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Simultaneous
Block-Diagonalization
of One Hermitian and
One Symmetric Form

Abstract Given one Hermitian matrix A = A* and one symmetric
matrix B = BT, both in C™™, it is shown how to find an invertible ma-
trix § € C™*™ such that S*AS and ST BS are block diagonal matrices of
a canonical form described further in the article. Hermitian-symmetric
pairs occur in analysis in the theory of reproducing kernel Hilbert Spaces,
the Grunsky inequalities for univalent analytic functions, quadratic in-
equalities between Hermitian and symmetric forms and in the solution
of Caratheodorys moment problem. A new application is also sketched
here: calculation of the so called real perturbation values. The results
presented here are related to canonical forms for consimilarity and to the
theory of quaternions.

1. Notation

AT will denote the transpose of A and A the complex conjugate. The
Hermitian transpose is denoted A* = A", A matrix A is a block matriz
and A;; are its blocks, if for some n,k > 1 we write

A oo A

A .. Ank

where the blocks A;; have the same number of rows for fixed 7 and the
same number of columns for fixed j. We say that a matrix is block diagonal
if it is a block matrix with A;; = 0 for 7 # j. We write a block diagonal
matrix A with m diagonal blocks as A = diag(Ay, ..., Am). A matrix of



the form
Ay A A
Ay

A_n

with equal elements on the diagonals is called a Toeplitz matrix. A block
matrix of the same type is called a block Toeplitz matrix. A matrix of the
form

Ao A4 Ay

A]_ o

An

with equal elements on the skew-diagonals is called a Hankel matrix. A
block matrix of the same type is called a block Hankel matrix.

The following upper triangular, block quasi-Toeplitz complex matri-
ces are used several times in the article:

1 Ly .. T

Sraxk(T1y ..., &) 1= Ty I (1)

\ 0 /

where m, k denotes the number of block rows and block columns respec-
tively. A square k x k matrix of the form

A e 0
J =

e

0 A

is called a Jordan block of type A if for k > 2 we have A € Rand e =1
while for k = 1 we have J = (A). Such a matrix J is called a Jordan block
of type B if for k > 4 we have

PO bERb£0 amd e= | °
- b a !a7 7# an €= 0 1 b ]

—b
whilefork=2wehaveJ:[: ]

a



Throughout this paper the symbols E or E; denote the matrices

1

1

of appropriate size. Note that EA (or AE) corresponds to swapping the
rows (or columns) of A.

2. Background

To make the article more self contained we now review some well known
results in matrix theory.

Two Canonical Forms

THEOREM 1—The Real Jordan Normal Form

For every real square matrix A there exists a real nonsingular matrix
S such that S~'AS = diag(Ji,...,Jm), In which each square block J;
corresponds to an eigenvalue A; of A. If this eigenvalue ); is real, the
associated J; is a Jordan block of type A;if A; = a+1ib ¢ R, then J;is a
Jordan block of type B. This is called the real Jordan normal form of A.
It is uniquely determined by A, except for the order of its Jordan blocks.

A proof of this well known result can be found in e.g. [Gantmakher, 1959]
or [Horn and Johnson, 1985].

Let Ji,...,J; be all the Jordan blocks (of either type) associated
with the same eigenvalue A of a real matrix A. Then

C(\) = diag(J1,...,J1),  with dim J; > dim Jipa, i=1,...,0—1

is called the full Jordan-chain associated with A. If A1,..., A, are all the
distinct eigenvalues of a real matrix, where from each pair of complex
conjugate eigenvalues, only one is listed, then its real Jordan normal
form is J = diag(C(M1), ..., C(A&))-

The classical theorem on canonical forms for nonsingular pairs (4, B)
of symmetric matrices goes back to Weilerstrass and has the following
form:

THEOREM 2—Canonical Form for Symmetric Pairs
Let A = AT and B = BT be a pair of real symmetric matrices with B
nonsingular. Let B~' A have real Jordan normal form

diag(Jl,...,Jr,JTH,...,Jm), (2)

where Ji, ..., J, are Jordan blocks of type A corresponding to real eigen-
values of B™'A and J,,1,. .., Jm are Jordan blocks of type B for pairs of



complex conjugate eigenvalues of B~'A. Then there exists a real matrix

S such that

STAS = diag(e;ErJh, . . ., & Endey BryaJost, - - o, EmJm) (3)
STBS = diag(e1Ev, ..., & EBny Eny1, ..y Em) (4)

where ¢; = +1. The signs ¢; are unique (up to permutations) for each set
of indices 7 that are associated with a set of identical Jordan blocks J; of

type A.

