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On Model Reduction of Polynomial Dynamical Systems

Stephen Prajna and Henrik Sandberg

Abstract— In this paper, we develop a computational method
for model reduction of polynomial dynamical systems. This is
achieved using sum of squares relaxations on certain Lyapunov
inequalities, which are the nonlinear counterparts of the Lya-
punov controllability and observability linear matrix inequali-
ties for linear systems. In our model reduction procedure, we
use notions of balanced realization and balanced truncation for
a polynomial model. In addition, we derive an a-priori error
bound on the approximation error for balanced truncation.

I. INTRODUCTION

Balanced realizations are commonly used for controlla-
bility and observability analysis of linear systems. Balanced
truncation (see, e.g., [2], [4], [7]), i.e., truncation of a bal-
anced realization, is a popular method for model reduction.
This is because balanced truncation is relatively simple, and
there are strong guarantees on the quality of the reduced
model. For these reasons, many generalizations of the notion
of a balanced realization have been made, for example, to
uncertain systems [1], to linear time-varying and parameter-
varying systems [11], [14], [15], and to nonlinear systems
[3], [10], [13]. Unfortunately, while for linear systems finding
a balancing coordinate transformation via solutions (the so-
called Gramians) of the controllability and observability
Lyapunov equations are relatively easy, for nonlinear systems
these equations tend to be hard to solve and therefore
balancing the system is in general not a simple task.

The problem of balancing nonlinear systems with poly-
nomial vector fields is addressed in this paper. For this,
we will search for Gramians that fulfill the corresponding
Lyapunov inequalities (instead of equalities) either globally
or locally around some equilibrium of interest. When the
Gramians are affinely parameterized using some unknown
coefficients, their computation can be cast as a polynomial
programming problem, for which a relaxation method called
sum of squares programming [8] can be employed to search
for the unknown coefficients. The Gramians can be used for
reachability and observability analysis, as well as for finding
a balancing transformation when they are quadratic. Finally,
by modifying the inequalities and using techniques similar
to those in [9], it is possible to derive a procedure with local
a-priori bound on the approximation error.
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II. PRELIMINARIES

The standard Euclidean norm is denoted by |x| �

(xT x)1/2. The standard norm on L2[0, T ] is denoted by
‖u‖ � (

∫ T

0
|u(t)|2dt)1/2.

A. Polynomial Dynamical Systems

A dynamical system G:

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0,

y(t) = h(x(t)),
(1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the input, and
y(t) ∈ R

p is the output, is called a polynomial system if f(x),
g(x), and h(x) are polynomials. Without loss of generality,
we will assume that the origin is the equilibrium of interest,
i.e., f(0) = 0, and that h(0) is equal to zero as well. Note
also that the system (1) can always be written as

ẋ(t) = AZ(x(t)) +

m∑
i=1

BiZ(x(t))ui(t), x(0) = x0,

y(t) = CZ(x(t)),

(2)

where Z(x) is a column vector of monomials (say, of
dimension q),

Z(x) =

⎡
⎢⎣

xα1

1 xα2

2 · · ·xαn
n

xβ1

1 xβ2

2 · · ·xβn
n

...

⎤
⎥⎦ ,

with the degrees αi, βi, . . . being nonnegative integers, and
A ∈ R

n×q , Bi ∈ R
n×q, C ∈ R

p×q are constant matrices.

B. Sum of Squares Programming

A polynomial p(x) is said to be a sum of squares (SOS), if
there exist polynomials f1(x), . . . , fm(x) such that p(x) =∑m

i=1 f2
i (x). The existence of such a decomposition can

be shown equivalent to the existence of a real positive
semidefinite matrix Q such that p(x) = ZT (x)QZ(x), where
Z(x) is the vector of monomials of degree less than or
equal to degree(p(x))/2. This equivalence makes an SOS
decomposition computable using semidefinite programming.
Computation of SOS decompositions using semidefinite pro-
gramming was first suggested in [6].

