LUND UNIVERSITY

Solution of Symbolic Linear Systems in OmSim Using Cramer's Rule

Carpanzano, Emanuele; Formenti, Fabio

1994

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Carpanzano, E., & Formenti, F. (1994). Solution of Symbolic Linear Systems in OmSim Using Cramer's Rule.
(Technical Reports TFRT-7524). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/0d7e1f9d-8b94-4cc5-971b-33f2d6c32c4e

ISSN 0280-5316
ISRN LUTFD2/TFRT--7524--SE

Solution of symbolic linear systems
in Omsim using Cramer’s rule

Emanuele Carpanzano
Fabio Formenti

Department of Automatic Control
Lund Institute of Technology
October 1994

Document name

Department of Automatic Control INTERNAL REPORT

Lund Institute of Technology Date of issue
P_O_ Box]_]_8 October 1994
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--7524--SE
Author(s) Supervisor
Emanuele Carpanzano, Fabio Formenti Sven Erik Mattsson

Sponsoring organisation

Title and subtitle
Solution of symbolic linear systems in Omsim using Cramer’s rule

Abstract

The efficiency of the simulations, of a modelling language, like Omola, depends strongly on the way in which the
studied phenomenon is mathematically described.In fact, a symbolic manipulation of the system of equations
that make up the model can be executed, in order to obtain faster and exacter simulations. The main purpose
of the present work is to create a data structure and an alghoritm, which support the symbolic manipulation
and improve the simulations of an object oriented modelling language, like Omola, particularly we realized a
symbolic linear system solver, using Cramer’s rule. In order to achieve this aim, three different data structures
have been introduced: the sparse matrix, the mask and the tree. With the mentioned data structures it’s
possible to achieve the desired purposes; in fact a linear system solver is implemented as a function of the
tree, and is used to transform systems of differential algebraic equations (DAE) into systems of ordinary
differential equations (ODE) , in order to improve the simulations executed with Omola; particularly this
alghoritm has been tested by performing simulations of mechanical systems. As a result of this work we have
new data structures, that allow to obtain a different and interesting representation of dynamical systems, with
which it’s possible to have a clearer description of the system itself and to support the symbolic manipulation,
particularly it’s possible to implement a symbolic linear system solver. The considered data structures and
functions have been implemented in C++, the program has been written in a way as much flexible, modular
and reusable as possible, to permit an efficacious reuse and an easy extension of it, in order to solve new

problems in future.

Key words
symbolic manipulation, linear systems, Cramer’s rule

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient's notes
english 43

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis lund.

Contents

1 Introduction 2
2 Problem description and solution approaches 4
3 Sparse Matrix implementation 5
3.1 implementation 5
3.1.1 class SparMatrix 6

3.1.2 class SparVector 7

3.1.3 classSparVecel e 9

32 Comments.¢ouwavenesss e s snesss 10

4 Mask 11
4,1 implementation e e 11
411 classMask 11

412 classPresDev oo 15

42 Comments.t it v it e e 16

5 The tree 17
5.1 Thebasicidea 17
5.2 Extensions of the fundamentaltree 24
5.3 The basic operations on thetree 27
5.4 Special functions of the tree 28
5.5 Use of the tree to solve linear systems 29
5.6 Interpretation of thetree 29
5.7 The implementation 33
5.8 Limits and possible extensions of the considered data structure 37

6 Simulations 39
6.1 Particle Pendulum 40
6.2 Two Particle Pendulum 0. 41

7 Conclusions 43

of the tree (Section 5), and is used to transform systems of differential alge-
braic equations (DAE) into systems of ordinary differential equations (ODE)
, in order to improve the simulations executed with Omola; particularly this
alghoritm has been tested by performing simulations of mechanical systems
(Section 6).

As a result of this work we have new data structures, that allow to
obtain a different and interesting representation of dynamical systems, with
which it’s possible to have a clearer description of the system itself and to
support the symbolic manipulation, particularly it’s possible to implement
a symbolic linear system solver, (Section 7).

