LUND UNIVERSITY

Nice Resource Reservations in Linux

Ohlin, Martin; Kjaer, Martin Ansbjerg

2007

Link to publication

Citation for published version (APA):

Ohlin, M., & Kjaer, M. A. (2007). Nice Resource Reservations in Linux. Paper presented at Second IEEE
International Workshop on Feedback Control Implementation and Design in Computing Systems and Networks
(FeBIDO7), Munich, Germany.

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/725e24d5-fd6f-4091-bc23-e67d0b528c0c

Download date: 16. Nov. 2025

Nice Resource Reservations in LLinux

Martin Ohlin
Department of Automatic Control
Lund University
Box 118, SE-221 00 Lund, Sweden
Email: Martin.Ohlin@control.Ith.se

Abstract—Computing systems are becoming more and more
complex and powerful every year. It is nowadays not uncommon
to run several server applications on the same physical platform.
This gives rise to a need for resource reservation techniques,
so that administrators may prioritize some applications, or
customers, over others. This article gives a brief introduction
to the Linux kernel 2.6 task scheduler. The article also presents
an implementation of a scheduling mechanism, that in a non—
intrusive way introduces CPU bandwidth reservations for a task,
or a group of tasks, in the GNU/Linux operating system.

The scheduling mechanism is first tested using dedicated load
tasks, and then on a setup consisting of two Apache servers.

I. INTRODUCTION

Resource reservation has become an important tool for
modern I'T-systems. For example, a Internet host (e.g. a web
hotel) guarantees to supply a certain amount of resources to
a number of service providers (e.g. web shops). Often several
service providers are hosted on the same hardware, but the host
must guarantee that each service provider receives the agreed
amount of resources, despite the behavior of the other service
providers. The specific type of resources can be one or more
of; network bandwidth, database access, memory allocation,
CPU bandwidth, and many more. Another example is when a
movie player on a PC needs a certain amount of CPU resources
while a virus scanner runs in the background.

On a single computer, the exact decision of how the
resources are split between the applications is often left to the
operating system. In most cases, this deference of command
can be seen as an advantage because it is not normally known
exactly how important they are relative to each other. For
example, it is not trivial to determine how important the mail
server is compared to the web server. However, in some cases,
it would be advantageous if there existed a mechanism to
specify exactly how important different tasks (or groups of
tasks) are compared to each other. Take for example the simple
case where two web servers are running on the same machine.
The first server is used by paying customers, and the other by
browsing customers. Then it would be advantageous to have
a mechanism to control the average response times, so that
the paying customers will always be satisfied, whereas the
browsing customers are still allowed to access the server if
there is spare capacity.

The so—called virtual hosting provides utilities to define
resource allocation by imposing a virtual operating system
between the host operating system and each service provider.
The resources allocated to each virtual server can be defined

Martin A. Kjer
Department of Automatic Control
Lund University
Box 118, SE-221 00 Lund, Sweden
Email: Martin.A.Kjaer@control.lth.se

by the host. This gives well defined resource isolation, but in
some case, a simpler, and possible cheaper, method might be
preferred.

The results described in this paper aim to obtain CPU-
bandwidth separation between different service providers
while keeping the overhead to a minimum. A feedback based
method is used to achieve CPU bandwidth reservation on a
kernel level, thus avoiding the need to make modifications
to the applications. Because it is implemented in the kernel
with an optimized algorithm, the overhead is fairly small. The
implementation makes use of the Linux prioritizing scheme to
assure a specified amount of CPU bandwidth to a given task.
The CPU reservations are obtained using existing operating—
system infrastructure.

As the source code of GNU/Linux is free, a number of
organizations have released their own versions of the operating
system. Some of these organizations are Debian, Fedora and
SuSE. GNU/Linux has for many years been a large competitor
in server systems, such as web, ftp, mail and file servers.
During the last years, the interest in GNU/Linux from commer-
cial companies has increased dramatically. Nowadays, large
enterprises such as IBM and Hewlett—Packard take active part
in the GNU/Linux development, and also ship GNU/Linux as
part of their large server and cluster systems.