For a proof see [Trott, 1934] or [Uhlig, 1976].

Remark. The theorem can be formulated using the pencil AB — A in-
stead and generalized to singular B.

Remark. The theorem simplifies considerably if A > 0 or B > 0. Then
one can show that all Jordan blocks have size 1 and hence one can si-
multaneously diagonalize A and B.

The main result of the paper is the proof of a corresponding theorem
for Hermitian-symmetric pairs.

Hermitian-symmetric pairs

Let one Hermitian matrix A = A* and one symmetric matrix B = BT,
both complex n x n matrices, be given. Such pairs (A4, B) occur occasion-
ally in analysis, for instance in quadratic Hermitian-symmetric inequali-
ties:

— ]ZTBZ . VzeC (5)

n n
2Az = Z ;52325 > Z b,‘jzl-zj-

03=1 |i.d=1

For an introduction to such inequalities see [Fitzgerald and Horn, 1977
where the following theorem is proved:

THEOREM 3—Hermitian-symmetric Inequalities
The following six statements are equivalent

(1) z7Az > lzTBz‘, Vze C"
(ir) e*Azc+y Ay > 2 ‘mTBy’, Vz,y € C”
(191) 2" Az +y Ay > 2 Re(zT By), Vz,y € C"
(1v) the 2n x 2n matrix
A B
T
B A
is nonnegative definite, that is, (.A¢ > 0, V¢ € C*"
(v) ¢CCAC >0, forall ¢ € C?" of the form
(= [i] where z € C"
z

(vi) 2*Az > Re(z'Bz), Vze C”



Proof: The only nontrival steps in the chain (¢) = (i) = (i11) = (iv) =
(v) = (vi) = (3) are the first and the last. To show that (i) = (4%)
put z = ¢ £+ y, add and use the triangle inequality. To prove (vi) = (3)
substitute z with ze® and vary 4.

There are several interesting instances of such inequalities, for ex-
ample the Grunsky inequalities in the theory of univalent functions.
Hermitian-symmetric inequalities also occur in analytic continuation,
harmonic analysis and the moment problem for complex measures. Some
of these applications are described below.

Grunsky Inequalities The most celebrated example of Hermitian-
symmetric inequalities is probably the Grunsky inequalities in the clas-
sical theory of univalent analytic functions: If f(z) is a normalized (i.e.
f(0) =0, f(0) =1) analytic function on the unit disc, then a necessary
and sufficient condition that f be univalent® (=schlicht), is that

. : zz;  flz) — f(za-)]
E :zzia:jlo E z;z;lo
ij=1 & tog [f(zi)f(zj) 2, — Zj

for all zy,...,2, € C, all z,..., 2, in the unit disc, and all n = 1,2,....
Of course, the difference quotient is interpreted as f'(2) if z; = 2;.

The Grunsky inequalities have got renewed interest because of their
connection with the recently proved Bierbach conjecture. For a survey of
these and several related inequalities see [Fitzgerald and Horn, 1977].

e

— 2
1—2533'

1,5=1

The Moment Problem Complex function interpolation problems oc-
cur frequently in analysis and system theory. One instance is the mo-
ment problem of Caratheodory where an interpolation condition at zero
is given: Consider a finite sequence of complex numbers ao, a1, ..., a2n
where ag is real and N is a positive integer. Define a_, = @n, for n =
1,2,...,2N. It is well known that the following three conditions are
equivalent, see [Caratheodory, 1911]:
(a) There exists an infinite sequence of complex numbers (a;)52,n 44
such that the function f(z) = ao + 2a12 + 2a52% + 2a32% + ... is
analytic in the unit disc of the complex plane and satisfies

Re f(2) >0, |z|<1

(b) There exists a non-negative regular measure p such that
2T
an = / e™du(d), n=0,1,...,2N.
0

(c) The Hermitian, Toeplitz matrix Asy41 = (ai;),0 < 2,5 < 2N 1s
positive definite, i.e.