It is clear that an SOS polynomial is globally nonnegative.
This is a property of SOS polynomials that is crucial in
many control applications, where we can obtain a tractable
computational relaxation by replacing various polynomial
inequalities with SOS conditions. Although not all nonnega-
tive polynomials are sums of squares, in many cases we are
able to obtain solutions to computational problems that are
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otherwise at the moment unsolvable, simply by replacing the
nonnegativity conditions with SOS conditions.

An SOS program is a convex optimization problem of the
form

minimize
m∑

j=1

wjcj

s.t. ai,0(x) +

m∑
j=1

ai,j(x)cj is SOS, for i = 1, ..., p,

where the cj’s are scalar real decision variables, the wj’s
are given real numbers, and the ai,j(x) are given polyno-
mials (with fixed coefficients). See also another equivalent
canonical form of SOS programs in [8]. Sum of squares
programs can still be solved via semidefinite programming
using the equivalence relation explained above. The software
SOSTOOLS [8] in conjunction with a semidefinite program-
ming solver such as SeDuMi [12] can be used to efficiently
solve SOS programs.

III. OBSERVABILITY AND REACHABILITY GRAMIANS

We will first present a polynomial inequality that bounds
the output of the polynomial system (1) around the origin,
under the assumption that the input is zero, and the system
starts at a nonzero initial condition x(0) = x0.

Proposition 1: Given the system (1), suppose that there
exists a positive definite polynomial Wo(x) such that
Wo(0) = 0 and

−
∂Wo

∂x
(x)f(x) − hT (x)h(x) ≥ 0 ∀x ∈ K ⊆ R

n, (3)

where K is a neighborhood of the origin. Then, there exists a
neighborhood of the origin Bo ⊆ K such that if the system
(1) starts at x(0) = x0 ∈ Bo, then for zero input the norm
of the system output will satisfy ‖y‖2 ≤ Wo(x0), where the
norm is taken over any time interval [0, T ], T ≥ 0.

Proof: First notice that Wo(x) is a Lyapunov function
for the system ẋ = f(x), which follows from (3) and the
positive definiteness of Wo(x). Choose a small enough γ > 0
such that Bo � {x ∈ R

n : Wo(x) ≤ γ} is contained in K.
It follows that all trajectories of the system starting from Bo

will stay in Bo forever. Now, if the system starts at x(0) =
x0 ∈ Bo, we can integrate (3) over the time interval [0, T ]

to obtain ‖y‖2 =
∫ T

0
|y(t)|2dt ≤ Wo(x0) − Wo(x(T )) ≤

Wo(x0), where the end time T is arbitrary.

States x0 for which Wo(x0) is small are weakly observable
in y. This is why Wo(x) is called an observability Gramian
for (1). Note also that by applying LaSalle’s invariance
principle we can conclude that if the largest invariant set
contained in {x ∈ R

n : h(x) = 0} is equal to {0}, then the
equilibrium at the origin is asymptotically stable.

If the domain K is semialgebraic, e.g., given as K =
{x ∈ R

n : gK(x) ≥ 0} for some polynomial gK(x),
then a polynomial observability Gramian Wo(x) can be
searched using SOS programming. To ensure that (3) holds,
for example, we use an SOS multiplier σ(x) and ask that the
expression −∂Wo

∂x (x)f(x)−hT (x)h(x)−σ(x)gK(x) is SOS

as well. Both the Gramian Wo(x) and the multiplier σ(x)
are parameterized in terms of some unknown coefficients,
and the values of those coefficients which satisfy the SOS
conditions are computed by the SOS solver. See [5] for more
discussion on this in the context of Lyapunov functions.

Similar to the case of linear systems, in the nonlinear
case there exists also a duality between observability and
reachability analysis. For reachability analysis, the following
result is available, which gives a lower bound on the input
energy needed to reach a certain state.