The remainder of this paper paper is organized as follows.
Section II describes the objective of the control mechanism.
Section III describes some issues of the Linux scheduler
relevant for the resource allocation problem. In Section IV a
model of the scheduler is formed, and Section V describes the
controller implementation. In Section VI the control algorithm
is expanded to take the task’s state into account to avoid
integrator windup. Section VII presents experimental valida-
tion using test tasks, and Section VIII presents experimental
results where the reservation mechanism was implemented on
a setup with two Apache servers. Related work is presented in
Section IX, and finally, conclusions are stated in Section X.

II. OBJECTIVE OF CONTROL

The objective of the control in this paper is to achieve CPU
bandwidth reservations. Such reservations make it possible to
reserve fractions of the CPU to specific tasks or a groups
of tasks. In the Linux kernel, both processes and threads are
called tasks. Even POSIX threads created using the Native
POSIX Thread Library (NPTL) are called tasks. From the

kernels’ perspective, they are all schedulable entities. There-
fore, the method which will be presented can be used both for
applications made up of threads and of processes.

The developed method has been implemented as an add—on
to the Linux 2.6 kernel. A key factor in the current implemen-
tation has been to make it non—intrusive and to preserve the
way that the original scheduler works. This gives the benefit
that the new features can be used without compromising
existing functionality. The CPU bandwidth controller uses the
nice value as a control signal, and the tasks’ execution time
as a measurement signal. This forces the scheduler to give the
controlled tasks their specified amount of CPU bandwidth.

It may be argued that the presented problem can be solved
offline by specifying a static nice value for each task. This is
of course absolutely true, if the system is static and everything
is known beforehand. That is, if it is known exactly how many
tasks that are present in the system, and also their execution—
time demands. These premises are not likely to show up in
an ordinary Linux desktop or server system and therefore it
is necessary to introduce a feedback loop to cope with the
unknown. In an ordinary computer system there is a lot of
dynamics. This is due to the fact that tasks can arrive and
leave the system at any time. Tasks can also change their state
and in that way consume more or less execution time. When
running on multi—processor systems, tasks will also jump
between processors in a (from a spectators’ perspective) more
or less random pattern. This causes the execution environment
to change rapidly and therefore an ability to adapt to different
situations is necessary.

III. SCHEDULING OF TASKS

There are three different scheduling policies available in
Linux; SCHED_FIFO, SCHED_RR, and SCHED_OTHER. The
two former are for soft real-time scheduling policies, and the
latter is for normal time—sharing scheduling. Only the latter is
utilized in the work presented in this paper.

The Linux 2.6 kernel task scheduler has two priority queues,
one for active tasks, and one for expired tasks. The queues
are arrays of linked lists, one list for every priority. The
scheduler always chooses the list with the highest priority
in the active queue. Every task in the active queue of the
system gets to run a certain time before it is put in the expired
queue. This time is called a time_slice and the actual
size of it depends solely on the nice value given to the task
and not on the effective priority. Nice values in the interval
[—20...0...19] are mapped to time slice sizes in the interval
[800ms...100ms...5ms|. The size of the resulting time
slices can be seen in Figure 1. Note that the resulting time
slices do not scale linearly with the nice value.

A non-interactive task is moved to the expired queue when
it has used up its given time slice, an interactive task on the
other hand is reinserted into the active queue if there is no
risk of starvation in the expired queue. When there are no
more tasks left in the active queue, it is switched with the
expired one. The expired queue is considered to be starving
if the first expired task has had to wait for more than a fixed

800~ +

(ms)
o
]
8
T
4

IS

=3

S
T

time_slice

@

S

=]
T

200~

nice value

Fig. 1. The size of time_slice as a function of the nice value. Notice
that the nice values are ordered from negative to positive values to indicate
increasing time_slice allocation.

time multiplied with the number of tasks in the active queue.
This makes the starvation-limit load dependent. It is also
considered to be starvation if a task with lower nice value
than the currently running task is in the expired queue.

