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Process Modelling

PhD course at Department of Chemistry and Chemical Engineering
Spring 1995

Aim

The aim with the course is to give an overview on how models are created, developed and used and how modelling
relates to other subjects in science. The course focus up on modelling based on first principles, and the properties of
different classes of models, and modern computer tools.

Course plan
Lectures (Wednesday 13-15, K:L (except for 26/4)):

1. Models and Modelling, moved to 25/4 13-15

O Model types,

O Model use,

O The modelling process,

O Models, problem formulations and problem solving,
2. Physical Modelling, OBS! Wednesday 3/5 10-12!
Laws of physics, conservation laws,
Mass, energy and momentum balances,
Lumped and distributed parameter descriptions,
System descriptions.
To read: Luyben, part I, (chap 2 and 3).
Lecture problems
puter Aided Modelling, 3/5
CSSL language
Graphical modelling,
Model structuring concepts,
Object-oriented modelling.
Differential-algebraic equation system.
To read: Ljung & Glad, chap 6 (Bond graphs).
Lecture problems
4. Linear and Nonlinear Models, 10/5
Systems of ODE,
Eigenvalues and eigenvectors,
Phase plane analysis,
Linearization.
To read: Strang, chap 6.1 (ODE) and 6.2 (p492-501).
Lecture problems
5. Nonlinear Models and Distributed Models, 17/5
Periodic solutions, limit cycles and strang attractors,
Bifurcation and chaos,
Classification of PDE:s,
Diffusion type PDE:s,
Wave equations.
To read: Strang, chap 6.2(p 502-510) and 6.4.
Lecture problems
6. Discrete Time Models and Identification, 24/5
Difference equations,
Eigenvalues and stability,
Parameter estimation,
Linear regression,
System identification.
State estimation (reconstruction),
To read: Ljung & Glad, chap 9 and 10.
Lecture problems
7. Simulation and Model Approximation, 31/5

O Algebraic equation systems, sparce matrices.
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Continuous time simulation, initial-value problem.
Accuracy, stability, complexity and stiffness,
Discretization in space,

Finite difference and finite element methods,
Methods of lines.

To read: Strang, chap 6.5.

Lecture problems

8. Project Presentations, 7/6

0000000

Guest-Lecture: (Wednesday 15.30-16.30, K:L, after the lecture)

24/5; Hilding Elmqvist, Dynasim
Elmgqvist developed the simulation language Simnon during the early seventies. His thesis is one of the most
important contributions in computer aided modelling and the Dymola language is described. During the eighties
Elmqvist was one of the project leader for the SattLine development at SattControl (graphic based real time
control system). Now Elmgqvist has his own company at Ideon for development of simulation software.

31/5; Magnus Pettersson, KAT
Magnus is going to talk about his experiences of developing dynamic model of a wet system for flue gas
cleaning (master thesis at ABB Flikt). Magnus used MATLAB/SimuLink. The model contains static scrubber
model, dynamic buffer tank and pH calculations of a complex mixture.

31/5; Michael Grimsberg, Kem. Tekn,
Michael makes a demonstration of DIFFPAR, a MATLAB toolbox for parameter estimation in continuous time
models.

Exercises: (Thursday 10-12, Lutetia (except for 29/5))

1. Physical Modelling. 4/5
O Set up models of different phenomena and complexity,
O Case study: a batch reactor.
O Simulation in MATLAB and SIMULINK.
2. Linear Models and Analysis.11/5
O Set up linear models,
O Linear analysis (Matlab).
O Phase plane analysis (Matlab).
3. Nonlinear Models and Analysis. 18/5
O Set up nonlinear models,
O Linearization and transient responses (Matlab),
O Multiple steady states.
O Phase plane analysis (Matlab).
4. System Identification. 29/5
O Discrete time models.
O Stochastic discrete time models.
O Identification using System Identification Toolbox in Matlab.
5. Project exercise. 1/6
O Your own work on your hand-in problem.

Your-own-problem:

1. Define a modelling problem in your own research area. Use the course material that are useful for the problem.
2. Write a short report.
3. Make a short presentation of your work. 7/6

Literature:

1. Luyben, W.; Process Modeling, Simulation and Control for Chemical Engineers, Part 1. (lecture 1-2)

2. Strang, G.; Introduction to Applied Mathematics, chap. 6, (lecture 4-5,7)

3. Ljung, L. and T. Glad; Modellbygge och simulering (Modeling and Simulation), chap. 6 and 9-10, (lecture 3 and
6)

Examination:



1. Passive: the lectures and one-day take-home-exam (alt. hand-in on the lecture problems) (3 marks).
2. Active: 1 and short report (or presentation) on your-own-problem (alt. report on exercise) (5 marks).

Exam:

1. One-day take-home-exam is possible to do during week 24 (June 8-16).

Process Modelling ++: In the case of interest, a continuation of the course is possible. The course will then be a set of
seminars with active students. Examples on seminars:

® Tensor based models (Bird, Stewart and Lightfoot).
® PDE approximations.

® Bond graph theory. (Cellier)

® Object-oriented modelling theory. (Marquardt)

Bernt Nilsson

Dept. of Automatic Control
Lund Institute of Technology
Box 118, 221 00 LUND, Sweden

Himtstélle: 9

phone: +46 46 108784, fax: +46 46 138118

E-mail: bernt@control.lth.se

URL: http://www.control.lth.se/~bernt

This page has the following URL:

http://www.control.lth.se/~bernt/pmcourse.html

Last update: June 7, 1995.
Bernt Nilsson
bernt@control.lth.se



PROCESS MODELLING
PhD course 1995

Bernt Nilsson

Automatic Control, LTH

PROCESS MODELLING
Physical Modelling

Models based on the application of physical
and chemical laws on the system being
studied.
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PROCESS MODELLING
System Modelling

Models described in a mathematical frame-
work capturing the system behaviour.
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PROCESS MODELLING

Identification

Models that are fit to measurment data
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PROCESS MODELLING

Simulation

Models are approximated to generate a
numerical solution.
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Process Modelling

Numerical
: Mathematics
Mathematics Mathematical
(System Theory) | Statistics
S Process /
Physics Computer

and Chemns't'r Modellmg ~ " Science

Application
Courses at LTH:

e Physical Modelling ?

e System Modelling (Matematik)
o Linjara system,
o Kontinuerliga system,
o Olinjara system (FK),
e |dentification
o Tidsserieanalys,
o Processidentifiering,

e Simulation
o Numerisk analys (AK och FK),
o SAM: Simulering.

PROCESS MODELLING

Content
Lectures:

e Overview
1. Models and Modelling

e Physical Modelling
2. Physical Modelling
3. Computer Aided Modelling

e System Modelling
4. Linear and Nonlinear Models
5. Nonlinear and Distributed Models

e Ildentification

6. Discrete Models and Estimation
e Simulation

7. Methods and Approximations.

PROCESS MODELLING

Content
Active part:

¢ Your-own-problem
o Define your own problem,
o Apply relevant parts of the couse

e Exersice-problem

1. Physical Modelling
Linear Analysis
Nonlinear Analysis
Identification
Extra time

o R W N




PROCESS MODELLING

Examination

o Lectures (passive part):
o Take-home-exam or
o Hand-in-problems.

e Active part:
o Short report or
o Short presentation.

PROCESS MODELLING

Information

e Literature

o Luyben; part | (chap 1-3)
Process Modeling, Simulation and
Control for Chemical Engineers.

o Strang; chap 6
Introduction to Applied Mathematics.

o Ljung, Glad; chap 6, 9 and 10
Modellbygge och simulering.

e Communication
o Info on WWW (netscape)
o email

e Dates

o lectures; wednesday 13-25,
except 26/4 moved to 24/4 (same
time)

o exercises; thursday 10-12,
except 25/5 moved to 29/5 (same
time)

o presentations; 7/6

o exam; week 23.

PROCESS MODELLING

lecture |

Models

and Modelling

What is a model?

A model (M) for a system (§) and an exper-
iment (E) is anything to which E can be ap-
plied in order to answer questions about S.

Marvin Minsky 1965




Model Types |

Types of Models:

e Intuitive
e Verbal
Causal

Qualitative

Quantitative

Model Types I
Quantitative Model Types

e Static vs. Dynamic
o transients

e Lumped vs Distributed
o space description

e Deterministic vs. Stochastic
o noice

e Continuous vs Discrete
o sampling or events

e Linear vs Nonlinear
o qualitative behaviour

e Black Box vs State Space
o internal behaviour

e Time vs Frequency
o time scale

What is a model used for?

Input Model Output
—t —
I M 0

Models are used i different problem formula-
tions:

e Direct: apply | on M, study O.
e Inverse: apply O on M, study I.

If | and O are known:

e ldentification: find structure and param-
eters in M.

e Estimation: find internal states in M (if
internal structure of M is known).

o Design: study parameters in M (if
structure and internal states are known)

Model Use |
Example: CSTR

fn_‘ |

= out
—i

Continuous Stirred Tank Reactor with simple
first order reaction kinetics.

e Assume isothermic and isobaric condi-
tions.

e Flow and volume are also assumed to be
constant.

Model:

In 4+ Production =Out ++Accumulation
' d(Ve)

in —ke)V =
gcin + (—kc) qc p




Model Use i
Example: CSTR

out
.

Problem formulation |: the Direct problem
(apply | on M).

Dynamic behaviour a):

de ¢
a = V(Cln — C) — ke
c(0) = co
Static behaviour:
= g C;
q—l—kV n

Model Use IlI
Example: CSTR

out
IEEE——

Problem formulation ll: the Inverse problem
(apply O on M).

Inverse problem:

_ \4 V dc(t)

o Dynamic inverse problem needs differenti-
ation of ¢(t).

o Static inverse problem ¢;, = (1 + %k)c.

Model Use IV
Example: CSTR

out

Problem formulation V: the Design problem
(apply O and | on M).

Design problem a: (V is unknown in M)

_ 4 Cn _
V_k(c 1)

Optimiztion problem b: (V and q are unknown
in M)
Vv 1 Cin

g =&

Fro = f(vv: Q)
e three unknowns: V, q and Fj,,.
e two equations.

o select V and g that minimize (maximize)

Flou .

Model Use V

Conclusions:

e Model is invariant.

e Models are transformed (and manipu-
lated) to fit problem formulations.

e Problem formulation is the input to the
problem solving tool.

e Problem solving often approximate the
mathematical PF.




Demands on the Model
emands on the lViode Modelling Process |

® accuracy,

no more and no less.

. . . . r - (""_-""- r—"_"""-\
quantitative and qualitative. \__f_vﬁ*:) ( Anvandning) *:ﬁf_af..)
(not the same as tool accurcy) P L
idi Sl =T
e validity, BEE
range,

operation conditions,
transient operation,
internal properties.

- div Couy )
QpCip+Vr = SuCout*

MODELLBESKRIVNING in~in a

S dx_
= f(x,u)

x{0) = xo
u=g(t)

PROBLEMFORMULERING ¥

e complexity,

PROBLEMLOSNING ¥

27N
simple (macroscopic), - i’ N
detailed (microscopic), TS i R
phenomena oriented. ——— ST S
Modelling Process Il Modelling Process IlI
Structuring Model Description

e Mathematical equations

W, kb fuiur 3 [l
far  lnaen  Coannel Eof_imert Cunvust

Ve
@inCin + V7 = qoutc + (Ve)

dt
e Graphical formulations
C
e2| {2
el ed
SF——= P = SF

e Modelling assistent
o menu-driven

o application oriented description




Modelling Process IV

Problem Formulation

e Simulation
o Direct dynamic (integration)
o Invers dynamic (derivation)
o Static (equation solving)

e Analysis
o Characteristics (calculations)
o Graphical characteristics (plots)

e Design
o Parameter simulation
(= static simulation)
o Optimization

Modelling Process V

Problem Solving

Simulation

o Programming
PF and PS are integrated
o CSSL language (Simnon)
PF and PS are separated
PF is the description
o CSSL with graphics and libraries
(SimuLink)
Structuring of PFs
Reuse of predefined PF

o Object-Oriented Modelling Language
(Dymola)

Equation based models
Reuse of models

Automatic manipulation to PF and PS

Model Developers and Users

o System models
o handle the complexity
o use of predefined unit models

e Unit models
o special designed model
o for a purpose

e Phenomena models
o small scale model
o "general models”

Conclusions

e Models are invariant
e Different model types

o Choice of model
o accurcy
o validity
o complexity

e Modelling process
o structuring
o model description
o problem formulation
o problem solving




PROCESS MODELLING

lecture |1

Physical Modelling

PROCESS MODELLING

Content

Principles of Physical Modelling

Continuity Equations
o Mass Balances
o Energy Balances
o Momentum Balances
o Mechanical Energy Balances

Transport Phenomena and Reaction
Kinetics

System Descriptions and Problem
Formulations

Physical Modelling

Principles of Formulation

Basis: models are based on fundamental
physical and chemical laws.

Assumptions: (engineering compromises)
e carefully considered and listed.
e used to tune accuracy, validity and
complexity of models.