Proposition 2: Given the system (1), suppose that there
exists a positive definite polynomial Wc(x) such that
Wc(0) = 0 and

−
∂Wc

∂x
(x)(f(x) + g(x)u) + uT u ≥ 0 ∀x ∈ K and u ∈ L,

(4)

where K and L are open sets containing the origin. Then,
there exists a neighborhood of the origin Bc ⊆ K such that
if the system (1) starts at x(0) = 0 and the instantaneous
input u(t) is restricted to lie in the set L, then the norm of
the input needed to reach some state x(T ) ∈ Bc will satisfy
‖u‖2 ≥ Wc(x(T )).

Proof: Choose a sufficiently small γ > 0 such that
Bc � {x ∈ R

n : Wc(x) ≤ γ} is contained in K. Now
suppose that an input u : [0, T ] → L is applied to the system,
resulting in the state of the system at time T being x(T ) ∈
Bc. First, consider the case where x(t) ∈ Bc for all t ∈
[0, T ]. By integrating (4) over the interval [0, T ], we obtain
the inequality ‖u‖2 =

∫ T

0
|u(t)|2dt ≥ Wc(x(T ))−Wc(0) =

Wc(x(T )). On the other hand, if x(t) is not contained in Bc

on the whole time interval, then for some t̃ ∈ [0, T ] we will
have x(t̃) ∈ ∂Bc and x(t) ∈ Bc ∀t ∈ [0, t̃]. Thus, using the
same argument for above, but for x(t̃), we obtain ‖u‖2 ≥∫ t̃

0
|u(t)|2dt ≥ Wc(x(t̃)) ≥ Wc(x(T )). This completes the

proof of the proposition.

States x(T ) for which Wc(x(T )) is large cannot be
reached with small inputs. This motivates us to call Wc(x) a
reachability Gramian for the system (1). Similar to the case
of observability Gramian, when K and L are semialgebraic,
a polynomial reachability Gramian Wc(x) can be searched
using SOS programming.

It is important to note that neither Wo(x) nor Wc(x) is
unique. To obtain upper and lower bounds that are as tight as
possible, Wo(x0) should be minimized and Wc(x(T )) should
be maximized. While this is easy to do when we are only
concerned with a single state x0 or x(T ), generally we would
be interested in obtaining tight bounds for a set of states, e.g.,
for all states in a neighborhood of the origin. In relation to
this, a heuristics can be given as follows. First note that
when computing Wo(x) or Wc(x) using SOS programming,
we replace the inequality conditions by SOS conditions, and
thus Wo(x) and Wc(x) will also be sums of squares. As
mentioned in Section II, this is equivalent to the existence
of a quadratic form

Wo(x) = ZT
o (x)QZo(x), Wc(x) = ZT

c (x)P̃Zc(x)

1667



where Zo(x) and Zc(x) are some vectors of monomials,
and Q, P̃ are positive semidefinite matrices. To “minimize”
Wo(x) or “maximize” Wc(x), we could then minimize the
trace of Q, and maximize the trace of P̃ , respectively.
These objective functions can be easily included in the SOS
program formulations.

Another important property of Gramians is that they are
invariant under smooth invertible coordinate transformations
(diffeomorphisms). Suppose that a transformation φ(z) =
x is applied to the system (1). The system in the new
coordinates z is given by

ż(t) = f̃(z(t)) + g̃(z(t))u(t), z(0) = φ−1(x(0)),

y(t) = h̃(z(t)),
(5)

where f̃(z) = (∂φ
∂z )−1f(φ(z)), g̃(z) = (∂φ

∂z )−1g(φ(z)),
and h̃(z) = h(φ(z)). It can then be shown that W̃o(z) =
Wo(φ(z)) and W̃c(z) = Wc(φ(z)) satisfy the Lyapunov
inequalities in Propositions 1 and 2.