Tasks with the same priority are treated differently, depend-
ing on whether the scheduler considers them to be interactive
or not. Non—interactive tasks are not interrupted by tasks
with the same priority during execution of their time slice.
Interactive tasks on the other hand get their time slice split up
into smaller pieces, and are put at the end of the active queue
again and again until they have executed for their whole time
slice. The result is that interactive tasks are scheduled more or
less round—robin with tasks of the same priority, while non—
interactive tasks run non—preemptively.

For a more detailed description of the task scheduler, see [1].

IV. MODEL OF THE SYSTEM

To start with, we assume that a task always needs to run,
i.e., it is cpu—bound. We can then summarize the above in
a few points and build a model of the system to predict its
behavior.

o A task’s time slice depends solely on its nice value.

o Tasks are scheduled in order of priority.

o Tasks are moved from the active queue to the expired
queue when they have executed their whole time slice.

o The active queue is swapped with the expired when
empty.

According to the model, the fraction of execution time that
a task gets during one round of execution is calculated as:
time_slice(i)
> time_slice(j)

fraction(i) =

where ¢ and j denote task indices.

80 T
+++++++
et
70 o+ B
589
xS

60~ q

50 - q
® 401 : R

30 5 ® b B

60
®
&
®
®
20 ® B
®
)
® &
10F o q
[
L2
)
®
0 i i ‘ i i i i
20 15 10 5 0 -5 -10 -15 -20
nice value
Fig. 2. Comparison of the execution time model for Linux (+) and

measurements on a computer (o). Notice that the nice values are ordered
from negative to positive values.

Example: If, for example, tasks 1, 2 and 3 have nice value
0 and task 4 has nice value —1, then task 4 will get:

B 420
" 100 + 100 + 100 + 420

A. Evaluation of the Model

fraction(i) ~ 58%

To show that the model is accurate, theoretical values from
the proposed model are compared to values received through
measurements. The experimental setup consists of four tasks
running in endless while—loops. Three of the tasks have nice
value 5, while the nice value of the fourth task is varied in
order to give it more or less CPU bandwidth compared to
the other tasks. The result can be seen in Figure 2. Using
lower nice values than —6 resulted in the system becoming
to sluggish to do any good measurements, therefore these are
left out. This sluggishness is probably due to the fact that
tasks with that low nice values are given so high priorities
that they conflict with the tasks interacting with the user. As
can be seen, the results from the experiments follow the model
very well.

V. CONTROLLER IMPLEMENTATION

The control signal, in this case the nice value, can only
change in discrete steps. This makes it impossible to keep
some references statically. But by using modulation tech-
niques, as for example Pulse Width Modulation (PWM), the
reference can be kept on average. Another thing that one
should be aware of is the nonlinearity in how the nice value
is mapped to the time_slice, as seen in Figure 1. This
makes it harder to follow references which forces the control
signal to oscillate over the interval [0, —1]. Ongoing work is
to compensate this by an inverse—nonlinearity, and thereby
reducing the oscillations. This will require more code to be
executed in the kernel, but the overhead is expected to be
fairly small.

A Pl—controller with anti-windup has been implemented
using fixed point arithmetic in a kernel module. The PI-
controllers have a strong history in the control community
because it combines robustness and fast response, while being
relative simple to configure, even without exact knowledge
of the system to be controlled. In the future, more elaborate
schemes could be used that take into account more details
of how the scheduler works, as well as global knowledge
of the behavior of other tasks. By using a Pl-controller in
this way, a PWM-like behavior is achieved automatically. The
implemented PI—controller is given by

u(k) K (yrey —y(k)) + I1(k) (1)
k= 1)+ Ts o (g —y(k) @

%

1(k)

where the parameters K and T; are the proportional and
integral control parameters, respectively. The variable u is the
control signal (the nice value), and y is the measurement
(the fraction of time given to the task). The variable k is
the discrete time index, such that ¢ = kT'g, where T is the
sampling time. The PI controller consists of two components.
The proportional part (K (yr.f — y(k))) ensures fast reaction
to disturbances, but does not assure that the desired reference
is reached. The integral part (described by I) will accumulate
any error between the measurement and reference in a similar
manner as an incremental controller. This part is particular
beneficial when the system under consideration is not well—
known and predictable, as with computer systems. The specific
implementation uses the control parameters X = 0.01 and
T; = 52, and sampling times of T's = 20 ms.

