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Robust Narrow-Band Disturbances Rejection
Using Overparametrized Pole-Assignment
Control’

SERGIO SAVARESI
Politecnico di Milano - Milano, ITALY

BJORN WITTENMARK
Lund Institute of Technology - Lund, SWEDEN

Abstract. In this work, the problem of designing feedback controllers for the rejection of
narrow-band disturbances is considered. The design technique proposed herein is based
upon a well-suited overparametrization of standard controllers; the extra-degrees-of-
freedom so introduced are used to improve the performances of the basic controller, in
terms of output variance, and in terms of robustness with respect to uncertainties in the
parameters. In particular, the problem of improving the robustmess of the system, when
the system time delay is subject to uncertainties, is considered, and an innovative
solution proposed. Moreover, it is shown that the proposed overparametrizing technique
can be straightforwardly used for the design of high-performance notch filters.

Key Words. Harmonic disturbances; overparametrization; robust control; minimum
variance control; notch filters; pole placement.

1. INTRODUCTION

This paper deals with the problem of designing feedback control systems, when the
system is affected by harmonic (narrow-band) disturbances, the rejection of which is a
non-trivial problem, which has received a great deal of interest both in the field of
control system (see e.g. [25],[37]), and in the field of signal processing (see e.g.
[51.[39D).

The importance of the problem is essentially due to the fact that harmonic (or quasi-
harmonic) signals embedded in broad-band noise frequently appear in practice. As an
example of harmonic disturbances, one can consider the case of acoustic noise or of
mechanical vibrations induced on vehicles (cars, boats, aircrafts, helicopters, etc.) by
the rotation of mechanical components (engines, gear boxes, etc.).

Several design techniques have been proposed during the last decades; among them,
one of the most popular is based upon a biquadratic model of harmonic signals, and
provides good performances over a wide range of conditions (see e.g. [31],[33]1,[37]).

' This work is supported within the Human Capital and Mobility Network: “"Nonlinear and Adaptive
Control: towards a Design Methodology for Physical Systems”.



In this paper, a technique based on the overparametrization of a "standard" controller
is proposed, having the aim of improving its performances, while keeping unchanged
the number and the position of the poles of the closed-loop system; in this sense, such
a technique, can be viewed as a pole-placement overparametrization technique (see
[71,[41]). The extra-degrees-of-freedom are used to enhance the performances of the
basic "overparametrized" controller, in terms of output variance, and in terms of
robustness with respect to uncertainties in the parameters of the noise and of the
system. In particular, an innovative method for dealing with the problem of improving
the robustness of the control system, when the system time delay is subject to
uncertainties, is developed.

Finally, it will be shown that the overparametrization technique developed for feedback
control systems can be straightforwardly extended to the design of high-performances
stop-band filters.

The paper is structured as follows: in Sect.2 the problem of narrow-band disturbances
rejection is stated, while in Sect.3 a classical design technique for the cancellation of
narrow-band signals is briefly presented. Sect.4 is entirely devoted to the presentation
of the overparametrization technique, and it is complemented by several theoretical
results and numerical examples. In Sect.5 the problem of stop-band filers design by
using the overparametrization technique is considered. Some conclusive remarks end
the paper.

2. PROBLEM STATEMENT

The scheme depicted in Fig.2.1 represents, in a synthetic way, a dynamical system with
the output affected by an additive disturbance constituted by an harmonic signal
embedded in white noise.

d(t) = e(t) +s(t)

u(®) B(Z_l) —k 5 ¥
ci:z™h

Fig.2.1. Dynamical system with narrow-band output disturbance.

The symbols used in the above scheme have the following meaning:
e u(t) is the input of the system;
e y(t) is the system output, and it is supposed to be measurable;

° B(z'l)/ C(z™) is a known rational transfer function, and it is supposed that the
roots of polynomials B(z"') and C(z™') are outside the unit circle (i.e.



B(z™)/C(z™") has a stable inverse); B(z™) and C(z™') are supposed to have
degree np and n¢ respectively.

e z7* isa k-steps pure time delay;

e d(t)=e(t)+s(¢) is an additive disturbance, constituted by a pure harmonic signal
(s(t) = M sin(Qz + ¢ )) embedded in white noise (without loss of generality, in the
rest of the paper, e(z) will be supposed to be a zero-mean unitary-variance white
noise). The parameters M and Q of the harmonic signal are supposed to be known,
possibly with some uncertainties (for more details on the problem of estimating
such parameters, see e.g. [6],[12],[16],[18]).

The problem this work deals with is the design of a feedback control law (see Fig.2.2)
G(z™)
F(z™)

having the goal of minimising the output variance, in presence of uncertainties in the
harmonic signal parameters, M and €2, and in the system time delay, k.

d()

u(t)=- y(@),

5 S
Z

G(iz™
TPz

Fig.2.2 Closed-loop control system

As an example of a practical problem which can be schematised by means of the
general scheme of Fig.2.2, consider the following:

Example 2.1

In Fig.2.3 the basic scheme of an Active Noise Cancelling (ANC) problem is depicted.
The main elements which constitute such a scheme are the following (see [25],[31]):

e anoise source (e.g. an engine);
¢ a microphone, around which one would like to attenuate the noise level;
e aloudspeaker, which produces the cancelling signal;

e the system between the loudspeaker and the microphone (indicated with a dashed
box in Fig.2.3); it can be, for instance, the cabin of a car, of a boat, of an
helicopter, etc. Notice that the main dynamical phenomenon associated to such a
system is usually the propagation delay of the pressure waves.
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Fig.2.3. Active Noise Cancelling basic scheme.

The control problem is that of designing a feedback controller for the rejection of the
harmonic signals which constitute the noise. It is apparent the strict similarities
between the scheme in Fig.2.3 and the general scheme of Fig.2.1.

3. A CLASSICAL MODEL-BASED TECHNIQUE FOR THE DESIGN OF
CONTROLLERS IN PRESENCE OF NARROW-BAND DISTURBANCES

In this section a standard technique, which is commonly used for the design of control
systems in presence of narrow-band disturbances is described (see e.g.
[13],[22],[291,[311,[33]). It is a minimum-variance technique, which makes reference
to the classical concept of prediction error (see e.g. [1],[19],[34]), its main feature
being that it is based on a rational ARMA approximation of the disturbance d(t).

A standard way of approximating an harmonic signal embedded in white noise, as the
output of an ARMA model fed by white noise is the following:

_1-2p, cos(Q)z™ + ppz™ 3 D(z™)
= 1-2p,cos(Q)z™" + p2z™ e =Y e

where €(¢) is a zero-mean unitary-variance white noise, p,, pp € [0;1) and p, < p,.
Notice that z*A(z")and z’D(z™") are both stable polynomials, having a pair of
complex conjugate roots at p ,e* and p,e* respectively (see Fig.3.1).



Fig.3.1. A typical configuration of the singularities of polynomials 2”D(z") (O), and Z2A(z") ().

It can be easily seen that the model (3.1) represents a good approximation for d(#)
when p,and p, are both very close to 1. As a matter of fact the following hold (see

e.g. [32]):

o« [2

[DEe™) a1 1 .

|A(e-‘°’)| e »1+ > 28(0)—Q)+28(w+9) oe[-n+n], (3.2)
Po<Pa)

m depending on the relative rate at which p,and p, tend to 1 (for instance, if
p,=1-(1-p, )? it can be easily seen that m = \/5 ). Notice that (3.2) states that, as
p,and p, tend to 1, d(¢) and D(z'l)/ A(z™MHe(¢) tend to be equal in the frequency
domain.

In practice, for the sake of simplicity, p, is usually set to 1 (also in the rest of this
paper, p, will be always supposed to be set at 1); thus, p, can be re-named simply as
P, and it is usually called the "debiasing parameter” (notice that p is the only design
parameter of model (3.1)).

ls(t)

D(z™)
Az
/[(3)
u(t) B(Z—l) - (6)
C(z™M

Fig.3.2. Dynamical system with ARMA approximation of the output disturbance.



By means of model (3.1), a minimum-variance controller for the stochastic system
depicted in Fig.3.2 can be designed as follows:

(a) Find the k-steps ahead prediction for the system output, y(t +k / k).

First remind that y(t) can be written as:

B(z™) D(z™)
———u(t—k)+——_-e(t 33
In order to calculate the k-steps ahead prediction of y(¢), it is useful to re-write

the model (3.1) as:

y)=

DY) 4 E(@E@)

A(Z_,)—R(z )+—A(z“) , (3.4)
or, equivalently:

DY =AEMHRE Y+ *E(), (3.5)

where R(z™") and z*E(z™") are, respectively, the result and the reminder of the
polynomial between D(z™") and A(z™') (the identity (3.5) is also known as the
Bezout identity, or Diophantine identity). By use of (3.4), y(t) can be rewritten
as:

B(z™) 4 E(z™)
ca u@—k)+R(z )e(t)+ A7)

As is well known (see e.g. [1],[19]), in (3.6) the term R(z™Me(¢) is the so-called
"innovation term" (i.e. it is the unpredictable part of y(z)at time z-k). Thus, the
k-steps ahead prediction of y(¢) is:

B(z™ E(z™
Eg—_%u(m@e(z). (3.7)

A(z™)
By explicitating €(z) in the (3.3), and by substituting its expression in (3.7), the
following expression of y(z+k /t) as a function of "measurable” signals (notice
that €(¢) in the (3.7) is a "remote" signal), we obtain:

B(z')D(z")—z"E(z™)) E(z™)

cahpEh Ot py Y

y(@)= e(t—k). (3.6)

yi+k/t)=

y@+k/t)=

(b) Impose y(t+k/k)=0.