IV. INPUT–OUTPUT ANALYSIS USING GRAMIANS

Once we find Gramians Wo(x) and Wc(x), we can con-
clude that the origin is stable under zero input, and that for
sufficiently small inputs, the trajectory of the system will not
leave a neighborhood of the origin. These observations are
summed up in the following proposition.

Proposition 3: Suppose that there exist Gramians Wo(x)
and Wc(x) satisfying the conditions of Propositions 1 and 2
for the system (1). Then there exist a neighborhood of the
origin BR and a positive constant γR, such that if

‖u‖ ≤ γR, u ∈ L, x(0) = 0,

then x(t) ∈ BR ⊆ K for all t ≥ 0.
Proof: Let BR = Bo (as in Proposition 1), and let

γR be the maximum γ such that {x ∈ R
n : Wc(x) ≤ γ2}

is contained in BR. Now suppose that an input u(t) for
which ‖u‖ ≤ γR and u ∈ L is given. Assume that u(t) = 0
for t ≥ T , where T can be infinite if u(t) never becomes
identically equal to zero. Then Proposition 2 can be used
to show that for t ∈ [0, T ] the state x(t) is in {x ∈ R

n :
Wc(x) ≤ γ2

R} ⊆ BR. Finally, since BR is an invariant set
for the system with zero input, for all t ≥ T the state x(t)
is also in BR, thus proving the proposition.

Using Proposition 3, we can measure the interaction
between u and y. Define a map ΓG that takes inputs u ∈
L2[0, T ], ‖u‖ < γR, and maps it through the system G
in (1) into the truncated output y ∈ L2[T,∞). The map ΓG

is a nonlinear version of the Hankel operator. The Hankel
operator has been studied extensively in the past, and has
been one of the main tools used in model reduction of linear
systems [2]. The Hankel norm is defined as

‖G‖H,γr
� sup

‖u‖<γR, u∈L

‖ΓG(u)‖

‖u‖
,

and an upper bound on the Hankel norm can be provided us-
ing the following proposition. It shows how the observability

and reachability Gramians give a measure of the interaction
between u and y in G.

Proposition 4: Assume that the Gramians Wo(x) and
Wc(x) for the polynomial system G as in Propositions 1
and 2 are given. Suppose that the inequality

Wo(x) ≤ γ2
HWc(x) ∀x ∈ BH (6)

holds, where BH = {x ∈ R
n : Wc(x) ≤ γ2

R} and γR is as
in Proposition 3. Then ‖G‖H,γr

≤ γH .
Proof: Suppose that an input u : [0, T ] → L with

‖u‖ ≤ γR brings the system state to some x(T ) ∈ BH .
Then from Propositions 1 and 2 it follows that ‖ΓG(u)‖2 ≤
Wo(x(T )) ≤ γ2

HWc(x(T )) ≤ γ2
H‖u‖2. Therefore the norm

bound follows.

Remark 5: The Hankel norm bound γH can be computed
using SOS programming, by formulating (6) as an SOS
condition, and minimizing γ2

H to obtain an upper bound that
is as tight as possible.

The balanced truncation approach to model reduction is
based on the idea of truncating states that are least observable
and hardest to reach. Let us first recall what happens in the
case of linear systems. For linear systems that are stable and
controllable, (3) and (4) can always be solved for Wo(x)
and Wc(x) with equality instead of inequality. Moreover, it
is enough to consider quadratic functions for these Gramians.
In this case, Wo(x) provides the exact value of the output
norm in Proposition 1, and Wc(x) the exact value of the
optimal input norm in Proposition 2. Now, suppose that for
the Gramians Wo(x) and Wc(x), the following inequalities
hold:

Wo(e1) ≥ Wo(e2) ≥ . . . ≥ Wo(en), (7)

Wc(e1) ≤ Wc(e2) ≤ . . . ≤ Wc(en), (8)

where ei is the unit vector along the i-th coordinate axis.
Since the Gramians are quadratic, the inequalities are still
valid when the ei’s are replaced by xi = λei, for arbitrary
λ ∈ R. It can then be argued that the direction along the
n-th coordinate axis, for which the observability Gramian is
the smallest and the controllability Gramian is the largest, is
the coordinate that is least observable and hardest to reach,
thus indicating that the n-th state is the state to truncate.