Since the control design is not based on a dynamical model,
there are no theoretical guarantees for performance or stability.
However, the values of K and 7T; have been chosen rather
conservatively to have large stability margins. This is imposed
because even small changes to the nice value can lead to
large changes in the achieved CPU-bandwidth. The effect of
changes to the nice value also varies with the number of tasks
in the system and their respective nice values in turn. The
fact that there are unknown parameters in the system makes it
good to have a conservatively tuned controller. Another thing
that makes a conservatively tuned controller preferable, is the
fact that measurements are not taken instantaneously, but over
an interval. The system must therefore be given some time to
react to the control signal before changing it again. Using a
large value on T7, also has the bonus effect that measurements
are averaged. In the case where the controller saturates, the
control objective might not be met, since the controller lacks
actuation possibility. The integral part will remain within the
allowed control range due to the anti—windup scheme.

For more details on the controller implementation, see [1].

VI. TAKING THE TASK’S STATE INTO ACCOUNT

Up until now it has been assumed (for simplicity) that
a controlled task is always willing to run, i.e., it is cpu—
bound. This may be true in some cases, but obviously not
in all. Imagine for example that the controlled task is given

a reference of 50%, but does not need more than 40% due
to the fact that it is waiting on some I/O to occur the rest of
the time. The integral part of the PI controller will then add
up the difference, and increase the control signal in order to
remove the error. But as the task is unwilling to run, and the
system can not force it, the error will remain and the control
signal will, due to the integral effect, continue to rise until it
hits its limit. This is of course not a satisfactory behavior, and
could be avoided by taking the current state of the task into
account when controlling it. The strategy could be something
like: do not increase the control signal further if the task is not
not willing to run more. This is more or less an anti—-windup
scheme which ensures that the integral part does not wind
up trying to enforce higher CPU allocation to a task than the
task demands. The remaining part of this section will give a
strategy for solving these kinds of situations.

A. Strategy

The idea to update the control signal only if the task is
willing to run, sounds good at first. It is, however, not as simple
as it first might seem. The obvious question to answer is: how
do we know if a task is willing to run more than it already
does? The idea used in the current controller implementation
is to sample the state of the task at the same time as the
execution time. The controller is then only executed if two
consecutive samples show that the task is in the “running”
state. This strategy works well if the task is usually in the
“running” state for a longer time than the time between two
consecutive samples of the controller. How long time a task
spends in its “running” state depends highly on its workload
during that time interval, but it also depends on the other tasks
in the system, as the task might get interrupted by a higher
priority task. This makes it hard to give any general rules
and hence draw any conclusions to be used for more accurate
control.

B. Why does the Strategy Work?

The reason why the strategy works, i.e., the control signal
does not saturate, is the following: A task with a low priority
will be in the “running” state for a long time. This is due to
the fact that it will be preceded and interrupted by tasks with
higher priorities. It will not switch from the “running” state
until it has finished its current work load. If the priority of the
task is increased, the task may not be preceded by as many
tasks as before and it will also not be interrupted by as many.
Hence, it will finish earlier and therefore be a shorter time in
the “running” state. In essence, a high priority gives a short
time in the “running” state. As the execution time demand is
constant, the ratio between executed time and time spent in
the “running” state will increase if the priority is increased.
At a certain point, an equilibrium will be reached, where the
reference is met during the period when the task is in the
“running” state, and hence the control signal will be constant.

Example: Fig. 3 shows the sampling points of the controller,
and the task’s state at those points. It also shows the task’s
execution trace and which of the sample intervals that are used

Task Execution V777777777

Sampling Points [] [] [] [] o o [] ° ° []
Task State w r r r r r r r w w
Controlled Intervals {
CPU Bandwidth 0% 0% 0% 70% 100% 30% 90% 30% 0%

Fig. 3. Figure showing how the strategy described in Section VI-B for

controlling non—cpu bound tasks works.

by the controller. An r means that the task is in the “running”
state, and a w that it is in one of the “waiting” states. During
the controlled intervals, the ratio between executed time and
time spent in the “running” state is approximately 48%.