By imposing the condition y(t+k/k) =0, the minimum variance controller can
be straightforwardly obtained. It is given by:

C(z)E(@™)
B(z)A(z)R(z™)

u(e)=- y(). (3.8)

Notice that the controller (3.8) has the polynomial A(z™") in the denominator, to be
able to control the sinusoidal signal. This is the internal model principle.



In order to evaluate the performances of the controller (3.8), it is interesting to
compute the transfer function from €(¢)to y(z), namely:

y(t) = R(z™He(®) (3.9)

Now remind that R(z™) = 1+ 7z +r,z2+..47,_,z”*" is the solution of the k-steps

polynomial division of D(z™")by A(z™"), and it depends on p. In particular, it is easy
to show the following:

Proposition 3.1 Consider the result, R(z™), of the k-steps polynomial division
between D(z)=1-2poos(@Qz* +p’z? and A(z")=1-2c08(Qz " +27:

Rz =1+rz7 + 22+ 41z * Y (k < +eo).

The following hold:

@ limr(p)=0, i=12....k=1; (3.10)
p—

(b) liH}COV[y(t)]= 1. (3.11)
p—

(Notice that (3.11) represents the best possible solution - in terms
of output variance -, 1 being the variance of the white, hence
unpredictable, noise €(t)).

Prodf.
Statement (3.10) can be easily proved by direct inspection of the reminder of the first
step of the k-steps polynomial division:

1 -2pcos(Q)z’l + pzz'2 1-2cos(Q)z +z

-1 +2cos(Q)z’ -z 1 ‘

Notice that such a reminder (the polynomial in the shadowed box) has (1—- p) as a
multiplicative factor; hence, such a factor will appear in each term of R(z™"), which
can be rewritten as:

Rz =1+rz 4z 4. 4r_ 2% = 1+ (1- p)Fz 7 + Rz 2+ 4F_z D).
Thus:

lin}r;(p)=lin}(1— PIF(p)=0, i=12,..,k-1.

P po

Statement (b) can now be easily proved by reminding that, from (3.9):
cov[y(0)] = cov[RzMe (1)) = 1+ 12 + 1, +.. 47,2,

and, by virtue of (3.10), and of the fact that k is finite, (3.11) holds.



To get a feeling on the meaning of polynomial R(z™'), Fig.3.3 shows the coefficients
r,, in the case Q== /4, and for four different (increasing) values of p . Notice that the

first coefficient is, obviously, always equal to 1, while the remaining coefficients look,
as a function of the index i, like an undamped sinusoid of frequency £, the amplitude
of which decreasesas p — 1.

(a) (b)

0 10 20 30 . 40 0 10 20 30 . 40

"0 10 20 30 . 40 0 10 20 30 . 40
i i

Fig.3.3. Coefficients r;, as a function of i, when Q=n4, and p=0.9 (a), p=0.95 (b),
p=0.99 (c), and p=0.999 (d).

From (3.2) and (3.11) one might conclude that the best choice is to keep p as close as
possible to 1; as a matter of fact, for p — 1 the model approximation gets better and
better, and the output variance tend to its minimum.

However, as is well known (see [11],[26]), p — 1 is not, in general, the best choice
for p. In order to make this apparent, compute, for instance, the transfer function, say
T(z™"), from d(¢)to y(t) (which is more meaningful than (3.9), d(t) being - so to say
- the "real" disturbance):

A(zHR(ET)

YO =TENdE=="F"=

d(t). (3.12)
From (3.12) it is evident that the roots of D(z™") are the internal poles of the system
(which are not observable in the input-output representation from €(¢) to y(z)).
Letting p — 1 means to push such poles towards the instability region, or, in other
words, it means to make the control system extremely poorly damped and "slow".

Thus, as is well-known, the choice of p must be a compromise between the two
following extreme conditions:



(@) If p —1 the rejection of the harmonic signal is very selective (in Fig.3.4a the
typical shape of T(z™) in the frequency domain, as p — 1, is depicted), but the
system is extremely slow.

1.5 T T T T T T

[ree=’

G L 1 L L i L
0 05 Q 1 1.5 2 25 3

Frequency

Fig.3.4a. Frequency-domain representation of T ("), when p=0.99 (Q=m/4).

(b) If p — 0 the system is very "fast" (i.e. it is characterised by short transient
periods), but the feedback loop introduces bad distortions over a wide frequency
range around Q (see Fig.3.4b), or, in other words, the variance of the broad-
band part of the disturbance is highly increased.

25 T T T T T T

[rce
2

0.5

G A1 L L L 'l
0 05 Q 1 1.5 2 25 3

Frequency

Fig.3.4b. Frequency-domain representation of 7Tt (z7), when p=0.3 (Q=n/4).

Depending on the need of a fast-reacting system, or on the need of an extremely
selective rejection of the harmonic signal, the designer has to choose p accordingly. To
this purpose, the rest of the paper is entirely devoted to the development of a new class
of overparametrized controllers, having the aim of improving the selectiveness of the



harmonic disturbance cancellation, without deteriorating the dynamical properties (i.e.
the collocation of the poles) of the system.

Remark 3.1

In the next section, the controller (3.8) will be "overparametrized", in order to improve
its performance. To this purpose, it is worth noticing that usually (see e.g. [7],[41]),
the "basic controller" (i.e. the controller used as a base for overparametrization) is the
minimum-order controller which makes possible to place the poles of the closed-loop
system at a desired location.

If we consider controllers having the following internal structure:
Gz chHEEN
F(z")" B@EY)F@E™)

(i.e. there is always a part of the controller which takes care of the inversion of the

minimum-phase part of the system), G(z") and F(z™) must satisfy the following
polynomial identity:

FED+z*6(:H)=D@E™), (3.14)

(3.13)

in order to collocate the system poles at pe*™®.

The minimum order solution of (3.14) (which is unique, if the additional constraint
g, =1 is considered), when k 2> 3 is:

{ﬁ (zY)=1-2pcos(Qz ™+ p?z2 +0z>+.. 407D — 77 615
Gz =1 '

Notice that (except for the cases k =1,2) the order of polynomials (3.15) is 1 and &
respectively, while the order of polynomials G(z™) and F(z™), which correspond to
controller (3.8), is 2 (polynomial E(z)) and k+1 (polynomial A(z™)R(z™))
respectively.

The use of (3.8) as the basic controller, instead of controller (3.13)-(3.15) is simply
motivated by the fact that the minimum-order pole-placement controller might have
(and, in this case, does have) bad characteristics in terms of output variance and noise
cancellation. Moreover, it can be shown that the choice (3.8) is equivalent to the
choice (3.15) - in terms of performances achievable by the overparametrized controller
- only when overparametrizing controllers of large degree are resorted to. Instead,
when low-degree overparametrizing polynomials are used, the performance achievable
by using (3.8) instead of (3.15) can be quite different (and quite better).

Being our aim that of improving the performances of the well-known (and well-
working) controller (3.8), and not that of exploring the best performance achievable by
overparametrizing a poor minimum-order controller, the choice of using (3.8) as the
basic controller seemed to be natural. |

10



4, ROBUST REDUCED-VARIANCE OVERPARAMETRIZED CONTROLLERS
DESIGN

4.1. Introduction

This section is entirely devoted to the presentation of a technique which improves the
performances of the classical notch-model-based controller (3.8), presented in Sect.3.

As already pointed out at the end of the last section, the main shortcoming of the
classical controller for harmonic disturbances rejection is that there is a trade-off
between the dynamical properties of the system and the selectiveness of the
cancellation. The method we propose, in order to try to overcome this limitation, is
that of searching for a suitable way of overparametrizing the classical controller (3.8),
and using the extra degrees-of-freedom provided by the overparametrization, in order
to:

- obtain a reduced variance of the system output,

- improve the robustness properties of the control system with respect to
uncertainties in the harmonic signal parameters, M and Q,

- improve the robustness properties with respect to uncertainties in the system
parameters (in particular, the major problem of uncertainties in the knowledge of
the time delay z™* will be considered),

without changing the dynamical properties of the system (i.e. without moving the
position of the poles).

4.2. The overparametrized controller
To begin with, recall the structure of the "standard" controller (3.8):

CzMHE@E™)
B(z™)A(z™)R(z™)

ut) =- y().

A wise way of overparametrizing such a controller is the following:

CizY) E(z")-Py(z™)
B(z™) AR +z7*Py(z7)

u(t)=— y(), (4.2.1)

where P, (z™') is a Nth-order polynomial, characterised by a vector, say p,, of N+1
parameters. This way of overparametrizing the controller is a variant of the method
proposed in [7] and in [41].

The most important feature of the overparametrized controller (4.2.1) is shown in the
following proposition.

Proposition 4.2.1 The internal poles of system (3.3), provided with controller
(4.2.1) are the roots of polynomial D(z™"), whatever P, (z™) is.

11



Proof.

First remind that for closed-loop system having the structure of the system depicted in
Fig.4.2.1, the characteristic polynomial is given by H), (z')—-H, (zh).

H, 5(’.\5 g

X
=

Fig.4.2.1. Feedback control system

In the case of system (3.3), complemented with controller (4.2.1), the loop transfer
function is:

Hy,(5) B(G™) _k[ Ciz')  EE@H-Py™) ]
Hy2) C@H” |TBCEY ACHRE )+ Pz ™) ]

Thus, from (4.2.2) and (3.5), we obtain:
AN+ Pz )+ 27 M (E@E ) - Py () = ACHR(EZMY+z*E(z)=D(z™) u

(4.2.2)

Remark 4.2.1

In proposition 4.2.1 it is shown that the poles of the closed loop system, when (4.2.1)
is used, do not change, whatever P, (z™") is. As for the zeros of the control system,
they obviously depend on the particular transfer function taken into account. In the rest
of the paper, we'll focus on the transfer function T(z™") from signal d(¢) to signal y(z),
such a transfer function being the most meaningful one, when dealing with the
disturbances rejection performances of the control system. It has the following
expression:

AEHRE N+ P, (z7)
D(z™) )
It is important to remind that (4.2.3) contains a simplification of the minimum-phase

part of the system, B(z™)/C(z™). However, both B(z™") and C(z™") being Hurwitz,
this simplification does not lead to unstable non-observable dynamics.