A similar heuristics can be suggested for nonlinear sys-
tems. Assume that the Gramians are homogeneous, and that
either (7)–(8) hold, or for some i ∈ {1, . . . n} we have

Wo(ei) ≤ Wo(ej) ∀j ∈ {1, . . . n} \ {i}, (9)

Wc(ei) ≥ Wc(ej) ∀j ∈ {1, . . . n} \ {i}. (10)

Note that because of the homogeneity of the Gramians, the
above inequalities are also satisfied by λei and λej , for any
λ ∈ R. It is then reasonable to truncate the state xi, based
on arguments similar to the above. If the Gramians are not
homogeneous, then the criteria (9)–(10) can for example be
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replaced by∫ λ2

λ1

Wo(λei)dλ ≤

∫ λ2

λ1

Wo(λej)dλ ∀j ∈ {1, . . . n} \ {i},

∫ λ2

λ1

Wc(λei)dλ ≥

∫ λ2

λ1

Wc(λej)dλ ∀j ∈ {1, . . . n} \ {i},

which compare the average value of the Gramians along
segments of the coordinate axes around the equilibrium, for
some λ1 ≤ 0 and λ2 ≥ 0.

When none of the i’s satisfy (9)–(10), the choice of state
to truncate is no longer clear. Although we can for example
simply truncate the state xi for which Wo(ei)/Wc(ei) is
the smallest, it is beneficial to first consider if a coordinate
transformation can be performed, such that in the new
coordinates the Gramians satisfy (7)–(8) or (9)–(10). When
the Gramians are quadratic and positive definite, a coordinate
transformation which achieves (7)–(8) always exists, and
there is a constructive procedure for computing such a
transformation. Applying this transformation to the system is
referred to as balancing the system [4]; see also Section V-
A. Moreover, the Gramians in the new balanced coordinates
will satisfy an additional property that Wo(ei)Wc(ei) = 1.

In the case of non-quadratic Gramian, the procedure for
balancing coordinate transformation mentioned above no
longer applies. Although there exists a result stating that
such a transformation always exists [10], to the best of the
authors’ knowledge, so far no constructive procedure has
been proposed. This will be a subject of future investigation.

V. INCREMENTAL GRAMIANS AND TRUNCATION ERROR

It turns out that it is theoretically easier to bound the
truncation error in an incremental framework, as we shall
see in this section. The problem with incremental Gramians
is that they are harder to compute in practice. Some possible
ways around this and the relation between the incremental
and the standard Gramians are discussed in Section V-B.

The incremental observability and reachability Gramians
Wi,o(x) and Wi,c(x) fulfill

−
∂Wi,o

∂x

∣∣∣∣
x−x̂

[f(x) + g(x)u − f(x̂) − g(x̂)u]

− |h(x) − h(x̂)|2 ≥ 0 (11)

−
∂Wi,c

∂x

∣∣∣∣
x+x̂

[f(x) + g(x)u + f(x̂) + g(x̂)u] + 4|u|2 ≥ 0

(12)
for all x, x̂ ∈ K ⊆ R

n and u ∈ L ⊆ R
m. Here, K and

L are open sets containing the origin as before. Notice that
Wi,o fulfills (3) when x̂ and u are zero, and that Wi,c fulfills
(4) if we put x̂ = x and define Wc(x) � Wi,c(2x)/4. Hence,
(11) and (12) are more restrictive than (3) and (4).

