of comparisons per output
pixel is decreased from the number of ones in the SE to the
number of ones in plus . As an example, using the flat
SE in Fig. 4, the number of comparisons per output is decreased
from 21 to 10.

If the SE is both reflection-invariant, i.e., , and
decomposable, the following two equations can be derived by
combining (1) and (4)

(5)
and

(6)
Comparing (5) and (6), it can be seen that both and can be ex-
pressed as an erosion (or as a dilation). This property is known as
the duality principle. Finding decompositions to an arbitrary SE
is a difficult problem and not always possible [16]–[18]. In addi-
tion, for an SE to be reflection-invariant, it has to be symmetric

Fig. 5. Input and output of an erosion where a SE of size 3� 5 is decomposed
into �� � � � � and �� � � � �

with respect to both - and -axes, e.g., an ellipse. However, a
common class of SEs that is both decomposable and reflection
invariant is flat rectangles [19], which is well suited to perform
operations such as opening or closing required in the real-time
application described in Section I. An example of with a de-
composed SE is shown in Fig. 5, were the SE is decomposed
into and , see (5). The input is first eroded by and
then by .

Using a flat rectangular SE, can be performed as a summa-
tion followed by a comparison. Erosion is performed by keeping
track of the bits in that are currently covered by the SE and
are compared to its size. Decomposing the SE, the summation
can be broken up into two stages. The first stage compares the
number of consecutive ONES in to the width of . The
second stage sums the result from the first stage for each column
and compares it to the height of . If both these conditions
are fulfilled, the output at the coordinate of the SE origin is set
to ONE, else ZERO.

The proposed architecture is based on the observations above
and is shown in Fig. 6 with corresponding word-length (WL) in
each stage. Taking advantage of the duality property, the same
inner kernel is used for both and ; to perform dilation on
an erosion-unit, simply invert the input and the output. This
function is performed in Stage-0 and 3.

To handle the boundary discussed in Section II, the padding
is split into four parts: north, east, south, and west, illustrated
in Fig. 2(b). Assuming a centered origin, the east and west
padding extend columns and the north and south
padding extend rows outside , where
and corresponds to the height and width of the SE,
respectively. Since a is transformed into an by inverting the
input , the padding will be ONES regardless of the executed
operation. In the proposed architecture, the padding to the west
and north are pre-calculated values and inserted as initial values
of the sums in stage-1 and 2, respectively. The east and south
padding are handled differently since it has to be inserted as
extra pixels in the data stream; the east padding in between
the rows of and the south padding after the last pixel have
been processed from . Fig. 2(b) shows an example of both
the pre-calculated padding and the inserted extra bits for each
corresponding side of when the SE consists of seven rows
and five columns of ONES.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:26:03 EDT from IEEE Xplore. Restrictions apply.

2220 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008

Fig. 6. Architecture of the erosion and dilation unit. Multiplexors are marked with � , the flip-flop with �� and the row memory with � . � and �
corresponds to the height and width of the input image and thick lines indicate buses with corresponding WL shown in each stage.

Fig. 7. Clock cycle (cc) true example of an erosion using a 3� 3 SE. ff shows
the content of the flip-flop in stage-1, � the row memory in stage-2, and
��� and ��� show the output from respective stage. ���� indicates that the
row memory is not updated in that clock cycle and ‘�’ represents invalid data.

With this architecture each pixel in is used once to up-
date the sum stored in the flip-flop in stage-1, that records the
number of consecutive ONES to the left of the currently pro-
cessed pixel. When the input is ONE, the sum is increased, else
reset to ZERO. Each time the sum plus the input equals the width
of , stage-1 outputs a ONE to stage-2 and the previous sum
is kept. The same principle is used in stage-2 but instead of a
flip-flop, a row memory is used to store the number of ONES

from stage-1 in the vertical direction for each column in . In
addition, a controller is required to handle padding and to deter-
mine the operation to be performed, i.e., or . An example of
the values in the main blocks in the architecture after each clock
cycle when performing an erosion is shown in Fig. 7. The input
image is padded in the same manner as shown in Fig. 2(b) and
all signals can be found in Fig. 6. Since an erosion is performed,
stage-0 and stage-3 are only bypassing the input and output sig-
nals.