2N
Z a;_;CiC{ >0 ‘v’co,cl, ...,CN € C.
iJJZO

1 f is univalent if f(z1) = f(22) = 21 = 22



In [Fitzgerald and Horn, 1977} it is shown that the inequality in (c) is
equivalent to the following Hermitian-symmetric inequality between two
smaller Toeplitz and Hankel matrices:

N N
Z a;_;CiC; > Z @i45CiCil Yeo, C1y...,6N € C.
1,7=0 1,7=0

Reproducing Kernel Hilbert Spaces Another instance where Her-
mitian-symmetric operators occur is in the theory of kernel functions
and conformal mappings. Given a finite domain Q in the complex z-
plane which is bounded by n closed analytic curves C,,v = 1,2,...,n.
The Green function g(z, () of {2 is defined by the following properties

(a) g(z,¢) is harmonic for { € Q fixed except for z = (.
(b) g(z,¢) +log |z — (| is harmonic in the neighborhood of z = (.
(c) g(2,{) =0{or z € 0Q and { € .

From this it follows that g(z,{) = g(({, z). The kernel functions are de-
fined by

. ‘)2 : 282 ’
K0 =205 se0= 2550

The following symmetry relations follow from the definitions:

K(20) = K(,7), L(z() = L(¢,2)

One often also introduces the function

1

o — L(z,(),

l(z:C) =

which can be seen to be regular in Q. In the case of the unit circle we

have

o(2,) = log |-=%
= 1
KOy

1
L(z,() = Y
1= 0.

One can now easily show that for any :

n

Z ;2 l(zi,zj) Ve, € C, Vz; € Q,

i,5=1

)

1,7=1



which is yet another example of a Hermitian-symmetric inequality.

For a discussion of simultaneous diagonalization of K and [ see
[Bergman and Schiffer, 1951] where it is shown how to find an orthonor-
mal system {¢,(z)} such that

K(2,7) = i $.(2)8.(0)
l(Z, C) - i /\i‘bv(z)d’u(C)

v=1 "V

See also [Schiffer, 1981] for an interesting discussion on connections to
Hilbert transforms and the Fredholm integral equation.

Consimilarity

We say that two matrices C, D are consimalar if there is a nonsingular P
such that P 'CP = D. A mapping T : V — W between complex vector
spaces V and W is called an antilinear transformation if

T(az + By) =aT(z) + BT(y), Vao,f€C,z,yeV.

Just as similar matrices are matrix representations of a linear transfor-
mation in different bases, consimilar matrices are matrix representations
of an antilinear transformation in different bases. For a collection of re-
sults for consimilarity and more references see [Horn and Johnson, 1983,
Chapter 4].

There are several versions of concanonical forms corresponding to
the real Jordan canonical form. These concanonical forms for a matrix
C can be obtained from the real Jordan form for CC'. From [Hoo, 1990],
[Hoo and Horn, 1988], [Horn and Johnson, 1985, Chapter 4.6) we have
the following Theorem

THEOREM 4—Concanonical Form
Given a complex matrix C, and let the Jordan canonical form of CC be

J(EC) = .]pos(UC) @ .]NEg(UC) ) JCOM(UC) (6)

where the respective direct summands are Jordan matrices with all non-
negative, negative, and complex nonreal eigenvalues, respectively (if any).
Then the concanonical form J,(C) of C is such that 57'cs = J.(C),
where

J(C)=Jp, ® QN & Qo
in which

Jp = J(A,m1) @+ ® J(Ap, mp)

where all A; > 0, and A? are the nonnegative eigenvalues of CC so that

Jodp = T (M, m1) @ -+ @ T (A, mp) ~ Jpos(CC);



@n = N(p1,2n1) & - - N(pr, 21,),
where all p; > 0, and —p? < 0 are the negative eigenvalues of ce,

0 J (i, mi)

N ,',2 i) =
(s, 2] —J(pi, ni) 0

so that WQN ~ JNEG(UC); and
Qc = C(&1,2k1) & --- @ C(&,, 2k,)

where all ¢ ¢ R, €2 are the complex nonreal eigenvalues of CC,

0 J(Ei; kz)
C(és,2ks) = | ——
J(&i, ki) 0
where J(&;, k;) is a Jordan block of type A, so that QcQc ~ Jeom(CO).

As a slight generalization one can also find concanonical forms for
pairs of matrices A, B, i.e.

