LUND UNIVERSITY

Nonlinear Frequency Control of an Ultrasonic Generator
Part Il
Rosenberg, Michael

1995

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Rosenberg, M. (1995). Nonlinear Frequency Control of an Ultrasonic Generator: Part Il. (Technical Reports
TFRT-7538). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/6562aae6-c7fc-491c-ad67-2cbe7b1039d9

ISSN 0280-5316
ISRN: LUTFD2/TFRT--7538--SE

Nonlinear Frequency Control of an
Ultrasonic Generator: Part 11

Michael Rosenberg

Department of Automatic Control
Lund Institute of Technology
September 1995



Document name

Department of Automatic Control Internal Report

Lund Institute of Technology Date of issue
P.O. Box 118 September 1995
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--7538--SE
Author(s) Supervisor
Michael Rosenberg Ulf Jonsson, Anders Rantzer

Sponsoring organisation

Title and subtitle
Nonlinear Frequency Control of an Ultrasonic Generator: Part II

Abstract

The ultrasonic equipment used to seal packages consists of an electric generator which delivers energy to an
ultrasonic stack. There is a need to use a control system to control the frequency of the generator, since the
resonance frequency of the stack is time varying.

In this report an approximate analysis method is derived, which simplifies the mathematical analysis of the
ultrasonic system. This method is then used to examine the existing solution to the frequency control problem,
and some major problems with this solution are presented.

Next a new solution to the frequency control problem is presented, which uses the amplitude of the converter
ag feedback via a PLL. The new setup also gives an opportunity to keep the generator and stack matched
during the whole sealing cycle. This new solution is superior to the existing solution, and simulations on
a computer are made to validate to theoretical results derived. This report contains additional material
compared to ISRN LUTFD2/TFRT-5522-SE

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient's notes
English 57

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis Iund.



Preface

This thesis fulfills the requirements for the Master of Science degree in Com-
puter Science and Technology at Lund Institute of Technology, Sweden. The
work was carried out during the fall of 1994 at AB Tetra Pak Research and
Development and at the Department of Automatic Control. Since the thesis
is mainly theoretical, I spent most of the time making calculations and simu-
lations on a computer. The programs I used were MATLAB, Maple and OmSim.
Some practical work was also carried out at AB Tetra Pak Research and De-
velopment.

Although this thesis is theoretical, it deals with a practical problem. Un-
fortunately there were no time to implement the solution presented in this
thesis. It would, however, be interesting to see the results of such implemen-
tation in the future.

I would like to thank the following persons who have helped me during
the work with this thesis: My supervisors at the Department of Automatic
Control, Ulf Jonsson and Anders Rantzer and my supervisor Gert Holmstrom
at Tetra Pak Research and Development. A special thank to the people who
read this report and corrected the many errors. None mentioned, none forgot-
ten. Notice: This report contains additional theory about the matching of the
generator and stack, compared to the report ISRN LUTFD2/TFRT-5522-SS.

Michael Rosenberg

Lund, January 1995



Contents

Preface . . . . . . . . . e e e iii
1. Principles of the Ultrasonic Heating Process . ... ... .. 1
The Ultrasonic Sealing Unit . . . .. .. ... ............ 1
Why Frequency Control of the Generator 7. . . . .. ... ... .. 1
2. Modeling of the Ultrasonic Sealing Unit . .. ... ...... 3
Linear Admittance Model of the Ultrasonic Sealing Unit . . . ... 3
State Space Description of the Ultrasonic Sealing Unit . . .. ... 5
The Stationary Behavior of the Admittance Model . ... ... .. 6
Linear Amplitude Model of the Ultrasonic Sealing Unit . . . . . . . 8
SUMMATYs: o & 5% 0 & 6 b 00 & 5 6 0 o 6 % 58 SR D § 6§ BV 8 9
3. Model Validation . . . . ... ... ... ... ... ... 10
Model Validation of the Admittance Model . . . . . . .. ... ... 10
Transfer Function Estimation . . .. .. ... ............ 10
Data Acquisition System . . . . . ... ... ... ... ... 11
Model Validation of the Amplitude Model . . ... ... ...... 12
Summary . . . . . .. e e e 12
4. Real Time Identification . . ... .. .. ............. 13
Continuous Time Recursive Least Square Identification . . . . . . . 13
Implementation of the Regression Filter . . . .. ... ....... 14
Excitation of the Input Signal . . . . ... ... ... ........ 15
Drawbacks of the Continuous Time RLS Estimator . . . ... . .. 15
Comments on the Discrete Time RLS Estimator . . . . . .. . ... 16
Summary . . . . . .. e e e 16
5. The Phase-locked Loop . . . .. ... ... ... ......... 17
Definitions . . . . . . . . . .. e e 17
Description of the Phase-locked Loop . . . . . ... ... ...... 17
Linear Model of the Phase-locked Loop . . . . ... ... ... ... 18
Description of the Loop Filter . . . . . . ... ... ......... 20
Description of the Phase Detector . . . . . ... ... ........ 21
SUMMATY . . . . . . e e e e e e e e e e 23
6. Model Simplification . ... ... .. ... ... ..., 24
Phase Signal Domain Stationary Behavior . . ... ... .. .... 24
Approximation of the Phase Signal Domain Dynamics . ... ... 25
Summary . . . . . ... e e e e e e 25
7. Using the PLL with the Admittance Model . . . . . .. ... 26
Setup of the PLL with the Admittance Model . .. ... ... ... 26
Transformation of the PLL/Admittance Model Setup . . . . .. .. 26
Selection of the Loop Filter . . . .. .. ... ... ......... 27
Approximation of the PLL/Admittance Model Setup . . . .. ... 27
Problems with the PLL/Admittance Model Setup . . . . ... ... 28
SUMmMary; s is v ilitd e s il sl e e mE e i 30
8. Using the PLL with the Amplitude Model . ... ... ... 31
Setup of the PLL with the Amplitude Model . . . . ... ... ... 31