T(z )= (4.2.3)

From (4.2.3) it is apparent that the presence of the overparametrizing polynomial
PN(z'l) increases the number of the zeros of the transfer function. Namely, the
numerator of T(z™') is a polynomial having degree k+N (N being the degree of
polynomial P, (z™)). For the sake of completeness, notice that in (4.2.3) there are also
k+N-2 poles in the origin of the axis.

12



The rest of this section is devoted to the presentation of several performance indices,
the minimisation of which provides the "best" polynomial P, (z™'), with respect to the
considered control goal. The presentation of such performance indices is
complemented by some interesting theoretical results, some remarks, and some
numerical examples, which give more insight in the performances obtainable via the
proposed overparametrization technique.

4.3. Reduced-variance control system design

The performance index considered in this subsection is the most simple one; it is given
by

T (py)=cov[y(t, py)], (4.3.1)

(py being the N+1 dimensional parameter column vector) which simply represents the
variance of the system output.

Performance index (4.3.1) can be rewritten in a different form, by substituting (4.2.3)
in (4.3.1):

AEHREY 4+ Pz ]
JlN(pN)=cov|: : (ZD(Z_G £ aw) | (4.3.2)

As it is well known (see e.g. [4],[11]), the following frequency-domain representation
of (4.3.2) can be given:

*J’ |AGYHRE Y+ 27 Py ()]
2 D(z Y

T (Py) = T, (@)do (4.3.3)

2="

Where T, (@) is the power spectrum of signal d(t), and it is given by (notice that no
ARMA representation of d(¢) is used):

2

T, ()= 1+MTG8 (® —Q)+%8 (0)+Q)) oe [-n+n]. (4.3.4)

Using (4.3.4), (4.3.3) can be splitted into two parts, the first due to the harmonic
narrow-band signal, the second due to the white noise broad-band signal, namely:

Jiv(Pw) =T ina(Py)+ 13 (Dn)>

where:
M* | ARG+ By @)
Jina(Py) = 2 I D(zY) ) (4.3.5a)
[ACYHREY+27* P,z ]
Jle(pN)=CO\1- £ (;()Z'—]; n(z )E(I)J (4.3.5b)

It is easy to show that both (4.3.5a) and (4.3.5b) are quadratic functions of the
parameter vector p,; thus, the minimisation of performance index (4.3.1) is
straightforward, and only requires simple linear algebra computations (such as matrix
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inversions). This, definitely, represents the other attractive feature of the
overparametrization (4.2.1).

In the special case of harmonic disturbance embedded in white noise considered in this
work, an explicit expression of (4.3.5a) and (4.3.5b) can be given, namely:

Jina (Py) = P; My, Dy + P; Ly, tcy, (4.3.62)
where:

1 cos(Q)) cos(2) --- cos(NQ) |
cos(Q2) 1 cos(€2)
M,,, = S* cos(2€)) cos(Q) 1 e : i (4.3.6b)

[ cos(NQY) - 1

A(eiQ)R(eiﬂ)e—ikﬂ + A(e—iﬂ)R(e—l'ﬂ)eﬂ'kﬂ
A(eiﬂ )R(eiﬂ)e—l'(k+l)ﬂ + A(e—iﬂ)R(e—iﬂ)e+i(k+l)ﬂ
Ly, (py) =S’ E =0,  (4.3.60)

_A(el'ﬂ)R(eiQ)e—i(k+N)ﬂ + A(e—iﬂ)R(e—iﬂ)e+i(k+N)ﬂ-

¢, = SPA(E) A(e™™)R(e®)R(e™) = 0 (4.3.6d)
MZ
§?= : 4.3.6
2((1- p*)* +4p cos’(Q(1- p)) £H259)
and
S (Py) = P; My, Dy +pf,Lle +Cs (4.3.72)
where
1 N - e MN)]
nm 1 :
My, =H : : , N(T)= _27117E[( Dd((zl-)lc}(;—(:-]'))]’ (4.3.7b)
MN) e e 1
[ (o) ]
p
Lw=H| | | p)=E[A8Qets) (4.3.7)
LUL(N) ]
ACHREZY ]
— 2 et 1l ool B 8
c,=H 00\{ DY) e(r)J, (4.3.7d)
1_ 4
2 P 4.3.7¢)

T (1-pY)—4pZcost(@(1-p*)?
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(M, , Ly, and c,, can be easily calculated by means of recursive algebraic formulas
which make use of the coefficients of polynomials A(z™"), R(z™"), and D(z™") - see
[11,12D.

Finally, performance index (4.3.1) can be written as:

Jin (py) =cov[y(t, py)1= pE M,y Dy + Py Liy + €15 (4.3.8)
where:

My=My,+Myy, Ly=Lyg, ¢=C.

The parameter vector which minimise performance index (4.3.8), say Py, is given by:
2 =—% MiyLyy (4.3.9)

Notice that P, is unique, being M, a definite positive symmetric Toeplitz matrix.

Two interesting theoretical results can now be stated.

Proposition 4.3.1 Consider the performance indices J,, (p,,) and J,,(p,), m+1 and
n+1 being the number of parameters of polynomials P, (z) and
P, (z) respectively. If m < n the following holds:

Jlm(ﬁm) 2 Jln(ﬁn)’

P,and P, being the minimum vectors for J,,(p,) and J,,(p,)
respectively.

Proof.

First consider performance index J, (p,)=p.M,.,p,+PLL,+c; being M,
invertible, J,, (p,,) has a unique minimum, say p,,, which can be computed as:

— 1
p,=—75M

2 Im™im*
Now consider J,,(p,) = p'M, p,+ p'L, +c; being M,, the sub-matrix of M,,
constituted by its first m rows and by its first m columns (see (4.3.6b) and (4.3.7b)),
and being L, the sub-vector of L, constituted by its first m elements (see (4.3.6¢)

and (4.3.7¢)), it is apparent that the following holds:

Dnm
0

J..((pr00..0]")=[pL 00..0]M,,| O [+[P.00..01L,+c, =J,.(P,)-

L 0]

Thus, only the two following situations can take place:
e P, =[p,00.0] = J,(5,)=J),7,);

15



o Pl #[pr00.0] = J,(B,)>).(P,)

Proposition 4.3.1 essentially states that, by increasing the size of the overparametrizing
controller, the variance of the output monotonically decreases. To this purpose,
proposition (4.3.1) can be complemented with the following interesting result:

Proposition 4.3.2 Consider J,,(py), which represents the minimum variance
achievable when using N+1 over-parameters. The following holds:

1}1_{&]11\1 (py)=1.

Prodf.

First, notice that, in any case, cov[y(t, py)] =1 represents a lower bound for J, (py),
1 being the variance of the white noise (hence unpredictable) affecting the system.

Now consider expression (4.3.5) of performance index (4.3.1):

M2| AR )+27* By (™) . [ AHRE)+2* Py (")

e(t)}, (4.3.10)

J, = = =
wPTTTTNEY | D)

and consider a polynomial P, (z) having the following structure:

P, (z)=E(z")+D@E™MP,_,(z™) (4.3.11)

Thus, by substituting (4.3.11) into (4.3.10), and reminding (3.5), J,y(py) can be
rewritten as:

T (Py) = MTZ|1+e'“"’z“>,v_2(e“’)|2 +1+cov[ By, (ze(r)] (4.3.12)
From (4.3.12) it is apparent that the following hold:

o lif 0=1Q "
Nli-{?JPN ()= {O if @ e [-n+n \N~Q+Q}
and (= lim Jyy (By) =1 (4.3.13)
P, ,(eM}=xr +2mn —kQme Z

(4.3.13) essentially moves the problem of proving that the lower bound
cov[y(¢, py)]=1 can be reached by means of the overparametrized controller (4.2.1),
to the problem of designing a FIR filter satisfying (4.3.13).

In order to prove that such a filter can be built, consider the following IIR filter:
_ 2 Q2cos(@)(1- p*)+(p*=Dz) (cos(@)-z"")*
B 1-2pcos(Q)z' + p*z~ sin* ()

It is easy to show that filter (4.3.14) has the following characteristics:

F(z',p) (4.3.14)
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IFe®, p) =1, Vpe(01), (4.3.15a)

lim|F(®, p)|* =0, (4.3.15b)
oein
lim £{F(®, p)}=n +kQ (4.3.15c)
p =400

Consider now the all-zeros infinitely long filter, associated to F(z™, p):

F(z%,p)= gofm( P)Z™; (4.3.16)

if the overparametrizing polynomial is chosen as:

-2
Py(2)= E(z'1)+D(z'1)||:pli_)r£1w NZ(; il p)z""'], 4.3.17)

from (4.3.11)-(4.3.16) one can conclude that J,, (py) tendsto 1 as N — +eo.
We end this subsection by presenting two illustrative numerical examples.

Numerical Example 4.3.1
Consider the following situation:
B(z")=C(z")=1;
k=2,M=+2,Q=n/4,p=08.

The standard procedure for the design of the basic controller provides the following
T(z™) (transfer function from d(¢) to y(¢)):

1-11314z" + 0.6z + 028282
1-1131427" + 06427 ’
the frequency-domain behaviour of which is depicted in Fig.4.3.1(a).