The input and output of this architecture is binary and hence
the WL in stage-0 and stage-3 only has to be one bit. However,
in stage-1 and stage-2 sums are recorded and the WL has to be
wide enough to hold the maximum values. In stage-1 the max-
imum sum is equal to and the corresponding WL

to . In stage-2 the maximum sum depends
on height of the SE and the .

That padding is inserted into the data stream means that input
data have to be stalled for the duration of the padding. The effect
of this is twofold; additional memory is required and operating
frequency of the data-path has to be higher than the input fre-
quency. Hence, an asynchronous FIFO, located at the input in
Fig. 6, is needed to store input data and separates the two dif-
ferent clock domains.

C. Stall-Free Low-Complexity Architecture

In order to improve memory requirements, an extension to
the architecture described in Section III-B is proposed. The re-
sult is an architecture that shares the same principles and ex-
plores the same morphological properties, achieving the same
computational complexity. However, the major difference lies
in how the padding is addressed. Adding hardware support for
processing padding in parallel instead of in serial, e.g., the east
and west padding, omits the need to stall the input. Hence, no
FIFO is required at the input and the memory requirements are
reduced even further.

Assuming that the input is streaming back-to-back images,
two cases of independent consecutive pixels can be recognized:
the transition from one row to the next and the transition from
one image to the next. In the row-to-row case, the last pixels
in a row are predefined padding pixels and the first pixels in the
next row can only increase the stored sum in stage-1 but not pro-
duce an output to stage-2. Hence, a modified version of stage-1,
which only handles the padding, can be added to process the last
pixels in a row corresponding to the east padding, thus freeing
the regular stage-1 to start processing the first input pixels of
the next row concurrently. The procedure is illustrated in Fig. 8
which shows an example of which padding pixels that are pro-
cessed in parallel during a transition between two consecutive
rows in a frame at time and . Fig. 9(b) shows the dataflow
in the stall-free architecture during a row-break. In the image to
image case the same principle can be used, since the last pixels
in an image are the south padding and the first pixels of the next

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:26:03 EDT from IEEE Xplore. Restrictions apply.

HEDBERG et al.: LOW-COMPLEXITY BINARY MORPHOLOGY ARCHITECTURES 2221

Fig. 8. Example of parallel processing of the padding in stage-1 and 2 at time
� and � � � if the SE is of size 1 � 5. The two east padding pixels from the
previous row are processed in parallel with the first two pixels in the current
row.

Fig. 9. (a) Block diagram of the low-complexity algorithm. (b), (c) Block dia-
grams of the dataflow during a row-break and an image-break, respectively, in
the stall-free algorithm. � indicates modified blocks.

image cannot produce an output from stage-2. The only differ-
ence is that a second stage-2 is added and the dataflow is as
shown in Fig. 9(c).

A continuous data stream constituting of back-to-back im-
ages is a worst-case scenario assumption. This type of input
pattern characteristics can be found when the input source is
burst read from a memory, e.g., when processing images in a
video sequence. However, when using a sensor in the image
acquisition step in a real-time environment, the timing model
can be somewhat relaxed. This is due to that for most sensors,
there are typically tens of extra cycles in between rows and im-
ages in the sensor output pattern. These extra cycles can be uti-
lized to perform the east padding found in between rows and
thereby reduce the size requirement of input FIFO needed in
the low-complexity architecture. However, the number of extra
cycles in the output pattern will in most cases not exceed the
number of the required stall cycles during the south padding,
which is mainly proportional to , where

is the width of the input image. Therefore, in applications
where the input source is a stream of multiple images requiring
an , the FIFO is still needed in the low-complexity

Fig. 10. Examples of extended morphological operations based on the low-
complexity architecture. (a) Boundary extraction shown together with the re-
quired SE with shaded origin and result. (b) Hardware unit for pattern spec-
trum extraction. The pattern spectrum has mainly three peaks indicating the
size of the clusters, i.e., approximately � � � � �, �� � �� � ���� and
�� � �� � ��	�
����.

architecture making the stall-free architecture superior in terms
of memory requirements compared to the others.