The considered data structures and functions have been implemented in
C++, the program has been written in a way as much flexible, modular
and reusable as possible, accordingly to the rules of the object oriented
programming, to permit an efficacious reuse and an easy extension of it, in
order to solve new problems in future, (Appendix).

avoid if we instead for triangularize A in 4 - ¢ = b, we diagonalize it, in
other words we calculate the elements of A~1. The drawback is that is more
complex procedure. However, it is a feasible approach if the system is of
low dimension or if A is sparse. We will see that this is our situation so the
Cramer’s rule approach is more appropriate.

3 Sparse Matrix implementation

We will first consider the design and implementation of a class to support
represenattion of a sparse matrix. A matrix, to be considered sparse, must
have few non zero entries compared with the total number of elements, deal-
ing with such a matrix leads to the problem of storing its elements avoiding
allocation of memory for unuseful informations, If the matrix is large the
problem must be solved changing the intuitive way of storing a matrix in
another, less intuitive but more efficient for this kind of matrix. At the same
time it is much easier, for the user, to see the matrix always in the same way,
so the purpose of this data stucrure is to hide, the efficient implementation
of the matrix, leaving an easy interface to the user.

The simple idea, to implement the sparse matrix, is to store only the non zero
elements.Each vector of the matrix, both a row or a coloumn, is represented
simply as a list, this list contains the non zero entries and their position.
Each non zero element of the matrix will appear both in the vector, corre-
sponding to its row, and in that corresponding to its coloumn. This is not
an optimal solution, from the memory point of view, but it makes quicker
to scan the elements of a row or a coloumn. Moreover in each vector the el-
ement itself, which is an Omola expression, is not present but only a pointer
to it. Another project decision is to keep the lists ordered, this is useful
since, in this application, the lists are used more to search elements than to
insert or delete.

The last general consideration is about the interface of this structure: in
order to make useful this structure as support of determinant calculation
some feature had to be added, we considered some of them to be useful also
for other uses of the matrix, so we included them in the interface.

3.1 implementation

In this section we present , what is the basic architecture of this structure
and give information about the most important routines.

in that position there is a zero, so a pointer to a new expression
equal to zero is returned.

function EndOfEntryRow (in row:int):boolean;
Returns true when there are no more entry in the row.

function EndOfEntryCol (in col:int):boolean;
Returns true if there are no more entry in the coloumn.

function GetNextEntryRow (in row:int) :Expressionx;
Returns the position of the current entry, in the specified row,
and move the current entry on the next entry in the row. It is an
error to call this routine if the corresponding EndOfEntryRow()
is false.

function GetNextEntryCol (in col:int):Expression*;
Returns the position of the current entry, in the specified col,and
move the current entry on the next entry in the col. It is an error
to call this routine if the corresponding EndOfEntryCol() is false.

function GetRowNum ():int;
Returns the number of rows present in the matrix.

function GetColNum ():int;
Returns the number of coloumns present in the matrix.

function BuildTheMatrix (in LIST(EquInst)* equations;
in LIST(VarInst)*variables):SparVector;
Scans the list equations, to each is applied the FactorLinearPart
routine of the class Equlnst, with the coefficients returned by this
routine a row of the matrix is filled, the rempart is inserted in the
returned SparVector. This routine is useful to build the system
of linear equations:Matriz X variables = Vector.

private the class is composed of two lists of SparVector.

LIST(SparVector) rows;
LIST(SparVector) cols;

end SparMatrix;

3.1.2

class SparVector

class SparVector This is the structure used to implement a vec-

tor of the matrix. As in SparMatrix with the term entry we
refer to an, explicitly inserted, element of the SparVector.

function Next non_zero ():unsigned;
Returns the position of the next non zero entry in the vector, the
current entry is moved on the next entry. It is an error to call
this routine when EndOfEntry() is true.

function GetCurEntry ():unsigned;
Returns the position of the current entry.

function GetIndex ():unsigned;
Returns the identifier of the vector.

private the class is a list of Sparvecel,an iterator to Scans the list and an
integer for the index.
LIST(SparVecel);
ITERATOR(SparVecel);

end SparVector ;

3.1.3 class SparVecel

class SparVecel This simple class contains the pointer to the element and
the position.