Consistency: (model verification)
o degree-of-freedom
(nvariablea = nequationa)-
e check units and dimensions.
Solution: techniques and tools demand
problem formulations on particular forms
(models 4+ manipulations).

Verifications: test the model against data
(model validation).

Fundamental Laws

. Continuity equations:

e mass balances,
e energy balances,
e momentum balances.

. Transport phenomena:

e mass transport,
® energy transport,
e momentum transport.

. Equilibrium descriptions:

e phase equilibrium,
e chemical equilibrium.

. Kinetic descriptions.

5. State equations (or relations).




Continuity Equations |

ma;

SYSTEM

energy

Dynamic balances over a system:
Acc = In — OQut + Prod — Cons
Balances:

e mass (chemical components),
e energy and

e momentum.

Or as "Kemisk Teknologi” would like to express it

In + Prod/Cons = Out + Ace

Continuity Equations Il

Mass Balances

Mass

SYSTEM

Ci

Accumulation

Dynamic total mass balances over a system:

Acc= In— OQut+ Prod/Cons

= Win— Woutt T

dt
e m is the total mass in the system.

e w are the mass flows entering and
leaving.

e 7 is the mass production. In our applica-
tions 7 = 0 in the total mass balance.

Continuity Equations Ill

Component Mass Balances

Dynamic mass balance of component i over
the system: (mole balance instead of mass
balance n; = 3;)

Acc= In-— Out+ Prod
dn,-
dt

= Wi T Wigyt ri

e n; is the number of mole of species 7 in
the system.

e w; is the mole flow rate of species 3.

e 7; is the mole production (consumption)
rate of species 3.

Mass Balances |
Tank Example

out

Total mass balance over a simple tank.
Assumptions:

e constant density, m = pV, w = pg.

e cylidrical geometry, V = Ah.

Acc = In— Out
dm
E = Win—  Wout
d(pAh)
dt = PQin—  PQout
dh _ 1

’&? - Z (qin_ qg'ut)




Mass Balances ||

Tank Example cont.

Component mole (mass) balance over a
simple tank. Assumptions:

e no production/consumption, r; = 0.
e homogeneous mixing, ¢; = ¢;,,,

e constant volume, ¢;, = Qout-

Acc = In— Out+ Prod
dn.-
dt = wiin— wiau!+ ri
d(Ve;
%: QinCi;,— QoutCit 0
de;
-d_t"‘ = %(ciin_ Cz)
or direct on vector form ¢ = [61 cz.“cn]T,
de ¢
a = yion =)

Mass Balances Il
Tube Example

—_— —

0 z Z+dz A

Total mass balance over a volume element in
a tube. Assumptions:

e no mass production.
e constant cross area, V = Adz, q, = Av,.

e space dependent density, m = f:+d2 pAdz.

Acc = In— Out
dm
g Waip— Wz+dzou:

d z+dz

P pAde = p, Av,— prya:AVitdz
tJ,

Move the time derivative inside integral,
divide with the volume, let dz go to zero.

i s a_PdE — _Uz-{-dz Pzidz — VP2
dz |, ot dz

9 _ d(vp)

ot 0z

Continuity Equations IV

Energy balances

enorgy ~~ SYSTEM

Accurnulalion

Dynamic energy balance over a system:

Acc = In— Out
dE

71?: €in+Q— eout — W

Terms:

E =U,t + Kiot + Piot, sum of internal, kinetic
and potential energy.

e = (u+ % + gh)w, flow terms of internal,
kinetic and potential energy.

@ = Q. — @, heat added or withdrawn by
conduction, radiation and reaction.

= Wout _ Wi .
W = Wihast + 52 Pout — L2pin, work done

by the system on surroundings, shaft work and

PV work.

Energy Balances |
Tank Example

out

Total energy balance over a simple tank.
Assumptions:

o @ and W,pos: are zero.
e for liquids: U > K and U > @.

e use mh = mu + pV and h=u-|—§.
e neglect the change of the pV work.

AU+ K+ @
‘_'('T—) = win(uin + Kin + Qin)
- wout(uout + Kout + q’tmt)
Waut Win
. Pout — _pin)
Pout Pin
dau :
E S win(uin + i‘_:‘) - wout('u'out + z::)
d(mh
(dt ) = Winhin — Wouthout




Continuity Equations V

Momentum Balances

SYSTEM
In
Produclion Congumpiio
mofmentu. = Aceumidation e
- .

o

Dynamic momentum balance (or force
balance):

Acc= In— Out+ Prod— Cons
d(mv)
dit

= Fiy— Fout G- L

F = wv + pA, forces from convection and

pressure,
Gravitation is a production term, mg.

Losses are consumption terms.

Note that this describes the acceleration and the
position is the integral of the velocity, ’fi—f = v, which

results in a second order system.

Momentum Balances |
Tube Example

— -

[} z iz L

Momentum balance over a tube element.
Assumptions:

e constant cross area, w = pAv.
e space dependent density, m = f:+dz pAdz.

e losses expressed as L = —7A.

d(mv)

7 =Fp —Fout +G—L

d z2+dz
Et' pA’Ud:I} = WzVz — Wz4dzVz4dz
ztdz
+p; A — payas A+ / pAdzg + tau, A — tau, 44, A
x
d z+dz
at pAvdz = Ap, ”f — Apzydz 'Uf.-i—dz
z

z+4dz
+p.A—Dpryaz A+ / pAdzg + tau, A — tau, 14, A
z

Momentum Balances Il

Tube Example cont.

—e

2] zZ I+dz L

Move time derivative inside integral, divide
with the volume, let dz go to zero.

i stz d(pv) d '”f+dst+dx —vip;
dz J, ot U dz
_ Dz+4dz — Pz
dz

+pg
_ Te4dz — T2

dz

This gives the following equation:

Opv) _ O(pv®) Op or
ot~ 9z 0z P 3,

Momentum Balances |11

Tube Example cont.

— i

[ z ZHdz L
2:nd Assumptions:

e Newtonian fluid, 7= —pd*.

e constant density and viscosity.

o0__ o by, o
Pot = a2 8. PITHE
This is the Navier-Stokes equation in one space
dimension.

In three space dimensions it becomes

2]
pa—: = —pVov — Vp + pg + pAv




Continuity Equations VI

Mechanical Energy Balance

Mechanical energy balance appears if the
momentum balance is multiplied by the
velocity. (for differential balances)

Apv?)  9(p®) op Ot
8 6z "8z "oz TP
d(pv?) _ d(pv®)  8(pv) dv  8(rv) v
gt 0z 0z Poz 0z oz TP

(see BSL pp. 81)

Continuity Equations VII

Mechanical Energy Balance cont.

Macroscopic system with isothermal proper-
ties:

Acc =

d(K + & + A)
bk Sl M i’ A M
dt

In— Out+ Prod— Cons

Eui— w— L.

K + ® + A are kinetic, potential and
(Helmholtz) free energy.

E = w(%v2 +gh+ %) are kine.tic, potential and
pressure energy from convection.

W are work done by the system

L, are friction losses where mechanical energy
irreversible converts to thermical energy.

Mechanical Energy Balances
Tank Example

Macroscopic mechanical energy balance over a
tank. Assumptions:

e isothermal.
e no work and losses.
e constant density, 4 = 0.

o kinetic energy, K = 2pVv? (v is tank

velocity).
e potential energy, ® = pVgz (z is tank
position, ‘fi—f = v).
d(K + & 1 g
% = win('z"uizn + gzin + I%)
1
- wout(iugut + gzout + pout)
d(1Vv? + Vgz) | pi
P‘_--a—dt— == win(ivizﬂ. -+ gin + pn)

1
- wO’M(E’Ugut + gTout + I%)

Transport Phenomena

Molecular transport (microscopic phenomena):

Quantity | Heat Mass Momentum

Flux q Ny Tz
aT ac 8y

Force T3 - _‘ng L FZL B

Property Conductivity  Diffusivitity Viskosivity
kr Dy I

Law Fourier Fick Newton

. ac
Relation qg= kT%":— Ny=Dp—54 :ua—;’:

Overall transport (macroscopic phenomena):

Quantity ] Heat Mass Momentum
Flux q Ny Tz
Force AT AC, AP
Property Heat transfer Mass transfer Friction
hp kL * K ok
Relation q= hpAT Ny =k ACy4 * %k %

see table 2.1 in Luyben




Kinetic Description

Chemical Reaction
Simple kinetic relations:

naA — npB

Michaelis-Menten-kinetics (enzyme catalysed
kinetics):
S+FE«—ES-—P+E
VmaxS ky

V=0 H = ’ Vimnaz — C€Q

Kn+s m—k_—l

Monod-kinetics (cell growth):

_ Hmaz$

“—K6+s

Kinetic expressions are very application dependent
and particular multi phase system. Geometry, side-
reactions, inhibations make the expressions much more

complicated in practice.

Mass Balance IV

Tube with Diffusion and Reaction

—_—

[ Z zidz L

Component balance over a volume element in
a tube. Assumptions:

e constant cross area, V = Adz.
e Fick's law, N = D2,

o space dependent n, n = [**% Acda.

8 z+dz

- Acdz = (gc)z + AN, 4, — (g€)z44: — ANz + V7
z

Move time derivative inside integral, divide
with the volume, let dz go to zero:

i /z+dz &dm _ ((’UC)z+dz — ('UC)z)
dz J,

ot dz
dc _ be )
+D Oz z4dz 9Z_z+r
dz
dc  0(vc) d%c
- 6z "PaatT

Energy Balance Il
Tube with Heat Transfer and Reaction

il

—_—

g 2 2z L

Energy balance over a volume element in a
tube. Assumptions:

e constant cross area, V = Adz(= 2nr,dz).
e no shaft work.

[ _ aT
e Fourie's law, ¢ = k7 5.

neglect potential and kinetic energies in
total balance.

space dependent ¢, e = f:+d’ pAudz.

heat from reaction, @, = AH,r.
heat transfer out, ¢; = A:hr(T — Tp).

a z+4dz
E/ pAud:c e (Wh)z + Aq;+dz - (Wh)z+dz — Ag;
+ QpAdZ — gt

Energy Balance Il|

Tube with Heat Transfer and Reaction cont.

Move time derivative inside integral, divide
with the volume, let dz go to zero:

1 2+ §(pu) g — ((pvh)s4a: — (pvh):)

dz J, ot dz
aa_T dz %I' ) A
2 z-4dz zz _ He _
thr & +Qp — 23, (T - To)

d(pu)  O(pvh) T 2 B
8~ 6z Mg T k(T

Additional Assumptions:

e constant heat capacity, h = C,T.

e constant pressure and use h = u + %.

o(pT) _ _8(pvT)
ot 0z

BOT G, b
Cp 022  Cp 7,.Cp




System Descriptions |

"Macroscopic Models"”

Put up the continuity balances and write
them on state space form of ordinary diffe-
rential equations, ODE:s.

de

5 = f(z,t,u)

x are the system state vector (mass, compo-
nent, temperature, velocity, position etc.).

Static models has zero left hand side resulting
in a nonlinear equation system.

0= f(z,u)

Special case: f is linear

‘-id—”: = A=z(t) + Bu(t)

A static linear model becomes 0 = Az + Bu or

rewritten Az = b.

System Descriptions |1

"Microscopic Models”

Systems with space dimensions are described
by partial differential equations, PDE:s.

Nonlinear PDE:s are in general hard to solve.

Some linear PDE:s are more easy to handle:

° % = kaz.‘, is a parabolic PDE or diffusion

equatlon (tube with diffusion).

° at2 k'9 7 is a hyperbolic PDE or wave
equation
® ’Zf = k Z is also a hyperbolic PDE (mass

balance in tube)

e 0 = kng‘;” is a elliptic PDE or Laplace
equation (static PDE in space).

Physical Modelling

Assumptions

e System boundary, conceptual decomposi-
tion.

o Quantities to model. Choice of state.
o Neglected properties

o dynamics,

o flow terms,

o production/consumption terms.

e Medium properties.
o characteristic dependency.
o Geometry

e Lumped or distributed
o Space dimensions,
o Choice of coordinates,

Physical Modelling

Conclusions

1. Put up physical and chemical laws,
e Continuity equations,
o Flow terms,
e Medium descriptions,

2. Make assumptions,
e Accuracy,
o Validity,
e Complexity,

3. Generate system descriptions,
e Algebraic equations, AE,

e ODE:s,
e PDE:s.

