Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Harmonic Mitigation in Traction Drives

Bängtsson, Hans LU (1999)
Abstract
In railway traffic the low friction between wheel and rail causes long braking distances, normally much longer than the sight distance of the driver, i.e. if the driver starts the braking when a problem on the track is discovered, it might be too late to brake the train. Therefore, safe railway traffic can not only rely on the driver. It is necessary to have a signalling or even an automatic surveyor system, especially in densely populated areas, which supervises the positions of different trains along the track and organises the traffic. Such a system uses train detection systems to control whether a certain section of the track is occupied or not. Train detection systems can unfortunately be disturbed by harmonics, generated by the drive... (More)
In railway traffic the low friction between wheel and rail causes long braking distances, normally much longer than the sight distance of the driver, i.e. if the driver starts the braking when a problem on the track is discovered, it might be too late to brake the train. Therefore, safe railway traffic can not only rely on the driver. It is necessary to have a signalling or even an automatic surveyor system, especially in densely populated areas, which supervises the positions of different trains along the track and organises the traffic. Such a system uses train detection systems to control whether a certain section of the track is occupied or not. Train detection systems can unfortunately be disturbed by harmonics, generated by the drive system of a rail vehicle. To reduce the risk of disturbance, the choice of modulation strategy and the use of line filters are critical tasks. In the design stage of the filter, it is necessary to be able to predict the generation of harmonics.



This work presents fast algorithms for calculation of harmonics, generated by a traction drive system. The traction drive system, here described, is based on three phase induction motors, fed from voltage source machine and line converters. Non-ideal commutations are taken into account, which is urgent as these will generate undesirable low frequency harmonics.



It is possible to compensate the effects of the non-ideal commutations, and in this work following compensation methods are investigated:



- Dead time compensation, where the differential between the integral of the inverter output voltage, or rather the output flux, and the voltage time area reference, is fed back to the control system.



- Position asymmetry compensation, in which the DC-component in the machine converter phase currents is fed back to the control system.



- Compensation of a remaining DC-bias in Hall-effect current transducers. In the method, the fundamental component in the DC-link current is fed back to the control system.



The compensation methods are found to effectively reduce the low frequencies. Thus the weight of the filters onboard the trains can be minimised, which considerably saves energy and costs of components. (Less)
Abstract (Swedish)
Popular Abstract in Swedish

Hos järnvägsfordon ger den låga friktionen mellan hjul och räls upphov till långa bromssträckor, i allmänhet längre än lokförarens siktsträcka. Om föraren påbörjar en inbromsning först när han ser ett hinder på spåret kan det vara för sent. Säker järnvägstrafik kan därför inte enbart lita till föraren, utan det måste också finns ett överordnat signalsystem, ofta i kombination med en automatisk tågledning, som övervakar tågens position längs spåret och som också organiserar trafiken. Ett automatiskt signal- och tågledningssystem utnyttjar system som detekterar ett tågs närvaro på en given del av spåret. Det finns en risk att dessa system kan störas av övertoner, alstrade av ett tågs drivsystem.... (More)
Popular Abstract in Swedish

Hos järnvägsfordon ger den låga friktionen mellan hjul och räls upphov till långa bromssträckor, i allmänhet längre än lokförarens siktsträcka. Om föraren påbörjar en inbromsning först när han ser ett hinder på spåret kan det vara för sent. Säker järnvägstrafik kan därför inte enbart lita till föraren, utan det måste också finns ett överordnat signalsystem, ofta i kombination med en automatisk tågledning, som övervakar tågens position längs spåret och som också organiserar trafiken. Ett automatiskt signal- och tågledningssystem utnyttjar system som detekterar ett tågs närvaro på en given del av spåret. Det finns en risk att dessa system kan störas av övertoner, alstrade av ett tågs drivsystem. Eftersom signalsystemet är en vital del av järnvägstrafikens säkerhetssystem, måste riskerna elimineras helt. Detta sker genom att välja lämplig modulation av strömriktarna, samt genom att förse tåget med linjefilter. För att kunna dimensionera filtren korrekt redan på designstadiet, måste alstringen av övertoner kunna predikteras.



I detta arbete presenteras snabba algoritmer för beräkning av övertonsalstringen från ett tågs drivsystem. Med drivsystem avses i denna avhandling trefas induktionsmotorer som matas från maskin- och nätströmriktare med spänningsmellanled. Vid beräkningen tas hänsyn till icke-ideala kommuteringar, vilket är av största vikt, eftersom dessa ger upphov till oönskade, lågfrekventa övertoner.