AS = BSA

where A has the structure in the theorem above. If B is invertible this
can be obtained by putting C = B A

We remark here that there is a more direct way to obtain concanon-
ical forms, where pencils of the double size are used. This approach is
also related to the quaternionic pencils in Section x.

THEOREM 5—Concanonical Form — 2nd Version
Let A and B be given matrices with B invertible. Then there exists an
invertible S such that

AS = BSA (7)

where A = diag(Js, ..., Jm). Here J; are chosen as the Jordan-blocks (of
either type) corresponding to eigenvalues A;, with Re(;) > 0, to the

pencil
(5 7))

The Jordan blocks for eigenvalues with Re(A) = 0 occur in even pairs.
Only half of these should be taken.

Proof sketch: Note that if

AR -GOEN e



then

[balls <=0 o)(s s)les)

Similarly one can prove that if A is an eigenvalue with corresponding
Jordan-block J(A) then so is —A and J(—A). Furthermore the Jordan
blocks for Re(A) = 0 occur in even pairs. Note that the case with neg-
ative eigenvalues of CC corresponds to the case with purely imaginary
eigenvalues of (8).

3. Simultaneous Block-diagonalization of
Hermitian-symmetric Pairs

The following is the main result of the article:

THEOREM 6—Canonical Form for Hermitian-symmetric Pairs
Let A = A* and B = BY be two given complex n X n-matrices with B
nonsingular. Then there exists a nonsingular n X n-matrix S such that

S*AS = diag(elElJl, ey E,.E—,.J.,-, ET+1JT+1, W iy Eme) (11)
STBS = diag(Es,..., Er,Ert1y. .o, Bm) (12)

where ¢; = +1, Ji,...,J, are Jordan blocks of type A and Jrt1,...,Jm
are Jordan blocks of type B, all corresponding to eigenvalues with non-
negative real part, obtained from the real Jordan form of the Hermitian

pencil
()0

Proof: The proof is inspired by the proof in [Uhlig, 1976] of the related
Theorem 2, which in turn is very close to the proof in [Trott, 1934].
From Theorem 4 and 5 we know that we can find a complex invertible
n X nm-matrix T such that

AT = BTA (14)
with
A = diag(C(M), ..., C (k) (15)

and where each C();) is a Jordan chain and }; are distinct eigenvalues

with Re()\;) > 0, Vi,



Multiplication with 7™ gives
T*AT = TTBTA
From A* = A and BT = B we get
ATTTBT = TTBTA. (16)

Introducing the same block-structure as in A corresponding to the Jordan
chains in (15) we get

CO
i ) = —Im(By;)C (). (18)

)"Re(By;) = Re(B;)C(X) (17)
C(/\ )TIIH(B,;J'
where E,-j is the (z,7)th block of TTBT. From this we get that éij =0
when i # 7, since then X; + A; # 0. So TTBT, and hence T*AT, are of
the same block-diagonal structure as A.

In the following we study each block corresponding to a single Jordan
chain C'();) separately and change notation to

A= C(X) = diag(hh,..., 1), A:=(T"AT)y, B:=(T"BT)a.
The goal is now to find a supplementary transformations V satisfying
AV =VA and VTBV =E. (19)
It then follows from A = BA that we have
V*AV = VTBAV = VTBVA = EA, (20)

which will prove the theorem.

The rest of the proof is done in a number of steps where in each
step B is transformed to VT BV where AV = VA. Note that Lemma 3
characterizes exactly the set of such V:s.