4. Problem Formulation

5. Problem Solving




PROCESS MODELLING

lecture 1l

Computer Aided Modelling

Computer Aided Modelling

Outline:

System Descriptions and Problem
Formulations

CSSL languages

Graphical Modelling Tools
o Analog computer description
o Block diagram

Object-Oriented Modelling
o Structure decomposition
o Equation-based description
o Reuse and inheritance

Bond graphs
Differential-algebraic equations, DAE

Computer Aided Modelling |

Systems, Problems and Solutions

. System Description (Mathematical
models)

e AE

e ODE

e PDE

. Problem Formulation

e direct (simulation)
® inverse
e design

. Problem Solving
e equation solving
e integration

Computer Aided Modelling I1
Problem Solving Tools

Dynamic Simulation

0

Programming

PF and PS are integrated

CSSL language

(Simnon, ACSL, SpeedUp, etc)
PF and PS are separated

PF is the description

CSSL with graphics and libraries
(SimuLink, SystemBuild, etc)
Structuring of PFs

Reuse of predefined PF
Object-Oriented Modelling Language
(Dymola, Omola, ASCEND, etc)
Equation based models

Reuse of models and Inheritance

Automatic manipulation to PF and PS




CSSL Language |

Problem Formulation

Problem formulation oriented model descrip-
tion.

A set of ODE:s on state space form (explicit):

The assignments are sorted to generate a
calculation procedure.

CSSL Language Il
Example: MATLAB

function xdot = tankmodel(t,x,c)

qin = 1;
qgout = 1;
cin = 1;

xdot (1) = qin - qout;
c = x(2)/x(1);

xdot (2) = gin*cin + qout*c;

No sorting of the assignment. Pure calculation
procedure.

CSSL Language IlI

Example: Simnon

CONTINUOUS SYSTEM TankModel
STATE V Vc

DER dV dVc

" equations

dV = gqin - qout
dvc
c

gin*cin + qout*c
Ve/V

" parameters

qin : 1
qout : 1
cin : 1
" 1initial values
Vv 1

Ve : 1

END

Sorting of the assignments.

Graphical Modelling |

Analog Computer Descriptions

Graphical description based on a set of
electrical object with given behaviour.

Amplifier Summator

u1 y1 u21 1
y2
y1 =K*ut u22 10
y2 = 1*u21 + 10*u22

Integrator Multiplier

u3l 1 u4i |
v3
ug2 10 —= > -
y3 = —J (U31 + 10*U32)dt y4 = ud1*y42




Analog Computer Description |
Tank Example

The simple tank example from lecture Il. Graphical Modelling 11

Block Diagram Descriptions

e component mole balance
e constant volume and flow, Each block or S}/stem !s a re;?resentat_lon of

. the transformation of inflow information, u, to
e homogeneous mixed,

the outflow, y.

e no reaction,

¢ = %(Cin — C)
Block diagrams are graphical description of
the information flow.

- 51 - 52 -
y = K*(u-y) @

(uy®y__,_ —_y® y [s |
|

This is the corresponding analog computer
configuration.

Graphical Modelling IlI

Transfer Functions

Graphical Modelling IV

Block Diagram Descriptions
a la SIMULINK

A common way to describe blocks are by
transfer functions. Transfer function is the
Laplace transform of the corresponding
differential equation.

Sum Transfer Functions
8(t) = = (cm(t) = c(t)) -7 T
q v oy Tl s+t
L{(t)} = 7 (L{em(t)} — L{c()}) Gain
q 1
5C(s) ~ e(0) = L(Cin(s) - C(s) > —
q
(s+ )C(S) 7 Cin(s) +¢(0)
1 Product State-Space
——C; ——c(0 - '= Ax+B
(S) (S+ _q_) (3) + (S+ "q,')C( ) | _j A __| ; =C))((-:_DL&
For convenience the initial condition is as- Signal Generator Scope
sumed to be zero and the transfer function oooo A l:l
for the differential equation becomes: °o |

C(s) = -7 Cin(s)

(s+1




Block Diagram Descriptions
Tank Example

A simple tank example. Assumptions:

e constant density
e isothermic
* dynamic mass balance
V= Qin — Qout
* dynamic component balance

(VC) = GinCin — QoutC

1 1 \
] -] = R s eseas == —-
Dbut $
La " '
in | oy s 1 ’ c
-l - - "l s = =
' |

SIMULINK
CSSL Language with Graphics

e £t G Svpion Sy Goe

X@ia\ Sinka Discreie  Linear  Nonlinear Connaections — Exiras
m mﬂ‘f E Llb Verslon 1.3b)
= —= lagk
ﬂb E’" — ‘Eii-ilil‘:i 3L rary (Version )

Llnear Library

Sum nnar
Producl

[i7sh furad
Integrator  Darivalive
> {< {o7]
Gain afr] Sider
Galn Galn

|
|
| |
—E—E |
Comlant o rerFen Scope
|

SIMULINK is put upon MATLAB.

e Click and drag
e Menu driven interaction

e "Block" libraries

Object-Oriented Modelling |

Equation Based Description

Real modelling tools are problem independent.
This means:

e Model describes relations, not execution.

e Unknown causality (what are in and
out?).

e Equation based description.

TankModel ISA Model WITH
gin, qout, cin, k ISA Parameter;
V, ¢, cout, r ISA Variable;
% In + Prod = Out + Acc
gin qout + v,
qin*cin + Vxr qout*cout + (V*c)?’;
% assumptions

cout = c;
% reaction kinetics
r = -k*c;

END;

Object-Oriented Modelling 1
Abstraction

M2 1SA Model; it sckazal
In a ISA Parameter; 0"'\[]

M1 ISA Model; tintertace)

Il ill]

{composite Inkwedok)

{primitive interior}
y ISA Variable;
y’' + a*y = In;

;_I.B;SSTM:;; (] i8advz; [1 [

Out = y;

A model object is described in two parts.

o Interface describes the interaction with
other models and model user.

e Interiour describes the model behaviour,
composite or primitive.

Structuring properties.

o Encapsulated models,
o Decomposition into structure hierarchy,

o Graphical representation.




Object-Oriented Modelling 111

Class inheritance

A M2a1SA Maic WITH 7| M2al ISA M2a WITH

y ISA Varlable; a:=10;
m— . y' +a'y=In; END:
M2ic 1SA Model WITH b | Hui=v,
/| InOut ISA | END:;

SimpleTerminal,

ghipARammsis | Mab 1SA M2ic WITH

3 i |SA Variable;
| Yy + atyn2 = 2'In;
M [ Out=vy;
- END;
M1 ISA Model WITH 3

/ o :

Sm2 ISA M2a; el M1b ISA M1IWITH

Sm2 ISA M2b
END; END;

Inheritance facilitates development.

Reuse of models in composite models.

Specialization of a predefined model into
a new one.

Polymorphism for the reuse of struc-
tures.

Object-Oriented Modelling IV
Library Abstraction

2
T
2
[~
S

\‘ -
|2
| &
)
1
b
hY
\
Ay
\
i
]
1

o
|
$i
=1
&

1)
[}
-

e o e i e o

T
0o-
b0

L

|
E*
=

]

1O

Bystem Development Unit Development Model Development

———————

Abstraction of library contents:

o Model development of subunits,
e Unit development using subunits,

e System development using units.

Object-Oriented Modelling V

Current Research

ASCEND from CMU (A. Westerberg).
Textual language. Equation solver.
(public domain)

MODEL.LA. from MIT (Stephanopou-
los). Graphical and inside KEE. Design.

gPROMS from Imperial Collage (Pan-
telides). New generation of SpeedUp.
Textual language. Handle DAE, events
and PDE.

VeDa from Aachen/Stuttgart (Mar-
qhart). Language on top of DIVA. Handle
AE, DAE, PDE events.

Omola from Lund (Mattsson). Textual
and graphical. Handle DAE and events.
Dymola from Dynasim, Lund (Elmqvist).
Textual and graphical. Handle DAE and
events.

Object-Oriented Modelling VI

Omola and OmSim

CACE group; S.E. Mattsson, M. Andersson,
B. Nilsson, T. Schonthal and J. Eborn.

Omola is the modelling language and OmSim
is the simulation environment.

o Modelling
o Graphical editor for structures,
o Textual editor (emacs) for equations,
o Browser for library display,

e Problem formulation (”automatic”
o Order and sort equations,
o Manipulation and index reduction,
o Generate simulation code,

e Problem solving
o Simulator for dynamic studies,
* Parameter sheets
* Plot windows

* C++, Unix and Sun/HP. (public domain)




Bond Graphs |
Graphical Modelling

Introduced by Paynter, MIT.

Idea: the product of the terms flow and effort
is power.

intensit T
V_ — P
flow Q q

General Bond Thermal Bond Flow Bond

Bond Graphs I

Bond Graph Elements

Flow junction, Effort junction

e2|f2 e2|f2
el e3 el el
B p [ - e fo Y
f1 3 1 3
f1-f2-13=0 el-e2-e3=0
effort, u X
- R resistance :i=u/R
flow, i
effort, u . du
__ = C capacitance : j=c—-
flow, i dt
effort, u . di
— m | inductance :L--=u
flow, j at
effort, u -
- B SF source of flow :i=i0
flow,
effort, u
— B SE source of effort :u=uo
flow, §

Bond Graphs 1
Tank Example

A simple tank with a dynamic mass balance.
Assumptions:

e constant density.

e dynamic mass (volume) balance, vV =
q9i — Qo-

e static momentum balance, p, = pg¥.

o product ef is power, f is volumetric flow
and e is pressure.

. 5 Transformation:
Flow junction,
de2 f1 =qi
C f2=C—- f3=qo
dt e2=p
A
C=-—
e2|f2 Pg
Interpretation:
SF et - p _L SF qgi-f2-qo=0
f1 f3
dp f2
f1-f2-13=0 a_c
(el=e2=e3)

el=e3=p

flow
source

Bond Graphs IV

Flow System Example

=

SF

:‘é'gf valve pro— free
tank outlet
C ~_ A R os Cna_Re_ R f=ke®s
C="—— ﬂ f=k18 C_pg £
-~ p -~5_— =p— =8 —~§FE




Object-Oriented Modelling V
DAE system

Library definition: SimpleTankModel

—e—| b
in Yout

o Interface
o terminals: ¢;, and gou:,
o parameter: A,

e Interiour
o state: h,
dh __

o equation: 2 = L(gin — Gout)

If the interface is known the interiour is well defined.

Object-Oriented Modelling VI
DAE system cont.

Tank 1 Tank 2

— h I h
%n Yout in Qout

I T e SR

dhy 1
el A—l(‘h;., — Q1,)
dha 1
_(it_ S A_2(q2|'n - qzouf)

The connection gives an additional equation:
qzl"n - qlout b 0
Degree of freedom analysis:

® TNequations — 3

® Nyariables — 8
O Mknowns = 4

O Nunknowns = 4

Result: One equation is missing

Object-Oriented Modelling VII

DAE system cont.

The missing equation: flow between the tanks.

1. rate equation: gou;, = Ay/2p(h1 — h2).

e 2:nd order ODE.
o (or DAE index 0)

2. equilibrium equation 1: iil & iiz.
e differential-algebraic equation
system, DAE.
e initialization h{(0) = h,(0).
o manipulation =1 ODE + 1 AE.
o (DAE index 1)
3. equilibrium equation 2: hy = h,.
e DAE system

e derivation to reach 2.
o (DAE index 2)

Conclusions

CSSL language

CSSL with graphics
o Block diagram descriptions

Object-Oriented Modelling
Equation based description

o Abstraction and encapsulation
o Inheritance and reuse

o Current research

[}
(o]

Bond graph modelling
DAE problems
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Linear Systems

Content

e Linear system descriptions,
e First order systems,

e Eigenvalue problem,

e Stability,

e Second order systems,

e Phase plan analysis,

e Chemical reaction example.

Linear System |

General Description

Systems on state space form

dolt) _
e Az(t) + Bu(t)

y(t) = Cz(t) + Du(t)

e z is a state vector, (n,1).

o Ais a matrix, (n,n).

e u is a vector with m input signals, (m,1).
e B is a matrix, (n,m).

e y is a vector of k measurements, (k,1).

o C is a matrix, (k,n).

e D is a matrix, (k,m).

Special case: Single input/single output (SISO), one
input signal (B is a column and u is a scalar) and
one measurement (C is a row and y is a scalar) and

no direct term (D is zero).

Linear System Il
Steady-State Solution

Steady-state means that the left hand side is
zero:

0= Az + Bu
y=Cz+ Du

Rewrite the first equation and assume that
b= —Bu, then
Az =1b
o z = A7'bif Ais invertible, (x = A \ b).

o mathematical: A has full rank (rank(4)).

o numerical: low condition number,
(cond(4)).

| lines
coincide

Case 1; One solution Case 2; No solution

Case 3; Infinite solutions




Linear System IlI

First order system

Solve the system equation (when u(t) = uo for

t>0)

& = ax + bu

e“'”(:iz —atz) = e~ by
t
e g — o = / e "bu(s)ds
0
:
z(t) = ez +/ e“(t_“)b'u,(s)ds
0
t
z(t) = ez + b/ et~ dsy,
0
at b at
z(t) = e*zo + ;(e —1ug
We see that if ¢ < 0 then:

e Homogenous solution is an exponential
and the initial conditions disappear.

e Nonhomogenous solution: z(c0) =
—by(o0).

e if a > 0 then the solution goes to infinity.

Linear System |V

First order system cont

[®] StepResponser  H]
File Contig Erase Rescale

1.2
141 2 P 1—~—;,—_?~=='
08 / 05—

o8] [/~ -
0.4 /// -

0.2

¥

Step responses with —a = 0.5,1,2 for the
system:

—m:am+bu

dt

a is that same as the eigenvalue A and —51,—.