ii



Properties of the Amplitude Model . . . . . ... ... ... ....
Transformation of the PLL/Amplitude Model Setup. . . . . . . ..
Adaptationofthe Coil Ly . . . . . . . . . . ... . ... ...,
Transformation of the Ly Adjustment Setup . . . ... ... ....
Investigation of Equilibrium Points . . . . . ... ... ... .. ..
Linearization of the PLL/Adaptive Amplitude Model Setup

Design of the Ly Adjustment Controller . .. ... .........
SUmMMATrY . . . . . . o s e e e e e e e e e

9. Simulations o e 6w e s 9 855 % o 8 5 e w8 % a8
Simulation of the PLL/Amplitude Setup with L, Adjustment
Simulation of the Simplified System . . . . . ... ... .......
Summary . . . . . . .. e e e e e e e

10. Concluding Discussion . . . . . . . ... .o v ..

iii



iv



1. Principles of the Ultrasonic Heating Process

Vibrations with frequencies from 20 kHz up to approximately 100 MHz are
called ultrasound. These vibrations can be used in various applications and
especially, as in the case of AB Tetra Pak, to weld plastic materials together
to form a package. Ultrasonic heating is one of the sealing methods in current
use, which all exhibit the same fundamental principle; both heat and pressure
are applied to the packaging material. The plastic layers on the inside of the
packaging material melts and the heat is removed. The material, still under
pressure, is cooled off and finally the pressure is removed. The result is two
layers of packaging material welded together.

The main principle of ultrasonic heating is to convert electrical energy
into mechanical energy, which is then transferred into the packaging material
and converted to heat. For more information about applications of ultrasound
and details of ultrasonic welding, see [6].

The Ultrasonic Sealing Unit

The existing equipment is presented in Figure 1, and it consists of five parts:

the electric generator which supplies electrical energy to the system. From
the generator’s point of view the hole system acts like an electrical load,
which varies with time.

the converter for transferring the electrical energy into mechanical energy.
The converter consists of piezo electric crystals.

the booster which amplifies the amplitude of the mechanical vibrations from
the converter. The amplification gain is determined by the ratio of the
masses of the upper and lower halves of the booster.

the sonotrode delivers the mechanical vibrations into the packaging mate-
rial. The sonotrode also amplifies the vibrations, just like the booster.

the anvil is used to clamp the packaging material between itself and the
sonotrode.

When the converter, booster and sonotrode are put together they are referred
to as the stack. The stack is vibrating longitudinally and from the vibrations
frictional heat is generated in the packaging material, which is placed between
the sonotrode and the anvil. In order to get a sealing, the pressure between
the sonotrode and the anvil must be high.

For more details on the different parts used to build the ultrasonic sealing
unit, see [5] and [6].

Why Frequency Control of the Generator ?

The ultrasonic stack is a resonant system, i.e. there is one frequency (the res-
onance frequency) at which the stack is willing to oscillate. But the resonance
frequency of the stack varies with time.

The reasons for the variation in resonance frequency are many. Different
stacks have different resonance frequencies and different packaging materials
gives different resonance frequencies. This motivates the use of a control system
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Figure 1. The ultrasonic sealing unit.

to make sure that the generator operates at the resonance frequency of the
stack, which gives the most effective energy transport from the generator: to
the stack. The control system thus makes it possible to use the same generator
for different stacks and different packaging materials, although their resonance
frequencies differ.

Another reason for using frequency control is that during the sealing cycle
the resonance frequency is changed due to compression in the package mate-
rial and melting plastics. Practical experience also shows that the resonance
frequency is dependent of the amplitude of the oscillations in the stack.



2. Modeling of the Ultrasonic Sealing Unit

There is a previous Master’s thesis [5] which deals with the modeling of the
ultrasonic sealing unit. In that work a description of how to use electrical analo-
gies to describe mechanical systems is presented. Two different approaches to
electrical modeling of mechanical systems are compared, the lumped model and
the transmission line model, where the first is described by ordinary differen-
tial equations and the latter by partial differential equations. In the lumped
model all information about the system is collected in a few parameters and
no direct relation between these parameters and reality exists. This gives a
fairly simple mathematical model of the system. The transmission line model
relates each physical part of the system to a mathematical submodel, which
makes it easy to understand the connection between reality and the model.
Putting all submodels together gives a model of the total system, which is
more complex than the lumped model.