First note that if A corresponds to an eigenvalue A = a + @b with
a > 0, then it follows from (18) that Im(B) = 0. The transformation V
can then be chosen as a real matrix in the same way as in the proof of
Theorem 2 in [Trott, 1934],{Uhlig, 1976]. Note that a diagonal V' with 1:s
and i:s in the diagonal elements corresponding to real eigenvalues in A
then makes VT BV change sign but leaves V*AV unchanged. This gives
the form in the theorem except when A = ib,b # 0.

So we can reduce to the case with A being a Jordan chain of type B
corresponding to an eigenvalue of the form A = 4b, b # 0. Since from
(16) (notice the change in notation) ATB = BA we get from Corol-
lary 2 and introducing the same block structure as in the Jordan chain
A = diag(J(A, m1),...,J(A, my)), so that B contains I x I blocks Bij,
that every block B;; has the block-quasi Hankel structure described in
Corollary 2.

10



If By, is invertible we use congruence transformations with matrices
of the form

I — B! By
V= , €S (21)
I

such that the first block column and block row of B are zeroed. We can
then use induction on [ to reduce B to block diagonal form.

If By, is singular but some Bj; is invertible where By; and Bi; corre-
spond to Jordan blocks of the same size we can use a permutation matrix
to swap By, and By; and continue as above.

If all Byy,...,B; that correspond to Jordan blocks of size m; are
singular we can use the structure of B to conclude that there must exist
some j with By; (1 < j < i) nonsingular, otherwise the first row of B
would be zero contradicting the invertibility of B. Then the matrix

I —1I

V= , (22)

which is identity in the diagonal and nonzero in blocks (1,7) and (,1),
transforms the (1, 1)-block in B to

Bi1 + Bjj + Bij + B;Trl,

which is necessarily nonsingular because of the structure of the blocks
B;;. The induction can then continue as above.

We can hence transform B to block diagonal form and then trans-
form every block of B separately with block diagonal transformations.
We hence assume that A ;= J(4b) is a single Jordan block corresponding
to a purely imaginary eigenvalue. From ATB = BA and Lemma 2 we can
find a 2 x 2 matrix v; € 81,1, such that with

Vi = S(vy,0,...,0)

the matrix VT BV, still has the same structure as in Corollary 2 but
with E:s on the skew-diagonal. Finally we can use Lemma 2 to find
transformations of the form

V]':S(I,...,’Uj,...)
giving
vI. . ..V'B.-Vi...-Vu,=E.

11



by successively making the jth sub-skew diagonal equal to zero. That
Im(b;) = 0 (and Im(b;) = 0) when needed in applying Lemma follows
from the symmetry of B as remarked in Appendix 1. Note that all trans-
formations performed above are of the form in Lemma 2 and hence satisfy

AV = VA. This concludes the proof of Theorem 5.

COROLLARY 1
Let A = A* and an invertible B = BT be given. Then for every € > 0
there exists S, F' such that

S*AS = diag(Ay,...,Am)+ F and STBS=1 (23)
a; —1b; ]

’ibj —ay
Proof : Follows from the previous theorem after transformations with

where ||F|| < eand A; € Ror A; = [

matrices of the form

I -1
diag(e™, €*!,..., e ™) and .
iag(e™, € ',...,€ ") an [I I ]

4. Calculation of the Real Perturbation Values

The real perturbation values are nonnegative real numbers 74 connected
with a complex p X m-matrix M. They are defined by

(M) = [min{|A] : A € R™*? and rank(Ip, — AM) =m — kY7
(24)
Note that A is here assumed real, while M is a complex matrix. A is
measured in induced operator norm, i.e. as the largest singular value
and the inverse is taken for later notational convenience. When M is
real 7,(M) = o4 (M), where oy (M) denotes the standard singular values
of M.

It has recently been shown how the largest real perturbation value
pt1 solves the problem of calculating the closest unstable matrix. In [Qiu
et al., 1993] it is shown that the real stability radius is given by the
expression [sup,cgq T1((s] — A)_l)]_l.