Det är möjligt att kompensera effekterna av icke-ideala kommuteringar. I detta arbete har följande kompenseringsmetoder undersökts:



- Dödtidskompensering, där skillnaden mellan integralen av strömriktarens utspänning, eller snarare magnetflöde, och spännings-tidytereferensen återkopplas till styrsystemet.



- Kompensation av positionsasymmetri, där DC-komponenten i maskinströmriktarens fasström är återkopplad till styrsystemet.



- Kompensation av en kvarstående DC-komponent i en strömgivare av Halleffekttyp. I denna metod återkopplas grundtonskomponenten i mellanledsströmmen till styrsystemet.



Kompensationsmetoderna, som har föreslagits i denna avhandling, reducerar lågfrekventa övertoner effektivt. Som en följd av detta kan vikten av filtren ombord på tåget minskas, vilket ansenligt sänker energikonsumtionen och komponentkostnaderna. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor John Hill, Roland, University of Bath, Electronic and Electrical Engineering, Claverton Down, Bath BA2 7AY,Great Britain, tel +44 1225 826 062
organization
publishing date
type
Thesis
publication status
published
subject
keywords
hydraulics, Mechanical engineering, converter, line interference, track circuit, Railway signalling system, vacuum technology, vibration and acoustic engineering, Maskinteknik, hydraulik, vakuumteknik, vibrationer, akustik
pages
160 pages
publisher
Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology
defense location
Room E:1406 in the Electrical Engineering Building
defense date
1999-03-18 10:15:00
external identifiers
  • other:ISRN: LUTEDEX/(TEIE-1021)/1-160(1999)
language
English
LU publication?
yes
id
ec7752ef-a1ae-4444-90ce-775defc2bf30 (old id 19054)
date added to LUP
2016-04-04 12:22:20
date last changed
2018-11-21 21:10:34
@phdthesis{ec7752ef-a1ae-4444-90ce-775defc2bf30,
  abstract     = {{In railway traffic the low friction between wheel and rail causes long braking distances, normally much longer than the sight distance of the driver, i.e. if the driver starts the braking when a problem on the track is discovered, it might be too late to brake the train. Therefore, safe railway traffic can not only rely on the driver. It is necessary to have a signalling or even an automatic surveyor system, especially in densely populated areas, which supervises the positions of different trains along the track and organises the traffic. Such a system uses train detection systems to control whether a certain section of the track is occupied or not. Train detection systems can unfortunately be disturbed by harmonics, generated by the drive system of a rail vehicle. To reduce the risk of disturbance, the choice of modulation strategy and the use of line filters are critical tasks. In the design stage of the filter, it is necessary to be able to predict the generation of harmonics.<br/><br>
<br/><br>
This work presents fast algorithms for calculation of harmonics, generated by a traction drive system. The traction drive system, here described, is based on three phase induction motors, fed from voltage source machine and line converters. Non-ideal commutations are taken into account, which is urgent as these will generate undesirable low frequency harmonics.<br/><br>
<br/><br>
It is possible to compensate the effects of the non-ideal commutations, and in this work following compensation methods are investigated:<br/><br>
<br/><br>
- Dead time compensation, where the differential between the integral of the inverter output voltage, or rather the output flux, and the voltage time area reference, is fed back to the control system.<br/><br>
<br/><br>
- Position asymmetry compensation, in which the DC-component in the machine converter phase currents is fed back to the control system.<br/><br>
<br/><br>
- Compensation of a remaining DC-bias in Hall-effect current transducers. In the method, the fundamental component in the DC-link current is fed back to the control system.<br/><br>
<br/><br>
The compensation methods are found to effectively reduce the low frequencies. Thus the weight of the filters onboard the trains can be minimised, which considerably saves energy and costs of components.}},
  author       = {{Bängtsson, Hans}},
  keywords     = {{hydraulics; Mechanical engineering; converter; line interference; track circuit; Railway signalling system; vacuum technology; vibration and acoustic engineering; Maskinteknik; hydraulik; vakuumteknik; vibrationer; akustik}},
  language     = {{eng}},
  publisher    = {{Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology}},
  school       = {{Lund University}},
  title        = {{Harmonic Mitigation in Traction Drives}},
  year         = {{1999}},
}