Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Relation between the structure and spectroscopic properties of blue copper proteins

Pierloot, Kristine ; De Kerpel, Jan O A ; Ryde, Ulf LU orcid ; Olsson, Mats H M LU and Roos, Björn O. LU (1998) In Journal of the American Chemical Society 120(50). p.13156-13166
Abstract

The electronic spectra of three rhombic type 1 blue copper proteins, nitrite reductase, pseudoazurin, and cucumber basic protein, have been studied by ab initio multiconfigurational second-order perturbation theory (the CASPT2 method). The six lowest excitations have been calculated and assigned with an error of less than 1800 cm-1. The singly occupied orbital in the ground-state forms a strongly covalent antibond between the copper ion and the thiolate group of the cysteine ligand with a mixture of σ and π character. This is in contrast to the axial type 1 copper protein plastocyanin which has an almost pure Cu-S(Cys) π interaction. The two brightest lines in the absorption spectrum originate from transitions to the... (More)

The electronic spectra of three rhombic type 1 blue copper proteins, nitrite reductase, pseudoazurin, and cucumber basic protein, have been studied by ab initio multiconfigurational second-order perturbation theory (the CASPT2 method). The six lowest excitations have been calculated and assigned with an error of less than 1800 cm-1. The singly occupied orbital in the ground-state forms a strongly covalent antibond between the copper ion and the thiolate group of the cysteine ligand with a mixture of σ and π character. This is in contrast to the axial type 1 copper protein plastocyanin which has an almost pure Cu-S(Cys) π interaction. The two brightest lines in the absorption spectrum originate from transitions to the corresponding σ (~460 nm) and π (~600 mm) bonding orbitals. The relative intensity of these two lines is determined by the character of the ground- state orbital. It is possible to obtain a structure closely similar to the one found in nitrite reductase by geometry optimizations with the hybrid density functional B3LYP method in vacuum. It is a tetragonal structure with bonds of mainly σ character to the four ligands like normal square-planar Cu(II) complexes, but the cysteine thiolate group donates much charge to the copper ion and thereby makes the structure strongly distorted toward a tetrahedron. Both this structure and a trigonal π-bonded structure, which also can be obtained for all complexes and is an excellent model of plastocyanin, are equilibrium structures (although usually not with the same ligand models). They have virtually the same energy (within ~7 kJ/mol), and the barrier between them is low. Therefore, small differences in the structure and electrostatics of different proteins may lead to stabilization of one or the other of the structures. The results indicate that axial type 1 proteins have a trigonal structure with an almost pure Cu-S(Cys) π bond, whereas rhombic type 1 proteins have tetragonal structures with a significant σ character in this bond. Type 1.5 and 2 copper-cysteinate proteins arise when the tetragonal structure becomes more flattened than in nitrite reductase, probably by the inclusion of stronger (type 1.5) and more (type 2) ligands.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of the American Chemical Society
volume
120
issue
50
pages
11 pages
publisher
The American Chemical Society (ACS)
external identifiers
  • scopus:0032561819
ISSN
0002-7863
DOI
10.1021/ja982385f
language
English
LU publication?
yes
id
b62bd1c0-122e-44fc-8815-7f18082aa1cb
date added to LUP
2017-02-04 11:39:23
date last changed
2023-04-07 08:40:34
@article{b62bd1c0-122e-44fc-8815-7f18082aa1cb,
  abstract     = {{<p>The electronic spectra of three rhombic type 1 blue copper proteins, nitrite reductase, pseudoazurin, and cucumber basic protein, have been studied by ab initio multiconfigurational second-order perturbation theory (the CASPT2 method). The six lowest excitations have been calculated and assigned with an error of less than 1800 cm<sup>-1</sup>. The singly occupied orbital in the ground-state forms a strongly covalent antibond between the copper ion and the thiolate group of the cysteine ligand with a mixture of σ and π character. This is in contrast to the axial type 1 copper protein plastocyanin which has an almost pure Cu-S(Cys) π interaction. The two brightest lines in the absorption spectrum originate from transitions to the corresponding σ (~460 nm) and π (~600 mm) bonding orbitals. The relative intensity of these two lines is determined by the character of the ground- state orbital. It is possible to obtain a structure closely similar to the one found in nitrite reductase by geometry optimizations with the hybrid density functional B3LYP method in vacuum. It is a tetragonal structure with bonds of mainly σ character to the four ligands like normal square-planar Cu(II) complexes, but the cysteine thiolate group donates much charge to the copper ion and thereby makes the structure strongly distorted toward a tetrahedron. Both this structure and a trigonal π-bonded structure, which also can be obtained for all complexes and is an excellent model of plastocyanin, are equilibrium structures (although usually not with the same ligand models). They have virtually the same energy (within ~7 kJ/mol), and the barrier between them is low. Therefore, small differences in the structure and electrostatics of different proteins may lead to stabilization of one or the other of the structures. The results indicate that axial type 1 proteins have a trigonal structure with an almost pure Cu-S(Cys) π bond, whereas rhombic type 1 proteins have tetragonal structures with a significant σ character in this bond. Type 1.5 and 2 copper-cysteinate proteins arise when the tetragonal structure becomes more flattened than in nitrite reductase, probably by the inclusion of stronger (type 1.5) and more (type 2) ligands.</p>}},
  author       = {{Pierloot, Kristine and De Kerpel, Jan O A and Ryde, Ulf and Olsson, Mats H M and Roos, Björn O.}},
  issn         = {{0002-7863}},
  language     = {{eng}},
  month        = {{12}},
  number       = {{50}},
  pages        = {{13156--13166}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{Journal of the American Chemical Society}},
  title        = {{Relation between the structure and spectroscopic properties of blue copper proteins}},
  url          = {{http://dx.doi.org/10.1021/ja982385f}},
  doi          = {{10.1021/ja982385f}},
  volume       = {{120}},
  year         = {{1998}},
}