The problem of calculating (24) and finding a corresponding A is
solved in [Bernhardsson et al., 1994], where the following formula for the
real perturbation values is shown:

‘ Re M —yIm M
(M) = inf o9 | _, (25)
v€(0,1] ~~ Im M Re M

where o; denote the standard singular values. From this 7, are easily
calculated. It is also possible to show the following Courant-Fischer type
formula

(M) = max minw (26)
Rank Sx=k _C*  |Re(Skw)]

12



where the maximization is performed over all full rank matrices Si. In
the proof of (25) the following generalization of Theorem 3 is needed, see

[Qiu et al., 1993].

THEOREM 7
The following four conditions are equivalent (where Sy denotes a rank k
matrix)

(i) 3Sk: 2"Az> Re (27Bz), V2= Sww, we C* (27)
Sk 0 : A (X-B' Sk 0

1) 1Sk : — — - 0, Vil <1 28

35 [ 5 s 7 )70 velst
A aB

(33%) Azk[aB O‘Z >0, Vja|<1 (29)

(iv) Let n1,n; denote the number of A; > 1 and non-real A; respectively.
Then either ni + ny > k or else

Aj+/\n+1—j>0) j:1,...,n/2

with n = 2k — 2n; — 2n; and where the real eigenvalues smaller
than 1 have been ordered so that 1 > A; > ...

Proof: The only nontrivial steps are to prove that (iiz) implies (4v) and
(4v) implies (7). By Corollary 1 we can find an invertible S that transforms
A and B to (almost) diagonal form:

S*AS=A+F (30)
STBS =1, (31)

where diag()y, ..., M) and F is arbitrarily small. Assuming (29) we have

that
A ol
32

[aI A] (32)

has 2k positive eigenvalues for all —1 < a < 1. Because of symmetry it
is enough to study a € [0,1]. The eigenvalues of this matrix are given by
)\j:taif/\jERandiaj:(a?%—bf)”{ifAi:[:bj 1’53].

The real eigenvalues A; > 1 contribute with 2Jpositifre eigenvalues
each Ya € [0,1], denote the number of such pairs with n,. Eigenvalues
Aj < —1 do not contribute at all. All pairs of complex eigenvalues con-
tribute with 2 positive eigenvalues of (32), denote the number of such
pairs by ny. Left are the eigenvalues A; € (—1,1). From a plot of a num-
ber of straight lines of the form A; + e, for a € [0, 1] it is easy to see that
with n = 2k — 2ny — 2n, we must have

)\j+)\n+1—j>0; j:1,...,n/2.

13



This proves (iv).
To construct Si put for each real eigenvalue > 1

5= (0 &2 1 0 wws o]T, i=1,...,n.

so that sAs; > 1 and szsj = 1. For each pair of complex eigenvalues
put

si=(0 . 1 i o 0), GEmtlmtn

This gives s} As; > 0 and 37 Bs; = 0. Put for each pair Aj + Any1-; >0

T
si=[(0 ... 1 .. 0)7, j=m+n+l... .k
This gives sjAs; = A; + Any1-; > 0 and S?st' = 0. With

Sk: [31 Sk] y
we have
SrAS, = diag(A;,0) and Sy BSj = diag(I,0),

where A; > I. From this (27) follows directly.

5. Hermitian-symmetric Pairs and Quaternionic
Pencils

A short introduction to quaternions is given in Appendix 1. The reason
quaternions are interesting in connection with Hermitian-symmetric pairs
is easily seen from

S*(A+ jB)S = S*AS + §*jBS = §*AS + jSTBS,

where j2 = —1 and zj = jZ, Vz € C. We also have the following inter-
esting observation:

LEMMA 1 ~
If A, A are Hermitian and B, B are symmetric complex matrices then

Jinvertible S: S*AS=A and STBS=5B (33)
—
Jinvertible P,Q: P*AQ=A and PTBQ =238 (34)

14



Proof: One direction is trivial. To prove the other, introduce the quater-
nion matrix A + jB, where j2 = —1 and jz = Zj,Vz € C. Then

P(A+iB)Q=A+jB = Q"(A+B)P
(A+jB)QP™ = P~Q (A +B)
(A+7B)T =T"(A+jB)
where T = f(QP~!) and f is an arbitrary polynomial
(A+37B)T =T*(A+jB)
where T = f(QP~') and f is an arbitrary function
analytic on the spectrum of QP~!.