With these modifications, streaming back-to-back images
can be processed without stalling input data. Even though the
amount of hardware is increased inside the data-path, it is
shown in Section V that this amount is far less than the FIFO
requirement. Another benefit derived from this property is that
only one clock domain is required, i.e., the architecture can
run at the same speed as the incoming data, which facilitates
incorporating the unit in an embedded system environment.

D. Extended Morphological Operations

Due to its low-complexity, the stall-free architecture allows
several units to be connected to form extended morphological
operations, which increases the flexibility and thereby the appli-
cability of the architecture. As an example, contour extraction
is performed by subtracting , which is
accomplished with an adder and a FIFO to compensate for the
latency imposed by the architecture [20]. A boundary extraction
unit using the proposed architecture together with examples of
input and output is shown in Fig. 10(a).

Granulometry based on parallel openings is a morphological
operation which is used to estimate cluster sizes in images [21].
This is an example of an advanced operation in which the bene-
fits of the proposed architecture are substantial both in terms of
speed and memory requirements. The operation is based on the
difference between the remaining number of pixels after parallel
openings with an increasing SE size, i.e., a square with a side

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:26:03 EDT from IEEE Xplore. Restrictions apply.

2222 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008

. Let be the sum of the remaining pixels
equal to ONE after the th opening, calculated as

referred to as the size distribution. The difference between ad-
jacent size distributions is defined as the granulometric function
and is calculated according to

where

which is also denoted pattern spectrum. The granulometric func-
tion is sensitive to changes in the number of removed pixels
which means that an impulse in the pattern spectrum at a cer-
tain SE size indicate that this is a typical cluster size. A hardware
unit to calculate the pattern spectrum based on the proposed ar-
chitecture is illustrated in Fig. 10(b), where are accumu-
lators that sums and store the number of remaining foreground
pixels. When all openings are finished, to are calculated
as the difference between the sums to . To determine the
number of opening branches , some a priori knowledge of the
image content is required. This is application specific and de-
pends on the relation between the SE size and the resolution.
However, even with a large number of branches, e.g., a quarter
of the image height, the memory requirement in the unit is still
low due to the use of the proposed architecture, i.e., mainly pro-
portional to , where is
the height of the input image. The unit preserves the important
property of streaming data and can run at the same speed as the
incoming pixels, but with a latency proportional to the largest SE
size. Examples of where granulometry can be useful is process
monitoring and in medical applications [22].

To be able to perform other important and more computa-
tionally expensive multi-pass morphological operations such as
the hit-and-miss, skeletonization, and convex hull transforma-
tion [23], additional intermediate storage as well as an extension
to the supported SE is required.

IV. IMPLEMENTATION

The architectures have been implemented in VHDL and
synthesized for the UMC 0.13- m CMOS process, supporting
an image resolution of 640 480 and a maximum SE size
of 63 63 pixels (not limited by the architecture). All three
architectures can perform either or , controlled by a single
bit, and support changing the SE size during run-time, i.e.,
height and width. Table I compiles the most important resource
requirements and characteristics of the architectures. Memory
area is divided into and , where the former is
the amount of memory used to stall or align input data and the
latter is the required memory to calculate the output.

Table I shows that memory is a significant part of all three im-
plementations. The delay-line architecture has a lower memory
area percentage than the other two since this architecture has a
more complex controller which handles the padding. For both
the low-complexity and the stall-free architecture, memory is

TABLE I
SYNTHESIS RESULTS IN THE UMC 0.13-�m CMOS PROCESS, USING AN

IMAGE RESOLUTION OF 640 � 480 AND SUPPORTING A MAXIMUM SE SIZE OF

63 � 63 PIXELS

Fig. 11. Row memory implemented with one double-width single-port
memory, which performs read and write every other clock cycle.

equal to or more than 88% of the total area when the row mem-
ories are implemented as single-port high-density SRAMs, fur-
ther discussed in Section IV-A. In order to distinguish the area
requirement relationship between the designs, the normalized
area is inferred. This figure shows that the delay-line and low-
complexity architecture requires a factor of 7.7 and 2.5 more
area than the stall-free architecture. Furthermore, it can be no-
ticed that the low-complexity architecture has a reduced oper-
ating speed compared to the others. This is due to that the asyn-
chronous FIFO located at the input of this architecture is re-
placed by a dual-port memory. The gate count is based on a
2-input NAND-gate (5.12 m) and includes all memory blocks.

