Effect of a single nanosecond pulsed discharge on a flat methane–air flame

Bao, Yupan; Kong, Chengdong; Ravelid, Jonas; Sun, Jinguo, et al. (2023-12). Effect of a single nanosecond pulsed discharge on a flat methane–air flame. Applications in Energy and Combustion Science, 16,
Download:
DOI:
| Published | English
Authors:
Bao, Yupan ; Kong, Chengdong ; Ravelid, Jonas ; Sun, Jinguo , et al.
Department:
LTH Profile Area: Photon Science and Technology
LTH Profile Area: The Energy Transition
Combustion Physics
LU Profile Area: Light and Materials
LTH Profile Area: Engineering Health
Abstract:

Successful implementation of plasma-assisted combustion in applied thermal processes heavily relies on how the plasma can be formed as it interacts with the reactive flow and what the effects are of such a plasma on the combustion process. The current study is an experimental investigation of a plasma-assisted lifted flat methane–air flame by a nanosecond pulsed discharge at atmospheric pressure. The nanosecond pulsed discharge, with a pulse duration of 4 ns and an amplitude of 30 kV to 50 kV, is used to stimulate the flame with a repetition rate of 1 Hz. The flame/plasma interactions are investigated with electrical and optical/laser diagnostics to study plasma-formation and its effect on the temperatures and formaldehyde formation. The flame speed seems to be accelerated for tens of milliseconds after the plasma stimulation, without noticeable gas temperature increase at the flame front and in the post-flame region. Formaldehyde is formed in the unburnt region while there is a slight increase in formaldehyde signal in the preheat zone. These results show that a volumetric effect of plasma-assisted combustion can be achieved with a short nanosecond plasma from a single excitation.

Keywords:
Atmospheric pressure plasma ; Flat flame ; Laser diagnostics ; Nanosecond discharge ; Non-thermal plasma ; Plasma-assisted combustion ; Physical Sciences ; Atom and Molecular Physics and Optics
ISSN:
2666-352X
LUP-ID:
a36ddf95-976b-432c-b08a-d695aa7d85b0 | Link: https://lup.lub.lu.se/record/a36ddf95-976b-432c-b08a-d695aa7d85b0 | Statistics

Cite this