Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Effects of disturbance frequency, species traits and resprouting on directional succession in an individual-based model of forest dynamics

Caplat, Paul LU and Anand, Madhur (2009) In Journal of Ecology 97(5). p.1028-1036
Abstract

Succession theory focuses on the position of species along the shade tolerance gradient and their ability to colonize recently disturbed patches and has for decades overlooked resprouting as a key trait in community patterns. We study how different species traits interact with disturbance frequency to change species dominance in the canopy, focusing on the effects of resprouting ability. We develop an individual-based model that simulates the dynamics of three species paper birch Betula papyrifera Marsh, white pine Pinus strobus L. and sugar maple Acer saccharum Marsh., characterized by different successional strategies, as observed in northern Minnesota forests. We tested (i) how different disturbance frequencies, (ii) sugar maple... (More)

Succession theory focuses on the position of species along the shade tolerance gradient and their ability to colonize recently disturbed patches and has for decades overlooked resprouting as a key trait in community patterns. We study how different species traits interact with disturbance frequency to change species dominance in the canopy, focusing on the effects of resprouting ability. We develop an individual-based model that simulates the dynamics of three species paper birch Betula papyrifera Marsh, white pine Pinus strobus L. and sugar maple Acer saccharum Marsh., characterized by different successional strategies, as observed in northern Minnesota forests. We tested (i) how different disturbance frequencies, (ii) sugar maple resprouting and (iii) paper birch resprouting change successional patterns. We show that three disturbance frequency classes produce three different outcomes, each dominated by a different species, with lower disturbance frequency favouring later successional species. The importance of resprouting ability for success in the canopy depends on the species' other life-history traits. Sugar maple is able to dominate the community at all disturbance frequency classes with resprouting, whereas the inclusion of resprouting for paper birch does not change the successional patterns. White pine is indirectly favoured by sugar maple's resprouting ability, excluding paper birch from the community at disturbance frequency classes that would see paper birch dominance in the absence of resprouting. Synthesis. We model tree life histories in a disturbed environment and test how the inclusion of resprouting changes succession patterns. Our results confirm the recent interest of taking into account resprouting, as it can bend succession directionality, and thus change community composition in response to disturbance. This has wide consequences for predicting forest diversity patterns as well as invasion phenomena in a changing world.

(Less)
Please use this url to cite or link to this publication:
author
and
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Disturbance regime, Fire, Great Lakes forest, Paper birch, Patch dynamics, Sugar maple, Vegetative reproduction, White pine
in
Journal of Ecology
volume
97
issue
5
pages
9 pages
publisher
Wiley-Blackwell
external identifiers
  • scopus:68849097964
ISSN
0022-0477
DOI
10.1111/j.1365-2745.2009.01541.x
language
English
LU publication?
no
id
d67766aa-8795-4246-90a1-89fcf3f309d7
date added to LUP
2016-04-22 08:39:09
date last changed
2022-01-30 02:49:47
@article{d67766aa-8795-4246-90a1-89fcf3f309d7,
  abstract     = {{<p>Succession theory focuses on the position of species along the shade tolerance gradient and their ability to colonize recently disturbed patches and has for decades overlooked resprouting as a key trait in community patterns. We study how different species traits interact with disturbance frequency to change species dominance in the canopy, focusing on the effects of resprouting ability. We develop an individual-based model that simulates the dynamics of three species paper birch Betula papyrifera Marsh, white pine Pinus strobus L. and sugar maple Acer saccharum Marsh., characterized by different successional strategies, as observed in northern Minnesota forests. We tested (i) how different disturbance frequencies, (ii) sugar maple resprouting and (iii) paper birch resprouting change successional patterns. We show that three disturbance frequency classes produce three different outcomes, each dominated by a different species, with lower disturbance frequency favouring later successional species. The importance of resprouting ability for success in the canopy depends on the species' other life-history traits. Sugar maple is able to dominate the community at all disturbance frequency classes with resprouting, whereas the inclusion of resprouting for paper birch does not change the successional patterns. White pine is indirectly favoured by sugar maple's resprouting ability, excluding paper birch from the community at disturbance frequency classes that would see paper birch dominance in the absence of resprouting. Synthesis. We model tree life histories in a disturbed environment and test how the inclusion of resprouting changes succession patterns. Our results confirm the recent interest of taking into account resprouting, as it can bend succession directionality, and thus change community composition in response to disturbance. This has wide consequences for predicting forest diversity patterns as well as invasion phenomena in a changing world.</p>}},
  author       = {{Caplat, Paul and Anand, Madhur}},
  issn         = {{0022-0477}},
  keywords     = {{Disturbance regime; Fire; Great Lakes forest; Paper birch; Patch dynamics; Sugar maple; Vegetative reproduction; White pine}},
  language     = {{eng}},
  number       = {{5}},
  pages        = {{1028--1036}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Journal of Ecology}},
  title        = {{Effects of disturbance frequency, species traits and resprouting on directional succession in an individual-based model of forest dynamics}},
  url          = {{http://dx.doi.org/10.1111/j.1365-2745.2009.01541.x}},
  doi          = {{10.1111/j.1365-2745.2009.01541.x}},
  volume       = {{97}},
  year         = {{2009}},
}