Linear System V

Time Constant

Assume constant input uo and define a = —%:
T =az + bu

t
z(t) = e*zo + b/ e* =) dsu,
0

= e%zg + é(e“t — ug
a

=e Ty —bT(e” T — Lug

At t = T the states are:

z(t=T)=e 1o — bT(e™! — 1)uo
~ 0.37zo + (1 — 0.37)bTuo

T is called the time constant of the system
and when the timeist =T

e The initial condition is 37%.
e The step response is 63% (zo = 0).

e (—7 is that same as the eigenvalue )).

First Order System |

Mixing Tank Example
o

Assumptions:

o Constant density, volume and flow,

e Isothermal conditions.
Component balance:

¢= —%c—}- %cin

e Correspondes to ¢ = az + bu and

e Time constant: —X =a=—-2 or T = %,
T vV q




First Order System Il
Heating Tank Example

Assumptions:

e Constant density, volume and flow,
e Constant heat capacity, h = C,T,
e Heat transfer desciption, ¢ = kAAT.

Energy balance:

pVCoT = pgCp(Tin — T) + kA(Th — T)

q n KA
Vo pVGCy

q k4
T+ 1m, 4+ 22
)T + 3 Tin + Ve,

t =

e Corresponds to z = ax + byu; + bauy

. L1 q A
e Time Constant: —3 = —(# + pf/c,,) ol
_V pVCp
T— ;‘I‘ A

First Order System IlI
Buffer Tank Example I

i

e Inflow and outflow are independent.

Assumptions:

Total mass balance:

m = Win — Wout

e Corresponds to ¢ = byjuy + byus,.
e Time Constant: —% = a = 0 or infinite.

e This is a pure integrator.

Linear System V

Higher order system

Solve the system equation (when u(t) = uo for

t>0)

z = Az + Bu
e—At(i: — Az) = e “tBu

¢
e At — 29 = / e‘A’Bu(s)ds
0
t
z(t) = ettzy + / eA(t_")Bu(s)ds
0

t
z(t) = etz +/ eA(t=9)ds Bu,
0

We see then that

e The intial conditions depends on e47.

e The input signal is first scaled by B and
multiplied by the integral of e“t.

Eigenvalue Problem |
Eigenvalues
Az = 2)

e ) are the eigenvalues of A.

e z are the eigenvectors of A.
This means that the following applies:
(A—A)z=0 = det(A\I—A)=0

which results in a polynomial in A.

Example:
= o
A=
-2 0
10 -3 1
det()\I—A):det(A[O 1] - [_2 0]):

det([)‘;—s _/\1] = MA+3)—(-1)2=

A2 430+2=0
)\1:—1 /\2:—2




Eigenvalue Problem I1

Eigenvectors

When the eigenvalues are known one can find
the eigenvectors:

(A-ADz=0

For each eigenvalue, );, there is a correspon-
ding eigenvector, z;.

Example:
e[ 150 e[z s
S e e

Eigenvalue Problem IlI

Diagonalization

Create a diagonal matrix of the eigenvalues,
A, and a corresponding matrix of eigenvectors,

S. The following are eqvivalent.
AS=SA & A=S5A8"' & S§'AS=A

Example:
11
S = [21 22] = [2 1]

Sl 3 e

Note:

-1
At — (STIAS) _ g1 Atg

Stability |

dz(t)
dit

Properties that are characterized by the
eigenvalues:

e Real eigenvalues gives exponential
solutions.

e Complex eigenvalues gives oscillatory
solution.

o Eigenvalues < 0 gives asymptotically
stable systems.

o Eigenvalues > ( gives unstable systems.

Stability 11

Second order system
An axample of a second order system:

dz 2w 1 0
a: —w? 0 i w? N

y=[1 0]z

Eigenvalues:

det(u_r%w 1]):det([A+2gw —1])

—-w? 0 w? A
:)\(}\+2§w)+w2 =0

A= w(—¢ £ /1)

It can be transformed into input/output from:

7+ 2wy + wily = wiu




Stability 111

Second order system

(8] Stephesponsez - £l

File Cornfig Erase Rescale

2

Step responses with { = 0,0.35,1,2.5 and
w=1.

Stability IV

Second order system

8] Stepfesponsez
File Confilg Erase Rescale

1.2

2 "'2/\ St T |
1- \_%w—
0.8 A
0.6

0.4 -
0.2 1

Step responses with { = 0.5 and w = 0.5,1,2.

Second Order System |

Chemical Reaction
A— B —C
Component balances over a batch reactor:
100 R P
dit CB - ky —(k_l-l-kz) cB

Homogenous solutions with the initial condi-
. T
tionc=[1 0] .

b Stophesminzed i ] ([ Stpftespanse -1
Fike  Confly Erase  Rescalt ||file  Config Erase  Rescale [iAfe  Comfiy  Erave  Rascale
1 1 1 T
\ § P [

08 1 -\ 0.8 \ 0.8 ‘\‘
0.4 0.8 0.8 4 I
N Nae - \ [
04 e 04q o ===t llo4q \ F
T .

021 /~\-=M__~:;_.:_;:____ 02 / 0z "}:}“H }
0 r — 0 — 0 —————t
6 1 2 3 a4 s 6 1 2 3 4 s o 1 2 3 a4 s

1. Freae = (1,1,1) = A &~ (—0.38,—2.62)
2. Kpege = (1,1,0.1) = A = (—0.05, —2.05)
3. kyeae = (1,0.1,1) = A & (—0.73, —1.37)

Phase Plane Analysis |

Phase plane is a plot where one state is
plotted as a function of the other state
(second order system). For a third order
system there is the corresponding phase space.

The phase portreit is a set of trajectories that
are plotted in the phase plane.

Examples of charateristics:

e Node, trajectories attracted (stable) or
repealled (unstable) by the steady state.

e Saddle point, trajectories attracted
(stable) in one direction and repealled
(unstable) in another.

e Focus, trajectories that are attracted
(repealled) on the same time as it circle
around the steady state.

o Center, trajectories that circle around the
steady state.




Phase Plane Analysis Il

Second order system

An example of a second order system:

de  [—2w 1 0
Pl I L
y=[1 0]z

Eigenvalues:

A=w(-{E£vE-1)

Eigenvectors:

_ '—2£w—)\ 1 231
=[50 GG
_ '—()\+2Ew)zi1+zi2] _ 0

—w?ziy — Az

i 1 1
L+ Ve - (- - 1)‘*)]

Phase Plane Analysis llI

Node

File Config Erase Rescale |

1

0.5 - B

0_. -

-0.5 A r

Second order system:

de [-3 1 0
@~ -2 o] T |2)"
o eigenvalues in —1 and —2

1 1
o eigenvectors, z = and z =
2 1

Phase Plane Analysis |V
Saddle point

[®] PhasePlane . H]
File Config Erase Rescale
1
0.5 J
0
-0.5 - -
-1 T T T

Second order system

dz [—1.5 1] + [ 0 ]
T T u
dt 0.5 0 0.5

o eigenvalues in =~ 0.28 and ~ —1.78

. 1
o eigenvectors, z =~ [ and 2 ~

1.78

[—01.28}

Phase Plane Analysis V

Focus
|®] PhasePlane

File Config FErase Rescale

1

0.5+

0

0.5 - .

Second order system
d _ [—=0.7 1] 0
@ -1 ol®T [1] “
o eigenvalues in A = 0.35 + 0.941.

o eigenvectors has complex cofficients.




Phase Plane Analysis VI

Center
[®] PhasePlane ]

File Config Erase Rescale

1

0 - L
-0.5 1 -

_1 T T T
-1 05 0 0.5 1

Second order system

de [0 1 0
&= -1 o) 1"

o eigenvalues in A = +1.

Chemical Reaction |
Phase Plane

d [ CA ] _ [ -1 k_q [ ca

dt |cp 11 — (k_ 1+1 ) cp
& pouattpe L= © 0 [HIE Hheiii ) R e |
File  Confiy Erase  Rescale amﬂg “Erase  Rescule |[Fle Carilly_Erase He'n:ulr

1

3 7~ L } A

08 k et |[ 0] 0.8+

041 | 0.4
02 ,_\ 02 02
o
0 02 04 08 08 1 15

T r T T
0 02 04 08 0B 1

Phase plane plots for k_; = 0.2,1,5.

1. Eigenvalues A ~ [—0.64 —1.56]"
[—0.38 —2.62]7
3. Eigenvalues A =~ [—0.15 —6.85]"

2. Eigenvalues A ~

Chemical Reaction Il
Phase Plane

%[Zﬂ - [_11 —(11+k2)] [zﬂ

1 1

0.8 4 \ /l— 0.8+

06 [ o$ 1

084N\ 044

021 \ Hfo24
. .

T T T o T g —
0 02 04 06 08 | 0 02 04 06 08 1

0 02 04 06 08 1

Phase plane plots for k; = 0.2,1,5.

1. Eigenvalues A ~[—0.10 —2.10]7
2. Eigenvalues A ~ [—0.38 —2.62]"
3. Eigenvalues A ~ [—0.81 —6.19]"

Conclusions
Linear systems:

e Eigenvalues determine the properties of
the transient response.

e Eigenvalues determine the stability of the
linear system.

e Eigenvectors determine the balance
between states.

e Phase plane analysis illustrate the
properites of the system.
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Nonlinear Systems

Content

e Nonlinear system descriptions,
e Steady state solutions,

e Linearisation,

o Periodic solutions,

o Limit cycles,

o Bifurcation,

o Chaos.

Nonlinear Systems |

System Descriptions
Systems on state space form

da(t) = f1(z(t), u(t))

y1(t) = g1(2(t), u(t))

In nonlinear theory this is often rewritten into
an Automonous System:

dz(t) _
— = (=)

y2(t) = g2(2(t))

Nonlinear Systems ||
Steady State Solutions

Steady state means that the derivative is zero:
0 = f(z,u)
e To solve the general nonlinear equations

is not easy.

e Notice that a nonlinear f can have
multiple solutions.

=z

Case 1; One solution Case 2; No solution

Case 3; Multiple solutions




Linearisation |

Taylor expansion of f.

do(t) _ ;oo o 0
o) = f(o(t)  £(°) + S(o(t) - 2°)

If the linearisation point is a steady state then
the nonlinear system become a linear system
(z=2—2°):

dz

E:AZ

The system matrix A is composed of the par-
tial derivatives at steady state, the Jacobian

of

Aza:n

Poincaré-Bendixsson: The nonlinear system has the
same properties as the linerized system close to the

steady state.

Linearisation |l
Tank Example

R

;

A tank with a free outlet. Assumptions:

e Constant density and cylindrical geo-
metry.

o Constant temperature and pressure.

o Outflow, gous = aVour = a+/2gh,
(Bernoulli).

Total mass balance:

dm
dt
dh

PAE = p(gin — a/2gh)

dh a 1
- = -2 — qin
@ - aVvVieht 4e

= Win — Wout

Linearisation Il

Tank Example cont.

Linearization (new state z = h — h° and input
U = @in — ¢5,) give the following linearized
system:

z=az+bu

8, a a 29 a [g

=2 (-2, faghy=-2 =-2./5

o= AV =235 = TaV
1
b= —
A

The eigenvalue for the system is

)\:—a g

AY 2he

This is a real negative eigenvalue that decre-
ase proportional to the square root of the
height.

Linearisation IV

Tank Example cont.

A tank with a free outlet.
Plotertz ]
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Steady state:

o left: h° = 0.1 with A = —0.7,
e right: h° =1 with A = —0.22.




Conclusions

Nonlinear Systems, part |

Nonlinear systems can have multiple
steady states.

A nonlinear system can always be
linearized.

A linearized system has the same proper-
ties as the nonlinear system close to the
steady state.

Weak nonlinear system can be characteri-
zed by its linearized approximation.

(weak = one steady state, eigenvalues do
not change characters.)
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Nonlinear Systems
part |l

Content

o Nonlinear system descriptions,

o]

Steady state solutions,

o Linearisation,

Periodic solutions,

Bifurcation,

Limit cycles,

Strange attractors and chaos.

Periodic Solutions |
Predator-Pray Model

A chemical reaction turned into a predator-
pray model:

A4+C —24+D
A+B—2B+F
B—F+@G

Assume that this reaction take place in a
batch reactor:

dA

Y — ki A—kyAB
S
dB

2 — k,AB— k3B
dt 2 3

Steady state in (%:, %) (and (0,0)).
0 —ks

k, 0 }

Eigenvalues in A = +4/ksk;i

Phase plane will be a center.

Linearisation gives A = [

Periodic Solutions I
Predator-Pray Model cont.
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Phase plane plot and three time response
plots for k; = k; = k3 = 1 and different initial
conditions, (0.1,0.1), (0.5,0.5) and (1,1).




Bifurcation |
Hopf equations

€1 = —2 + z1(a — (:1:% + a:%))

d2 = 2y21(a - (o +2))

Steady state is (0,0). Linearization derives the
following system matrix:

Eigenvalues are A = —a + 1.

