Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

In vivo inhibition of transcellular water channels (Aquaporin-1) during acute peritoneal dialysis in rats

Carlsson, Ola LU ; Nielsen, Sören ; Zakaria, ER and Rippe, Bengt LU (1996) In American Journal of Physiology - Heart and Circulatory Physiology 271. p.2254-2262
Abstract
During peritoneal dialysis (PD), a major portion of the osmotically induced water transport to the peritoneum can be predicted to occur through endothelial water-selective channels. Aquaporin-1 (AQP-1) has recently been recognized as the molecular correlate to such channels. Aquaporins can be inhibited by mercurials. In the present study, HgCl2 was applied locally to the peritoneal cavity in rats after short-term tissue fixation, used to protect the tissues from HgCl2 damage. Dianeal (3.86%) was employed as dialysis fluid, 125I-albumin as an intraperitoneal volume marker, and 51Cr-EDTA (constantly infused intravenously) to assess peritoneal small-solute permeability characteristics. Immunocytochemistry and immunoelectron microscopy... (More)
During peritoneal dialysis (PD), a major portion of the osmotically induced water transport to the peritoneum can be predicted to occur through endothelial water-selective channels. Aquaporin-1 (AQP-1) has recently been recognized as the molecular correlate to such channels. Aquaporins can be inhibited by mercurials. In the present study, HgCl2 was applied locally to the peritoneal cavity in rats after short-term tissue fixation, used to protect the tissues from HgCl2 damage. Dianeal (3.86%) was employed as dialysis fluid, 125I-albumin as an intraperitoneal volume marker, and 51Cr-EDTA (constantly infused intravenously) to assess peritoneal small-solute permeability characteristics. Immunocytochemistry and immunoelectron microscopy revealed abundant AQP-1 labeling in capillary endothelium in peritoneal tissues, representing sites for HgCl2 inhibition of water transport. HgCl2 treatment reduced water flow and inhibited the sieving of Na+ without causing any untoward changes in microvascular permeability, compared with that of fixed control rats, in which the peritoneal cavity was exposed to tissue fixation alone. In fixed control rats, the mean intraperitoneal volume (IPV) increased from 20.5 +/- 0.15 to 25.0 +/- 0.52 ml in 60 min, whereas in the HgCl2-treated rats, the increment was only from 20.7 +/- 0.23 to 23.5 +/- 0.4 ml. In fixed control rats, the dialysate Na+ fell from 135.3 +/- 0.97 to 131.3 +/- 1.72 mM, whereas in the HgCl2-treated rats the dialysate Na+ concentration remained unchanged between 0 and 40 min, further supporting that water channels had been blocked. Computer simulations of peritoneal transport were compatible with a 66% inhibition of water flow through aquaporins. The observed HgCl2 inhibition of transcellular water channels strongly indicates a critical role of aquaporins in PD and provides evidence that water channels are crucial in transendothelial water transport when driven by crystalloid osmosis. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
American Journal of Physiology - Heart and Circulatory Physiology
volume
271
pages
2254 - 2262
publisher
American Physiological Society
external identifiers
  • scopus:0030444934
ISSN
1522-1539
language
English
LU publication?
yes
id
1b7137fc-02e3-44ed-b25c-454937cfa17e (old id 1260161)
alternative location
http://ajpheart.physiology.org/cgi/content/abstract/271/6/H2254
date added to LUP
2016-04-04 13:30:29
date last changed
2022-02-28 22:21:49
@article{1b7137fc-02e3-44ed-b25c-454937cfa17e,
  abstract     = {{During peritoneal dialysis (PD), a major portion of the osmotically induced water transport to the peritoneum can be predicted to occur through endothelial water-selective channels. Aquaporin-1 (AQP-1) has recently been recognized as the molecular correlate to such channels. Aquaporins can be inhibited by mercurials. In the present study, HgCl2 was applied locally to the peritoneal cavity in rats after short-term tissue fixation, used to protect the tissues from HgCl2 damage. Dianeal (3.86%) was employed as dialysis fluid, 125I-albumin as an intraperitoneal volume marker, and 51Cr-EDTA (constantly infused intravenously) to assess peritoneal small-solute permeability characteristics. Immunocytochemistry and immunoelectron microscopy revealed abundant AQP-1 labeling in capillary endothelium in peritoneal tissues, representing sites for HgCl2 inhibition of water transport. HgCl2 treatment reduced water flow and inhibited the sieving of Na+ without causing any untoward changes in microvascular permeability, compared with that of fixed control rats, in which the peritoneal cavity was exposed to tissue fixation alone. In fixed control rats, the mean intraperitoneal volume (IPV) increased from 20.5 +/- 0.15 to 25.0 +/- 0.52 ml in 60 min, whereas in the HgCl2-treated rats, the increment was only from 20.7 +/- 0.23 to 23.5 +/- 0.4 ml. In fixed control rats, the dialysate Na+ fell from 135.3 +/- 0.97 to 131.3 +/- 1.72 mM, whereas in the HgCl2-treated rats the dialysate Na+ concentration remained unchanged between 0 and 40 min, further supporting that water channels had been blocked. Computer simulations of peritoneal transport were compatible with a 66% inhibition of water flow through aquaporins. The observed HgCl2 inhibition of transcellular water channels strongly indicates a critical role of aquaporins in PD and provides evidence that water channels are crucial in transendothelial water transport when driven by crystalloid osmosis.}},
  author       = {{Carlsson, Ola and Nielsen, Sören and Zakaria, ER and Rippe, Bengt}},
  issn         = {{1522-1539}},
  language     = {{eng}},
  pages        = {{2254--2262}},
  publisher    = {{American Physiological Society}},
  series       = {{American Journal of Physiology - Heart and Circulatory Physiology}},
  title        = {{In vivo inhibition of transcellular water channels (Aquaporin-1) during acute peritoneal dialysis in rats}},
  url          = {{http://ajpheart.physiology.org/cgi/content/abstract/271/6/H2254}},
  volume       = {{271}},
  year         = {{1996}},
}