uses BExpression;
public procedure SetPosition (in pos:unsigned);

Seta the position to pos.

procedure SetPointer (in elem:Expressionk);
Sets the pointer to the specified expression.

function GetPosition ():unsigned;
Return the position

function GetElem ():unsigned,;
Returns the pointer to the element

private the class is simply composed of an integer and a pointer to in
expression.

end SparVecel ;

4 Mask

During the calculation of the determinant the algorithm has to work on
submatrixes of the original matrix, this could make the algorithm more
difficult, it should have to take care of details such as: if an element belong
to the desired submatrix,what is its position in the current submatrix exct.
These reasons convinced us, of the necessity to have a class which takes
care of these details, so that the the main algorithm is easier to write and to
understand. The main functionality of this class is to operate on submatrixes
of a given matrix, showing to the user only the desired part of the matrix.
Moreover we decide that was better to encapsulate in this class two of the
typic operation, needed during the calculation of the determinant. The first
is the choose of the row, or coloumn, used to develope a subdeterminant.
The second is the calculation of order two determinant.

The main consideration that lead us to the final structure is that, even if
different operation are requested to this class, the basic information used
are the components of the matrix, the class itself is no more than a matrix
in wich rows and columns are erased. This consideration convinced us to
use as base, on which build the new class, the SparMatrix class dicussed
in the previous section. This is obtained simply making the class Mask
an heir of the class SparMatrix, to this base we added two other, very
simple, structures which aim is to bookkeep which are the rows and the
column present in the current submatrix and if the vector is currently used
to develope the determinant.

4.1 implementation

In this section we present the structure and the interface of the class Mask.
In this class we introduced a current vector to make easier the interface of
the class.

4.1.1 class Mask

class Mask ;
In this class, where no specified, all the indices reffering to rows and-
columns have to be considered indices of the original matrix and not
of the current submatrix.

inheret SparMatrix];

11

procedure EndOfVector ();
This routine return true when the scan of the current vector,
in the current submatrix, is finished.If this routine returns true
implicitly the current entry, of the current vector, is set on the
first entry. The current vector is also deleted from the list of
vector used to develope the determinant.

procedure Translate (in i, j:int;out curi, curj:int);
In curi and curj this routine return the position, in the current
submatrix, of the element (i, j) in the original matrix. An obvious
precondition to this routine is that the row i and the column j
must belong to the current submatrix.

procedure GetNext (out z, v:int;out r, c:int);
This routine return in z, v the position, in the original matrix, of
the the next element in the current vector;in r and c is returned
the position, of the same element, in the current submatrix.A
precondition for this routine is that EndOfVector() is false.

procedure DefineMask (in Abrows,Abcols:LIST(int)x*);
In Abrows and Abcols this routine receive a list of rows and
coloumns that have to be erased from the matrix. The effect
of this routine is, firstable to reset the situation of the mask to
the original matrix. After this operation, the specified rows and
columns are erased from the matrix. An important consideration
about this routine is that it is not equivalent to a sequence of
calls to Select and Paint, even if this sequence leads to the same
submatrix. Infact none of the erased rows and columns has been
selected, this means simply that is an error to call a Clean, for
a row and a column which are in the lists passed as parameters.
To call this routine passing two void lists, or two nil pointers, as
the effect to set the mask to its initial situation.

function Valdet2 (in R1,R2,C1,C2:int):Expression®;
This routine returns a pointer to the expression of the determinat
det = elem(R1,C1)xelem(R2,C2)—elem(R1,C2)xelem(R2,C1).
The expression is built using copies of the elements in the speci-
fied positions.

function IsDevRow (in i:int):boolean;
Return true if the specified row was choosen by Select(), and since
that all the call to EndOfVector(), with current vector this row,

13

two lists of PresDev. Moreover a pointer is used to indicate the current
vector, and a boolean is true when the current vector is a row.

end Mask;

4.1.2 class PresDev

class PresDev ;
this class contain the information necessary to the class mask for each
vector.

uses boolean;
This type is imported from the Omsim library defs.H.

public type PresDev ;

Procedure SetPresent();
set the vector, to which is associated, as present in the current
submatrix.