Hopf bifurcation: the change of the a parame-
ter results in the change of a damped oscilla-
tion, a > 0, into an undamped oscillation,
a < 0.

Bifurcation 1l

Hopf equations cont.
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Phase plane plots for the Hopf equation
system with a = —1,0, 1.

o Linear analysis implies stable focus, center
and unstable focus.

e Nonlinear analysis gives stable focus,
stable focus and limit cycle (local
unstable focus).

Limit cycles |

e Stable limit cycles are called super critical.

Trajectories are attracted towards the
cycle.

e Subcritical limit cycles are unstable and
trajectories are repelled.

[®] HopiFhasePlane
File Config Erase Rescale

1

0.5 (\
0 - -
-0.5 U =

The modified Hopf example (change of sign
on the quadratic term) with a = —1 The
subcritical cycle is the unit circle.

Bifurcation 111
Exothermic CSTR

°in Tin |

cT cT

%

Assumptions:

o Homogeneous mixing,

e Constant hold-up (volume and flow),
e Constant density,

e First order reaction (temp. dep.),

o Neglected kinetic and potential energies
and pressure-volume change.

e Constant heat capacity,

d By
% = (ca;, — cA)% — koe " RTcy
dT q AH, _b»5, KA,
& (T -T)L — Sl ey — T_T,
a = VT Gt e~ g ol )




Bifurcation IV
Exothermic CSTR cont.

The Jacobian or system matrix is:

ofe ot
A= de co,To T co,To

| fx afr
dc co,T° aT c¢o,T°

and the eigenvalues of the linearized system
becomes:

)\2+a1)\+a2:0

e If the square root is negative the system
has complex eigenvalues,

o a; determines the stability of the system.

. “1:2q+vcp+k0(1+%H;W

where the last term is negative,

o Hopf bifurcation if a; = 0 and ay > 0.

c")e"R_"l-;ﬁ,

Limit cycles Il
Exothermic CSTR cont.
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The exothermic CSTR has three steady
states:

o 1: (4387,287) is a stable node.
2: (2337,327) is a saddle point.

3: (272,368) is a unstable focus and
results in a limit cycle

3 can be a stable focus for other parame-
ters.

Limit cycles IlI
Exothermic CSTR cont.

The limit cycle in the exothermic CSTR
example.

e cigenvalues are 0.32 £ 4.62:.

e oscillations with period = 1.55 hours.

Strange Attractors |

Rayleigh-Bérnard experiment

nia X

e Momentum balance: Navier-Stokes eq.,

e Energy balance: % = kAT,

e Mass continuity equation,

e Simplifications and transformation,

z1 = s(—z1 + z2)
m'z =T7TLy — T3 —L1T3

3 = —be3z + 122

Parameters:

o 3= % is the Prandl number,

° E— where B = gi—LLSAT and B, =

2(1+a?)°.
1-:0.2

I=|1

S




Strange Attractors ||
The Lorentz Equation

T, = 8(—:1)1 + :Bz)
12'2 =71 — g —L1T3

£z = —bxz + 1132

e Steady states are
(£1/b(r — 1), £4/b(r — 1),7 — 1) (and
(0,0,0) and some other).

e Eigenvalues indicate unstable focuses.

e Linearization derive the following system
matrix

—s s 0
A= 1 1 =1
Vb(r—1) +/b(r—1) —b

Strange Attractors IlI

The Lorentz Equation cont.

Parameters are s = 10, b =
Initial conditions are z1(0) =
5.
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Simulations after 1, 5, 7 and 11 time units.

Chaos

The Lorentz Equation cont.

Parameters are s = 10, b = g and r = 28.

Initial conditions are z1(0) = #2(0) = z3(0) =
5.
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1) z, time response.

2) z, time response with a small perturba-
tion in the initial condition of z,.

3) z, time response with a small perturba-
tion in the initial condition of zs.

Deterministic chaotic behaviour or the
butterfly effect.

Conclusion

e Nonlinear systems can have multiple
steady states with different dynamic
properties.

e Stable limit cycles.

e Bifurcation: number of steady states and

property of a steady state are parameter
dependent.

e Very nonlinear systems can be characteri-
zed by strange attractors.

e Deterministic nonlinear systems can
behave unpredictable, chaotic behaviour.
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Distributed Parameter Systems

Content

Classifications of PDE.

e Diffusion-type problems,

Wave equations,
Nonlinear PDE:s.

Distributed Parameter System |
Classification

General second-order linear PDE in two
variables:

2 2 2
%§+Ba” +ed p% g% pu=g

4 dtoz dz? ot Oz

Three basic types of linear PDE:s.

1. Parabolic PDE satisfy B2 — 4AC = 0.
2. Hyperbolic PDE satisfy B> — 4AC > 0.
3. Elliptic PDE satisfy B2 —4AC < 0.

Distributed Parameter System ||

Classification cont.

Initial condition:
u(z,0) =uo(z) ; Z—z(m, 0) = us(=)

Different boundary conditions:

e Dirichlet condition 4 = f on the
boundary.

e Neumann condition g—: = f on the
boundary.

e Robin condition or mixed condition
au + bg—: = f on the boundary.




Diffusion |
Physical Modelling

-— s ——

1] z z+dz L

Component balance over a volume element in
a tube. Assumptions:

e constant cross area, V = Adz.
e Fick's law, N =DZ.
e space dependent n, n = f:“’ Acdz.

no forced flow.

e no reaction.

a z4dz
a Acdz = ANz+d; - AN;
i/z+dz _c'?_cdz - D(g%z+dz B g—;z)
dz J, ot dz

dc 0%c

o~ Poz

Diffusion 1l
A Parabolic PDE

Diffusion in time and one space dimension:

du(z,t) o %u(z,t)
ot dz?

It is also called the Heat Equation.

There is a number of different methods for
analysis and solution of PDE:s.

e Separation of variables,

e Fourie's method (eigenfunction expan-
sion),
e Integral transforms,

o etc.

Diffusion Il

Separation of Variables

Assume that the solution of a PDE is sepa-
rated into one time dependent and one space
dependent part:

u(z,t) = T(t) X (z)
Apply to the diffusion equation:
bu _ a0

ot~ % 822
X (z
X(z)ar‘g—f) = azT(t)a—;i(z—)
1 aT(#) 1 8*°X(=)
a?T(t) 8t ~ X(z) Oz?

Assume that the two sides are equal to —k?
which then result in two ODE:s

oT(t)

—a't“"“ = —kzazT(fl)
2
¢ a}i @) _ _kx(2)

The eigenvalue problem for PDE:s.

Diffusion IV
Eigenfunctions
Solutions to the two ODE:s.
T(t) = Ae~ka%t
X(z) = Bsin(kz) + C cos(kz)
Apply boundary conditions, wu(t,0) = u(t,1) = 0:
o u(t,0) = T(t)X(0) = X(0) =C =0.
o u(t,1) = T(t)X(1) = X(1) = Bsink =0,
which means that k = +n~.
= un(t,z) = A, e (nma)’t sin(nwz) where

sin(nwz) are called eigenfunctions in z
2 . . .
and e~(")’t an eigenfunction in t.

Apply initial condition, (0, z) = &(z):

o &(z) = T(0)X(z) = X2, Ansin(nmz)
= Ap =2 fy ®(z)sin(nwz)dz

The solution becomes:

u(t, z) = Z Ape=(vm)*t gin(nrg)

n=1




Diffusion V

Diffusion out from a Tube

dc 0%c

5~ Pz

Initial and boundary conditions are ¢(0,z) = 1,
c(t,0) =0 and c(¢,1) = 0.

Solution:

oo
c(t,z) = Z Ape=(nmVD)*t sin(nwz)

n=1

= %(e'"’m sin(rz) + %e"az"zm sin(37z) + ...)

e Higher harmonics decay very fast.
e Low harmonics dominate.

o The initial condition is smoothed out and
destroyed.

Diffusion VI

Diffusion out from a Tube cont.

The harmonics number 1, 3 and 5 of diffusion
problem and the sum of the first 15 harmo-
nics. (time: 0 — 0.2, space: 0 — 1).

Diffusion VII

Diffusion with a Point Source

dc d?%c

o~ Do
Initial condition is ¢(0,z) = §(x).
(Fundamental) Solution:

2
-2 Dt

c(t,z) = e

1
2v/nt
e ¢(0,0) = oo,

o A point source is spread out in space as a
function of time.

Diffusion VIII

Diffusion with a Point Source cont.

(time: 0 — 0.2, space: 0 — 1).




Waves |
Hyperbolic PDE:s

; . Bu __ Bu
e First order: 5t = Ca

o Solution: u(t,z) = ue(z + ct).
o The wave moves to the left with

the speed c.
% Example: mass balance, momentum
balance, ...
. 8%u _ 28%
® Second order: 73 = c“57

o General solution:
u(t,z) = Fi(z + ct) + Fa(x — ct).
o The two waves move in opposite
directions with the speed c.
* Example: strings, membrane dyna-

Waves ||

Mass Balance in a Tube

—_—t f—

0 z rdz L

Total mass balance over a volume element in
a tube. Assumptions:

e no mass production.
e constant cross area, V = Adz, q, = Av,.

e space dependent density, m = f:“’ pAdz.

Acc = In— Out
dm
E- = wzin_ w‘+d10u1

d

z+dz
= / pAds = pyAv—  prpasAvsias
@ /.

Move the time derivative inside integral,
divide with the volume, let dz go to zero.

mics, ... _1_ /z+dz gedm B _”z+d’sz+dx — Uy
dz J, ot dz
% _ ()
ot 0z
Waves Il
Mass Balance in a Tube cont.
Waves IV

Assume constant velocity through out the
tube.

op _ _Bpv _

_ dp v Gp
ot~ 0z

%z P8z~ Y%z
Initial condition: p(0,z) = () (step function)
Solution becomes p(t,z) = 6(z — vt)

e The density wave moves with the speed v.

e The density profile is unchanged when
passing through the tube.

Mass Balance cont.

A wave propagates with the speed 0.5 and 1.
(time: 0 — 3, space: 0 — 5)




Systems of PDE:s

System with first-order (linear) PDE:s ("state
space description”)

Ou(t,z) Gﬁu(t, z)
ot oz

The solution to a first-order system consists of
n waves - one from each eigenvector of G

e u(t,z) is a vector.

e (G is a quadratic matrix.

Systems of PDE:s

Gas Dynamics in a Tube

Assumptions:

e no friction losses,

e pressure linearly proportional to density,
Ap = 2 Ap.

The mass and momentum balances are

o __, o
ot~ M8z
ou  ,0p

."OE—--CB—:n

u is the velocity

Rewrite on matrix form:
g[p _| O e e
ot lul —:—Z 0|0z |u

The eigenvalues are tc with the eigenvectors

HEIN

Mixed PDE:s

Convection-Diffusions Problem

u Odu 16%

%~ 8c ' Poa?
The solution travels downstream as it diffuses.

Fundamental solution:

sp 8 EEEEY

Nonlinear PDE:s

Exothermic tube

(8] Tomp-profie (ot sp0r)

Config  Erase  Rescal

g
:
g
S
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An example of a exothermic plug flow tubular
reactor. Note: x-axis is the space dimension.

e Small changes in the boundary conditions
create drastic changes in the static
profile.

e Chaotic behaviour?
e Hard to solve in the general case!

¢ Relyable simulation tools?




Conclusion

Diffusion and heat equation are parabolic
PDE:s.

Parabolic PDE destroy and smooth out
the initial condition.

Mass and momentum balances are wave
equations or hyperbolic PDE:s.

Waves move the initial conditions
through out the space without destroying
it.

(Very) nonlinear PDE:s are hard to
handle.
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Discrete Time Systems
System ldentification

Kalman Filter

Content

e Difference equations,

e Eigenvalues and stability,
e Discretization methods,

e Stochastic representations,
e Parameter Estimation,

e Linear Regression,

e System ldentification,

e Kalman Filter.

Difference Equations |
State Space Form

Linear difference equation:

z(t + h) = ®z(t) + Tu(t)
y(t) = Caft) + Du(t)

The new state is a function of the old state and
the old input. t is the currant time and h is
the sampling interval.

Nonlinear difference equation:

z(t + k) = f(z(t),u(t))
y(t) = g(=(t),u(t))

Difference Equations Il
Input/Output Form

Linear difference equation:

z(t + h) = ®a(t) + Tu(t)
y(t) = Cz(t) + Du(t)

Introduce the shift operator ¢ with the
property qz(t) = z(t + k) and ¢g7'z(t) =
z(t—h). Eliminate the state vector and express
the output y in the input u.

gz(t) = ®x(t) + Cu(t)
(ol - ®)a(t) = Tu(t
2(t) = (af - ®)~"Tu(t)
y(t) = (C(aI - @)7'T + D)u(t)

This can be rewritten as two polynomials:

or as




Eigenvalues
Stability

As in the continuous case the eigenvalues of
the system matrix has a meaning:

@z =2\ = det(A\I - @) =0
The stability for a difference equation are

e Eigenvalues inside the unit disc or |A| <1
are stable.

e Eigenvalues outside the unit disc or
|A| > 1 are unstable.