Integration over [0, T ] of (11) yields ‖y − ŷ‖2 ≤
Wi,o(x(0) − x̂(0)), assuming that the states do not leave
K and that u ∈ L. This can be guaranteed by an analysis
similar to the one in Proposition 3. Hence, (11) bounds
the difference in the outputs for the systems G and Ĝ of
identical dynamics with the same input, but with different

initial states. Similarly, integration over [0, T ] of (12) yields
Wi,c(x(T ) + x̂(T )) ≤ 4‖u‖2, if x(0) = x̂(0) = 0. These
relations will be interesting if we force some of the states
in x̂ to become zero. We use the following partition of the
state vector:

x =

[
x1

x2

]
, x̂ =

[
x̂1

0

]
, x1, x̂1 ∈ R

n̂, (13)

and similarly for the vector fields, f =

[
f1

f2

]
, g =

[
g1

g2

]
. The

reduced-order model Ĝ is then given by

˙̂x1(t) = f1(x̂1(t), 0) + g1(x̂1(t), 0)u(t), x̂1(0) = x̂10,

ŷ(t) = h(x̂1(t), 0).
(14)

We also introduce the auxiliary signal ẑ(t) = f2(x̂1(t), 0) +
g2(x̂1(t), 0)u(t) ∈ R

n−n̂. Let us now assume that we have
solutions Wi,o(x) and Wi,c(x) to the inequalities (11) and
(12). Using (13) and (14), we obtain

−
d

dt
Wi,o(x − x̂) +

(
∂Wi,o

∂x2

∣∣∣∣
x−x̂

)
· ẑ − |y − ŷ|2 ≥ 0,

(15)

−
d

dt
Wi,c(x + x̂) −

(
∂Wi,c

∂x2

∣∣∣∣
x+x̂

)
· ẑ + 4|u|2 ≥ 0,

(16)

where ∂Wi,o

∂x2

,
∂Wi,c

∂x2

∈ R
1×(n−n̂). Under the assumption that

the matching condition

∂Wi,o

∂x2

∣∣∣∣
x−x̂

= σ2 ∂Wi,c

∂x2

∣∣∣∣
x+x̂

(17)

holds, for some positive number σ, the error between the
model G in (1) and Ĝ in (14) is bounded by

‖y − ŷ‖ ≤ 2σ‖u‖, (18)

if x0 = 0, x̂10 = 0, ‖u‖ ≤ γR, and u(t) ∈ L. This follows
because the terms containing ẑ in (15)–(16) cancel. The
matching condition (17) is a severe restriction, but as we
shall see next, it can always be fulfilled if the incremental
Gramians are quadratic.

A. Quadratic Gramians and Balancing

If the Gramians Wi,o(x) and Wi,c(x) are quadratic, i.e.,
Wi,o(x) = xT Qx, Wi,c(x) = xT P̃ x, with symmetric
positive-definite matrices

Q =

[
Q11 Q12

QT
12 Q22

]
, P̃ =

[
P̃11 P̃12

P̃T
12 P̃22

]
,

then we can check that the matching condition (17)
means that ∂Wi,o

∂x2

∣∣∣
x−x̂

= 2[(x1 − x̂1)
T Q12 + xT

2 Q22] and

∂Wi,c

∂x2

∣∣∣
x+x̂

= 2[(x1 + x̂1)
T P̃12 +xT

2 P̃22] must be equal with

proper scaling σ2. This is possible for all x and x̂ if and
only if Q12 = P̃12 = 0, Q22 = σ2P̃22. Hence, Q and
P̃ need to be block diagonal. This is obtained with linear
coordinate transformations. If we change the coordinates as
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x = φ(z) = Tz, for some invertible matrix T ∈ R
n×n,

see (5), then the quadratic Gramians that solve (11) and
(12) transform as Wi,o(z) = zT (TT QT )z, Wi,c(z) =
zT (TT P̃ T )z. The eigenvalues of the product P̃−1Q are
invariant under these coordinate transformations. The square
roots of the eigenvalues are called the Hankel singular values
of the system:

σi = λ
1/2
i (P̃−1Q), i = 1 . . . n.