T(z)= (4.3.18)

By resorting to the overparametrization technique presented in this subsection, when
using polynomials of order 2, 4, and 6 respectively, the following results have been
obtained:

—11314z7" +0. 240 34003627
TZ(Z_,)=1 11314z +06422z_l+01831_.z +0.0362z (4.3.19)
1-11314z7' + 064z
1-11314z7" + 06284272 + 01069z +0.03072™* +0.089z° - 0.1382z (4.3.20)

T (") =
@) 1- 11314z 4 0.6422

 1-LI3142" +06413:2 +0097° + 00252 +00032°° —002097°° —00782 " — 002717
L= 1113147 +0642° s (43.21)

The frequency-domain behaviour of (4.3.19), (4.3.20), and (4.3.21) are depicted in
Figs.4.3.1 (b), (c), ad (d) respectively.
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(a)

15 - . .
| S, T - SR
T SO 1SS —
0 . . . 0
0 1 2 3 0 1 2 3
() (d)

Fig.4.3.1. frequency-domain behaviour of T(z”) (a), T2(z") (b), T4(z") (c), and Te(z") (d).

In order to better understand the results achievable by means of the overparametrized
controllers, in Fig.4.3.2 the output variance, as a function of the order N of the
overparametrizing polynomial P, (z™), is displayed.

1.2
cavly(9]

Y M s e s s T RO s o
Y| ), - o ey besusassaadosrasadast Piissi s ese ey nid B
1'151-..........;..--.....:........-.' ssssssssaqes .......: sesssssssmmssasnnns

1_14».-u-----‘--........:..........I......u. B ...-..:......u.

Fig.4.3.2. Output variance, as a function of the order of the overparametrizing polynomial.

From Fig.4.3.1 and Fig.4.3.2 one can notice that:

e By increasing the order of the overparametrizing polynomial, the output variance
decreases monotonically. However, just as a curiosity, notice (see Fig.4.3.2) that
the decreasing rate is quite irregular, and it does not seem to follow the behaviour
of any "smooth" discrete function.

e By increasing the overparametrization order, the selectivity of the harmonic
disturbance rejection increases accordingly; however, notice that by increasing the
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number of the zeros, the frequency-domain behaviour of T, (z!) become - so to
say - "oscillating”, in the frequency range away from the design frequency. This
phenomenon will be better illustrated in the next numerical example. |

Numerical Example 4.3.2
Consider the following situation:
Bz =C@zMH=1;

k=1, M=+2,Q=n/4,p=08.

The standard procedure for the design of the basic controller (3.8) provides the
following transfer function T(z™"):

1-14142z7 4+ 272 )
1-11314z7 +0.6427%°

correspondingly, the output variance is:

cov[y(1)] = 1223.

(4.3.22)

T(z") =

The overparametrization of the basic controller, by means of polynomial B(z™"),
provides the following transfer function T, (z), from d(t) to y(¢):

1y _ 1-120627' +0.724272 +0.0272 7 +0.0212~ 4000325 0016276 -0.027 2" ~0.0212~%~0.062~ +0.1:7*
T9(Z )= 1-1.1314z7" +0.64272 ,(4.3.23)

in correspondence of which the following output variance is obtained:
cov[y(t)] = 1.105.

In order to compare the output variance when the basic controller is used, and when
the overparametrized controller is resorted to, in Fig.4.3.3 the accumulated output
variance, as a function of the time, is depicted (see e.g. [14],[40]).

1
PRT0%
i=1 1

4 T T T T T T T T

200 b

/"/
1000+ /(b)'_-‘
,/_’":'.‘J— -

800}
"
600 /‘,f‘" ’
400r- e
A

200 ]

i 1 i L 1 L 1 1 1

0
0 100 200 300 400 500 600 700 800 800 1000
Time

Fig.4.3.3. Accumulated output variance when the basic controller is used (line (a)), and when the
overparametrized controller is used (line (b)). The dashed line is the accumulated output vatiance
lower bound.
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In Fig.4.3.4 the frequency-domain shape of (4.3.22) and (4.3.23) is depicted.

|

0 0.5 1 1.5 2 25 3
Frequency

Fig.4.3.4. Frequency-domain shape of (4.3.22) (thin line), and of (4.3.23).

It is apparent that, even if (4.3.23) provides a remarkable reduction of the output
variance, and improves the selectiveness of the basic controller, its behaviour, in the
frequency domain, is quite "irregular": such a typical behaviour, characterised by a
number of "ripples”, is due to the presence of an high number of zeros.

At the end of this section, we can conclude that the simple reduced-variance approach
(4.3.1) (which can be considered an extension, for the special case of harmonic
disturbances, of the method proposed in [7] and [41]) does not provide a completely
satisfactory result. As a matter of fact, even if the output variance can be remarkably
decreased, this is obtained by paying the piper of the presence of undesired ripples in
the frequency domain shape of T(z™).

Remark 4.3.1

A natural question can arise by inspecting the "oscillating" behaviour of the frequency-
domain shape of T,(z™"), in the numerical example 4.3.2 (see Fig.4.3.4): why such a
behaviour is a "bad" behaviour? More: which behaviour is a "good" one?

With reference to such questions, the following can be pointed out:

1. If the disturbance affecting the output of the system is only constituted by a white
noise and by the harmonic signal to be rejected, the ripples which characterise the
frequency domain shape of T, (z™) have not to be considered as obnoxious: in
such a case the reduction of the output variance is a suitable performance index,
and it is not subject to any trade-off with other performance indices.

2. Tt frequently happens that the disturbance is not constituted only by e(z) and s(¢),
but there are other signals, which have to be kept as unchanged as possible (in the
ANC problems, for instance, the microphone usually receives also the speech
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signal). Even in such cases, for the sake of simplicity, the design of the control
system is usually made with reference to the "basic” situation of d(r) constituted
only by a broad-band noise and by the sinusoid to be rejected, but the additional
"performance index" of a "well-shaped” T, (z™") in the frequency domain has to be
taken into account. To this purpose, it is apparent that a well-shaped T (M) is
such that it is as close as possible to 1, away from the stopped-band around €,
because such a shape guarantees the least possible distortion of the "additional
signals.

4.4. Analysis of the dynamical properties of the overparametrized controller

At the end of the last subsection, it has been shown that the overparametrization of the
standard controller (3.8) makes possible the attainment of the lower bound of the
output variance, without moving the poles position. At a first glance, this interesting
result seems to state that the trade-off between dynamical properties and selectiveness
in the harmonic disturbance rejection can be completely overcome by means of an
overparametrized controller having the structure (4.2.1). However, such an
unexpectedly attractive result must be correctly interpreted. A qualitative analysis of
such a result is now proposed.

Consider the all-zeros infinitely long filter associated to the rational transfer function
T(™M):

T Y= itiz" , 4.4.1)

i=0
(where the coefficients ¢, can be computed by means of the polynomial division
between the numerator and the denominator of T(z™")).

Being T'(z) a stable transfer function, it is well-known (see e.g. [1]) that:

4o
Y 12 < oo (4.4.2)

i=0

As a consequence of (4.4.2), the following holds:

lim|t,| = 0. (4.4.3)

i —>4oo

In other words, (4.4.3) states that the coefficients z, tend to "vanish", as their index, i,
increases. As a direct consequence of such a typical behaviour of the coefficients ¢;, a
simple way of getting an estimate of the settling time of the transfer functionT (z ™),
say T, is the following:

t, =min{n/|r| <&, Vi2 n}, (4.4.4)

where € is a small number, typically chosen as the 1% of the first coefficient #, (notice
that when a canonical representation of T(z™) is used, both its numerator and its
denominator are monic, so resulting in 7, = 1).
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By means of (4.4.4), one can associate to T(z™) a FIR transfer function, say f”(z‘l),
as follows:

fey=St . (4.4.5)
i=0

It is now worth noticing that, even if, in general, the length of f”(z‘l) mainly depends
on the position of the poles, the overparametrization of the numerator of T(z™") might
result is a remarkable change in the settling time, if a large number of zeros is added.

To this purpose, it is apparent that when infinitely many zeros are added (see
proposition 4.3.2), the settling time of the overparametrized transfer function T}, (™
might be completely different from that of the basic transfer function, T(z™"), even
though the poles of T, (z™") and of T(z™) are the same. With reference to the above

remarks it can be stated that, when an overparametrization technique based on pole-
placement is resorted to, the over-number of zeros must be chosen such that it does
not lead to a large variation in the settling time of the system.

In order to better understand the qualitative discussion on the dynamical behaviour of
an overparametrized controller, a numerical example is now provided.

Numerical Example 4.4.1
Consider the following situation:
Bz H=C(MH=1,
k=1,M=+2,Q=n/4,p=08.
The design of the standard controller (3.8) results in the following transfer function
from d(¢) to y(¢):
1-14142z7" 4 272

1-11314z7" +06427°

while, by using an overparametrizing polynomial of order 9, the following transfer
function is obtained:

T(z™")= (4.4.6)

—1y _ 1-1.20627140.724 2 240,027z 340,021 2~ +0,003 250,016 2"5-0.0272~7-0.021 % -0.062 % +0.127'°
L(z")= 1-1131427 40,6422 - (44.7)

In Fig.4.4.1 and Fig.4.4.2, the coefficients of the all-zeros transfer function associated
to (4.4.6) and to (4.4.7) are displayed. It is apparent that such coefficients tend to
vanish as their index increases.
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0.4
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Fig.4.4.1 Coefficients of the all-zeros transfer functions associated to T(Z_l) (dashed line) and to
T, (z™') (continuous line).