Linear Admittance Model of the Ultrasonic Sealing Unit

In order to derive a mathematical model of the ultrasonic system some as-
sumptions have to be made. First, the system is assumed to be linear, which
is never true exactly. Next, the system is assumed to be ttme invariant, i.e.
none of the parameters vary with time. This is really not true either. In prac-
tice the system depends strongly on time. With these limitations in mind, a
linear time invariant model of the system can be derived.

A comparison between the transmission line model and the lumped model
in the frequency domain showed great similarities in the interesting frequency
range, so the lumped model probably contains enough information of the
system. This fact, combined with the simpler mathematical structure of the
lumped model, motivates the use of the lumped model in this thesis.

A commonly used (lumped) model to describe piezo electrical crystals
is presented in Figure 2(a). Since the converter consists of piezo electrical
crystals, this electrical equivalent circuit can be used to describe the converter.
When the booster and sonotrode are connected to the converter, a new set
of R, L, C and C, parameters is obtained'. The mathematical structure of
the model does not change. This means that the model only describes the
behavior of the converter, but the model takes the influence of the booster
and sonotrode on the converter into consideration.

The admittance of the circuit in Figure 2(a) is given by

Y(s) = 1) _ o+ - _ Cos(s® + 3o + 55,
Ui(s) 0 ;%+R+5L 32+%s+%

When the generator and the stack are connected, there is a need to match
the two systems to each other. This is done by connecting a coil Ly between
the generator and the stack (see Figure 2(b)), and the admittance seen from

1 Table 5.1, page 31, in [5] justifies this statement.
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Figure 2. (a) Model of the stack. (b) Model of the total system.
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This expression, which will be referred to as the admittance model or the
system, can be rewritten after simple but tedious calculations as

1

-1
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The generator and the stack can only be matched at one frequency, so the
resonance frequency is chosen. The resonance frequency is defined by

_ [cot+C
“=\Toq, )

and the booster and sonotrode, both mechanical resonators, are designed to
have this resonance frequency. From now on it is assumed that if the system in
Figure 2(b) is working at the resonance frequency, the booster and sonotrode
will also work at the resonance frequency 2.

The generator and stack will be matched when arg {Hyr(jwo)} = 0. An
examination of (2) shows that the argument of the last part of the expression
equals zero at the resonance frequency. Using the jw-method on the remain-
ing part of the expression gives a constraint to decide L, at the resonance
frequency, that is

; ] 1
arg {Hyr(jwo)} =0 <& j (wOLO -0 ) =0
0Co

2 This is an important statement, which will be used later when frequency control strate-
gies are discussed.



which gives
CL
— R 4
Co+C (4)
With this choice of L, the admittance seen from the generator will be real
valued at the resonance frequency. This means that the phase shift between

Lo

current and voltage will be zero, and all energy delivered by the generator
will be consumed by the system. For other frequencies the load will become
complex valued and energy will be returned to the generator. It is therefore of
great importance that the generator is working close to the system’s resonance
frequency, and that the generator and stack are well matched.

An important interpretation of the model in Figure 2(b) is that the current
Iy (t) is the electrical analogy of the velocity of the converter, see [5]. Observe
that this current is not measurable, since it does not exist in the real system.
It is however possible to measure its mechanical analogy, the velocity. The
only signals in Figure 2(b) with electrical correspondence are U(t), I(t) and
U,(t). All other signals in the figure lack electrical correspondence in the real
system, and have to be replaced by mechanical analogies.

Left to model is the generator, which has to ramp up the output voltage
to avoid high transient currents during the start up process. This is very
intuitive since the system needs a lot of energy in order to start to oscillate,
thus forcing the generator to deliver a high current. When the system has
started to oscillate, the amplitude of the output voltage from the generator is
held constant.

In the derived model (1) there are four, in practice, time varying param-
eters. The electrical part of the converter C, is temperature dependent, but
it varies only slowly with time and can be assumed to be constant during one
sealing cycle. The variation is estimated to be +10%. Next the R parameter is
highly dependent on the pressure in the system, which needs to be high to get
good sealings. Finally the C' and L parameters have no intuitive interpretation
but they can be assumed to vary during a sealing cycle, although the variation
is small.

State Space Description of the Ultrasonic Sealing Unit

Assuming that the parameters in the model of the total system (Figure 2(b))
do not vary with time, a state space model of the system can be derived. Using
the signals introduced in the figure, the circuit is described by the following
equations in the time domain

Ut) = Lo+ Uy(t)
I(t) = L(t)+Iy(t) 5)
Il(t) = C;_)%

Uit) = LU 4RI, () + % i Iy (r)dr
Introducing the states
zi(t) = JoIv(r)dr
z,(t) = Iv(Y)

ma(t) = I(t)
zi(t) = Ui(t)



gives &; = #,(t) and I;(t) = za(t) — z2(t). With these states (5) can be
rewritten as

i']_ = :Uz(t)
U(t) = Loﬁl}a + 24(t)
$3(t) - (Ug(t) = Coiiz'4
e4(t) = L&y + Rea(t) + F2a(t)
or in a more compact form
0 1 0 0 0
; -4 -£ 0o 1 0
o I A F R e O (6)
4 & ;

iyl [oo 1 o0
[Iv(t)}_[o 10 olm(t)
T
where z(t) = [ z1(t) z2(t) wza(t) za(t) ] . This state space description of
the ultrasonic system will later be used in the simulations.