VII. EXPERIMENTS WITH LOAD TASKS

Experiment 1 and 2 have been performed on a single CPU
desktop computer. At the same time as the experiments were
made, there were a number of tasks in the system, e.g.,
X, Firefox, Thunderbird, XEmacs and so on. All bandwidth
measurements have been filtered through a moving average
window of 4 s. The filtering is done because of the fact that
when a task executes, it gets 100% of the CPU-bandwidth and
then it gets 0% when it does not execute. Filtering through a
moving average window shows the CPU-bandwidth during
that window and this is also what one wants to achieve.

Running the experiments on a computer with more than one
CPU will gain results similar to the ones seen in this section,
except that there will considerably more load disturbances, as
those seen in Experiment 1.

Experiment 1: The setup in this experiment consists of four
tasks running in endless while—loops. Two of the tasks have
their nice values set to five, and act as background load. The
third and fourth task’s nices values are used as control signals
to keep the measured bandwidth at the desired references.

The references for both of the tasks are kept at 25% initially.
At time 182, the reference for the first task is changed from
25% to 50%. At around time 320, the reference is changed
back to 25%. The result of the step response for the first task
can be seen in Figure 4. The coupling between the two tasks
is visible in Figure 5, which shows the disturbance on the
second task resulting from the step on the first one. No feed—
forward term is used in the controller. This experiment shows
the PWM nature of the control signal and the results of the
quantization in the nice value. In Figure 4, it can be seen
that the control signal is constant both before and after the two
steps. But when the reference is set to 50%, the control signal
fluctuates a lot. Also note that there is much less oscillation
in the CPU-bandwidth when the reference is set to 25% than
to 50%. This is due to the fact that some references cannot be
kept stationary because the nice value is discrete.

Experiment 2: This experiment consists of one periodic
task that executes for approximately 40 ms and then sleeps for
60 ms repeatedly. This results in a task that uses at most 40%
of the CPU even if it is alone in the system. Controlling such
a task requires the state of the task to be taken into account
as described in Section VI. Two load tasks of the same type
used in Experiment 2 are also present in the system.

CPU Bandwidth of Task 1

70 T
— Measurement
— - Reference
10 B
0 I I I I I
150 200 250 300 350 400 450
time (s)
Control Signal of Task 1
5 T
E]
©
S oL 4
8
=
5 I I I I I
150 200 250 300 350 400 450

time (s)

Fig. 4. Step response of the CPU bandwidth (task 1) when controlling two
tasks in Experiment 1.

CPU Bandwidth of Task 2
T

— Measurement
60 — - Reference

0
150 200 250 300 350 400 450
time (s)

Control Signal of Task 2
T

nice value
S
T
L

5 I I I I I
150 200 250 300 350 400 450

time (s)

Fig. 5. Step response of the CPU bandwidth (task 2) when controlling two
tasks in Experiment 1.

As can be seen in Figure 6, the proposed scheme works
well in practise. In the beginning of the plot, the reference is
higher than the task demands, and at time 55 it is set to an
even higher value, but the control signal still behaves well.
It can also be seen that the controller is still able to follow
reference changes when they are lower than 40%.

The observant reader may notice the delay and the following
under—shoot at time 160. Also note that this behavior does not
show up at any of the other step changes in the plot. This
is not an integrator windup as might first be thought, but is
instead due to the fact that the system has marked the task as
interactive and therefore given it an additional bonus. When
the task after some time is marked as non—interactive, it loses
its bonus and this results in the under—shoot.

CPU Bandwidth
T

80 T T T

—— Measurement
— — Reference

60 |

R® 40

20

0 50 100 150 200 250 300 350 400 450
time (s)

Control Signal
20 T T

nice value

0 50 100 150 200 250 300 350 400 450
time (s)

Fig. 6. Step responses for a non cpu—-bound task when taking the task’s state
into account in Experiment 2.

VIII. EXPERIMENT WITH APACHE SERVERS

This experiment aimed to test the scheduling mechanism on
a more realistic application. The test is not included to suggest
that the mechanism is the best solution for the given example,
but only to demonstrate that the method works for a problem
including more advanced behavior than the previous tests.