In Fig.4.4.2, a zoom of Fig.4.4.1 is provided, in order to easier evaluate the settling
time associated to (4.4.6) and to (4.4.7).
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Fig.4.4.2. Zoom of Fig.4.4.1. The shadowed area indicates the interval [—e +E ]

If € = 0.01 is chosen, it is apparent that T, =17, and T, =21. Such an approximate

evaluation of the settling time of the two transfer functions reveals that N=9 can be
considered as an upper limit for the order of the overparametrizing polynomial
P,(z™"): as a matter of fact, a 25% variation of the settling time represents a non-
negligible variation of the dynamical behaviour of the system. |
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4.5. Robust control design: the case of uncertainties in the frequency of the harmonic
signal

In this subsection the problem of using the extra-degrees-of-freedom given by the
overparametrization (4.2.1) of controller (3.8), in order to make the performances of
the control system more robust with respect to uncertainties in the parameter 2 (the
frequency of the harmonic part of the disturbance affecting the system), is considered.
Notice that the problem of dealing with the uncertainties in the parameter Q is a
problem of major importance: as a matter of fact, in the practice, {2 is usually only
approximately known; moreover, it frequently happens (see e.g. [11],[17],[28]) that
is a time varying parameter, which takes values over a well-defined frequency range.

In such cases, a probabilistic description of Q is usually given. Suppose, for instance,
that a probability density function (p.d.f.) of Q, say 7, (), is available; being v, (£2) a
p.d.f., (which is supposed to be defined over the frequency range [QO,QI]) it must
have the following properties:

l].'Yn(Q)dQ =1
Q (4.5.1)
Yo(@20,VQe [Q,Q)]

By means of such a probabilistic description of Q, the design of a robust controller,

with respect to uncertainties in Q, can be obtained by minimising the following
performance index:

Jon(Dy)= TYQ(Q)JIN (py - $DdQ2 (4.5.2)
Q

(notice that in (4.5.2), and in the rest of the subsection, the poles of the system are
supposed to be fixed at pe*¥, Q being the "nominal" frequency of the sinusoid). By
substituting in (4.5.2) expression (4.3.8) of J,y (py), we obtain:

Jow(Py)= p:l [‘]‘Yn (Q)( My, + My, )dQ]VN + p:l (‘]YQ(Q)LmdQ]"'
9 9

+ [‘]‘Y 2 Q) dﬂ]
Q

(where the integral operator applied to a matrix is supposed to be operate on each
scalar element of the matrix). Remind now that M,,, L,y,, ¢, do not depend on Q

(see (4.3.7)); thus, (4.5.3) can be finally rewritten as:

(4.5.3)

Jon(Py)= p;[‘]YD(Q)MlNadQ-l- My, ]VN + Pz Ly, +cy (4.5.4)
Qp

As for performance index (4.5.4), it is worth noticing that:

e J,y(py) is a quadratic form with respect to parameter vector py;
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o ‘J.yn(Q)M wedQ+ M,,, is a definite positive symmetric Toeplitz matrix; this
Q
guarantees the existence and uniqueness of the minimum of J,, (py ).

Remark 4.5.1

Using performance index (4.5.4) is a simple and effective way of dealing with the
problem of designing a robust controller with respect to variations in Q. Moreover, it
is worth noticing that an unexpected and attractive feature of performance index
(4.5.4) is that it usually provides a "smoothing" effect on the frequency domain shape
of transfer function from d(¢) to y(z). This interesting feature is illustrated in the
following numerical example.

Numerical Example 4.5.1
Consider the following situation:
B(z")=C(z") =1,
M=4y2,p=08k=1,N=8.

The standard controller (3.8), when Q is supposed exactly known (Q=n/4),
provides the following transfer function, from d(¢) to y(z):
1-14142z7 + 272

1-11314z7 +27%°

If Q is not exactly known, a p.d.f., Y,(€), must be given. The following four different
situations have been considered:

T(z")= (4.5.5)

(a) Q is uniformly distributed in %— 0.05; “z + 0.05];

(b) € is uniformly distributed in %— O.l;%+ 0.1};

(¢) € is uniformly distributed in %— 0.2; %— + 0.2};
K T ]

(d) € isuniformly distributed in e 03 Z+ 0.3_].

In Fig.4.5.1 the frequency-domain behaviour of the transfer function T, (z™"), provided
by the minimisation of performance index (4.5.4), when situations (a)-(d) are
considered, is displayed, and compared with (4.5.5).
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Frequency Frequency

Fig.4.5.1. Frequency-domain shape of transfer function T (z™!), obtained in correspondence of cases
(a),(b),(c), and (d). As a comparison, the shape of (4.5.5) is always depicted with a dashed line.

Notice that, by increasing the width of the range [Q,,Q,], the "notch" in

correspondence to the nominal frequency Q= /4 progressively enlarges, and the
shape of T,(z) away from the nominal frequency becomes smoother and smoother. To

this purpose, notice that the "best" shape is obtained for [Qo,Ql] =[%2-02,2+02];
instead, when [QO,QI] =[2-03,%+03] the oscillations appear again. This
phenomenon can be interpreted as a symptom of the fact that the degree of
overparametrization used is not enough to cope with the performances robustness over

such a large frequency range, without deteriorating the performances in the
complementary frequency range.

4.6. Robust control design: the case of uncertainties in the amplitude of the harmonic
signal

In this subsection the problem of using the extra-degrees-of-freedom given by the
overparametrization (4.2.1) of controller (3.8), in order to make the performances of
the control system more robust with respect to uncertainties in the parameter M (the
amplitude of the harmonic part of the disturbance affecting the system), is considered.
The problem of dealing with the uncertainties in the parameter M is a major one, for, in
the practice, usually one has only an approximate knowledge of M. To this purpose, it
is worth reminding that the estimated value of M is commonly expressed by means of
the so-called signal-to-noise-ratio (SNR); in the special case of a sinusoid embedded in
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white noise, the harmonic signal is commonly considered as "signal”, the broad-band
signal as "noise", namely:
cov| M sin(Qt + M?
ovpo MM sin@+)] _ M?
covle(r)] 2

As usual, a probabilistic description of M is supposed to be given, by means of its
probability density function, say vy, (M), M € [M oM 1]; as usual, the following hold:

TYM(M)dM =1
My

Yy (M)20,YM € [M,,M,]

Similarly to the case of the Q-robustness, a simple and effective way of designing a M-
robust control system, is that of minimising the following performance index:

J3N(pN)=’T’YM(M)J1N(pN’M)dM (4.6.1)
M,
By substituting in (4.6.1) the expression (4.3.8) of J, (py), we obtain:
Jin(py)= Pva[T'YM (M)( My, + Mle)dM]PN + Py Ly, +Cy (4.6.2)
M,

(where the integral operator applied to a matrix is supposed to operate on each scalar
element of the matrix). Remind now that M,,, does not depend on M (see (4.3.7));

thus, (4.6.2) can be finally rewritten as:

I (py)= P;[T’YM (M)M,y,dM + M, , JVN + Pyl i (4.6.3)
M,

As for performance index (4.6.3), it is worth noticing that:

e J,,(py) is a quadratic form with respect to parameter vector p,;

. Ty w (MM, dM + M,,, is a definite positive symmetric Toeplitz matrix; this
M,
guarantees the existence and uniqueness of the minimum of J,y (py)-

Remark 4.6.1

It is interesting to notice that the standard controller (3.8) is such that the
corresponding transfer function from d(r) to y(f), T(z™), has two zeros at €*;
hence, controller (3.8) provides a complete rejection of the harmonic signal, whatever
its amplitude be. Instead, the minimum-variance overparametrized controller provided
by (4.3.9) tries to minimise the overall output variance by searching for the best
compromise between the rejection of the harmonic signal, and the enhancement of the
broad-band signal; to this purpose, it is worth pointing out that the best compromise
between these two opposite goals usually is characterised by a non-complete rejection
of the harmonic signal. Indeed, such a optimal "balanced" solution can be obtained only
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if a quite accurate knowledge of the SNR is available; more frequently, if such an
information is not available, one would like to design a controller which guarantees the
complete rejection of the harmonic signal, for every signal-to-noise-ratio, even though,
in some sense, this way of operating is sub-optimal, and it is essentially due to an
uncomplete knowledge of the system. |

In the case mentioned in the above remark (i.e. when there is almost no knowledge on
the amplitude of the harmonic disturbance affecting the system), the overparametrized
controllers can be successfully used for enhancing the performances of standard
controllers, by using the following performance index:

Jow(py)= Jim Joy (py). (4.6.4)

By plugging (4.3.5) into (4.6.4), one obtain:

2| ar\prs g o~ p A2 I P S
3 ()= A}if.“.[ﬂ |aHRE ) +2* By HA(Z R+ P2 )e(r). 4.65)

72 TS N D&

With reference to performance index (4.6.5), the following simple but interesting result
can be stated:

Proposition 4.6.1 Performance index (4.6.5) has a unique minimum, p,, such that
the correspondent polynomial P, (z™") has two zeros at ¢*“, i..
Py (z™!) is such that:

P,(z)= AP, (™).

Proof.

The proposition can be simply proved, by direct inspection of performance index
(4.6.5). If one considers the first term of (4.6.5) ,

2 -1 -1 —k ENC
MliE(M |A(Z )R(Z )+Z PN(Z )l , (4.6.6)

2 | D(z™)

|z=e"n J

it is apparent that, in order to keep (4.6.6) bounded,
1| AR +2* By ()

2| D(z") |

z=e

must be exactly equal to zero (notice that such a term does not depend on M). This can

be true only when the polynomial A(z)R(z)+z™*Py(z™") has a couple of zeros at

e*, i.e. only when such a polynomial has the following structure:

AR+ Py (27 = ACT) (R +274 By, (7)),
or, correspondingly,
P,(z)=A(z")P,_,(z™).
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Notice that, in general, the polynomial P, (z™') having such a structure is not unique;
the uniqueness of the minimum of (4.6.4) is guaranteed by the fact that the second
term of (4.6.5),

{A(z")(R(z")+z‘*FN(z‘l»
0 D(z”)

is a definite positive quadratic form with respect to the parameter vector py.,

1
e(t)J

A numerical example, related to proposition 4.6.1, is now provided.