The Stationary Behavior of the Admittance Model

Since the input to the system is a sinusoid, the equivalent circuit of the sys-
tem can be analyzed with the jw-method. It is important to be aware of the
method’s limitations. The jw-method can only be applied to linear time invari-
ant systems and it only gives information of the system’s stationary behavior.
No information of the system’s transient behavior is given.

With these limitations in mind, it is seen that the admittance model (1) is
indeed linear and assuming that the parameters only varies slowly with time,
the system is approximately time invariant. Thus the jw-method will give a
good approximation of the system’s stationary behavior.

Applying the jw-method on the system (2) gives

1 -1
: . 1 &L
Hor(jw) = (] (WLO - wCo> R jw(wi - wz))
R 1 1 w? —w?\\
oy - s
(chgzv(w) 3 (“’ °~ oG, T ICIN(W) w

where N(w) = (%w)2 + (w? — w?)’. The amplitude and phase function for the
system is now directly given by

R . 1 1 w-we\ 7

Lwi-w? CIL2 1
pur(w) = - arctan (T2 1 SN (w) (wlo- )
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Figure 3. Bode plot of the admittance model Hy;(s). Parameter values used:
Cy =15.8 nF, C =2.18 nF, R =50, L = 29.7 mH and Ly = 3.60 mH.

In stationarity, when the transients have disappeared, the output from the
system is given by

Ly(t) = Apyr(w)Us sin(wt + pyr(w))

where U, is the amplitude of the output voltage from the generator.

Assuming that the generator and stack are perfectly matched and that
the generator is working at the resonance frequency wy, the expression (7) for
the amplitude and phase functions are simplified to

Co+ C)RC
AUI(WO) = L—U—CL)—O

pur(wo) =0

This gives the following expression for the output of the system when the
perfectly matched system works in stationarity and at its resonance frequency

I (t) = L_*-G?R—G)Uo sin wot

In Figure 3 the amplitude and phase function for the admittance model (1) is
plotted.
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Linear Amplitude Model of the Ultrasonic Sealing Unit

An interesting relationship is the one between the output voltage from the
generator and the amplitude of the stack. The model derived earlier used
currents as electrical analogies for velocities. The current Iy () in Figure 2(b)
represents the velocity of the converter. The amplitude of the converter can
easily be calculated as the integral of this velocity. Observe that this amplitude
is not the same as the amplitude of the sonotrode. Both the booster and the
sonotrode have a mechanical impedance and will both affect the amplitude.
See [5] for a mechanical model of the booster and sonotrode. The same paper
also contains a description on how to use electrical analogies.

Direct use of (5) gives the transfer function from U(t) to I+ (t). Integrating
this expression, i.e. multiplying with 1/s in the frequency domain and intro-
ducing I4(t) = f5 Iy (r)dr, gives the transfer function from the voltage to the
electrical analogy of the amplitude of the converter

Ta(s) St
Hya(s) = = S (8)
U(S) 84 + %53 + (% + é’o'};}i) 52 + CO}LZLos + CCOILLO

This model will be referred to as the amplitude model.
Using the jw-method and solving for the frequency when the imaginary
part of Hy4(jw) equals zero gives




which is recognized as the resonance frequency wq if the generator and stack
are perfectly matched. At this frequency Hya(s) is independent of R. The
phase shift between the output voltage from the generator and the amplitude
of the converter is therefore independent of R and equals —m radians. For
convenience the sign of Hy 4(s) is changed, so the phase shift will become zero
at the resonance frequency. Simple jw-calculations gives the phase function
of _HUA (5)

1.2
v (2 ~ )

valw) = —arctan
14 ( ) wt — (L 4+ Lodl Yz g 1
LCc CULLU CCCIL"L'U

(9)

which is shown in Figure 4. Another important observation is that the slope
of the phase function does not change sign for any R, which is the case with
the phase curve of the admittance model.

Notice that the state z,(t) in (6) is the electrical analogy of the amplitude
of the converter.

Summary

In this section a linear time invariant model of the ultrasonic sealing system
was derived. An equivalent state space form is given in (6). A resonance fre-
quency was defined and it was shown how to choose the coil Ly, in order to
match the generator and stack at the resonance frequency. When the model
was derived some assumptions had to be made, and it is important to be aware
of the limitations of the model. The real system is not linear and it is not time
invariant. Specially R varies with time, but also C, which is temperature de-
pendent. It should be noticed that some of the results derived are valid only
for linear time invariant systems in stationarity (for example the Bode plots),
and they should be used with care. The linear time invariant model derived is
however mathematically attractive, and it will be used to gain insight in the
ultrasonic system’s behavior.

