Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Effect of Piston Geometry on Stratification Formation in the Transition from HCCI to PPC

Li, Changle LU orcid ; Xu, Leilei LU ; Bai, Xue Song LU ; Tunestal, Per LU and Tuner, Martin LU (2018) SAE 2018 International Powertrains, Fuels and Lubricants Meeting, FFL 2018 In SAE Technical Papers 2018-September.
Abstract

Partially premixed combustion (PPC) is an advanced combustion strategy that has been proposed to provide higher efficiency and lower emissions than conventional compression ignition, as well as greater controllability than homogeneous charge compression ignition (HCCI). Stratification of the fuel-air mixture is the key to achieving these benefits. The injection strategy, injector-piston geometry design and fuel properties are factors commonly manipulated to adjust the stratification level. In the authors' previous research, the effects of injection strategy and fuel properties on the stratification formation process were investigated. The results revealed that, for a direct-injection compression ignition engine, by sweeping the... (More)

Partially premixed combustion (PPC) is an advanced combustion strategy that has been proposed to provide higher efficiency and lower emissions than conventional compression ignition, as well as greater controllability than homogeneous charge compression ignition (HCCI). Stratification of the fuel-air mixture is the key to achieving these benefits. The injection strategy, injector-piston geometry design and fuel properties are factors commonly manipulated to adjust the stratification level. In the authors' previous research, the effects of injection strategy and fuel properties on the stratification formation process were investigated. The results revealed that, for a direct-injection compression ignition engine, by sweeping the injection timing from -180° aTDC (after top dead center) to -20° aTDC, the sweep could be divided into three different regimes: an HCCI regime, a Transition regime and a PPC regime, based on the changing of mixture stratification conditions. When running in the Transition regime, the engine's efficiency and emissions were poor. Hence, it is optimal to minimize the length of the Transition regime. At the same time, it would be very beneficial to expand the PPC regime as this allows greater tolerance between the stratification level and injection timing control, thus improving controllability. Accordingly, a method was proposed for lengthening the PPC regime and shortening the Transition regime by using a small spray angle injector or a wider bowl piston. In this paper, two piston designs with different bowl profiles were tested to observe the effect of piston bowl geometry on the stratification formation process. The results show that with a wider piston bowl, the early half of the PPC regime was lengthened by approximately 50% and the Transition regime was shortened. However, an unexpected "bump" in the required intake temperature was observed within the PPC regime with the wider bowl piston, which was assumed to be caused by a "hill" on the combustion chamber wall. Simulation work based on the experimental data was conducted using the KIVA-3v code. The results were used to analyze the fuel spray development processes and equivalence ratio distributions.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
host publication
SAE 2018 International Powertrains, Fuels and Lubricants Meeting, FFL 2018
series title
SAE Technical Papers
volume
2018-September
article number
2018-01-1800
conference name
SAE 2018 International Powertrains, Fuels and Lubricants Meeting, FFL 2018
conference location
Heidelberg, Germany
conference dates
2018-09-17 - 2018-09-19
external identifiers
  • scopus:85056835391
ISSN
0148-7191
DOI
10.4271/2018-01-1800
language
English
LU publication?
yes
id
a754b76b-7ecb-4988-bd71-2a7aeef5f21c
date added to LUP
2018-11-29 14:48:58
date last changed
2022-04-25 19:08:29
@inproceedings{a754b76b-7ecb-4988-bd71-2a7aeef5f21c,
  abstract     = {{<p>Partially premixed combustion (PPC) is an advanced combustion strategy that has been proposed to provide higher efficiency and lower emissions than conventional compression ignition, as well as greater controllability than homogeneous charge compression ignition (HCCI). Stratification of the fuel-air mixture is the key to achieving these benefits. The injection strategy, injector-piston geometry design and fuel properties are factors commonly manipulated to adjust the stratification level. In the authors' previous research, the effects of injection strategy and fuel properties on the stratification formation process were investigated. The results revealed that, for a direct-injection compression ignition engine, by sweeping the injection timing from -180° aTDC (after top dead center) to -20° aTDC, the sweep could be divided into three different regimes: an HCCI regime, a Transition regime and a PPC regime, based on the changing of mixture stratification conditions. When running in the Transition regime, the engine's efficiency and emissions were poor. Hence, it is optimal to minimize the length of the Transition regime. At the same time, it would be very beneficial to expand the PPC regime as this allows greater tolerance between the stratification level and injection timing control, thus improving controllability. Accordingly, a method was proposed for lengthening the PPC regime and shortening the Transition regime by using a small spray angle injector or a wider bowl piston. In this paper, two piston designs with different bowl profiles were tested to observe the effect of piston bowl geometry on the stratification formation process. The results show that with a wider piston bowl, the early half of the PPC regime was lengthened by approximately 50% and the Transition regime was shortened. However, an unexpected "bump" in the required intake temperature was observed within the PPC regime with the wider bowl piston, which was assumed to be caused by a "hill" on the combustion chamber wall. Simulation work based on the experimental data was conducted using the KIVA-3v code. The results were used to analyze the fuel spray development processes and equivalence ratio distributions.</p>}},
  author       = {{Li, Changle and Xu, Leilei and Bai, Xue Song and Tunestal, Per and Tuner, Martin}},
  booktitle    = {{SAE 2018 International Powertrains, Fuels and Lubricants Meeting, FFL 2018}},
  issn         = {{0148-7191}},
  language     = {{eng}},
  series       = {{SAE Technical Papers}},
  title        = {{Effect of Piston Geometry on Stratification Formation in the Transition from HCCI to PPC}},
  url          = {{http://dx.doi.org/10.4271/2018-01-1800}},
  doi          = {{10.4271/2018-01-1800}},
  volume       = {{2018-September}},
  year         = {{2018}},
}