A. Memory Architecture

In the low-complexity and stall-free architecture, memory is
by far the single largest component putting constraints on max-
imum operating speed as well as a lower limit on the area.
Therefore, it is of special interest to optimize the memory re-
quirements. Ideally, a value in the row memory should
be read, updated, and written back to the memory in a single
cycle. This requires a simultaneous read and write operation
that normally is implemented using a dual-port memory. How-
ever, this type of memory introduces an area overhead mainly
due to the dual address decoders, especially large if the memory
is small. Another observation is that the row memories have a
memory content access pattern of a FIFO, resulting in that the
address generation becomes trivial and can be implemented as a
simple modulo-counter. Based on these facts, all row memories
can be advantageously implemented using a single-port memory
of double width that reads and writes two samples every other
clock cycle. The architecture is illustrated in Fig. 11. As an ex-
ample, using a memory with a depth and width of 320 12
bits and two 12 bit flip-flops, the memory area can be reduced

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:26:03 EDT from IEEE Xplore. Restrictions apply.

HEDBERG et al.: LOW-COMPLEXITY BINARY MORPHOLOGY ARCHITECTURES 2223

by approximately 30% compared to using a standard dual-port
memory for this particular process (UMC 0.13- m).

V. RESULTS AND PERFORMANCE

This section discusses and compares the performance of each
architecture. The comparison is performed in terms of compu-
tational complexity, execution time, and memory requirements.

A. Computational Complexity

Computational complexity for the presented architectures is
measured in number of operations per output, i.e., the number
of times an input sample is used. Typically, the delay-line archi-
tecture uses each input as many times as the number of elements
in the SE in order to support arbitrary shaped SEs, but can be
reduced to when using a rectangular SE (discussed
in Section I-A). Both the low-complexity and the stall-free ar-
chitecture have a constant computational complexity of 4 oper-
ations per pixel, i.e., each operation is accomplished with only
two summations and two comparisons and use each input only
once, independent of the SE size. This is due to that they are
based on the same principle which is to trade the freedom of
choosing an arbitrary SE shape for reduced complexity.

B. Execution Time

In a typical morphological operation, the execution time
is the time between processing the first input until the last output
has been produced. It consists of two contributions: pixel pro-
cessing time, , and padding time, . is the time it
takes for the architecture to process all the pixels in the input
image and is thus proportional to the resolution and in some
cases the SE size, depending on if time multiplexing is used in
the implementation. includes all extra clock cycles due to
padding and is hence dependent on both the resolution and SE
size, as shown in Fig. 2.

The execution time, measured in clock cycles, of the delay-
line and stall-free architecture is equal to the image resolution,
since no padding is inserted into the data stream, and can be
written as

(7)

The low-complexity architecture, on the other hand, needs to
insert padding on two sides, resulting in an execution time of

(8)

where the second and third term corresponds to the time it takes
to insert the east and south padding.

Comparing (7) and (8) for an input image of 640 480 and
a it is found that the low-complexity architec-
ture requires approximately 11% longer execution time due to
the inserted padding. With an increasing resolution compared
to the SE size, this penalty will become smaller and eventually
insignificant. However, this architecture still requires multiple

clock domains; one for the pixel stream and one for the oper-
ating frequency of the architecture.

C. Memory Requirement

The required amount of memory for the delay-line architec-
ture can be seen in Fig. 3(b) and is calculated as

bits (9)

where the first term accounts for the FIFOs and the second term
for the flip-flops used to extract the SE.

