Temperature adaptation of bacterial communities in experimentally warmed forest soils

Rousk, Johannes; Frey, Serita D.; Bååth, Erland (2012). Temperature adaptation of bacterial communities in experimentally warmed forest soils. Global Change Biology, 18, (10), 3252 - 3258
Download:
DOI:
| Published | English
Authors:
Rousk, Johannes ; Frey, Serita D. ; Bååth, Erland
Department:
MEMEG
Microbial Ecology
BECC: Biodiversity and Ecosystem services in a Changing Climate
Project:
Effect of environmental factors on fungal and bacterial growth in soil
Microbial carbon-use efficiency
Research Group:
Microbial Ecology
Abstract:
A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 degrees C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T-min for bacterial growth, increased by 0.19 degrees C per 1 degrees C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q(10(5-15 degrees C)) increased by 0.08 units per 1 degrees C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (<5%). However, 3 years of warming decreased bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates.
Keywords:
bacterial growth ; leucine incorporation ; minimum temperature ; Q10 ; soil ; warming ; temperature adaptation
ISSN:
1354-1013
LUP-ID:
81806a49-1d3b-4c7f-b6c7-c6d9f28b6d55 | Link: https://lup.lub.lu.se/record/81806a49-1d3b-4c7f-b6c7-c6d9f28b6d55 | Statistics

Cite this