This gives
P*T*(A+jB)T'Q=A+jB.
Now (P*T*)* = T~Q if T is a solution to T2 = QP ™", which is possible

since f(z) = 4/z is analytic since 0 is not in the spectrum of QP This
proves the lemma.

Appendix 1. Some Results Related to Quaternions
A quaternion g may be represented on several different forms.
q_—‘IE1+'L.fL'2-|—jJ}3+kiB4, 1151,...,(134ER

where 12 = j2 = k¥ = —~1 and i = k, jk =1 and ki = j. We denote

q =z —izy — jo3 — kg (35)
Re(q) = (¢+73)/2 = (36)
9 =qg=qg=2} +2j +ai+2; €R (37)

Quaternions do not commute in general. But if gqw = 1 then wq =1
and w = §|g|"%. An isomorphic representation is in the form of pairs of
complex numbers

c+jd, (e, d) € C?, (38)
where j2 = —1 and dj = jd. We then have § = ¢ — jd, Re(g) = Re(c),

and |g|*> = |¢|> + |d|®. A third representation is in the form of complex
2 x 2 matrices of the form

q:[m —m3]+i[m2 —:I:4]=[c ——_ ] (39)
r3 T3 —xr4 —Ty d ¢

The following is needed in the article:
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LEMMA 2
Let B be a given complex 2 X 2 matrix of the form

b, b
B = - 40
[ b, B, ] , (40)

then there are complex matrices T of the form

T = [tl b ] (41)
ty t1

such that

(a) T*BT = E if and only if B # 0 and Im(b;) = 0.

(b) TTBT = E if and only if B # 0 and Im(b;) = 0.

(c) T*E + ET = B if and only if Im(b;) = 0.

(d) TTE + ET = B if and only if Im(b;) = 0.

0 1
where F = [ ]
1 0

Proof: To prove a) we put T~ = [ ; ] and note that

c
62 — d2 = b1

_ —x -1 e
EB=ETTET™ = gpoay _ 4,

If b, is real we can solve these equations by putting ¢ = r1€* and d =
ry€'?, where ¢ is chosen such that b, e~**% is real and r1, 7, are chosen such
that (ry +iry)? = bye~"¢ +iby. The check is then a direct calculation. b)
is proved in the same way, with (r; + irg)? = by + ibye™*2%, and bye~42¢
real. ¢) and d) are trivial to verify. T = B/2 is a solution under the given
conditions.

Appendix 2. Matrices Commuting with
Jordan-Blocks

Recall the definition of S:
ry Ty ... Tk
Smxk(T1, ..., 2TE) = _ ' , (42)

0

where the number of block rows is m and block columns is k. The fol-
lowing classification of matrices skew-commuting with Jordan-blocks are
used in the proof of Theorem 5.
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LEMMA 3

JA,m)Z =ZJ(A\my) <= Z = Smyxmy(0,.--,0,21, 22, Zm;—m,#3)
where z; are real scalars if A € R, while z; are 2 X 2-complex matrices of

the form
;. i
zZ; =
Yi T

if A ¢ R, and where z;,y; € R if Re (A) # 0. Let S, m,denote the set of
such matrices. If S; € Sp, m, and Sz € Smym, then 5153 € Sy m, and
ST € Smymy-

Proof: Identification of left and right hand sides gives a triangular linear

equation system. It is then direct to verify that Z has the mentioned
structure. To prove the rest note that if

J(/\, m1)51 = —S—lj()‘) mz)
J(X,m2)S2 = 53J(A, ma),

then

J(/\,ml)Slsz = '571.](/\,77742)52 = Slszj(A,ma)
J(A,mp)Srt =5 1T (A, ma).

COROLLARY 2

JT(A,m)B = BJ(A\,m3) & EB = Smysmy (0,...,0,21, ., Zmy—m, )(44)

Note also that if B = BT and B = ES(1,..., z,) with

=)

2, = .

Yi T

then Im(z;) = 0 if n — i is even and Im(y;) = 0 if n — 4 is odd.

Proof: Follows from EJT = JE.
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