The memory requirement for the low-complexity architecture
is proportional to the word-length in each stage, illustrated in
Fig. 6. The word-lengths in stage-1 and 2 depend on the max-
imum supported SE size and is equal to
and , respectively. In addition, a FIFO is
required at the input since the incoming pixel stream needs to
be stalled during the processing of the padding pixels. Thus, the
total amount of required memory is

bits
(10)

where the second and third term corresponds to the flip-flop in
stage-1 and to the row memory in stage-2, respectively. The size
of the FIFO not only depends on the padding and resolution
but also on the operating and input frequency, and ; the
higher compared to , the smaller the FIFO. If lowered
as much as possible while still supporting back-to-back images,
i.e., , the size of the FIFO can be
approximated as

bits (11)

where , , and are the size of the south padding, all
padding and the input image, respectively.

The memory requirements of the stall-free architecture fol-
lows the principles of (10) but without the FIFO. The resulting
total memory requirement can be written as

bits
(12)

where the factor 2 is due to the parallel processing during
padding. However, removing the FIFO at the input still has a
significant impact on the memory requirements, as shown in
Table I. Equation (12) indicates that the memory area of the
data-path in the stall-free architecture should be twice the size
of the low-complexity memory, but this is not the case when
comparing in Table I. The explanation is that instead
of using two separate row memories, one single row memory
of double width is used as discussed in Section IV-A.

Hardware requirements for implementations supporting
higher resolutions and SEs can be estimated accurately by
using the required memory size since this is the main source,
as shown in Table I. The memory requirements for the three
architectures as a function of SE size using an image resolution
of 1280 1024 is shown in Fig. 12. As an example, the total
memory requirement of a stall-free architecture supporting

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:26:03 EDT from IEEE Xplore. Restrictions apply.

2224 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008

Fig. 12. Vertical axis shows the total memory requirement in kbit as a function
of� for each implementation. The image resolution is 1280� 1024 and�
is the size in pixels of a quadratic SE.

TABLE II
THE MOST IMPORTANT PROPERTIES OF THE ARCHITECTURES, WHERE � AND

� IS THE SIZE IN PIXELS OF A QUADRATIC INPUT IMAGE AND SE

a maximum SE size of 63 63 is about 15 kbits. With the
same settings, the delay-line implementations would require
approximately 79 kbits of memory, which is more than 5 times
as much. Table II summarizes the most important properties
of the different architectures as functions of image resolution
and SE size. The table clearly indicate that for applications in
which a rectangular SE is sufficient to fulfill the specifications,
the stall-free architecture reduces computational complexity
and memory requirements without sacrificing execution time.

From a power perspective it is advantageous to have a low
arithmetic complexity and to limit the number of memory
access since both contribute to the dynamic power budget. The
actual number of memory accesses per pixel for the delay-line
implementation is mainly proportional to ,
since each value is shifted downward one row in Fig. 3 each
time it is to be used in a calculation (the factor two is for
reading and writing). For the low-complexity and the stall-free
architecture, this number is reduced to , where is
additional accesses required during the
south padding (neglecting the input FIFO read and and write
operation required in the low-complexity architecture). As
an example, using a resolution of 640 480 and supporting
a maximum SE size of 63 63, these additional memory
accesses only constitutes 6.5% of the total number memory
access per frame or additional accesses per pixel. The
conclusion is that both the low-complexity and the stall-free

architecture mainly only require one read and one write opera-
tion per pixel. Furthermore, since static power consumption is
becoming increasingly important in modern CMOS technolo-
gies due to leakage, it is beneficial to reduce the overall area
[24]. For the designs in this article, area mainly constitutes of
memory. A reduced memory requirement will therefore not
only have a large impact on the static but also on the dynamic
power since accessing smaller memories requires less power
than larger ones. Based on these facts and the results in Table II,
it is seen that the stall-free low-complexity architecture has the
lowest complexity and lowest memory requirements both in
terms of bits and accesses, hence has better dynamic and static
power dissipation properties than the other designs.