Stability |
First Order Example

Assume the following first order difference
equation:

z(t + h) = @x(t) + Tu(t)
y(t) = Ca(t) + Du(k)

File Config Erase Hescale

12
1 ]_. ]
0.8 - [l,_l" _'J_,..,—"'_’.'
+- (|08 | e
ood]l
0.2 |-’
0

o Eigenvalues on the unit disc or [A| =1
oscillates. 1. Negative real eigenvalues, A =
-0.9,-0,4.
2. Positive real eigenvalues, A = 0.9,0,7,0.2.
Discretization Methods |
Exact Discretization
Stability 11

Second Order Example

Assume the following second order difference
equation:

1. Eigenvalues are =~ 0.85 4+ 0.3z
2. Eigenvalues are =~ 0.7 = 0.62
3. Eigenvalues are = —0.8 +0.41

A continuous linear system on state space
form:

da(t) _
~ = As(t) + Bu(t)

y(t) = Ca(t) + Du(t)

Assume that the input signal is constant
between the sampling points and solve the
ODE over the sampling interval.

t-+h '
z(t+ h) = eAtHhtig() 4 / A+ =1 By(s")ds'
¢

t+h
o(t+ h) = e?Mz(t) + / eAth=2")qs' Bu(t)
t

The exact difference equation for the linear
system is then

z(t + h) = da(t) + Tu(t)
& — At

t-+h ] h
T = / eAt+th—s) g/ — f e4’dsB
t 0




Discretization Methods I|

Time Discretization

The general problem can not be discretized
exact. Instead must the time derivative be
approximated. The simplest approximation is
forward Euler:
daft) _

7 = G,Z:(t)

ot + k) — (t)

W = az(t)

Rewrite to a difference equation form

o(t + k) = (t) + aha(t) = (1 + ah)a(?)
Stability for Euler approximation |1 + ah| < 1
or h <1
Other approximations methods:

e Backward Euler, M}fm = az(t + k).

e Trapezoidal rule (Tustin), M;)l_jﬂ =
g (ttE)+e(E)

2
e many more advanced approximations .

Discretization Methods 1|

Exact Discretization Example

First order continuous time model: (mixing

tank)

é= %(cin —c)= —%c—l— %cin
= Ac + Bein

Discrete time model: (exact discretization of
the mixing tank)

c(t + h) = ®c(t) + Tein(t)

e System is sampling rate, %, dependent.

Discretization Methods IV

Approximation Example

First order continuous time model: (mixing

tank)

é= %(Cin - c) — —%C-{— %Cin
= Ac+ Bein
Euler discretized model: ¢ = s(ﬂh—u(ﬂ

oft + 1) o{t) + L2 (ein(t) — eft)

=(1- %)c(t) + %c;n(t)

Difference Equations Il1
Input/Output Description example

Mixing tank:

ot + B) = @e(t) + Tein(t)
y(t) = Cc(t)

Eliminate c using the shift operator gq.

glc = ®c+ Teyy
(¢ — ®)c =Tcin
ye = C(qI — @) 'Tcin

This results in the following

ve(t) = 1(g — e ¥*) "} (1 — e ¥*)ein(2)
b
= . ac,’n(t)
_ B(q)c,
~ Ag) in(?)




Stochastic Difference Equation |
Input/Output Models

Instead of an input signal to the difference
equation we add noise, e(t).

AR-model, (Auto regression):
A(q)y(t) = e(t)
MA-model, (Moving average):
y(t) = Clg™H)e(t)
ARMAX-model, (X for extra input u):
A(q)y(t) = B(g)u(t) + C(g)e(?)
OE-model, (Output error model):

y(t) = f;—ﬁ‘;%u(t) +e(t)

BJ-model, (Box-Jenkins):

y(t) = %ﬁz—;u(t) 84,

Stochastic Difference Equation 11

Graphical interpretations

‘e

C
-u——- B ‘.é—v i y—
A

ARMAX: same dynamics for e and u

r
3

Output-Error: noice added to the measurement
‘e

D

u B Y
—_— —_— ____.‘% }___.
F

Box-Jenkins: different dynamics for e and u

Stochastic Difference Equation 11
Mixing Tank Example

c(t+h)= e v c(t)+(1—e” "q""‘)cm(t)
y(t) = c(?)

Noise on the measurement: OE-model
c(t + k) = ac(t) + bein(t)
y(t) = oft) +e(t)

¥(t) = ~gounlt) + ()

Noise on the input: ARMAX-model

c(t + h) = ac(t) + blcin(t) + e(t))
y(t) = ¢(t)
(g — a)y(t) = bein(t) + be(t)

Conclusions

Discrete Time Models

e Difference equations corresponds to
differential equations.

e Stable difference equations have eigenva-
lues inside the unit disc.

e Differential equations can be turned into
discrete time difference equations:
o linear systems can exactly be
discretized.
o nonlinear systems can only be
approximated.

e Stochastic difference equations add noise
to the system description.

o ARMAX model is a stochastic difference
equation with one deterministic and one
stochastic input.




Parameter Estimation

1. Tailor-made models are based on physical
modelling. Estimation of parameters with
physical interpretation.

2. Ready-made models are general and
problem independent (black-box models)
and are often stochastic difference
equations.

3. Physical experiment based estimation

are problem, technology and application
dependent (not addressed here)

Linear Regression |

Linear Regression Model

Linear discrete time system:

A(q)y(t) = B(q)u(t)

"y +a1¢" Tyt o+ anYe =
qmblut + ...+ bm'u,t
Yt = —Q1Yt—1— - — QnlYt—n

+ blut+m—n + .ot bnYi-n

Rewrite as a linear regression model:

yp:oT‘P
Parameter vector:
6=[a1 az .. an b1 .. bm]T
Regression vector:
o=
[‘_yt—l e —Yt—n  Ut—k ut—k—m+1]

Parameter Estimation |

Linear regression method
Prediction error
e=y—yp=y—0p

The sum of prediction errors:

1 1
Vv = WZEZ = WZ(y—yp)z
_ %Z(yz — 267 fy + 67 Ry6)
1
= ﬁz(yz — [N Ry fn
+(8 — Ry fn)T Bn (6 — Ry fw)

where Ry (matrix) and fy (column vector)
are

Ry = %Z‘P‘PT fr = %Zwy

The prediction error are minimized by the
following choice:

8 = Ry'frv = (v¢") 'y

Parameter Estimation Il
Iteration method

Other types of models, rewritten as g(z) =
0, are estimated by the used on iteration
methods like Newton-Raphson.

Tit1 = & — #[9'(“’1’)]_19(“’1')

z is decreased by the function g divided
by the Jacobian of g. p is a step length
parameter.

It is used to solve




Linear Regression 11
Mixing Tank Example

Assume noise on the input resulting in an

ARMAX model

(g + a)ys = bein, +e(t)
Yy = ayp—1 + bCin,_, + €

Linear regression formulation:

yp=0"p=[a b] [_yt_l]

Ciny_,

This result in the following parameter estima-
tion:

where

Y
—Yt—1 —Yt—2 .-
p= [ ] Y= |¥Y-1

Ciny_1 Ciny_»

Model Properties

e Bias error is the convergence error of the
estimation. The estimation converge to
the best estimation if the number of data
increase. The best estimation is not the
true estimation.

e Variance erroris the variance of the
parameter estimation. The variance error
decrease with increased number of data.

e Identifiability means that there by occur
algebraic constraints between parameters.
Can not be estimated on the same time.

System ldentification |
Working procedure

e Input signal must contain all needed
frequencies. Persistently excitation of the
system

e Sampling interval can not be to short
and not to long. Recommendation is 4-
8 sample on the step response.

o Post treatment: remove outliers and
trends.

o Model structure: tailor-made or ready-
made model? What kind of ready-made
models, ARMAX, BJ etc.?

o Model validation: model "stability” for

different data and identification methods.

System ldentification I|

Basic concepts

S: is the system which is a mathematical
description of the process.

M: is the model structure for which parame-
ters are estimated.

I: is the identification method used in the
parameter estimation.

X: is the experimental conditions used to
produce data.

These four basic concepts can be changed
in different directions independently of each
other




Conclusions

System ldentification

e Good experimental data.

e Choice of model structure:
o tailor-made, (physical modelling),
o ready-made, examples are ARX,

ARMAX, OE and BJ.

e ldentification methods:
o numerical demanding,
o MATLAB toolbox.

Kalman Filter |

State Estimation

Assume a linear difference equation

Bpp1 = Pz + Ty
y = Cay

A perfect model of the system can be used
to estimate the states of the system. The
guarantee that the estimates converge we
have to feedback the estimation error through
some gain coefficients.

Teyyy = P, + Tue + K (Yt — Ye,)
Yey, = Cfceg

The state estimation error will be

Pi+1 = Le+1 — Teyqa
= ®z, + Tuy — e, — Tup — KC (x4 — e,)

pr41 = (2 — KC)p

If ® — KC has its eigenvalues inside the unit
disc the estimation error goes to zero.

Kalman Filter Il

Process
u x = Ax + Bu y
y = Cx -
Model xe

xe’' = Axe + Bu + el

.| ye=Cxe iBy
+
ye

Error feedback
el K e

Model-based control,

e Model-based sensors,

Supervisory control,

Parameter estimation.

v

Kalman Filter Il

Parameter Estimation

Assume the following process model:

9t+1 =6
ye = ¢ O + e(2)

A Kalman filter will look like:

06t+1 = 06¢ h K(yt - yﬂt)
Ye, = (PToﬂt

e Recursive parameter estimation,

e Real-time identification,




Conclusions

Kalman Filter

Kalman filter has many names
o state reconstruction,
o state observer,
o estimation filter.

Deterministic models
o pole placement of the observer
gains.

Stochastic models
o Gain K calculated from noise
models,
o the Riccati equation,
o both stationary and time varying
K:s.
Kalman filter can be used both for
o state estimation by the used of a
good model.
o parameter estimation by the used of
a model structure.




PROCESS MODELLING

lecture VI

Simulation

Model Approximations

Content

e Algebraic equation systems,
o Linear equations,
o Sparse matrices,
o Nonlinear equations.

e Continuous time simulation,
o explicit and implicit methods,
o multistep methods,
o Runge-Kutta methods,
o Stiffness.

e PDE simulations,
o Discretization in space and time,
o Finite difference and finite element
methods.
o Method of lines.

e Other Model Approximations

Linear Equations
Direct Method

Az =1b

1. LU-factorization and Gauss elimination
results in A = P~1LU

2. solve Lz = Pb (forward)

3. solve Uz = z (backward)

o (MATLAB: z = A\b)

Sparse Matrices

|, zeros

|- nonzeros

e many zero elements
e sparse matrix technique
store and handle only nonzeros
e nonzero density, nnz
(MATLAB can handle sparse matrices)

(o]




Nonlinear Equations
Newton's Method

g(z1y 0y 2pn) =0

Taylor expansion equal to zero

g(zt!) ~ g(2*) + ¢'(2*) (2"t — ') = 0
g'(z*)(z*+! m)=—9( *)
gt = o' — ¢'(z*) " g(z?)

Iterative procedure
o A" = ¢g/(z') and b = g'(2%)z’ — g(a)
each iteration becomes: Alzit! = pf

A? is the Jacobian

¢ modified Newton methods
o Other Jacobian calculations
o Step size control

Continuous Time Simulation

Content

e Explicit and implicit methods,
o Multistep methods,

e Runge-Kutta methods,

e Stiffness.

Explicit Methods

Euler Approximation

Make a Euler approximation of the derivative
of a continuous system:

dz
- = —ax
dt

Lt41 — Tt —az

h
Ty41 = (1 - ah)mt

e Stability: |l —ah| <lorh <2,
e Complexity: one function evaluation,

Tiy1 — T + hf($t)

Implicit Methods |

Backward Euler

Make a backward approximation of the
derivative of a continuous system:

dz .
dt
(4 -2
BHLZZ - gy
(l + a.h):z:t+1 = I
1

Bl = T g%

e Stability: ol < 1 valid for all h.
A-stability




Implicit Methods |1

Backward Euler cont.

In the general nonlinear case we can not make
an explicit formula of the new state.

dz
5 — 1@
mt—“{—mt = f(@e+1)

er11— hf(zer1) —2e =0
F(I:H.l) =0

e Nonlinear equation in each time step.
e Newton based method
ot = gt — [ F(2%)' ]! F(z}).
e Complexity; one function evaluation +
one jacobian generation.

Multistep Methods |
Adam methods

Approximate the RHS with a weighted sum of
old function evaluations from previous steps.

d
5 = 1@)

fth—_mt = c1f(we) + c2f(@e-1)

e 2-step explicit method,

e multistep explicit method are called Adam
methods,

e increase accuracy without increase of
complexity (only use of old data),

o decrease of stability regions, smaller step
sizes.