Numerical Example 4.6.1

Consider the following situation:
BzM=C(zMH=1,

k=1 Q=n/4,p =08 N =8, and M unknown.

In this case, one has to resort to performance index (4.6.4), instead of (4.6.1), for
completely no knowledge on M is available. In Fig.4.6.1, the positions of poles and
zeros of the transfer function T (z™!), obtained by use of (4.6.4), are displayed.

1

0.8

0.6

0.4

0.5 1

Fig.4.6.1. Positions of zeros (0), and poles (*) of T; (z™). Notice the presence of 7 poles in the
origin of the axes.
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X

It is apparent that a couple of complex conjugate zeros at € Y is present, which leads
to a complete rejection of the harmonic disturbance, whatever its amplitude be.

Remark 4.6.2

Performance indices (4.2.5) and (4.6.1) can be - so to say - "combined", in order to
take into account the robustness requirement on both M and Q. The combination of
such performance indices leads to the following performance index:

Jaan (PN)=T ‘]‘YQ(Q)YM(M)JIN (py,S0dQdAM , 4.6.7)

M, Q
which is, as usual, a weighted integral of the simple reduced-variance performance
index (4.3.1).,

Remark 4.6.3

The use of performance indices (4.5.2), (4.6.1), or (4.6.7) requires the knowledge of
the probability density function associated to parameters M and €. However, such
probability density functions, even when they are not exactly known, can be used as a
design tool for the shaping of T, (z™) in the frequency domain. This way of using the
p.d.f. as a shaping tool is extremely useful, in the practice, because a well-shaped
T,(z™") is, perhaps, the most important requirement, for the improvement of the
performances of controller (3.8). |
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4.7. Robust control design: the case of uncertainties in the system time delay

In this subsection the problem of using the degrees of freedom given by the
overparametrization of the basic controller, in order to improve the robustness of the
system with respect to the uncertainties in the time delay of the system, is considered.
Needless to say, the robustness of the control system with respect to such an unknown
parameter is a challenging problem which is of major importance in the design of the
controller. As a matter of fact, the design of control systems for the rejection of
narrow-band signals usually gives rise to poles which are very close to the instability
region, and even small variations in the system time delay might lead to instability or to
very poor performances.

Suppose that the time delay of the system is h, & belonging to a finite set of positive
(the system is supposed to be casual) integers, say £ € H, and suppose to have some
knowledge on the (discrete) probability density function associated to A, Y, (h), which,
as usual, has to satisfy the following conditions:

2,k =1

heH

and

Y,(h) 20, Vhe H
Clearly, the "nominal" time delay & in correspondence of which the standard controller
(3.8) is designed, is usually the value of H such that v, (k) 2v,(h), Vhe H.

When the overparametrized controller (4.2.1) is used, it is easy to show that the
transfer function from d(z) to y(¢) is:

A REZ M) +z7 Py (z™)
AEHREY+ @ —z7")Py () + 27" E(z™)

y() = d(t). 4.7.1)

Notice that in the case of uncertainties in the time delay of the system, the
characteristic polynomial of the closed-loop system does change. This represents a
major difference with respect to the case of uncertainties in the disturbance parameters
(M and Q), and makes this robust control system design problem much more involved
and challenging. However, it is interesting to notice that the zeros of transfer function
(4.7.1) do not change, when the loop time delay varies.

As a consequence of the fact that, when h#k, P, (z') appears even at the
denominator of (4.7.1), the output variance takes the following form:

fﬁn(pN)
f;‘d (PN) ’
f.(py) being a rational function, i.e. both f, (py) and f,,(py) being (high-order)

polynomial functions of the parameter vector p,, such functions depending on the
value of the time delay ,A.

cov[y(t, py-h)] = fu(py) = (4.7.2)

The most straightforward way of dealing with the design of a robust controller with
respect to the uncertainties in the system time delay, is that of searching for the
parameter vector which minimises the following performance index:
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Tow(Pw) = 242D Fu (D). (4.7.3)

he H

Unfortunately, performance index (4.7.3) is a non linear function (it is no longer a
quadratic form as in the previous cases considered in this work!), the minimisation of
which, with respect to p,,, is a non-trivial problem which has to be numerically solved
by resorting to time-consuming iterative algorithms, which usually do not guarantee
the attainment of the global minimum (see e.g. [20]).

In order to overcome this problem, we propose an innovative way of dealing with the
problem of the robust design of a control system with respect to uncertainties in the
loop time delay, via overparametrized pole-placement technique.

The method we propose can be presented as follows.

Consider the "nominal" (k-steps time delay) characteristic polynomial of the system:
Wz =D(z")=1-2pcos(Q)z™ + p*z7,

and the characteristic polynomial for a generic time delay he H:

Wz py)=AZ RE Y HZ* — )Py @ 42 B ) =m0y W )7 b, (py)2 ™, (4.7.4)

n, being the order of polynomial W, (z™), which depends on the value of 4, and
Woseers W, being its coefficients, which - it is worth noticing - are linear functions of

the parameter vector p,.

As previously noticed, the numerator of (4.7.1) does not depend on k; hence, in order
to force (4.7.1) to be as close as possible to the nominal transfer function (4.2.1), one
has to minimise a "distance" of W, (z™, p,,) from W (z™"). A suitable synthetic measure
of the distance between such polynomials is (see €.g. [3]):

L (o) =(1=wy(py)* +(2pcos(@Q —w, (py ) +(p* =, (py ) +Zw,-(pN>2. (4.7.5)

Clearly, the most attractive feature of such a distance is the fact that it is a quadratic
form of the parameter vector p,; thus, (4.7.5) can be rewritten as:
A:(py)=piM,p, +pyL, +c,. (4.7.6)

With reference to the quadratic form (4.7.6), the following simple but interesting result
holds:

Proposition 4.7.1 The quadratic form AZ(p,) has a unique minimum in

pu=[e, e 0 - 0, Vhe H\[k}
Proof.

By substituting P, (z™*) = E(z™") in the general expression of W,(z™, py) one obtain:

W,(z7,py) = AR +(z* = 2")E(z )+ 2" E(z) =D ) =W (z ™),
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for every value of h. Hence, when p}=p}=[e, ¢ 0 - 0], the distance
between W, (z™) and W (z™) is zero; being A% (py) 20, Vpy, Py must be a minimum
point for A%(p,). On the other hand, such a minimum point is unique, because
P,(z")=E(z™) is the only solution of the polynomial equation W, (z™, py) =W (z),
when h# k.

Remark 4.7.1

Notice that the minimum parameter vector of A%(py), Py =[e, e 0 - O]T
(which corresponds to P, (z”') = E(z™")) is the parameter vector which opens the loop
of the control system. In such a case, in fact, no feedback is present, u(z) is set to zero,
and y(¢) = d(t) whatever h be. This simple result is interesting because reveals that the
chosen way of overparametrizing the standard controller (3.8) is - so to say - "able" to
open the system loop. This feature is very important with respect to the stability
properties of the overparametrized controller, as it will be shown in Proposition 4.7.3.

By using the quadratic form A’ (p, ), we propose the following procedure, for the
design of the robust controller:

Procedure 4.7.1

(a) Consider the following performance index (which is quadratic in the parameter
vector py):

- [ 1
Tow () =Ty (D) + BLZn(h>Ai<pN> b o) 4.7.7)

heH
(b) Find the minimum, say By (B ), of J,, (p,). Notice that:
- such a minimum is unique and always exists, being T . (Dy) definite positive;
- Py(B) is a vector of rational functions of parameter 3 .

(¢) Substitute F,(B) into J,y(py) (4.7.3); notice that, after the substitution,
J,v(Py(B)) is a non-linear rational function of the only parameter 3 .

(d) Minimise numerically J,, (P, (B )) with respect to [3 .

With reference to step (b) of procedure 4.7.1, the following result can be stated:

Proposition4.7.2 7,(B), B € [0;+oo) is a bounded non-linear continuous 1-
dimensional line in R¥*'.
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Proof.
By substituting (4.3.8) and (4.7.6) into (4.7.7), one obtains:
]

-TW(PN):P'; MlN"’B;{Yh(h)MhN N+P; LlN'*'B;{’Yh(h)LhN +

hzk h=k

(4.7.8)

heH
hzk

+|-01 +B 2y, (b, _I

The minimum of (4.7.8), can be, as usual, obtained as:

1
1
ﬁN(B)=_5 My +B Z'Yh(h)M:w {Luv +B Z'Yh(h)LmJ’

he heH
hzk hzk

Py (B) being a N+1 dimensional column vector, each element of which is a rational
function of .

Now notice that the denominator of each element of 7, (B ) is the determinant of

1

I-MIN +P Z'Yh(h)MhNJ-

heH
h#k

Being such a matrix a definite positive matrix, for P [0:4+00), its determinant always
differs from zero.

With reference to procedure 4.7.1, the following fundamental result can now be stated:

Proposition 4.7.3 Consider performance index J,,(Fy(P)), where py(B) is the
parametric minimum of performance index T.v(py). The
following hold:

M2
1) Bli_r)?«-’w(ﬁzv(l} )= 1'*'7;
2) 3B<+oor pPy(P)e®, VB >B;
where:
©={p, € R¥ /W, (=™, p,)is Hurwitz,Yhe H} (ie. © is the
whole set of parameter vectors p, which guarantee the stability
of the closed-loop system for every h belonging to H).

Proof.