Procedure SetAbsent ();
set the vector, to which is associated, as absent from the current
submatrix.

Procedure SetDevelope ();
is called from Mask::Select() and store the information that the
corresponding vector is used to develope the determinant.

Procedure ResetDevelope ();
is called from Mask::EndOfVector() and means that the corre-
sponding vector is no longer in the list of vector used to develope
the determinant.

function IsPresent ():boolean;
return true if the corresponding vector is in the current subma-
trix.

function IsDevelope ():boolean;
return true if the corresponding vector is in the list of vectors
used to develope the determinant.

private the class is composed simply by two boolean;

end PresDev ;

15

5 The tree

The aim of this data structure is to allow the calculation of the determinant
and of the needed subdeterminants, algebraic complements and elements of
the inverse matrix, of a symbolic matrix, whose elements can be constants,
parameters, variables and functions. It is necessary to execute these calcu-
lations in an efficient way, otherwise , specially with large matricies, they
imply too complex operations, which require too long times and too much
memory to be performed.

Particularly, we used the tree to transform a system of differential al-
gebraic equations (DAE) in an equivalent system of ordinary differential
equations (ODE),in order to achieve a better formulation of the system,
which allows to improve the speed and the precision of the simulations of
the cosidered system, executed with Omola.

5.1 The basic idea

All the above mentioned problems can be lumped together in the following
simple problem : calculate the needed elements of the inverse, of a certain
symbolic matrix, in the most efficient way. In other words this means that
we have to calculate the needed algebraic complements, i.e. the needed
subdeterminants, and the determinant of the matrix, in the most efficient
way.

To achieve our purpose it’s necessary to calculate and to allocate in
memory every needed subdeterminant of the symbolic matrix only once,
and to be able to refer to it every time it is required. From this it follows
that we can subdivide the considered problem into the simpler subproblems:

1-how represent a certain subdeterminant;

2-how represent the value of a certain subdeterminant;
3-how calculate the value of a certain subdeterminant;
4-how find a certain subdeterminant.

Let’s now give a look at the ideas we had to resolve these problems,
before explaining in detail how we implemented the resolutions.

To represent all the known subdeterminants a particular data structure
is defined, that is called tree, because this structure can be illustrated with
the use of graph theory and, particularly, it can be represented by a specific
graph called tree.

17

value : pointer to the expression which gives the value of the following
moltiplication :

(—1)(eoroutesco) 5 element(rowX, colY) X subdet

where subdet is the determinant of the submatrix represented by the
considered node, it is to notice that in some particular cases the pointer
points directly to the determinant of the present submatrix, as hap-
pens, for example, for the first node of the tree (the root of the tree);

detvar : pointer to the variable associated to the expression pointed by
value, which can be used whenever the considered expression is re-
quired, instead of the expression itself, it is obvious that the use of
this variable allows to simplify the calculations which involve the ex-
pression in question;

subdeterminants : list of pointers to the nodes of the tree which repre-
sent the submatricies, of minor order, whose determinant is needed to
calulate the determinant of the submatrix associated with the consid-
ered node, in fact, this one is given by the addition of the values of
the nodes pointed by the pointers of the discussed list.

Now that we know how a single node looks like, it’s possible to study
the structure of the tree, by considering the following example.

Example : the fundamental tree

Let’s suppose that we have the matrix of order 5 shown in figure 2 .

The correspondent fundamental tree,which allows to represent and to
calculate the determinant(and all the needed subdeterminants) is repre-
sented in figure 3. In this figure we’ve got that:

vall2 = Z
valll =a
vall0 =3x Z —a
val9 = —b
val8 =4x Z - b

19

= N\
1 9 | dimension
used
3 4
- 3 value
0 |f o i .5|6 7|8 detvar
0 0
vnll -2=rowX-colY
L0[0 0|0 o 3-4=csrow-cscol
5-6-7-8=R1-R2-C1-C2
f ™ r;\:‘-\—“?‘—'—\
1| 4 (|2 3
l i 1 I
val2 ! 2 val3
yo -"\ L-Olo Olu *\
s N - < - ~ -)
2 |4 3 2 |2 3 2 |1 3 2 | 4 3
1 i 1 I
t 3 1 1 1 1 1 3
vald vals vailé val7
Lolo 0]0 an Lo]o 010 s g °|° e o Lolo o[o ok
~ s ' b [3
3 Z 3 |s 2| 3 |3 2 3 | s 2 515 2
! ! 2 2 1
2 1 3 1 1 1 3 3 3
val8 val9 vatl0 valll vall2
2!5 [415 2[3 wes) J_‘l5 4|5 detl) k4|5 3|4 deti2 L3|4 1|3 ase)

Figure 3: Tree correspondent to the matrix of figure 2.

21

l-representation of a certain subdeterminant : a certain subdeter-
minant of the symbolic matrix is associated to the corresponding sub-
matrix, which is represented in the tree by a node; and the submatrix,
represented by a node, is obtainable by cancelling, in the matrix, the
rows and the columns indicated in the elements rowX and colY of each
node crossed by going from the root to the considered node of the tree.

2-representation of the value of a certain subdeterminant : the value
of a certain subdeterminant is represented, in the tree, by the part of
the tree that starts from the node which represents the submatrix as-
sociated to the considered subdeterminant, this value, once calculated,
can be stored in the expression pointed by the pointer value belonging
to the discussed node of the tree.

3-calculation of the value of a certain subdeterminant : the value of
a certain subdeterminant can easily be calculated, if the submatrix
corresponding to the subdeterminant is represented by a node of the
tree, by applying recoursevly the following simple rule : the value of
a subdeterminant, associated to a certain node of the tree, is given by
the addition of the values of the nodes pointed by the considered node,
if the node corresponds to a submatrix of order major than two, else
the value of the subdeterminant is given by the following operation
: ((R1,C1) x (R2,C2) - (R1,C2) x (R2,C1)), where R1,R2,C1 and
C2 are the rows and columns that form the submatrix of order two
corresponding to the node.

4-search of a certain subdeterminant : asubdeterminant can be searched

by searching the corresponding submatrix, represented by a node of
the tree; and the desired node of the tree can be identified by com-
paring the rows and columns, of the symbolic matrix, not present in
the considered submatrix, with the rows and columns cancelled, step
by step, during the construction of the tree, which are stored in the
integer variables rowX and colY of each node of the tree; in fact, if
we find a sequence of nodes, of the tree, whose cancelled rows and
columns coincide with the rows and columns not present in the con-
sidered submatrix, then the last node of this sequence is the one that
corresponds to the desired subdeterminant.

It’s to notice that a node, which represents a submatrix whose determi-
nant is null, is represented as shown in figure 5 .

23

0 | w o] o o ff-2

10 | w o o o a 1 o |y | o 0

B i olY (o 2 0 1] o 1 0

) B . . 1 4 1|3 1 0

1 4 |1 |3 1 0 b | o a | z 0

g b |0 a z 0 I 7] 0 ‘ 0 l 0 v
MATRIX M MATRIX A

Figure 6: Matrix M is a submatrix of matrix A.

—
TREE OF
MATRIX A
(o]0]
1]),
TREE OF (e 62 h
MATRIX M s 12 L
vl I I
o]ocla o] - 4
il) AT) (1] 6)
1 1
] P oy] T e I]
ofolsls[) Lololols[= __________‘_J___j -
s e >) (») anr D 2 | »)
B O N O A 8 K e
CLT—][22 (] 2] ’ t; O (] 2
O N 0 i g
us:[.\) dn sh uul:T_J @i: ’Ii dar) L'J'II'T)

Figure 7: Tree correspondent to matrix A, which contains the tree corre-
spondent to matrix M.

25

5.3 The basic operations on the tree

Now we will explain how to perform the basic operations on the tree, which
are the following ones :

1-construction of the tree;

2-search for a node of the tree;

3-calculation of the determinant or of a subdeterminant represented in the
tree.