Multistep Methods Il
Gear Methods

d

7=/

T4l — Tt
h

= cof(zes1) + c1f(ze) + c2f(2s-1)
e 3-step implicit method,

e multistep implicit methods are called Gear
methods,

e better stability to the prize of increased
stability

Predictor-Corrector method:

P: use explicit method to predict z},,,
E: use z;,, to evaluate f*(z;,),

C: use f*(z;,,) in the implicit method to
correct z;1; (Newton method).

Runge-Kutta Methods |
A One-step Method

Make better approximation of the RHS at
current step.

dz
pr = f(z)

Le41 — T

1
T = 5 (F(@) + flae + hf(2:)))

e one-step method,
e order-2,
e error estimate of order 3,

E=Y—Ye = —%fyf—%fyyff'

e error estimate is used for step size
control.

e Runge-Kutta 23-method.
o standard MATLAB: ode23, ode4b
o SIMNON: Dopri45, RKF45




DAE-Methods

Stiffness
d
Z=h() 5 0= fl)
&= Az %1}‘__‘“ = fi(zes) 3 0= fa(eer)

e A has eigenvalues with different magni- 2e41 = bfi(ep1) —2 =0 5 fa(@eg1) =0
tudes. Fze1) =0

e Step size is controlled by the largest
eigenvalue, i.e. fastest mode. o Nonlinear equation in each step,

° S.mall stablllty. regions means many small o Modified implicit method, DASSL.
time steps, (simulation takes forever). _ _
Use implicit thod o Often better to make a symbolic manip-

¢ Use Implicit methods. ulation of the DAE:s into ODE-form, e.g.

Dymola.
Conclusions

e Explicit methods has lower complexity,

e Implicit methods has better stability, PDE Approximations

e Multistep methods increase accuracy to

. .- Content
the prize of stability,

e Runge-Kutta methods increase accuracy e Discretization in space and time,
for 1-step methods, e Finite difference and finite element

e Stiffness means that there are different methods.
time scales in the system. Use implicit o Method of lines.
methods.

e Large sparse problems require special

implementations of these solvers.




Finite Difference Approximation |

Space Discretization

0%u
322 flu)=0
Approximate the function in space with a set

of points.

a o
32_“ - Bzis1 ~ Bz
dz? h
P - wig = 2ui
~ h - h2
-2 1 Uy f(h)
1 -2 1 Uy f(2h)
= 1 =
.1 . :
1 =21 Lu, f(nh)

Finite Difference Approximation I

Space Discretization cont.

The finite difference approximation results in
Au=1>

e Large linear equation system
e Sparse matrix problem
e Can be used in 2 and 3 dimensions

Generation of the grid points

O

Automatic regridding
- moving grid points
- generation of new grid points

o]

Finite Element Approximation |

Function Approximation

Approximation of the function with a set of
piecewise polynomials (pp-approximation)

u(z) = EjL10;%;(2)
Piecewise polynomials (Basis functions):
e linear w; = =—2i=L
Bit1—Fj
e Hermite cubic g; = 2z3 + 3z

e B-spline
Dominating methods (to find a):

o Collocation (approx. in a set of points)

o Galerkin (approx. of the function)

Finite Element Approximation Il
Collocation Method

0%u

gz~ fW =0
The pp-approximation must be valid in the
collocation points, 2 = 1..m.
0%u
Frcie flu)=0
u(z) — f(z:) =0
271095 (i) — f(z:) =0

This can be rewritten as

Afa=f°

Ajj = ¥ (z:)
a=[a1 ax .. am]T
f=1f(z1) flz2) .. flom)]"

e Galerkin also results in a linear equation
system ASu = fC.




Method of Lines |

Parabolic PDE can be handled in the follow-
ing way:
ou 0%u Ou
7 =Pz V5 T
e Make a discretization
o finite difference in space or
o finite element of solution
= a set of ODE:s

e Solve with an ODE-solver
o Stiff problem
o Sparse matrices
= sparse implicit solver

Method of Lines |1

Dynamic Finite Difference

Approximate the PDE with a set of ODE:s in
time

ou 8%u

= oo T

du; D

_dli = h2 (wig1 — 2ui +ui—1) + fui)

Rewrite on matrix form

du D
T
u:[u1 Uz . . un]
-2 1
1 -2 1
A= 1
1
1 -2

F=1f(w) flua) . . flua)]

Method of Lines I11

Dynamic Finite Difference cont.

The boundary conditions must be fulfilled.
Assume Dirichlet condition

u(t,0) = u0(= zo)
u(t, L) = uL(= 2ny1)

Space difference with n grid points

du D
—d—tl— = ﬁ(uz — 2uy + u0) + f(u1)
dun

D
=T h_z'(u-L_zun+un—1)+f(un)
On matrix form (u, A and f as above)
du _ D
dt  h?
b= %[uo 0 .. 0 uL]¥

Au+ f4+ b

Boundary conditions:

e Dirichlet add a b-vector

e Neumann also change the A-matrix

Method of Lines IV

Dynamic Finite Difference cont.

Trapezoidal approximation of the time
derivative

du _ Ug+h — Ut

dt ek - h
The space discretization must also be based
on the midpoints.

du 0%u
Uitk — Uit 2(ui+1,t+h + Uit1,e
h " h2 2
_ 2‘&1‘,:% + Uit + Ui—1,t4+h T+ Ui—l,t)
2 2
+ f(u"llﬁ‘-}-h + ui,t)

2

e Crank-Nicolson method

e implicit problem




Method of Lines V

Dynamic Finite Element

Approximate the solution with trial functions
in space and parameters in time

u(t, ©) = EiL,a;(t)®5(2)

Use it to approximate the parabolic PDE in a
set of points (collocation)

Ou 0%u
5= ng—z + f(u)

£(d'®) = DE(ad") + f(E(a®@))

This results in the following nonlinear ODE:s

Ad'(t) = F(t,a)

A= i)j(mi)
a = [a,1 a . . Qg ]T
F = [f(Sa®(z1)) f(Sad(2a))]"

Conclusions

e Finite difference approximates the PDE
into a set of points.

o Finite element approximates the PDE into
a set of trial functions.

e Both FD and FE result in linear equation
systems

e Method of lines, MOL:
o make a FD or FE
o solve the initial value problem
(ODE)
o parabolic PDE:s
e Waves or Hyperbolic PDE:s are not
stable

e MOL should not be used for waves

e Efficient code requires regridding

Model Approximations
Summary

e Space discretization of PDE into ODE,

e PDE-approximations into harmonics
(relaxation)

e Linearization of nonlinear to linear,

o Time discretization of continuous to
discrete,

e Model reduction (state reduction)
o Balanced realizations

PROCESS MODELLING
Content

Physical Modelling

Computer Aided Modelling
Linear Models

Nonlinear Models

Distributed Parameter Models
Discrete Time Models

Stochastic Discrete Time Models

System ldentification

© ® N o e R Wb

Model Approximations in simulation




PROCESS MODELLING

What is not a part of the course

Tensor based models

Stochastic models

Nonparametric models
o Spectrum and FFT (Fast Fourie

Transform)

o Frequency response models

Fuzzy logic based models

Neural net based models

Discrete event models

etc.

PROCESS MODELLING

the END

(only the exam left)




Process Modelling

Lecture 2 - problems: Physical Modelling

2.1) Make problem 2.1 in Luyben, page 38. List your assumptions. (Component mass balances over a continuous
stirred tank reactor, CSTR.)

2.2) A stirred tank (with no reaction) has two inflows, F1 and F2, and one outflow, F3. The tank is heated with a
electrical heater, Q. Assume that the flows and the tank volume are constant. Describe the liquid temperature in the
tank. List your assumptions. (see example 2.6 in Luyben, page 23).

2.3) Make problem 2.4 in Luyben, page 38. List your assumptions. (Energy balance over a plug flow tubular reactor,
PFTR.)

2.4) Substrate, S, is pumped into a fed-batch reactor where it is consumed by the biomass, X. The biomass growth is
described by Monod kinetics and the consumption of S is proportional to the biomass growth. Put up a model
describing the volume of the reactor and the concentrations of X and S. List your assumptions.

2.5) An ice cube is dropped into a hot,perfectly mixed, insulated cup of coffee. Develop the equations describing the
dynamics of the system. List all assumptions and define all terms. (Problem 3.9 in Luyben)

Last update: April 24, 1995.
Bernt Nilsson
bernt@control.lth.se



Process Modelling

Lecture 3 - problems: Computer Aided Modelling

3.1) Study the gas-phase, pressurized CSTR on in section 3.5, p. 45-46 in Luyben.
a) Write down the dynamic model of the system.

b) Make a direct problem formulation (dynamic simulation). Which variables are known parameters
(time invariant), known variables and unknown variables?

¢) Write a MATLAB function (or calculation procedure) that can be used to simulate the system.

3.2) Make a SIMULINK model (or block diagram description), using predefined modules, of the tank reactor series
presented in section 3.2 in Luyben, p 41-43. Hints: transform-the differential equations-into transfer functions.and draw
a block diagram. Match with SIMULINK modules.

3.3) Put up a bond graph for the two heated tanks in section 3.4 in Luyben, p 44-45.

3.4) The single-component vaporizer in section 3.7 in Luyben, p. 51-54, is described by four different models. Model C
is based on a rate equation and Model D is based on equilibrium. Assume equilibrium, T(liquid) = T(vapour). Rewrite
the DAE-system into a ODE-system, i.e. verify Model D.

3.5) Make the problem 3.12 on page 80 in Luyben.

a) Model a semibatch reactor with evaporation (do not model the pressure and the temperature
controllers).

b) The reactor is assumed to be isothermal. How will the model look like if this assumption is changed?

c) If we model the pressure dynamics in the vapour.and describes the evaporation with a flux expression
then we get yet another differential equation. If we describes it with an equilibrium-expression instead-
then we get an algebraic equation system. Show it!

Last update: April 27, 1995.
Bernt Nilsson
bernt@control.lth.se



Process Modelling

Lecture 4 - problems: Linear Models

4.1) Make a model of two tank reactors in series (two CSTR). Assume constant flows and volume in the CSTRs and
first order kinetic. List your other assumptions. (See the tank series in section 3.2 in Luyben)

a) Write your model on matrix based state space form. Use the concentrations as states,
b) Calculate the eigenvalues and eigenvectors of the corresponding system matrix.

¢) How does the dynamic response depend on the reactor volumes? Discuss.

d) Scetch the phase plane.

4.2) Make a model of the gas-phase, pressurized CSTR discussed in secion 3.5 in Luyben, p 45-46. (See also
lecture-problem 3.1)

a) Calculate the steady state.
b) Calculate the Jacobian of the system and make a linearization. Write down the linearized model.

¢) How does the linear model dynamics depend on the steady state.

Last update: May 3, 1995.
Bernt Nilsson
bernt@control.lth.se



Process Modelling

Lecture 5 - problems: Nonlinear Models and Distributed Models

5.1) A heated tank has a constant volume of liquid. The tank is heated by an electrical heater with the effect Q.

a) Set up an energy balance over the tank. Assume constant feed temperature and variable feed flow.
Hints: see Energy Balance I in lecture 2 and First Order System II in lecture 4a.

b) Calculate the steady state and linearize the system.
¢) Calculate the time constant and the steady state gain, K = T/qin.

d) Scetch the time responses for two different feed flow changes. The feed flow is changed as a step
function from qin to 1.1*qin. The first step with qin= q and the second with qin=q/2.

5.2) Study a vertial heated water tube. Assume constant flow through the tube.

a) Make proper assumption and ‘put up a physical-model and rewrite it as a system description. Hint: .
Energy balances II and III in lecture 2.

b) What kind of PDE do you get in subproblem a)?

¢) What kind of PDE do we get if we remove the external added heat?

d) What kind of PDE do we get if we remove the forced flow?

€) What kind of PDE do we get if we remove the heat conduction in space dimension?
f) What kind of PDE do we get if we remove the time dynamics?

g) What happens if the water starts to boil? Discuss! Model?

Last update: May 16, 1995.
Bemnt Nilsson
bernt@control.lth.se



Process Modelling

Lecture 6 - problems: Discrete Time Models and Identification

6.1)

Hot liquid enters a buffer tank with the volume 2 m”3. The flow through the tank is assumed to be constant, q = 0.01. A
simple model is a first order system, T" = (q/V) (Tin - T).

a) Make an exact discretization of the system.
b) Calculate the parameters for two different sampling intervals. Choose the sampling intervall 40 and 2.

¢) A simple rule says that it is proper to sample 4-8 times on a step response. What does this mean in this
case?

6.2)

a) Assume that the- measurement of the tank temperature is noicy, e.g., add noise on the measurement y.
Write down the input/output representation. What kind of model is this?

b) Assume that the temperature in the inflow is noicy, e.g., add noise on the input Tin. Write down the
input/output representation. What kind of model is this?