Since P̃ and Q are not unique for a polynomial system G,
the singular numbers are not unique. We can balance the
Gramians if Q and P̃ are positive definite. That is, there is
a linear coordinate transformation such that

Q = diag{σ1, σ2, . . . , σn},

P̃ = diag{σ−1
1 , σ−1

2 , . . . , σ−1
n },

(19)

see [4]. The incremental Gramians then fulfill (7)–(8) in
Section IV.

After balancing, it is easy to fulfill the condition (17) when
x2 is the last state in x, using σ = σn. More states can then
be removed recursively by noticing that the reduced-order
model Ĝ has the quadratic (diagonal) Gramians x̂T Q11x̂ and
x̂T P̃11x̂. We can then derive the following proposition.

Proposition 6: Assume that the polynomial system G has
balanced quadratic incremental Gramians (19). Then the
difference between the outputs of (1) and a truncated n̂-
th order model Ĝ in (14) is bounded by ‖y − ŷ‖ ≤
2
(∑n

i=n̂+1 σi

)
‖u‖, if the systems are initially at rest, and

u ∈ L and ‖u‖ ≤ γR.
Proof: Follows by the procedure described above

together with the triangular inequality. Here γR is found
through Proposition 3.

This is a generalization of the balanced truncation er-
ror bound in [2]. Similar results are available for linear
parameter-varying and time-varying systems. See, for exam-
ple, [15] and [9].

B. Approximate Quadratic Incremental Gramians

Let us for simplicity consider the case where the model
(1) is given by ẋ(t) = AZ(x(t))+Bu(t), y(t) = CZ(x(t)),
and see what (11) and (12) lead to. If we write out (11) and
(12), we obtain

−2[x − x̂]T Q[A(Z(x) − Z(x̂))] − |C(Z(x) − Z(x̂))|2 ≥ 0,
(20)

−2[x + x̂]T P̃ [A(Z(x) + Z(x̂)) + 2Bu] + 4|u|2 ≥ 0,
(21)

for all x, x̂ ∈ K and u ∈ L. It turns out that these inequalites
are often hard to solve when Z(x) 	= x. However, one can
argue that it is conservative to require the inequalities to hold
when x̂ and x are far apart. We are looking for good model
approximations, and it is more important that (20) and (21)
hold when x̂ ≈ x.

Let ∆x = x − x̂ be small. Then a first approximation
is Z(x) − Z(x̂) ≈ ∂Z

∂x (x)∆x, and Z(x) + Z(x̂) ≈ 2Z(x).

Using these expressions in (20) and (21), we obtain

∆xT

[
−2QA

∂Z

∂x
(x) −

∣∣∣∣C ∂Z

∂x
(x)

∣∣∣∣
2
]

∆x ≥ 0, (22)

−2xT P̃ [AZ(x) + Bu] + |u|2 ≥ 0, (23)

for all x ∈ K, ∆x, and u ∈ L. These inequalities are easier
to solve than (20) and (21), but more studies are required
to evaluate their usefulness as compared to the Gramians
in Section III. Notice that solutions Wo(x) = xT Qx to (3)
should be solutions to (22) for small x. Furthermore, (23)
is identical to (4) when Wc(x) = xT P̃ x. Hence, quadratic
Gramians Wo(x) and Wc(x) from Section III can be used
as approximate quadratic incremental Gramians Wi,o(x) and
Wi,c(x) if K is small.

VI. NUMERICAL EXAMPLES

We will now illustrate the methods described in the
previous sections by considering some simple examples.