Let’s so start with the explanation of these operations.
1-Construction of the tree

Once initialized with the definition of a root, which can be a primary root
(function Construction) or a secondary root (function SubDetConstructor),
the construction, of a part of the tree, is executed by operating as follows
for each new node (functions Calculatedet and CalculateSubDet) : if the
submatrix associated to the new node is already represented in the tree,
then the pointers of the list subdeterminants are pointed to the same nodes
to which the pointers of the already existent node are pointed, (function
Connect), else the most convenient row or column is selected (function se-
lect of the mask) and for every needed subdeterminant, of minor order, a
new node is created and pointed by a pointer, of the list subdeterminants,
(function Explode).

2-Search for a node of the tree

In order to find the node corresponding to the submatrix currently repre-
sented in the mask, this submatrix is compared with the submatricies present
in the tree, if the same submatrix is found then the pointer SearchedPointer
points to it else it points to nil, (function Search). The above mentioned
comparison between the current submatrix and the submatricies represented
in the tree, is performed by one of two different recoursive functions, depend-
ing on whether the dimension of the considered submatrix is bigger than the
dimension of the matrix, divided by two, or not, this in order to make the
comparison more efficient. Precisely the first, of this two functions, checks if
the submatrix currently considered, is already represented in the part of the
tree which starts from the node pointed by a certain pointer, by checking

27

procedures ShowDet, ShowAlgComp, ShowInvElem : these functions
allow the user to get the values of the determinant, or of a known sub-
determinant, or of an algebraic complement or of an element of the
inverse, of the considered symbolic matrix, in an interactive way.

5.5 Use of the tree to solve linear systems

It’s easy to understand that the illustrated data structure can be used in
order to solve systems of linear equations, like the following one :

Az =D

where A is a non singular square matrix of order n, while x and b are
vectors of n elements, the first containing the unkowns and the second con-
taining known values.

The solution of this linear system is given by :

z=A"

This equation is solvable, in an efficient way, with the use of the tree,
by finding, for every unknown variable of the vector x, the elements of the
inverse of A, corresponding to the non zero elements of the vector b, and
by executing the considered operation. In order to make these operations
as efficient as possible, it’s convenient to comstruct first the tree so that
every needed subdeterminant of the matrix is represented in it, then the
solution of the linear system is calculable by ”"reading” the values of the
needed subdeterminants in the tree. Particularly, by operating in this way,
it’s possible to calculate only once the value of every needed subdeterminant
and to store the values of the subdeterminants, needed more than once, in
appropriate variables, that allow to reduce the computational complexity of
the found solution. The illustrated operations are performed by the function
of the tree ExpSystConstructor.

An application of this function, of the explained data structure, is studied
in Chapter 6, where this function is used to transform DAE systems, which
represent models of mechanical systems, into ODE systems, in order to
support the symbolic manipulation and to improve the simulations in Omola.

5.6 Interpretation of the tree

The data structure here illustrated, gives a meaningful description of the
considered system, in fact the value associated to each node of the tree can
be interpreted as follows.

29

Figure 10: Big problems!

The engineer is able to control the distance from him of only one of the
children, so he has to decide which is the best one to control in order to
take care of all three of them, as good as possible. To solve this problem he
decides to modelize it.

Model
By defining with X, Y and Z the distances of the children, the engineer

obtains the following model:

(ab(c — d)(e = 1))X = b(c — d)X + adeY — abZ
(ab(c — d)(e — 1))Y = b(c — d)X + (a(c— d) — ace)Y — abZ
(ab(c — d)(e — 1))Z = be(c — d)X — adeY + abZ

where : a,b,c,d,e are positive parameters.
This model is not clear enough to solve the problem ! Let’s so try to
manipulate this model.

Symbolic manipulation

First of all we can write the model in the standard way:

Ax=Db

31

Z:c(eX— Z)—d(eY - Z)

And this formulation of our system is much easier to interpret.
Interpretation of the system

We can see that dot X is positive when Z is bigger than X, this means
that when Z is bigger than X when X increases, the interpretation of this
fact is that the bigger brother follows the smallest, with speed proportional
to the parameter a; in the same way we can see that the second brother
follows the first one with speed proportional to b; finally we can notice that
the youngest follows the biggest with speed proportional to c, but tries to
go as far away as possible from the second with speed proportional to d,
moreover the smallest child makes an error proportional to e in estimating
the distances of his brothers from him.