Statement 1) can be easily proved by noticing that, as } — +ee, the minimum point of
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performance index 7, .~ (Py) tends to the (unique) minimum point of Azh (py), which is

given by py =[e0 e 0 - 0], as shown in Proposition 4.7.1. As previously
pointed out, in such a case y(t) = d(t), whatever h be; hence,
fin(Py) 2

M
= cov[d(t)] =14+—,Vh,py,

cov[y(t, py W)= fo(Px) = 2

Fia(Py)

so resulting in:

M2 M2
Jun(Dy)= ZY;.(h)(l+—2'J=1+T-
heH

In order to demonstrate statement 2), remind that J,, (P (B )) is a rational function of
parameter [P ; thus, it has at most a finitt number of singular points, say

{[3_1, Byyens B_,‘p } i.e. values of B where J,, (Fy(B)) goes to infinite.

Consider now the largest singular value of J,, (Py(B)), say B_m; it is apparent that,
in the range [B<0), B > B—m“, J,n(By(B)) never goes to infinite, by virtue of the fact
that B_m is its largest singular point, an by virtue of statement 1). This corresponds to
the fact that any of the roots of Wh(z'l,ﬁN(B )) (Vhe H) passes from the instability
region to the stability one or vice-versa. Moreover, as previously remarked,
W,(z7,By(B)tends to D(z™') for large values of B, Vhe H. Hence, being
W,(z™, By (B)) Hurwitz for large values of [ , it maintains this property over the
whole range [B,+°o). In other words, there exist finite values of  which guarantee

that the correspondent overparametrized controller provides closed-loop stability, for
each valueof he H.

Remark 4.7.2

Notice that the method we propose is essentially that of transforming a N+1-
dimensional non-linear minimisation problem into a 1-dimensional non-linear
minimisation problem. This is obtained by projecting the N+1-dimensional manifold
J,y(py) over the 1-dimensional smooth manifold represented by Py (B). A naive
representation of this projection technique is depicted in Fig.4.7.1.

In Fig.4.7.1 B, (B) is depicted as a continuous one-dimensional line, which joins the
nominal optimum parameter vector, p, (the parameter vector which minimise
J.v (Py)), and the open-loop parameter vector, py. The way py (B ) moves from p,,
to p, is such that it takes into account the problem of minimising the distance between
the nominal characteristic polynomial, and the characteristic polynomial when h # k,
even if it does not necessarily passes through the global minimum of J,, (py)-
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Fig.4.7.1. A naive representation of procedure 4.7.1

With reference to the problem of the stability of the solution "picked up" along line
Py (B), in Fig.4.7.2 a typical shape of function J,, (Py(B)), as a function of B,is
depicted.

TiwBeBIL “ : i 1

STARLE ' UNSTABLE ' UNSTABLE ' uUNsTABLE ' STABLE
< e 2 ¢ >
L

L

B‘l BZ BS B4 B

Fig.4.7.2. Typical shape of function J,  (By (B )). as a function of {3 .

Being J,,(Py(B)) a rational function, it is characterised by a finite number of
discontinuities, in correspondence to the values of B where the denominator of
J.n(By(B)) is zero. In each sub-range of [0,+oo) bounded by two discontinuities one
must check the stability/instability of the characteristic polynomials W, (z", By (B)
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(Vhe H) in correspondence of a single value of B, randomly chosen in that sub-
range: as a matter of fact, the stability/instability condition does not change within each
sub-range. After each sub-range have been "labelled", the optimal solution must be
searched for within the ranges labelled as "stable". The existence of (at least) one range
of stability is guaranteed by proposition 4.7.3.

It is worth noticing that, in general, when such projection techniques are resorted to
(see e.g. [26]), the optimality of the solution found by minimising the projection of the
original manifold onto a low-dimension manifold cannot be guaranteed. Nonetheless,
the proposed procedure seems to be a wise way of coping with the problem of
designing a robust controller with respect to uncertainties in the system delay, not only
because it dramatically reduces the computational complexity of the original
minimisation problem, but also because some appealing stability properties can be
guaranteed, as shown in the proposition 4.7.3. Moreover, when tested by means of
numerical examples, it revealed to provide good results. Finally, the possibility of an
easy check of the stability/instability of the solution along By (B ), makes the method
we propose particularly attractive (see Numerical Example 4.7.1).

Numerical Example 4.7.1

Consider the following situation:
BzH=C(zH=1;

M=42, Q=n/4,p =08,

H={12}, v,0)=06,y,2)=04=k=1.
Three controller has been designed:

(a) The standard controller, designed for the "nominal" case k=1; when using such a
controller, the following performances are obtained (see Fig.4.7.4 and Fig.4.7.5):
1-1414z7"+ 27

h =k=1:T Ty= =1 :
when h=k=1:T(") =772 =0 642_2=>cov[y(t)] 1.223;

” 1-1414z7" + 272
when h=2: T(zY)= o Do = cov[y(1)] = 1.755;

correspondingly, J,, = 1.436.

(b) The overparametrized controller, designed for the nominal case k=1, using an
overparametrizing polynomial of order two, P,(z"); when using such a
controller, the following performances are obtained (see Fig.4.7.4 and Fig.4.7.5):

1-1239z7 +0.75522 +0.131z°
1-1131z7 +0.642

1-123927* +0755z > +0131z”
hen h=2: T,(z )= =cov] y(t)] =1288;

when )= 97 s g vo0i6e ~oma — D)

correspondingly, J,, =1213.

when h=k=1: T,(z") = =cov[y(t)]=1162;

37



(c) The controller designed with the procedure 4.7.1; the best controller has been
obtained in correspondence of P =285 (see Fig.4.7.3); when using such a
controller, the following performances are obtained (see Fig.4.7.4 and Fig.4.7.5):

1-1.1941z7' +0.708z % +0.149z™
1-113127" + 064z

1-11941z"' +0708z > +0.149z™

T 1-1194z"+0.7722 +0082™> —0149

correspondingly, J,, = 1198.

when h=k=1: T,(z") = = cov]y(r)]=1170;

when h=2: T, (z7) =cov] y(£)] = 1240;

In Fig.4.7.3, J,5(Py(B)), as a function of B, has been plotted. It is apparent that it
has a unique minimum, at § =285. It is worth noticing that J,,(Py(B)), in this
particular case, is a continuous functionof B, B € [(),+oo); hence, no stability check is,
in principle, requested.

1.25
Jon(Pu(B)

. ' . . .
. . . . . .
1'21 -..o.......--------t.........-\-..-. ;-J.----...-..:.--......a‘---....-.
. ' ' .
.

1.19 1 { 1 1 1 1

i {
0 0.5 1 15 2 2.5 3
Frequency

Fig.4.7.4 Frequency-domain shape of T(z™") (case (a), dashed line), T, (z™) in case (b) (thin line),
and T, (z™) in case (c) (bold line), when the time delay of the system is k=1 (nominal time delay).
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Fig.4.7.5 Frequency-domain shape of T(z™") (case (a), dashed line), T, (z™") in case (b) (thin line),
and T, (z™") in case (c) (bold line), when the time delay of the system is h=2.

With reference to Fig.4.7.3, Fig.4.7.4, and Fig.4.7.5, one could notice that the standard
controller (a) provides very bad performances, when h=2. Moreover, notice that the
optimal overparametrized controller designed for the nominal case (controller (b))
provides comparatively good performances when h=2, even if it has been designed
without taking into account that condition. As a matter of fact, Fig.4.7.4 and Fig.4.7.5
reveal that - roughly speaking - the "distance" (in terms of overall performances)
between controller (a) and (b) is much higher than the distance between (b) and (c).

For the sake of completeness (and thanks to the low order of the overparametrizing
polynomial), a direct numerical minimisation of performance index J,,(p,) has been
made, in order to compare the sub-optimal solution provided by procedure 4.7.1 with
the global minimum of J,,(p,). The results of such a minimisation are the following:

- the global minimum of J,, (p,) is p, = [0.070 —03520 02992]";
- in correspondence to its minimum, the value of J,,(p,) is 1.166;

- when h=2, the correspondent characteristic polynomial is unstable.

Not surprisingly, the global minimum of J,, (p,) provides an unstable solution. Notice
that this fact points out the need of an optimisation method which is capable to cope
with the problem of easily checking the stability of the closed-loop system, as the
method we've proposed does.

We conclude the numerical example by presenting a time-domain simulation, in order
to get a feeling on the behaviour of control systems (a) and (c), even in the time
domain. To this purpose, the disturbance

d(t) = V2 sin(E 1) + 2 cos(t) (4.7.9)
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has been injected in the control system (a) and (c), and the output has been measured.

In Fig.4.7.6 signal d(¢) is displayed. It is evident that it is constituted by two harmonic
signals having different frequencies.

5 T T T T T T ! ! T
70 I S A o
0 TARARINL M A
o i i i i i i i i i
0 20 40 60 80 100 120 140 160 180 200

Time

Fig.4.7.6. Signal d(1) (4.7.9).

In Fig.4.7.7 and in Fig. 4.7.8, the difference between the output signals of control
systems (a) and (c) respectively, and the harmonic signal at frequency 1, are plotted,
when h=2, in order to compare the different distortions provided by the two control
systems. It is apparent that there is a remarkable difference in the amount of the
distortion.

5

———

i i I i
60 80 100 120 140 160 180 200
Time

Fig.4.7.7. Difference between the output signal of system (a) and the harmonic signal «/E cos(1),
when affected by disturbance (4.7.9), and A=2.
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Fig.4.7.8. Difference between the output signal of system (c) and the harmonic signal «/5 cos(?),
when affected by disturbance (4.7.9), and A=2.
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To end with, it is worth pointing out that the case of multiple sinusoids, only one of
which has to be cancelled, frequently happens in the practice; even in such a case, the
controller designed for the special case of a sinusoid (the sinusoid to be rejected)
embedded in white noise is usually resorted to (see remark 4.3.1).