VI. CONCLUSION

This article presents an evaluation of three architectures for
binary erosion and dilation intended to be used as hardware ac-
celerator in real-time applications. In particular, an architecture
of a fast stall-free low-complexity architecture based on SE de-
composition is proposed. The most important features and prop-
erties are that it requires no extra clock cycles due to padding
and has a memory requirement proportional to the SE height
and input image width. The architecture supports flat arbitrary
sized rectangular SEs and the number of operations and memory
accesses per pixel is constant, independent of both the SE and
image size. Furthermore, due to its low complexity and memory
requirement, multiple units can be connected without any inter-
mediate storage to perform other morphological operations. In
order to verify and evaluate the results, the architecture has been
implemented in VHDL and synthesized in the UMC 0.13- m
CMOS process using a resolution of 640 480 and supporting
a maximum SE of 63 63. In comparison with implementations
of the delay-line and the low-complexity architecture using the
same parameter setting, the area is decreased by a factor of 7.7
and 2.5, respectively, while achieving the same or better execu-
tion time.

ACKNOWLEDGMENT

The authors would like to thank E. Ledfelt, Ericsson Mobile
Platforms for valuable input to this work.

REFERENCES

[1] J. Serra, Image Analysis and Mathematical Morpohology. New York:
Academic Press, 1982.

[2] E. R. Dougherty and R. A. Lotufo, Hands-on Morphological Image
Processing. Bellingham, WA: Spie Press, 2003.

[3] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture
models for real-time tracking,” in Proc. IEEE Comput. Soc. Conf.
Computer Vision Pattern Recogn., Ft. Collins, TX, Jun. 23–25, 1999.

[4] B. Kisačanin and D. Schonfeld, “A fast thresholded linear convolu-
tion representation of morphological operations,” IEEE Trans. Image
Process., vol. 3, no. 4, pp. 455–457, Jul. 1994.

[5] F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson, and V. Öwall, “An
embedded real-time surveillance system: Implementation and evalua-
tion,” J. Signal Process. Syst., vol. 52, no. 1, Jul. 2008.

[6] H. Jiang, H. Ardö, and V. Öwall, “Real-time video segmentation
with VGA resolution and memory bandwidth reduction,” in Proc.
2006 IEEE Int. Conf. Advanced Video and Signal based Surveillance,
Sydney, Australia, Nov. 2006.

[7] S. Fejes and F. Vajda, “A data-driven algorithm and systolic architec-
ture for image morphology,” in Proc. IEEE Int. Conf. Image Process.,
Austin, Texas, Nov. 13–16, 1994, vol. 2, pp. 550–554.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:26:03 EDT from IEEE Xplore. Restrictions apply.

HEDBERG et al.: LOW-COMPLEXITY BINARY MORPHOLOGY ARCHITECTURES 2225

[8] J. Velten and A. Kummert, “FPGA-based implementation of variable
sized structuring elements for 2-D binary morphological operations,” in
Proc. 1st IEEE Int. Workshop Electron. Design, Test, Appl., Jan. 29–31,
2002, pp. 309–312.

[9] S. Y. Chien, S. Y. Ma, and L. G. Chen, “Partial-result-reuse architec-
ture and its design technique for morphological operations with flat
structuring element,” IEEE Trans. Circuits Syst. Video Technol., vol.
15, no. 9, pp. 344–371, Sep. 2005.

[10] A. Źarandy, A. Stoffels, T. Roska, and L. O. Chua, “Implementation of
binary and gray-scale mathematical morphology on the cnn universal
machine,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 45,
no. 2, pp. 163–168, Feb. 1998.

[11] E. N. Malamas, A. G. Malamos, and T. A. Varvarigou, “Fast implemen-
tation of binary morphological operations on hardware-efficient sys-
tolic architectures,” J. VLSI Signal Process., vol. 25, pp. 79–93, 2000.

[12] M. van Herk, “A fast algorithm for local minimum and maximum filters
on rectangular and octagonal kernels,” Pattern Recogn. Lett., vol. 13,
no. 7, pp. 517–521, 1992.