The setup represents a hosting system where two service
providers are hosted on the same physical hardware. The
objective is to separate the two service providers such that one
service provider can operate unaffected of a request overload
at the other service provider.

Experiment 3: A Pentium 4, 1 GB memory, 3 GHz PC,
with a Linux Fedora 5 operating system and kernel 2.6.17.
was used as host computer. Two Apache servers, version
2.2.2, configured by using the prefork module, were installed
on the server as two distinct service providers. Using this
configuration, a request was handled by one process (child).
If all existing processes were occupied, Apache dynamically
started new processes, and likewise, closed some if there
were too many idle processes. This means that the number
of processes associated with one Apache server changed over
time. The controller was configured to set a common nice
value to all the processes of a given Apache server. Also, the
time allocated to all the processes of one Apache serve were
summed to give the time fraction measurement. In this manner,
a single—input single—output system was obtained as required
by the control structure. Only one of the Apache servers
was controlled with the proposed scheduling mechanism. The
controlled and uncontrolled server were listening on port 80
and 81, respectively. The setup is illustrated in Figure 7.

Traffic was generated from 12 client computers (Athlon,
1.5 GHz PC), grouped into three equal groups consisting of
four client-computers each. The traffic was generated using
the traffic generation software CRIS [2]. All clients requested
the same PHP file (generating a response with 7000 characters)

Arrival intensity Host computer Arrival intensity
i Controlled ! Uncontrolled !
Time |1 Server ! Server | Time
[~ 4 Port Port e
80 81
! TCP/IP layer :

Client Client

#1 #12

Fig. 7. Experimental setup for experiment 3.

with exponentially distributed inter—arrival times, and were
configured to timeout after 10 s. During the experiment, all the
computers were connected on a 100 Mbit switched Ethernet
network.

At the beginning of the experiments, client group I started
sending requests to the controlled server and client group II
started to sent requests to the uncontrolled server. Both groups
sent approximately 160 requests/s. This traffic did not give rise
to CPU-overload, but left approximately 25% CPU bandwidth
free. A server is considered to be overloaded when the requests
can not be served within the timeout of the clients due to lack
of CPU resources. After 173 s, client group III started to send
approximately 160 requests/s to the uncontrolled server. The
computer did not have sufficient CPU capacity to maintain
operation of both servers. The averaged arrival-intensity is
shown in the uppermost sub—figure of Figure 8. The traffic
going to the uncontrolled server was the combined traffic from
client group II and III.

Under the initial operation none of the servers were over-
loaded but as the request rate to the uncontrolled server was
doubled, the computer lacked the CPU bandwidth to serve
all requests. Preferably, only the server being exposed to the
extra traffic should become overloaded, while the other server
should remain operational.

The middle and bottom sub-figures of Figure 8 show the
response times of the controlled server and the uncontrolled
server, respectively. In the case where the controller was
inactive, both servers became overloaded when the traffic
increased. After the increase of traffic, the response times of
both servers increased dramatically and all clients started to
timeout. Consistent timeouts from the clients were observed.
In the case where the CPU resource allocation was controlled
by the proposed scheduling mechanism (reference set to 45%
CPU bandwidth), only the uncontrolled server became over-
loaded. The controlled server continued to perform with simi-
lar response times. Client timeouts were observed consistently
only on the uncontrolled server’s requests. Two single timeouts
were observed on the controlled server’s requests. The small

Arrival rate

T T T T T
» — — — Controlled server
g 300 Uncontrolled server|
@
©
< 200 q
[} M 3 o G
2 "U’« ‘v"w\“*""wu"'“\'\, M,/‘\‘ /“\"M"M\.w”’u-r“‘“M"‘“l""../,/‘\\\.,
z .
100 i i i i i i
140 150 160 170 180 190 200 210
Time (s)
Response time for controlled server
60 . : : . ,
2 Inactive controller
° — — — Active controller
[
E 40
[0}
(2}
S 20
Q
@
O @ [Fe A LY LT e e T
[
0 i i i i i i
140 150 160 170 180 190 200 210
Time (s)
Response time for uncontrolled server
__60 . : : . :
2 Inactive controller !
g 40| L= = Active controller "]
©
(2}
= 4
o
Q
@
[0}
[
0 i i i i i i
140 150 160 170 180 190 200 210
Time (s)
Fig. 8. Results from experiment 3 on two Apache servers. Top: Average

arrival rates. Middle: Response time for the controlled server with and without
feedback control. Bottom: Response time for the uncontrolled server. All
variables were measured at the clients and were filtered with a moving average
window of 200 requests.