Two different transfer functions were derived, the admittance model and
the amplitude model. The admittance model describes the admittance seen
from the generator, and the amplitude model describes the connection between
the output voltage from the generator to the amplitude of the converter.

Common for both models is that they only give information about the
behavior of the converter, although the influence of the booster and sonotrode
on the converter is modeled in the parameters R, L, C and C,. This means
that nothing can be said about the behavior of the booster and sonotrode from
the derived models. An important statement was however made, and it said
that if the system in Figure 2(b) is working at its resonance frequency, then
the whole stack is working at its resonance frequency, since the booster and
sonotrode were designed to have this resonance frequency.



3. Model Validation

Two different models of the ultrasonic sealing unit have been derived in Sec-
tion 2. In order to justify the use of these models, measurements must be made
to show that the models correspond well with the real system. Measuring the
transfer function for each of the two models would give enough information to
motivate the use of the models. These measurements requires some knowledge
about system identification.

For all measurements made, the amplitude of the input signal is much
lower than the ordinary amplitude of the voltage from the generator. There
are two reasons for this. First the models derived in Section 2 are linear and
by using a small amplitude of the input signal the real system will hopefully
behave linearly. The other reason is that there are some problems with high
voltages in the converter, which makes it difficult to make the measurements.

Model Validation of the Admittance Model

Since the admittance model is previously known, no validation of this model
is made in this thesis. Instead measurements made in [5] with the HP 4194A
Impedance Analyzer are used to validate the admittance model. The mea-
surements were made on the stack, which corresponds to the equivalent circuit
given by Figure 2(a), but the admittance model also contains a coil L. It is,
however, easily realized that if the equivalent circuit in Figure 2(a) agrees well
with the stack, then the equivalent circuit in Figure 2(b) will agree well with
the total system.

The analyzer measures the impedance as a function of frequency, and the
admittance is then given by inverting the impedance amplitude function and
changing the sign of the impedance phase function. The analyzer also offers
five different equivalent circuits to which the collected data can be matched.
One of these five models is the circuit presented in Figure 2(a) so an estimate
of the parameters in that model can easily be obtained. The estimated model
can then be compared with the collected data to see how well the model and
the real system correspond.

The measurements in [5] shows that the equivalent circuit of the stack
agrees well with the real system, which implies that the admittance model is
valid, and there is no need to repeat the measurements here.

Transfer Function Estimation

Denoting the input signal to the system u(t) and the output signal from the
system y(t) their discrete Fourier transforms are given by

Y(jw) = F{y(kh)}
U(jw) = F{u(kh)}

A simple transfer function estimate is then given by

so1-383

10
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which can be expected to give a good estimation of the continuous time system,
if the signals u(t) and y(t) are sampled fast enough.

See Chapter 4 in [4] for more information on this system identification
method.

Data Acquisition System

The interesting frequency range for the ultrasonic sealing system is approx-
imately 15 kHz - 25 kHz, and the sampling frequency must be chosen fast
enough to fulfill the sampling theorem. Since the generator output also con-
tains higher order harmonics, consideration must be taken to implement anti
aliasing filters.

The HP 3567A system takes care of these matters. It has an effective
bandwidth up to 102.4 kHz and it also has the anti aliasing filters needed.
Data can be collected from maximum six independent channels, and all mea-
surements are stored in buffers. The information in these buffers can later be
transferred to a computer and analyzed, either in a special HP 3567A pro-
gram or exported to some other program. In the HP 3567A program there
are possibilities to view the frequency contents of the collected data, power
spectrum estimation and much more.

See [3] and Section 5.3.2 in [6] for a description of the program.

11



Model Validation of the Amplitude Model

To validate the transfer function (8) from the generator voltage to the am-
plitude of the converter, an amplitude measurement must be made. This was
done with an optical amplitude sensor MTI-1000 Fotonic Sensor. Since the
sensor is optical it is important that the measurements are made perpendic-
ular to a surface that reflects the light. This surface can be found on the top
of the converter, but this point does not correspond to the amplitude in the
model. There is however a simple relation between the amplitude in the model
and the measured amplitude. It can also be expected that the optical sensor
will introduce an extra phase shift and amplitude distortion. In Section 5.3.1
in [6] the optical sensor is more detailed described.

The system under test (SUT) consisted of a variable coil and a converter.
The coil were adjusted in order to match the converter. As the input signal
to the SUT a chirp signal was used, i.e. a sinusoidal signal with a variable
frequency. The frequency were swept from 15 kHz to 25 kHz with a sweep
time of approximately 5 seconds, and it was generated by a Leader LFG-
1300 Frequency Generator.

Both the chirp signal and the resulting amplitude signal were sampled
by the HP 3567A and windowed by a Hanning window. The transfer func-
tion estimate was then calculated by the program. The resulting amplitude
and phase function for the transfer function is shown in Figure 5, and the re-
sult shows great similarities between the model and the real system (compare
Figure 4). This motivates the use of the amplitude model.

Summary

In this section measurements were made to justify the use of the models derived
in Section 2. The validation of the admittance model were made by referring to
measurements made in [5]. The amplitude model was however not previously
known, and a validation of that model was done. The result shows that the
amplitude model agrees well with the real system. This means that the use of
both the admittance model and the amplitude model is justified.