It’s obvious that now, by using the linear system solver to put our model
in space state form, we’ve a much clearer description of our system, which
allows to interpret easily the equations and the parameters of the system,
as shown above. Now it’s simple to solve the considered problem.

Solution of the problem

By considering that the first child follows the third one, and the second
follows the first one, it’s obvious that the complete system can easily be
controlled by taking care of the smallest child.

5.7 The implementation

The considered data structure has been implemented in C++4 simply with
one class, which represents a single node of the tree; now we will describe this
class and its functions in a simple and easy way, a more detailed description
is situated inside the code, in section 6 .

The mentioned class can be illustrated with the TDN technique as fol-
lows:

33

procedure CalculateSubDet (in : int X,Y) :calculates the sub-
determinant of order (n-1) obtained by deleting row X and col-
umn Y from the symbolic matrix

procedure Connect (in : int X,Y,R,C) :connects the subde-
terminant to calculate to the same subdeterminant already cal-
culated;

procedure Explode (in : int X,Y,R,C) : continues the calcula-
tion of a subdeterminant, if it isn’t already known, by finding
out all the subdeterminants of minor order needed to obtain the
desired subdeterminant, and asking for their calculations;

procedure Search : compares the current submatrix with the sub-
matricies whose subdeterminant has already been calculated, if
the same submatrix is found then the pointer SearchedPointer
points to it else it points to nil

procedure ExploreBig (in : int cdim; DetXY* podetxy) : checks
if the determinant of the submatrix currently considered is al-
ready represented in the part of the tree which starts from the
node pointed by podetxy, which correspondes to a submatrix of
dimension cdim, by checking if the rows and column cancelled
from the matrix are present in the rows and columns not consid-
ered in the current submatrix

procedure ExploreLittle (in : int cdim; DetXY* podetxy) : checks
if the determinant of the submatrix currently considered is al-
ready represented in the part of the tree which starts from the
node pointed by podetxy, which correspondes to a submatrix of
dimension cdim, by checking if the rows and column cancelled
from the matrix aren’t present in the rows and columns consid-
ered in the current submatrix;

function ReadDet (in : PointerToList0fInt AbRows,AbCols;
in/out : LIST(EquBlock) & BLT1; LIST(VarInst)& createdvars)
returns a pointer to the value of the subdeterminant of the sym-
bolic matrix, obtained by cancelling the rows and the columns,
indicated in AbRows and Abcols, from the matrix, if it is possible
to calculate the requested subdeterminant with the constructed
tree, otherwise this function returns a nil pointer, and informs
the user that the desired subdeterminant isn’t known;

function ValDet (in : DetXY* DetToCalculate; int rowx,coly;

35

private :

dimension : dimension of the submatrix;
rowX-colY : last row and last column cancelled from the matrix;

csrow-cscol : positions of the last row and last column cancelled in
the previous submatrix;

R1-R2-C1-C2 : rows and columns of the symbolic matrix that form
the present submatrix of order two, if the current submatrix is
of order maior than two then this integer variables are setted to
zero;

used : number of times the subdeterminant, represented by the con-
sidered object, is used;

subdeterminants : list of pointers to objects of the class DetXY,i.e.
to nodes of the tree, that represent the subdeterminants needed
to calculate the value of the considered subdeterminant;

value : pointer to the expression which gives the value associated
with the considered object of the class DetXY;

detvar : pointer to the variable that contains the value associated
with the considered node of the tree, if it is convenient to store
this value in a variable, otherwise this pointer points to nil.