jump observed in the response time of the controlled server
(middle sup—figure of Figure 8) at around 200 s is assumed to
be due to some disturbance from other tasks in the operating
system.

This experiment showed that the scheduling mechanism
can be used to affect the response time of a web server
application. The setup with two different servers with different
client groups can be used in applications where different sites
are hosted on the same physical computer, but where the
performance of one server must be independent of the behavior
of the other server. In this experiment we have not considered
how such a system should be setup in a real application. For
instance, we do not consider how the traffic to the two servers
is separated. However, the experiment shows that the two
servers can be separated by means of the proposed scheduling
mechanism. The setup does not aim to control the response
time. If this was the objective, a second control loop would
have to be included, defining the reference for the CPU-
bandwidth controller.

IX. RELATED WORK

Reservation based scheduling is not a new concept and
has been around in one form or another for many years.
The concept has been called fair-share scheduling [3], [4],
[5] but is also known under the name proportional-share
scheduling [6], [7], [8], [9]. A good summary of this field,
together with more details can be found in [10].

The idea of using the nice value as a way to enforce CPU
fractions has been known before. One early implementation
is the Watson Share scheduler [11], implemented on top

of a standard AIX operating system at the Compute Power
Server Cluster at IBM. It is also mentioned in [12] and [13]
as something that in UNIX can be done in theory, but is
complicated in practice because of the non—linear relationship
between nice, the number of processes and the CPU fraction
received. Provided that the number of jobs in the system is
fixed, and that they are all present from the same time and
onward, a deterministic analysis of the steady state shares
is possible. [14] shows how this can be used to statically
calculate the base priorities on a uniprocessor in the presence
of decay-usage scheduling in UNIX. [15] extends this analysis
to the multiprocessor case.

An interesting Linux kernel project in this area is Class—
based Kernel Resource Management (CKRM) [16] and [17]
which aims at providing differentiated service to resources
such as CPU bandwidth, memory pages, I/O and incoming
network bandwidth. It accomplishes CPU reservations by
scaling the time_slice value and re-queuing tasks. Parts
of this project is used in “SuSE Linux Enterprise Server 97,
but not the CPU controller.

Resource allocation and reservation in web server applica-
tions is nothing new. An example is [18] where virtual serving
on one physical computer is used to guarantee certain quality
of service metrics for several client classes under chancing
load conditions. An often used actuation method is admission
control, where requests are denied in order to avoid overload
and to guarantee certain performance metrics for the accepted
requests [19], [20], [21].

X. CONCLUSIONS

An exposition of the Linux 2.6 scheduler has been done and
a feedback—based method for controlling the CPU bandwidth
given to tasks in Linux has been presented. The presented
method has been shown to work, both for cpu-bound and
non cpu-bound tasks. A number of experiments have been
performed in order to show that the technique works in real-
ity. The experiments indicate that CPU bandwidth allocation
can be obtained with the proposed scheduling mechanism.
Furthermore, the mechanism can be used to separate the
performance of two Apache servers running on the same
physical computer—that is, one server remains operational
while the other server is overloaded.

REFERENCES

[1] M. Ohlin, “Feedback Linux scheduling and a simulation tool for wireless
control,” Department of Automatic Control, Lund University, Sweden,
Licentiate Thesis ISRN LUTFD2/TFRT--3240--SE, June 2006.

[2] M. Andersson, A. Hagsten, and F. Neisler, “Crisis request generator for
internet servers,” in Proc. Fourth Swedish National Computer Network-
ing Workshop, Lule, Sweden, 2006.

[3] R. B. Essick, “An Event-Based Fair Share Scheduler,” in Proc. of the
Winter 1990 USENIX Conf. USENIX, 1990, pp. 147-162.