Last update: May 23, 1995.
Bernt Nilsson
bernt@control.lth.se



Process Modelling

Lecture 7 - problems: Simulation and Model Approximation

7.1)
Lets go back ones again to the mixing tank with constant hold-up, ¢’ = g/V(cin - ¢).

a) Make a forward Euler approximation of the linear mixing tank model. What is the largest time step for
a stable approximation.

b) Make a backward Euler approximation and calculate the stability.

¢) Two mixing tanks in series can be described as a linear system, ¢’ = A ¢ + B cin. Assume that the
second tank has a volume that is 50 times larger then the first one. Make an forward Euler approximation
and calculate the stability margin of the time step.

(Hint: stiff problem)

7.2) extra problem for the interested

From lecture 2, slide Mass Balance IV, a tubular reactor model is developed. Assume constant velocity, v, first order
reaction, r=-kc and isothermal conditions then we get de/dt = D d*2¢/dx2 - v dc/dx - k c.

a) Make a finite difference approximation of the space dependency and write it as a MOL problem
(method of lines). For simplicity make a two point grid (x0=0, x1=L/3, x2=2L/3, x3=L) where x0 and x3
are the boundary points.

Hints: d*2¢/dx"2 = (e(x_i+1) - 2¢(x_i) + c(x_i-1))/h*2 and dc/dx = (e(x_i+1) - c(x_i-1))/h

b) Choose a Dirichlet boundary condition, ¢(x_0) = a and c(x_3) = b. Use it in the discretization of the
boundaries in a). What is a proper boundary condition for this problem, Dirichlet, Neumann or Robin?

¢) This becomes a second order linear system on state space form. Calculate the eigenvalues.

Last update: May 31, 1995.
Bernt Nilsson
bernt@control.lth.se



Process Modelling

Exercise 1: Physical Modelling Thursday 4/5, 10-12, Lutetia

This first exercise in the course is focused upon physical modelling but first of all short description how to use
MATLAB and SIMULINK.

The following chemical reaction occure in a batch reactor; A -> B -> C

1) Model the component balances in the reactor and write down the differential equations for component A and B.
Assume:

1. Homogenous mixing,
2. Isothermal conditions,
3. Atmospheric pressure,
4. Constant volume,
5. No other side reactions, and
6. 1:st order kinetics.
2) MATLAB

a) Write a MATLAB function with the calculation procedure for the simulation problem for the model in 1). Example:
function xder = batch(t,x)

x(1) N

x(2) D

b) Simulate the reactor.

® Parameters: k1l =k2=1.
@ Initial value: cA(0) =1, cB(0) = 0.

[t,x] = ode23(’batch’,0,3,1[1,01);
plot(t,x)

¢) Make simulations with different parameters and inital values and study the difference.

3) SIMULINK

a) Describe the model in 1) as a block diagram with transfer functions.

b) Use the SIMULINK libraries to generate a graphical block diagram of the batch reactor model.
¢) Make corresponding simulation as in 2).

d) Are there other ways to describe the same problem in SIMULINK? Discuss!

4) Physical Modelling

A batch reactor model is discussed in section 3.9, p. 57-62, in Luyben. A case study is also found in section 5.7, p.
150-157 (not in hand-outs).



@ initial value of A: cA0 = 0.8 1b mol / ft*3
® first reaction: rl = al *eN(-E1/(R*T))
O al =729.55 min*-1
O EI1 =15 000 Btu/(Ib mol)
O R =1.9858 Btu/(lb mol F)
O Reaction heat: L1 = -40 000 Btu/(Ib mol)
@ second reaction: r2 = a2%*e™N-E2/(R*T))
O a2 =6567.6 min"-1
O E2 =20 000 Btu/(Ib mol)
O Reaction heat: 1.2 = -50 000 Btu/(1b mol)
reactor volume: V = 42.5 ftA3
jacket volume: Vj = 18.83 ft*3
metal volume: Vim = 9.42 ftA3
liquid: Cp =1 Btu/(Ib F)
jacket: Cpj =1 Btu/(Ib F)
metal: Cm =0.12 Btw/(Ib F)
liquid density =50 1b/ft"3
jacket density =62.3 1b/ftA3
metal density =512 Ib/fir3
Heat transfer: liquid to wall, gi = Ai hi (Tw - Tj)
O Ai=56.5ft"2
O hi =160 Btu/(h F ft*2)
® Heat transfer: wall to jacket, gos = Aos hos (T - Tw)
O Aos=56.5ft"2
O hos = 1000 Btw/(h F {i*2)
® Jacket inflow temperature: Tj0 = 80 F

a) Make a SIMULINK model (MATLAB or other simualtion tool) of the batch reactor with with the physical data
above. Assume isothermical conditions (T = 250 F).

b) Change the assumption 2 and assume instead variable temperature in the reactor. The reactor is cooled by a jacket
(Tj =250 F). In other words describe the dynamic energy balance over the reactor. Assume constant temperature in the
jacket and no metal wall accumulation. List all other assumptions. Add your energy description to the model in a).

¢) Describe also the energy balance over the jacket. List all assumptions. Add the jacket energy balance to the
SIMULINK model. What is a proper coolant flow through the jacket.

d) Assume also that the metal wall of the reactor accumulate heat.

5) Project Part

a) Make the same simulation of the batch reactor which is done in Luyben, section 5.7. Heating of the reactor by steam
to start the reaction then filling the jacket with coolant and then cool the reactor by controlling the flow.

b) Change the 4th assumption and assume variabel volume, In other words model a dynamic mass balance. Component
A enters the reactor under a time intervall, x. (Make a semi-batch sequence).

¢) Change the 5:th and 6:th assumptions and add side-reactions and nonlinear kinetic expressions.

d) Nonhomogenous mixing and discuss other assumptions that can be violated in the model.

Last update: May 3, 1995.
Bernt Nilsson
bernt@control.lth.se
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Process Modelling

Exercise 2: Linear Models and Analysis, Thursday 11/5, 10-12, Lutetia

This exercise is focused upon linear models and linear analysis. The numerical problems require the use of MATLAB
or corresponding software.

1)

Two CSTR is connected in series. They have constant hold-up (constant volume and flow). In the reactor a simple
reaction occure R -> P, which is described by first order kinetics. Assume isothermal conditions. (Use the following
data:q=V1=V2=kl=k2=1)

a) Put up the component mole balances of component R over the reactors. Write the linear model on state space form
(using matrices). Assume that the inflow concentration of R is the input signal.

b) Calculate the eigenvalues and eigenvectors for the system matrix A. (both for homogenous case (q = 0) and
nonhomogenous (q = 1)).

¢) Draw a phase plane plot.

d) How does it change if the reactor volumes are changed and when then reaction coefficient is changed?

2)

Use a proportional controller to control the concentration in the second CSTR by the use of the inflow concentration of
R.

a) Rewrite the linear model with the control law Cin = u = K{( Cref-C2)
b) Calculate the eigenvalues for the controlled reactors. Choose K = 1.

¢) Draw a phase plane plot. Study also a step response.

Project part.

3)

A cocurrant heat exchanger can be modelled by two PDE:s. The heat transfer between to two sides are modelled with
an overall heat transfer expression. One way to approximate the PDE is by the method of lines, MOL. The heat
exchanger is cut into slices, each slice is composed of one hot side and one cool side. These sides are constant volume
compartments.

a) Put up the energy balances over the heat exchanger and writew them as PDE:s.

b) Approximate the PDE by the method of lines and rewrite the model on matrix based state space form. Begin by only
making one slice. Simulate the response to changes in the inflow temperatuers.

¢) Put a model for three slices. Simulate.
d) Put a model for ten slices. Simulate.

€) Compare the simulations of different approximations. Make linear analysis and study the eigenvalues for models.
The change of some assumptions will make the model nonlinear. Which?

Last update: May 10, 1995.
Bernt Nilsson
bernt@control.lth.se



Process Modelling
Exercise 3: Nonlinear Models and Analysis, Thursday 18/5, 10-12, Lutetia

This exercise is focused upon nonlinear model, linear analysis and phase plane analysis. The numerical problems
require the use of MATLAB or corresponding software.

1) In a stirred tank bioreactor microorganisms, X, is produced under the consumption of substrate, S. The specific
growth rate of X can be described by a Monod expression, mu = (mu_max * §)/(Km + S); (s*-1). The consumption of S
is proportional to the growth rate, muS = k1*mu. Data:

D=¢g/V=0.2h*1
Sin=5gl

k1=2

Km =10 g/
mu_max = 6.3 h*-1

a) Put up the mass balances over the microorganisms, X, and substrate, S. Assume constant volume, flow, temperature
and other conditions (pH, 02, etc.). The feed flow has the concentration Sin of substrate.

b) Calculate steady state.
¢) Linearize the system, calculate the Jacobian and its eigenvalues.

d) Draw a phase plane plot.

2) Change the specific growth rate and add inhibition, mu = (mu_max * S)/(Km + S + S$A2/Ki); (s*-1).
® Ki=0.1g1

b) Calculate the steady states (three).

¢) Linearize the system, calculate the Jacobian and its eigenvalues for the different steady states.

d) Draw a phase plane plot. Categorize the different steady states.

Project part.
3)

A CSTR with an exothermic reaction can behave very perculiar. A model based on one mass and one energy balances
show up bifurcation phenomena and limit cycles. A PI-controlled CSTR (three states, an extra state from the integral
part of the controller) can have chaotic behaviour. The project is to simulate a system like this. Ask me (Bernt) for
references to papers with data.

alternative:

A very famous chemical reaction set is called Belusov-Zabotinskii reaction. The components of the reactions are
cerium sulphate, sodium bromate, malonic acid and sulphuric acid. A simplified model of the kinetics are as follows

X’ =x(x - Xy + y -qx"2)
y’ = U/s*(-y - xy + {z)
Z =w(x-z)

This model can show up bifurcation, supercritical and subcritical limit cycles and chaotic behaviour (choice of
parameters s, q, f, w). The project is to simulate a system like this. Ask me (Bernt) for references to papers with data.

Last update: May 16, 1995.



Process Modelling

Exercise 4: System Identification, Thursday 29/5, 10-12, Lutetia

This exercise is focused upon system identification and discrete time systems. The numerical problems require the use
of MATLAB with system ideentification toolbox, SITB.

1) Simulate different discrete time systems using the idsim command in SITB. The command sequence need for a
simualtion of a discrete system with or without noise is found on page 1-59.

a) Simulate the mixing tank example used in the lecture.
b) Add noise to the measurement and simulate.
¢) Add noise to the input signal (concentration variations in the inflow) and simulate.

d) Simulate a ARMAX model and a Box-Jenkins model.

2) In the SITB maunual there is An Introductory Example on page 1-5 to 1-7.
a) Make a system identification by just follow the introductory example (ARX identification).

b) Test other kinds of models, like an ARMAX model.

Project part:
3)

Select a simple process example and put up a system description based on physical modelling. Simulate it, add noise
and take out (noisy) sample data. Make a system identification on the simulated data using SITB. Validate the estimated
model against the model with or without noise.

Last update: May 24, 1995.
Bernt Nilsson
bernt@control.lth.se
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Process Modelling: Exam

1. Explain shortly the following terms:

a) Direct and inverse problem formulation.

b) Continuity equations.

¢) Phase plane.

d) Deterministic chaos.

e) Parabolic PDE (example).

f) ARMAX model.

g) Stiffness and sparsness
2. A stirred tank (with no reaction) has two inflows, F1 and F2, and one outflow, F3. The tank is heated with a electrical
heater, Q. Assume that the flows and the tank volume are constant. Describe the liquid temperature in the tank. List

your assumptions. (see example 2.6 in Luyben, page 23).

3. Make problem 2.2 in Luyben, page 38. List your assumptions. (Component balances over a plug flow tubular reactor,
PFTR.)

4. Make a SIMULINK model (or block diagram description), using predefined modules, of one heated tank. A
modification of section 3.4 in Luyben, p 44-45. Hints: transform the differential equations into transfer functions and
draw a block diagram. Match with SIMULINK modules.

5. Make a model of two tank reactors in series (two CSTR). Assume constant flows and volume in the CSTRs and first
order kinetic. List your other assumptions. (See the tank series in section 3.2 in Luyben)

a) Write your model on matrix based state space form. Use the concentrations as states.
b) Calculate the eigenvalues and eigenvectors of the corresponding system matrix.
¢) How does the dynamic response depend on the reactor volumes? Discuss.
d) Scetch the phase plane.
6. A heated tank has a constant volume of liquid. The tank is heated by an electrical heater with the effect Q.
a) Set up an energy balance over the tank. Assume constant feed temperature and variable feed flow.
b) Calculate the steady state and linearize the system.
c¢) Calculate the time constant and the steady state gain, K = T/qin.

7. Hot liquid enters a buffer tank with the volume 2 m”3. The flow through the tank is assumed to be constant, q = 0.01.
A simple model is a first order system, T” = (¢/V) (Tin - T).

a) Make an exact discretization of the system. Calculate the parameters for two different sampling
intervals. Choose the sampling intervals 40 and 2.

b) A simple rule says that it is proper to sample 4-8 times on a step response in order to make system
identification. What does this mean in this case?

Bernt Nilsson, June 7, 1995.