5.8 Limits and possible extensions of the considered data
structure

The data structure here illustrated can be improved both by making the
present representation more efficient, and by adding new functions to this
structure. For example it could be interesting to introduce more pointers for
every node of the tree, in order to be able to visit the tree, not only in one
single way (up-down), but in both the possible ways up-down and down-up,
with this modification the complexity of the tree increases considerably, but
the operations on it (search for a node, calculation of the value associated
to a node, ecc.) could result much quicker; another possible way to improve
the efficiency of this structure could be the introduction of a stack, in order
to support the storing of the values associated to the nodes of the tree. On
the other hand, there are also a lot of new functions that can be introduced,
in order to make the tree more useful, for example functions can be needed
to represent in the tree particular subdeterminants of the considered matrix

37

6 Simulations

In this section we show the results of the test for the data structures and
the algorithm presented in this paper.

To test these modules a new version of Omsim has been set up, this new
version support the solution of linear equations systems. This version has
been used to simulate a set of Omola models, and the results compared with
those obtained using another Omsim version.

The Omola models, used for the test, have been developed using a recently
introduced mechanical library, [Per Anell: Modelling of Multibody System
in Omola] this library is based on an approach [Otter et al., 1993] that makes
possible to put in state space form, the models of mechanical system, if they
do not have closed circuits.

This means that models, of tree structured systems developed using this
library, can be manipulated an trasformed so that an ODE solver can be
used.

The new Omsim version, to which we will refer as Omsim+, can perform this
manipulation, so the same model is instantiated using Omsim+ and Omsim,
and simulated using, respectively, an ODE solver and a DAE solver.

The results obtained are compared, both in term of trajectories of the vari-
ables, and in term of time. To make more significant the result it is useful to
distinguish, for each model, between the time necessary for the simulation
and the time necessary for the instantiation.

The Omsim+ algorithm for the solution of linear systems is used during the
instantiation phase, so we expect an increased instantiation time if compared
with the Omsim instantion time for the same model. During the simulation
the situation is different, in this case Omsim+ has to simulate a simpler
model than Omsim.

We have to test if the linear system solver is correct, after that we have to
check if the longer instantiation time is compensated by the reduction of
the simulation time. To check the correctness of the result we will use also
a reference model, which is an Omola model written without using the me-
chanical library, but an ordinary approach, this means that it is simpler than
the model developed using the library and its behavior must be considered
the reference for the other simulations.

39

model tnstantiation | simulation
time time
Ref. model 1 2.8
Omsim 5 34.5
Omsim+ (Dasrt) 6 10.3
Omsim+ (Dopri45) 6 16.4

Table 2: Simulation time results for 100 sec with Particle Pendulum

1

[{E B

' ' '

R [O8) [\
L z
T

o 2 4 6 &8 10
Figure 13: Two particle pendulum model simulated, 10 sec, variable phil.

simulation using Omsim+ and Dasrt is three time speeder than the Omsim
one, see table 2.

6.2 Two Particle Pendulum

In this section simulations of a double pendulum are presented.

Simulation on 10 seconds interval is presented, for the reference model, the

model simulated using Omsim, and Omsim+, for this one both the Dasrt

and Dopri4b are used. To use Omsim is necessary, before simulating, to

enable the algebraic solver, this operation is not needed using Omsim+-.
Even in this case the simulations result, obtained using Omsim+, are

model instantiation | stmulation
time time
Ref. model 1 2.1
Omsim 9 48.3
Omsim+ (Dasrt) 48 15.3
Omsim+ (Dopri4b) 48 17.3

Table 3: Simulation time result for 10 sec with Two Particle Pendulum

41

7 Conclusions

The results of our work can be summarized by saying that we have created
new data structures, which allow us to execute symbolic manipulations on
a given system; particularly, with the use of these structures, it’s possible
to obtain a Symbolic Linear System Solver. We have shown how the sym-
bolic linear system solver can be used to transform an explicitable model
from implicit (DAE) to explicit (ODE) state space form, and we have also
seen that this transformation gives us a clearer description of a system and
permits to obtain a new version of Omsim (able to put in state space form
explicitable models) which performs faster simulations, but requires longer
instantiation times, when used.

Moreover, it has been illustrated that, the considered data structures,
give a description of a system, which allows to understand the interactions
between the subsystems forming the system, so we can say that the discussed
structures describe a system in a new interesing way, therefore we hope that
our work will be useful, for new and different purposes, in the future.

43