12



Figure 6. Second order resonant system.

4. Real Time Identification

Real time identification methods are algorithms used to identify a system in
real time. The algorithms are usually recursive algorithms that updates the
parameter estimates every time new data is collected. A problem with these
methods is to get the parameter estimates to converge.

A real time recursive identification algorithm is an attractive concept to
apply to the ultrasonic equipment, since the process typically contains param-
eters that vary with time. These parameters can be estimated in real time
and the systems resonance frequency can be calculated. The frequency of the
generator is then set to the estimated resonance frequency of the system.

Continuous Time Recursive Least Square Identification

For simplicity only the series resonance model in Figure 6 is considered. This
is a continuous time model. Introducing the damping ¢ = %\/% and the res-

onance frequency wy = \/_%6’ the admittance for the resonant system is given
by

I(s) 18 16
Yi(s) = = L = v 10
1(s) U(s) &+ 8s+7 8+ 2wes +wf (10)

In the time domain the expression can be written as
2 2 1
(5 + 20wop + 3) 1(t) = 72U ()

where p = % is the differential operator. Reorganizing gives

PPI(t) = ~2(wopI(t) ~ W3I(2) + 7PU(E) (11)

This is an expression that includes derivatives up to order two. Therefore a
regression filter 1/A(p) is introduced with degA(p) > 3, and the filter can be
chosen as

1@
Alp)  (p+3)°
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Multiplying both sides of (11) with the regression filter eliminates the problem
with the derivatives and the expression turns into

(8) = 4750 = =20 0T~ s IO+ L 20500 (12)
Introducing vector notation gives
2¢wy
() = [ -2510) -gil®) U ||« | =600

L

where T (t) is the regression vector and 0 is the parameter vector. The recur-
sive least square (RLS) estimator in continuous time is now given by (see [8],
page 1)

df

@ = P (1,0 - AW
dP

W = ap(t) - POR(OP()

where a is the forgetting factor and P(t) is the covariance matriz. This is a
symmetric matrix, i.e. P(t) = PT(t). The forgetting factor a is used to make
the RLS "forget” old data and to be able to track time varying parameters.
More information on the RLS is given in [8], Chapter 3.

There are two ways to expand the RLS derived for the second order system
to the ultrasonic system, given by the fourth order system in Figure 2(b). The
first way is to expand the RLS derived above to include all four parameters in
Figure 2(b). This would gives a high order P-matrix, which implies that the
implementation of the RLS may be complicated. With the parameter estimates
obtained, it is then possible to estimate the resonance frequency of the system.

(13)

The second way is to assume that Iy (¢), which corresponds to the velocity
of the converter, is measurable. The RLS already derived can then be used
to estimate the R, L and C parameters. Measuring the generator current
I(t) makes it possible to calculate the current through the capacitance C, as
I(t) — I(t). The voltage U;(t) is measurable and thus an estimate of Cy can
easily be obtained. Now all parameters of the system are estimated, and an
estimate of the resonance frequency is directly given by (3).

Implementation of the Regression Filter

In (12) it is seen that there is a need to filter four signals. This would normally
require four filters but because of the problem’s special structure, there is a
way to design the regression filter which reduces the number of filters needed
to two. Denote the output signal from the filter Z(t), and the filter can be
written

P {Z(t)} + 8dp*{Z(t)} + 3d°p{Z (1)} + d°2(t) = &°1(2)

Introducing the states z;(t) = Z(t), z2(t) = p{Z(t)} and z3(t) = p*{Z(t)}
gives the following state space description

21 = x(t)
2, = u3(t)
23 = —d%z,(t) — 3d%z,(t) — 3dzs(t) + d>I(t)
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Denoting the components in the ¢(t) vector ¢1(t), w2(t) and p5(t) it is easy
seen that ;(t) = —z3(t), @2(t) = —=4(t) and I;(t) = z3(t). Still there is a
need for a second regression filter to filter U(t) in order to get a(t).

Excitation of the Input Signal

In order to get convergence in the RLS the input signal to the system, i.e. the
output signal from the generator, has to be of sufficient ezcitation. It is the
excitation of the input signal that determines how many parameters in the
model that can be estimated.

The signal acting in the ultrasonic system is mainly the sinusoid from the
generator. A sinusoid signal is exciting of order 2, i.e. it is possible to determine
only two parameters in the model. This is clearly a problem since there is
a need to determine more parameters to estimate the resonance frequency.
However, it can be observed that the frequency of the generator is varying (in
its attempts to track the resonance frequency), which means that in practice
the signal from the generator will be exciting of an order higher than 2. There
will also be higher order harmonics acting on the system since the generator
uses a square wave signal to produce the sinusoidal output signal.

It can also be observed that when the generator is started up, the voltage
is ramped in some way in order to avoid high currents. Consider the case when
the startup output voltage from the generator is given by

U(t) = tsinwet

The frequency contents of this signal is given by the Fourier transform

which shows that the signal contains more frequencies than only wy. This im-
plies that there may be sufficient excitation to get estimates of the parameters
needed to estimate the resonance frequency, at least under the startup pro-
cess. However, this is not easy to analyze theoretically so it has to be tested
in simulations.

