Spatial Coupling - A way to Improve the Performance and Robustness of Iterative Decoding
Lentmaier, Michael; Andriyanova, Iryna; Hassan, Najeeb; Fettweis, Gerhard

Published: 2015-01-01

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Spatial Coupling — A way to Improve the Performance and Robustness of Iterative Decoding

Michael Lentmaier
Dept. of Electrical and Information Technology
Lund University, Lund, Sweden
Email: michael.lentmaier@eit.lth.se

Iryna Andriyanova
ETIS group, ENSEA/UCP/CNRC-UMR8501
95014 Cergy-Pontoise, France
Email: iryna.andriyanova@ensea.fr

Najeeb ul Hassan
and Gerhard P. Fettweis
Vodafone Chair Mobile Comm. Systems
TU Dresden, Dresden, Germany
{najeeb_ul.hassan, fettweis}@tu-dresden.de

Abstract—Spatially coupled codes are a class of capacity achieving channel codes which, like polar codes, have been studied within the NEWCOM# Network of Excellence. We present the concept of spatial coupling, discuss various features that makes it attractive and finally point out its potential for scenarios beyond channel coding and point-to-point communications.

I. THE CONCEPT OF SPATIALLY COUPLED CODES

Consider transmission of a sequence of L codewords v_1, v_2, \ldots, v_L of length n. In conventional block coding, each of these codewords is encoded independently by means of some given code. Assuming, for example, a rate $R = n/k$ LDPC code defined by an $n - k \times n$ parity-check matrix H, the codewords have to satisfy the condition $v_t \cdot H^T = 0$ for all $t = 1, \ldots, L$.

The fundamental idea of spatial coupling is that, instead of being encoded independently, the codewords v_t are interconnected (coupled) with their neighbors at times $t - 1, t - 2, \ldots, t - m$ during the encoding procedure. This is done in such a way that the sequence satisfies the condition $v_t \cdot H^T_0(t) + v_{t-1} \cdot H^T_1(t) + \cdots + v_{t-m} \cdot H^T_m(t) = 0$,

where the matrices $H_i(t)$, $i = 0, \ldots, m$ result from a decomposition of the original block code matrix, i.e., $H_0(t) + H_1(t) + \cdots + H_m(t) = H$.

It follows from the construction that spatially coupled LDPC (SC-LDPC) codes have a convolutional code structure, where the parameter m defines the corresponding memory. The decomposition of the parity-check matrix (i.e., the spreading of edges in the Tanner graph over different time instants) can be done in different ways, resulting in different ensembles of spatially coupled codes [1]–[3]. Fig. 1 illustrates the coupling of a $(3, 6)$-regular LDPC code ensemble based on a protograph.

It should be emphasized that spatially coupled codes are not just yet another particular code construction. Spatial coupling is a general concept that can be applied to different existing (and future) code constructions and it is not limited at all to binary LDPC codes. For example, this concept has been applied to non-binary LDPC codes [4], product codes [5], [6] and turbo codes (both serial and parallel concatenation) [7].

This work was supported in part by the European Commission in the framework of the FP7 Network of Excellence in Wireless COMMunications NEWCOM# (Grant agreement no. 318306).
the sequence, provided that L is significantly larger than m. The strength of a code increases with product $n \cdot m$, which determines the constraint length.

As a natural consequence, it is desirable to operate with encoder and decoder structures that are independent of L in terms of complexity, storage requirements and latency. This can be achieved by means of a sliding window decoder, which operates on a region of W codewords, i.e., $n \cdot W$ symbols. An example of a window decoder of size $W = 4$ is given in Fig. 2. It has been shown in [10] that for equal structural latency, SC-LDPC codes under window decoding outperform LDPC codes for short to long latency values and outperform convolutional codes from medium to long latency values. Another advantage of using a window decoder is the flexibility at the decoder. Since the window size W is a decoder parameter, it can be varied without changing the code, providing a flexible trade-off between performance and latency [10].

C. Universality and Robustness

Another remarkable feature of spatially coupled codes is their universality property, which means that a single code construction performs well for a large variety of channel conditions. For general binary-input memoryless symmetric channels the universality of SC-LDPC codes has been shown in [8]. The performance of SC-LDPC codes over the block fading channel was analyzed in [11]. It turns out that the diversity order of the code can be increased, without lowering the code rate, by simply increasing the coupling parameter (memory) of an SC-LDPC code. For a $(3,6)$-regular SC-LDPC code with rate $R = 1/2$ and memory $m = 4$ a remarkable diversity of $d = 10$ is achieved without the need for any specific code structure. The memory of the SC-LDPC codes makes them robust against a non-stationary mobile-radio environment.

III. SPATIAL COUPLING BEYOND CODING

Iterative algorithms are widely used for improving the performance of communication systems. Different locally operating components of the receiver exchange messages with each other in order to approximate the optimal global solution. The key is that the complexity of such a receiver is still in the order of the individual components, while an optimal receiver would be prohibitively complex. Whenever such an algorithm can be described by means of a graphical model, it is possible to apply the concept of spatial coupling on the corresponding graph. It turns out that the threshold saturation phenomenon and the universality and robustness of spatially coupled systems can be observed for a wide range of scenarios.

We conclude this short overview by naming a few examples that may inspire some readers to find applications of this concept within their own area of research. In [12] spatially coupled codes are considered for modulation and detection. In an EXIT chart analysis it is observed that the receiver becomes more robust against varying detector characteristics. Similar observations are made in [13] for a MIMO system with linear precoding. Regarding multi-user scenarios, the Gaussian multiple-access channel (MAC) is considered in [14]. It is shown that simple regular SC-LDPC codes achieve nearly-universal performance. In [15] a multiple access demodulation scheme is analyzed from an interference cancellation point of view and it is shown that spatial coupling can achieve nearly optimal performance.

REFERENCES