[13] H. Hedberg, F. Kristensen, P. Nilsson, and V. Öwall, “A low com-
plexity architecture for binary image erosion and dilation using struc-
turing element decomposition,” in Proc. IEEE Int. Symp. Circuits Syst.,
Kobe, Japan, May 2005, vol. 4, pp. 3431–3434.

[14] J. Goutsias and H. J. Heijmans, “Fundamenta morphologicae mathe-
maticae,” Fund. Info., vol. 41, no. 1–2, pp. 1–31, Jan. 2000.

[15] J. Velten and A. Kummert, “Implementation of a high-performance
hardware architecture for binary morphological image processing op-
erations,” in Proc. IEEE Int. Midwest Symp.Circuits Syst., Hiroshima,
Japan, Jul. 25–28, 2004, vol. 2, pp. 241–244.

[16] H. Park and R. T. Chin, “Decomposition of arbitrarily shaped mor-
phological structuring elements,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 17, no. 1, pp. 2–15, Jan. 1995.

[17] G. Anelli and A. Broggi, “Decomposition of arbitrarily shaped binary
morphological structuring elements using genetic algorithms,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 20, no. 2, pp. 217–224, 1998.

[18] F. Y. Shih and Y. T. Wu, “Decomposition of binary morphological
structuring elements based on genetic algorithms,” J. Comput. Vision
Image Understand., vol. 99, no. 2, pp. 291–302, 2005.

[19] R. Lam and C. Li, “A fast algorithm to morphological operations with
flat structuring element,” IEEE Trans. Circuits Syst. I, Fundam. Theory
Appl., vol. 45, no. 3, pp. 387–391, Mar. 1998.

[20] R. Gonzalez and R. Woods, Digital Image Processing, 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall, 2002.

[21] G. Matheron, Random Sets and Integral Geometry. New York: Wiley,
1975.

[22] A. G. Dempster and C. D. Ruberto, “Using granulometries in pro-
cessing images of malarial blood,” in Proc. IEEE Int. Symp. Circuits
Syst., Sydney, Australia, May 2001.

[23] P. Soille, “From binary to gray scale convex hulls,” Fund. Inf., vol. 41,
pp. 131–146, Jan. 2000.

[24] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Cir-
cuit, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2003.

Hugo Hedberg received the M.S.E.E. and Ph.D. de-
grees in electrical engineering from Lund University,
Lund, Sweden, in 2001 and 2008, respectively.

His doctoral thesis addresses hardware accelera-
tors for automated digital surveillance systems. His
main research area is hardware implementations of
image processing algorithms targeted for real-time
embedded systems with a special interest in devel-
oping low-complexity architectures for morpholog-
ical operations. He is currently with Prevas, Stock-
holm, Sweden.

Fredrik Kristensen received the M.S.E.E and Ph.D.
degrees in electrical engineering from Lund Institute
of Technology, Lund University, Lund, Sweden, in
August 2001 and September 2007, respectively.

His doctoral thesis related to hardware implemen-
tations of embedded automated surveillance systems.
His main research area is real-time video processing
and is currently with Nokia, Copenhagen, Denmark,
working as a Hardware Designer.

Viktor Öwall received the M.Sc. and Ph.D. degrees
in electrical engineering from Lund University, Lund,
Sweden, in 1988 and 1994, respectively.

During 1995 to 1996, he joined the Electrical
Engineering Department, the University of Cali-
fornia at Los Angeles as a Postdoctoral Researcher,
where he mainly worked in the field of multimedia
simulations. Since 1996, he has been with the De-
partment of Electrical and Information Technology,
Lund University. His main research interest is in the
field of digital hardware implementation, especially

algorithms and architectures for wireless communication, image processing
and biomedical applications. Current research projects include combining
theoretical research with hardware implementation aspects in the areas of
pacemakers, channel coding, video processing, and digital holography.

Dr. Öwall was Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING from
2000–2002 and is currently Associate Editor of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—I: REGULAR PAPERS.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:26:03 EDT from IEEE Xplore. Restrictions apply.