[4] J. Kay and P. Lauder, “A fair share scheduler,” Communications of the
ACM, vol. 31, no. 1, pp. 44-55, 1988.

[51 G. J. Henry, “The Fair Share Scheduler,” AT&T Bell Laboratories
Technical Journal, vol. 63, no. 8, pp. 1845-1857, October 1984.

[6] L. L. Fong and M. S. Squillante, “Time-Function Scheduling: A Gen-
eral Approach to Controllable Resource Management,” IBM Research
Division, T.J. Watson Research Center, Yorktown Heights, NY 10598,
Tech. Rep. RC 20155 (89194), August 1995.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

[18]

[19]

[20]

[21]

I. Stoica and H. Abdel-Wahab, “Earliest Eligible Virtual Deadline First
: A Flexible and Accurate Mechanism for Proportional Share Resource
Allocation,” Norfolk, VA, USA, Tech. Rep., 1995.

C. A. Waldspurger and W. E. Weihl, “Stride Scheduling: Determinis-
tic Proportional-Share Resource Mangement,” Massachusetts Institute
of Technology, MIT Laboratory for Computer Science, Tech. Rep.
MIT/LCS/TM-528, June 1995.

——, “Lottery Scheduling: Flexible Proportional-Share Resource Man-
agement,” in First Symp. on Operating Systems Design and Implemen-
tation (OSDI). USENIX Association, 1995, pp. 1-11.

J. de Jongh, “Share Scheduling in Distributed Systems,” Ph.D.
dissertation, Delft University of Technology, 2002. [Online]. Available:
http://www.pds.ewi.tudelft.nl/pubs/ph_d/dejongh.pdf

C. Moruzzi and G. Rose, “Watson Share Scheduler,” in Proc. of the
Fifth Large Installation Systems Administration Conf. (LISA "91). San
Diego, USA: USENIX, 1991, pp. 129-133.

J. L. Hellerstein, “Challenges in Control Engineering of Computing
Systems,” in Proc. of the 2004 American Control Conf., vol. 3, 2004,
pp. 1970- 1979.

J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, “Control
Engineering for Computing Systems,” IEEE Control Systems Magazine,
vol. 25, no. 6, pp. 56-68, dec 2005.

J. L. Hellerstein, “Achieving Service Rate Objectives with Decay Usage
Scheduling,” IEEE Trans. Software Eng., vol. 19, no. 8, pp. 813-825,
1993.

D. H. J. Epema, “Decay-Usage Scheduling in Multiprocessors,” ACM
Trans. Comput. Syst., vol. 16, no. 4, pp. 367-415, 1998.

CKRM, “Class-based Kernel Resource Management (CKRM),” Home
page: http://ckrm.sourceforge.net/, 2006.

S. Nagar, R. V. Riel, H. Franke, C. Seetharaman, V. Kashyap, and
H. Zheng, “Improving Linux resource control using CKRM,” in Proc.
of the 2004 Linux Symp., vol. 2, Ottawa, Ontario, Canada, July 2004,
pp- 511-524.

W. Xy, X. Zhu, S. Singhal, and Z. Wand, “Predictive control for
dynamic resource allocation in enterprise data centers,” in Proc. Conf.
on Management of Integrated End-to-end Communications and Services,
NOMS, Vancouver, Canada, April 2006, pp. 115-126.

X. Chen, H. Chen, and P. Mohapatra, “Aces: An efficient admission
control scheme for qos-aware web servers,” Computer Communications,
vol. 23, no. 14, pp. 1581-1593, 2003.

S. C. Lee, J. C. Lui, and D. K. Yau, “A proportional-delay diffserv-
enabled web server: admission control and dynamic adaptation,” Parallel
and Distributed Systems, IEEE Trans., vol. 15, no. 5, pp. 385400, 2004.
M. Andersson, J. Cao, M. Kihl, and C. Nyberg, “Admission control
with service level agreements for a web server,” in Proc. of IASTED Int.
Conf. on Internet and Multimedia Systems and Applications (EuroIMSA),
Grindelwald, Switzerland, February 2005.