Drawbacks of the Continuous Time RLS Estimator

There are some problems with the RLS estimator approach. The problem with
the lack of excitation of the input signal will probably become worse when
the RLS estimator is applied to the admittance model, since it is necessary
to estimate four parameters. Also the alternative with the measurement of
Iy (t) can be expected to give problems due to lack of excitation, since three
parameters needs to be estimated.

It may also be hard to implement the RLS in practice. There is a need to
implement 14 first order differential equations using analog components, and
a high number of multiplications.
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Comments on the Discrete Time RLS Estimator

One way to get around the problem with the implemental issue of the con-
tinuous time RLS is to use a discrete time RLS. This can be implemented as
formulas in a computer program, where the computer samples the U(t) and
I(t) signals acting in the system. The discrete time RLS estimates the pa-
rameters in the model and calculates the resonance frequency of the system.
The output frequency of the generator is chosen as the estimated resonance
frequency. There are however some problems with this approach.

The first problem deals with the sampling of the process. In 7] expressions
for the sampled system are derived when the input signal to a process is
piecewise constant. This is the case when a first order hold D/A converter
is used to control the input signal to the process. In this problem, the input
signal is a sinusoid. Therefore none of the expressions derived in [7] can be
used, since it is the input frequency that is piecewise constant. One way to get
around this problem may be to use a first order hold circuit, which is a better
approximation to a sinusoid than the zero order hold circuit. Another way is
to recalculate the expressions in [7] for a sinusoidal input signal.

The next problem is that the discrete time RLS will probably need to
sample the signals very fast. This, in combination with the calculations needed
to calculate the estimates, implies that there will be high demands on the
hardware used.

Another problem is when a continuous time system is sampled the re-
sulting discrete time system often contains more parameters. This makes the
problem with excitation worse, since more parameters has to be estimated.

There is also a problem with the estimation of the resonance frequency.
This frequency can be calculated from the estimated discrete time parameters,
but the relation between the resonance frequency and these parameters is
complicated. Numerical problems may occur.

See [4] and [8] for a description of the discrete time recursive least square
estimator.

Summary

In this section a continuous time recursive least square estimator was derived
for a second order system. The estimator was used to estimate the parameters
in a second order model, from which an estimate of the resonance frequency
could be calculated.

The second order system was chosen for simplicity, and it was shown
how the RLS could be expanded to estimate the four parameters in the total
system.

Some problems with this approach to the frequency control problem was
also discussed.
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5. The Phase-locked Loop

The phase-locked loop (PLL) is an electrical device which can be used to
synchronize two systems with sinusoidal signals to each other. More specifically
this is done by changing the frequency of the PLL’s internal oscillator in such
a way that the phase difference between the input signal and the oscillator
will approach zero, or at least remain small.

Definitions

In order to understand the PLL some definitions must be made. First the
function 8(t) of a sinusoidal signal sin 8(t) is called the phase. Then the phase
error between two such signals is defined by

ee(t) = 01(t) e 02(t)
Typically 0;(t) = wit + ;1 and 0,(t) = wat + @, which gives the phase error
0.(t) = (wy —w2)t + 1 — @2

where w;, and w, are the angular frequencies of the signals. It is easily seen
that this is a ramp function, but when both signals have the same angular
frequency the phase error becomes constant.

There is a fundamental connection between the phase of a signal and the
signal’s angular frequency, defined by

_df

w=— (14)

From now on the angular frequency will be referred to as the frequency.

Description of the Phase-locked Loop

The main principle of the PLL is to keep the phase error between two signals
small, one external u,(t) and one internal u,(t). This is done by changing the
phase of the internal signal u,(t) of the PLL. This means that when the phase
error in the PLL is small (the PLL is locked), the frequency of the internal
signal is the same as the frequency of the external signal. At the same time
the phase error between the two signals is zero, or at least very small. When
the PLL has reached this locked state it is able to track changes in phase
of the input signal. But if the rate of change in the phase of the external
signal is to high, the PLL might unlock and once again it have to lock onto
the external signal. It is of great importance to understand the mechanisms
behind the PLL’s behavior. A closer study of the PLL shows that there are
four key parameters specifying the frequency range in which the PLL can be
operated:

e The lock range Awy. This is the frequency range within which a PLL
locks very quickly, and it is the normally operating frequency range.

e The pull-in range Awp. In this range the PLL will always become locked,
but the process can be rather slow.
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Figure 7. The three basic functional blocks of the PLL.

e The hold range Awy. This is the frequency range in which the PLL can
statically maintain phase tracking.

o The pull-out range Awpp. If tracking is lost within this range a slow
pull-in process is needed to lock the PLL again.

These parameters are discussed in detail in [1] Chapter 3 and [2] Chapter 5.
Both authors also derive expressions for each parameter which can be used to
estimate the size of each frequency range.