4.8 Conclusions

In this section, an overparametrization technique of standard controllers has been
presented, having the aim of improving their performances, in terms of variance
reduction and robustness. The obtained results can be briefly summarised as follows:

e The controllers designed by resorting to the proposed technique are capable of
outperforming the standard controllers, in terms of variance reduction; however,
the use of a simple minimum-variance performance index usually provides
questionable results, in terms of overall performances: as a matter of fact, bad
distortions are usually introduced in the frequency-domain behaviour of the system.

e The performance indices proposed for the enhancement of the robustmess of the
system with respect to uncertainties in the frequency and in the amplitude of the
sinusoid can be successfully used in order to re-shape the frequency-domain
behaviour of the system.

e The most successful and effective way of using the extra-degrees-of-freedom
introduced by the overparametrization seems to be that of enhancing the
robustness of the system with respect to uncertainties in the system time delay.
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5. DESIGN OF HIGH-PERFORMANCES NOTCH FILTERS VIA
BIQUADRATIC FILTERS OVERPARAMETRIZATION TECHNIQUE

5.1 Introduction

In this section, the problem of improving the performances of standard biquadratic
notch filters via overparametrization technique is considered.

A typical notch filter, frequently used in the practice (see e.g. [131,[171,[22].[24],[29D),
is the so-called "biquadratic" IIR filter (also known as "biquad"):

Az™)  1-2cos(@)z” +z72
D(z")  1-2pcos(Qz + p2z”

T(z )= (5.1.1)
where p is a design parameter (the "debiasing parameter"), and €2 is the frequency of
the harmonic signal to be rejected.

Now, notice that T(z™") is exactly the transfer function from d(z) to y(z) in the
control system scheme depicted in Fig.2.2, when the "standard" controller (3.8) is
used, and k=1 (without uncertainties). Interestingly enough, the design of notch filters
can be viewed as a special case of control system design for the rejection of narrow-
band disturbances, and one can resort to the overparametrization technique developed
for the control system design, even for the notch filter design.

Thus, the problem of improving the performances of filter (5.1.1), via
overparametrization of its numerator, can be formulated as follows:

"find the overparametrizing polynomial P, (z™') which minimises the output variance

-1 - -
covly()] = 00\{ £z );(zz-:? AR

]
d(t)J,

when d(?) is a signal constituted by an harmonic signal, and by a broad-band noise".

Clearly, such a problem can be straightforwardly solved, by resorting to the design
techniques developed in Sect.4. In view of this fact, the rest of this section is mainly
devoted to the presentation of a general result concerning with the design of the
optimal "biquad" (Subsect.5.2), while the general case of high-order
overparametrization is simply presented by use of a numerical illustrative example,
complemented with some remarks.

5.2 The minimum-variance-optimal biquadratic filter

In this subsection the problem of designing the minimum-variance-optimal biquadratic
filter is considered. To this purpose, the following optimisation problem has been first
considered:

5= arg:lin{cov[ Az );(;;,1 () o)+ M sin(Qe +6 ))]}. (5.2.1)

Notice that p, provides the optimal position of the two zeros of a biquadratic filter,
when the denominator is D(z‘1 ). The expression of p,, as a function of p, Q, and M,
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can be explicitly found; it is quite long and involved and, for the sake of conciseness, is
not here reported.

A much more interesting result has been obtained by considering the following
optimisation problem:

~ Az™ +z'1P E 1
(57 f]= arg gﬁn{cov[ - ( = p) T p(2 _2) (e(t)+ M sin(Qt +0)) J} (5.2.2)
Notice that the minimisation of (5.2.2) corresponds to search for the "global"
optimum, within the class of biquadratic filters; as a matter of fact, it is apparent from
(5.2.2) that the poles position is allowed to move from the standard position pe™®; to
this purpose, however, it is worth pointing out that the special parametrization chosen
for the denominator of the filter is such that the poles are forced to move along the
circle having radius p; this constraint is needed in order to do not change the
dynamical behaviour of the system.

The explicit expression of

»{A(Z_I)H ARG )+ Msin@e+ ))] (5.2.3)
co 2.
1-2pfz + p2z7 - ¢

as a function of p, Q, M, f,and p, is extremely large and involved; needless to say,
its minimisation with respect to parameters f and p, is even a more challenging
problem, which can be solved only by means of a powerful symbolic manipulator tool
([21]). Nonetheless, surprisingly enough, the solution of this optimisation problem
revealed to be extremely simple (and much more simple than the solution, p;, of the
optimisation problem (5.2.1)). To this purpose, the following result can be stated:

Proposition 5.2.1 Consider the optimisation problem (5.2.2). It has a unique
solution given by:

[ 2cos(Q)(p> - 1)°
(p*M*-2p*+2M?%) |

- ﬁl = _2(p2 _1)2 ' (5.2.4)
(p*M*-2p*+2M?)
f (1+ P )COS(Q). (5.2.5)

(notice that the optimal position of the poles does not depend on
M). In correspondence to (5.2.4) and (5.2.5), the output variance
is given by:

—2(p*-1-M?)
(p*M*=2p*+2M?)’

- cov[y(t)] = (5.2.6)
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Proof.

The result stated in the proposition can be obtained simply by computing the explicit
algebraic expression of (5.2.3), and by minimising such an expression with respect to
parameters f and p,. The whole computation has been made by means of a symbolic
manipulator tool, such a computation being not feasible directly by hand.

Remark 5.2.1

Interestingly enough, the optimal denominator of T(z™), 1-(1+ p?)cos(@)z™ + p?z7,
is the same polynomial which solve a completely different problem, which can be
briefly synthesised as follows:

when resorting to filter (5.1.1) for estimating the frequency € of an
harmonic signal embedded in white noise, it can be shown that a biased
estimated is provided (see e.g. [9]); with reference to this problem, one can
search for the poles position which provides an unbiased estimate; it has
been recently shown (see [4],[31]) that the polynomial which solves this
problem is exactly 1— (1+ p2)cos(Q)z ™ + p2z~>.

Notice that the fact that the solutions of the abovementioned problem, and that of
(5.2.2) coincide is particularly surprising; as a matter of fact, the optimal position of
the zeros associated to vector (5.2.4) does not coincide with the roots of A(z™), and
this makes the "duality" between the two problems hard to recognise.

5.3 Overparametrized biquadratic filters

As for the general case of overparametrized biquadratic filters, it is easy to show that,
in general, the use of the "simple" performance index (4.3.1) leads to badly-shaped
notch filters. As a matter of fact, the typical oscillations which characterise the
frequency-domain shape of the filters provided by (4.3.1) (see Subsect.4.3) are
considered an obnoxious feature for a stop-band filter. Hence, for the design of well-
shaped high-performances filters, one has to resort to performance index (4.5.2): the
probability density function, y,(Q) can be considered as a "smoothing" tool, which
plays a similar role of that played by the so-called "windowing" techniques, commonly
used in standard filter design methods (see e.g. [5D).

In order to show the effectiveness of the overparametrization technique proposed in
this work for the design of high-performances notch filters, the following numerical
example is proposed.

Numerical Example 5.2.1
Consider the following situation:
M=2,N=10,

Az =1-2cos(Z)z +272,
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D(z™)=1-2cos(%)08z7 +0.64z7,

and

10 when Qe ["Z ~005; "Z + 0.05]

Ya (Q) . - -
0 whenQe (—n ;-4— - O'OSJU(Z +005n J

(uniformly distributed p.d.f).
By minimising the following performance index:

v{A(z-l)n Pz
D(z™

&+Q,05 'l
J(p,) = j (e +25n(Qr+9) Yo (@d,  (527)

50,05

the following filter is obtained:

_ 00905 1-1.2727 408072 20,0372 240,024~ +0.00047 50,0192 *~0.0247 7 ~00152™*+0.0004z ?+0.012”40.087:™"')
10( )= 11131427 4064272

(5.2.8)

In order to roughly evaluate the performances of filter (5.2.8), a comparison with the
standard biquadratic filter (see Fig.5.2.1), and with a well-designed ([5],[23]) stop-
band FIR filter of order 24 (see Fig.5.2.2) has been made (the length of the FIR equals
the length of the FIR filter which approximates (5.2.8) - see Subsect.4.4).

B

1

0.8

0.6

0.4

0.2

Frequency

Fig.5.2.1. A comparison between the standard biquadratic filter (thin line), and T, (z™1) (bold line).
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Fig.5.2.2. A comparison between a FIR(24)-based stop-band filter (thin line), and T} (z) (bold line).

As it is apparent from Fig.5.2.1 and Fig.5.2.2, the filter (5.2.8) is a well-shaped filter,
which guarantees an high selectiveness in the rejection (see Fig.5.2.1), and an almost
complete rejection of the harmonic disturbance (see Fig.5.2.2).,

We conclude this section by remarking that the overparametrization technique
proposed in this work represents an innovative and effective way of designing high-
performance notch filters; by means of a wise use of the design parameters, namely N,
p, and Y, (Q), it is possible to improve the performances of standard biquadratic
filters. To end with, notice that the overparametrization we propose might be viewed
as a way of joining the best features of both IIR and FIR filters.

6. CONCLUSIONS

In this work an overparametrization technique of standard pole-placement controllers,
for the rejection of harmonic disturbances, has been developed. Such a technique
revealed to be an effective way of improving the performances of standard controllers,
in terms of variance reduction at the output, and in terms of performance robustness
with respect to uncertainties in the frequency and amplitude of the harmonic
disturbance. Moreover, an innovative way of dealing with the problem of the
robustness with respect to uncertainties in the time delay of the system has been
developed: the proposed method revealed to be simple and effective, and it represents
one of the most attractive ways of using the extra-degrees-of-freedom, which are made
available by the overparametrization.
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At the end of the paper, it has been shown that the proposed overparametrization
technique can be extended, in a straightforward way, to the design of high-
performance stop-band filters.
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