Advanced

Operability and performance of central (Pilot) stage of an industrial prototype burner

Kundu, Atanu LU ; Klingmann, Jens LU ; Whiddon, Ronald LU ; Subash, Arman Ahamed LU and Collin, Robert LU (2015) ASME 2015 Power Conference, POWER 2015, collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum In ASME 2015 Power Conference 2015.
Abstract

An investigation on the central-pilot stage of a Siemens Industrial Turbomachinery 4th Generation DLE prototype test burner has been performed to understand the emission performance and operability. The core section, which is defined as RPL (Rich premixed lean) plays an important role for full burner combustion operation by stabilizing the main and pilot flames at different operating condition. Optimal fuel-air flow through the RPL is critical for multiple stages mixing and main flame anchoring. Heat and radical production from the central stage provides the ignition source and required heat for burning the main flame downstream of the RPL section. Surrounding the RPL outside wall cooling air has been blown through an annular passage.... (More)

An investigation on the central-pilot stage of a Siemens Industrial Turbomachinery 4th Generation DLE prototype test burner has been performed to understand the emission performance and operability. The core section, which is defined as RPL (Rich premixed lean) plays an important role for full burner combustion operation by stabilizing the main and pilot flames at different operating condition. Optimal fuel-air flow through the RPL is critical for multiple stages mixing and main flame anchoring. Heat and radical production from the central stage provides the ignition source and required heat for burning the main flame downstream of the RPL section. Surrounding the RPL outside wall cooling air has been blown through an annular passage. The cooling air protects the RPL wall from overheating and provides the oxygen source for the secondary combustion downstream of the RPL. At rich operation unburned hydrocarbon/radicals can pass the RPL and burns by the coflow air entrainment. To determine the flame stabilization and operability, an atmospheric pressure test has been accomplished using methane as a fuel. Primary flame zone can be identified by a thermocouple placed outside the RPL wall and secondary combustion zone at the exit has been examined by chemiluminescence imaging. Emission measurement and LBO (Lean blow out) limits have been determined for different equivalence ratios from 1.8 to LBO limit. Co-flow air temperature was changed from 303 K to 573 K to evaluate the secondary combustion and RPL wall heat transfer effect on flame stability/emission. It is found that equivalence ratio has strong effect on the RPL flame stabilization (primary/secondary flame). Emissions/radical generation were also influenced by the chemical reaction inside the RPL. It can be noticed that coflow air temperature has a significant role on emission, LBO and flame stabilization for the central-pilot stage burner due to the heat loss from the flame zone and RPL wall. A chemical kinetic network (ChemkinTM) and CFD modelling approaches (Fluent) are employed to understand in detail the chemical kinetics, heat transfer effect and flow field inside the RPL (combustion and heat loss inside and emission capability). Experiment shows that the low CO and NOx levels can be achieved at lean and rich condition due to lower flame temperature. Present experimental results by changing equivalence ratio, residence time and co-flow temperature, creates a complete map for the RPL combustion, which is key input for full 4th Generation DLE burner design.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
in
ASME 2015 Power Conference
volume
2015
pages
13 pages
publisher
The American Society of Mechanical Engineers - ASME
conference name
ASME 2015 Power Conference, POWER 2015, collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
external identifiers
  • Scopus:84947287603
ISBN
9780791856604
language
English
LU publication?
yes
id
3a0cbdaa-f644-476f-bda6-4991112cee65
date added to LUP
2016-04-22 07:11:19
date last changed
2016-04-26 13:16:58
@misc{3a0cbdaa-f644-476f-bda6-4991112cee65,
  abstract     = {<p>An investigation on the central-pilot stage of a Siemens Industrial Turbomachinery 4th Generation DLE prototype test burner has been performed to understand the emission performance and operability. The core section, which is defined as RPL (Rich premixed lean) plays an important role for full burner combustion operation by stabilizing the main and pilot flames at different operating condition. Optimal fuel-air flow through the RPL is critical for multiple stages mixing and main flame anchoring. Heat and radical production from the central stage provides the ignition source and required heat for burning the main flame downstream of the RPL section. Surrounding the RPL outside wall cooling air has been blown through an annular passage. The cooling air protects the RPL wall from overheating and provides the oxygen source for the secondary combustion downstream of the RPL. At rich operation unburned hydrocarbon/radicals can pass the RPL and burns by the coflow air entrainment. To determine the flame stabilization and operability, an atmospheric pressure test has been accomplished using methane as a fuel. Primary flame zone can be identified by a thermocouple placed outside the RPL wall and secondary combustion zone at the exit has been examined by chemiluminescence imaging. Emission measurement and LBO (Lean blow out) limits have been determined for different equivalence ratios from 1.8 to LBO limit. Co-flow air temperature was changed from 303 K to 573 K to evaluate the secondary combustion and RPL wall heat transfer effect on flame stability/emission. It is found that equivalence ratio has strong effect on the RPL flame stabilization (primary/secondary flame). Emissions/radical generation were also influenced by the chemical reaction inside the RPL. It can be noticed that coflow air temperature has a significant role on emission, LBO and flame stabilization for the central-pilot stage burner due to the heat loss from the flame zone and RPL wall. A chemical kinetic network (ChemkinTM) and CFD modelling approaches (Fluent) are employed to understand in detail the chemical kinetics, heat transfer effect and flow field inside the RPL (combustion and heat loss inside and emission capability). Experiment shows that the low CO and NOx levels can be achieved at lean and rich condition due to lower flame temperature. Present experimental results by changing equivalence ratio, residence time and co-flow temperature, creates a complete map for the RPL combustion, which is key input for full 4th Generation DLE burner design.</p>},
  author       = {Kundu, Atanu and Klingmann, Jens and Whiddon, Ronald and Subash, Arman Ahamed and Collin, Robert},
  isbn         = {9780791856604},
  language     = {eng},
  pages        = {13},
  publisher    = {ARRAY(0x8fc82b8)},
  series       = {ASME 2015 Power Conference},
  title        = {Operability and performance of central (Pilot) stage of an industrial prototype burner},
  volume       = {2015},
  year         = {2015},
}