Example 7: Consider the system

ẋ1 = x3
2 + x3

4,

ẋ2 = −x3
1 − 0.25x3

2 + x3
3,

ẋ3 = 0.75x3
1 + 0.5x3

2 − x3
3 + x3

4 − u,

ẋ4 = −0.75x3
3 − x3

4 + u,

with output y = x2
1x2. Note that the linearization of this

system around the origin is zero, thus linear model reduction
method cannot be applied. Using the methods described in
Section III, homogeneous polynomial Gramians of degree 4
can be found. When evaluated for the basis vectors in the
current coordinates, we have

Wo(e1) = 0.5071 Wc(e1) = 0.9730

Wo(e2) = 0.4506 Wc(e2) = 1.2983

Wo(e3) = 0.2812 Wc(e3) = 5.9602

Wo(e4) = 0.2962 Wc(e4) = 3.6202.

Thus, the Gramians satisfy the ordering property (9)–(10)
for i = 3, suggesting that the third state is the least
important from input-output perspective. When the third state
is truncated, the response of the reduced order model for
sinusoidal and step inputs are shown in Figure 1.

Example 8: Consider the system

ẋ1 = x2 − x1x2 − 3x2x3 − x1x4,

ẋ2 = x3 + 0.5x1x2 + 0.5x2x3 + x1x4,

ẋ3 = x4 + 0.5x1x2 + 0.5x2x3 − 0.25x1x4,

ẋ4 = −x1 − 3x2 − 5x3 − 7x4 − 3x1x2 + 0.1x2x3

+ 0.3x1x4 + u,

with output y = x1. Since the linearization around the
origin is stable, controllable, and observable, it is possible
to compute quadratic Gramians, as well as a balancing
transformation, based on this linearization. The Hankel sin-
gular values corresponding to these Gramians are 1.1028,
7.5260 × 10−1, 1.5008 × 10−1, and 2.2716 × 10−4, which
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Fig. 1. Responses of the reduced order model obtained by truncating the
third state of the system in Example 7. The inputs are u(t) = sin(t) in (a),
and a unit step in (b).

hints that a very good approximation with a third order model
is possible. We applied to the original nonlinear model the
balancing transformation computed from the linearization,
and truncated the least important state to obtain a nonlinear
reduced order model. Unfortunately, although around the
origin the reduced order model indeed approximates the
original model very well, their behaviors in the nonlinear
regime can be quite different. See Figure 2(a), where the
outputs corresponding to a sinusoidal input are compared.

On the other hand, using the methods of Section III, it
is also possible to compute quadratic Gramians using the
original nonlinear model. We computed quadratic Gramians
on the sets K = {x ∈ R

4 : xT x ≤ 9} and L = R. In this
case, the Hankel singular values are 1.8214, 1.8205, 1.6739,
and 1.2065, which do not give an overly optimistic prediction
like before, and hence one should not expect that a third
order model will be able to approximate the original model
very well. Applying the balancing transformation obtained
from these Gramians to the nonlinear model and truncating
the least important state, we obtained a third order nonlinear
model which gives a response shown in Figure 2(b).

VII. CONCLUSIONS

In this paper, we have looked at generalizations of the
balanced truncation procedure for polynomial systems. We
started by obtaining generalized reachabiliy and observability
Gramians that fulfill certain inequalities. The inequalities
can be solved using sum of squares programming. Using
the Gramians, we can identify coordinates that are hard to
reach and to observe. Some heuristics were developed for
the truncation procedure. Furthermore, we presented some
tools for obtaining upper bounds on the truncation error. The
corresponding inequalities are hard to solve, but with some
approximations they become more tractable.

Future work should include how to compute more general
balancing coordinate transformations that are applicable to
non-quadratic Gramians.
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(a) Linearization−based reduction
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(b) Nonlinear−based reduction

Original model
Reduced order model

Fig. 2. Responses of the reduced order models in Example 8 for the
sinusoidal input u(t) = 2.5 sin(0.25t). Notice that the output of the
reduced order model in (b) is qualitatively better than the one in (a).
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