Physically the PLL consists of three basic functional blocks (see Figure 7):

e A phase detector (PD)
e A loop (low pass) filter
e A voltage-controlled oscillator (VCO)

In the PD the phase of the input signal u;(t) is compared against the phase
of the signal uy(t) from the VCO and the PD gives an output us(t) which
depends on the phase error between the two signals, that is

ua(t) = f(6.)

The function f(-) depends on the type of PD used. Following the PD there
is a low pass filter used to filter the signal from the PD, which often contains
high frequencies. The choice of the filter is arbitrary, but usually a first order
active or passive low pass filter is chosen. Finally the frequency of the output
signal from the VCO is given by

w(t) = we + Aw(t)

where w, is the center frequency of the VCO and Aw(t) is the frequency
deviation from the center frequency. The frequency deviation is given by
Aw(t) = Kouy(t) where K, is the VCO gain and u;(¢) is the output of the
loop filter.

Linear Model of the Phase-locked Loop

A mathematical treatment of the PLL is very complicated because of the
nonlinear behavior of the PD, causing the differential equation that describes
the PLL to become nonlinear. One way to simplify the problem is to assume
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Figure 8. The linear model of the PLL in the locked state.

that the PLL is locked. This means that the phase error between u,(t) and
uy(t) is small. The average output of the PD is assumed to be linear for small
phase errors, which gives

Ta(t) = Kabo(t) = Ka(0:(t) — 02(1)) (15)

where K is the phase detector gain, 6,(t) is the phase of the input signal and
05(t) is the phase of the signal from the VCO. In Figure 8 a block scheme of
the linear PLL is shown. This approximation of the PD is true for a lot of
different types of PD:s if the phase error is small.

The PLL has now been transformed from the sinusoidal signal domain
into the phase signal domain, since all sinusoidal signals has been replaced
with their corresponding phase signals. This is an important transformation
which simplifies the analysis of the PLL.

Applying the Laplace transform to (15) gives the transfer function of the
phase detector

Ua(s) _
0.(5)

Furthermore the differential equation describing the loop filter is assumed to

be known and its transfer function is denoted F(s). Left to be found is the
transfer function of the VCO. Using the relation (14) on the expression for the
frequency of the output signal from the VCO yields

6:(t) = /: (we + Koug(7))dr = wt + Ko /0t ug(T)dT = 0.(t) + Ab,(t)

where 0,(t) = w,t is the center phase and Af,(t) is the phase deviation from
the center phase. Since only the phase deviation is interesting, the contribution
from the center phase is from now on neglected in the calculations. The transfer
function of the VCO is then directly given by

AOy(s) Ko
Us(s) s

It is always possible to write the input phase signal on the form
01(t) = 0.(t) + Ab,(t)
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where 6.(t) will disappear in the PD. It is now easy to calculate ©.(s) as a
function of A®,(s)

8

008) = ST KoK F (o)

AB,(s)

This equation can be used to derive an expression for the steady state phase
error for different 6(t). First a step change in the phase is considered, i.e.

01(t) = wet + A - u(t)

where u(t) is the step function. Laplace transforming the deviation from the
center phase gives

A
AO;(s) = T“’

and applying the final value theorem gives

1b].im 0.(t) = lir%.s'@)e(s) = lims ~ = 0

=0 s+ KoK F(s) s
Thus a step change in the input phase doesn’t give rise to any steady state
phase error. Now consider the case when a step change in frequency is applied
to the input phase. This means that

01(t) = (we + Aw - u(t))t = w.t + Awt - u(t)

which gives the Laplace transform of the deviation from the center phase

AO;(s) = L{Awt - u(t)} = %

and the final value theorem gives

tlim 0.(t) = liné s0.(s) =lims s by

8
— - —a—— = 16
—0 8- KQKJF(S) 82 KngF(O) ( )

A step change in the frequency of the input phase signal thus produces a
steady state phase error. Notice however that the error depends on the type
of loop filter used, which will be discussed next.

Description of the Loop Filter

Four types of loop filters are presented in [1], Table 2.2 page 13. The simplest
filter, called type 1, is a one pole low pass filter with the transfer function

1

F(s) - 1+ 7s

(17)

and F(0) = 1. The steady state phase error caused by a step change of the
frequency of the input signal can now be calculated from (16), which yields

Aw Aw
lim 0,(t) = —
A 0.t) = % K, F(0) ~ KoK,
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Figure 9. (a) An implementation of the active low pass filter. (b) Amplitude
function for the active filter.

In practice K, is usually large so the steady state phase error will become
small. Next an active filter, called type 3 or a charge pump, is considered. Its
transfer function is given by

14+ 7ys

F(s) - T18

(18)

and F(0) = oco. For this filter the steady state phase error of a frequency step
becomes

lim 8, () Auw 0

t—00 T KoK F(0)
An implementation of the type 3 filter is shown in Figure 9(a) together with
a simplified amplitude function for the filter (Figure 9(b)). Notice that it is
important that the bandwidth of the operational amplifier in the active filter is
large enough to handle the proportional gain at higher frequencies (w > 1/73).

Description of the Phase Detector

Many different types of phase detectors exists, and in [1] Table 2.1 page 8,
four of them are presented. The first one is the PD type 1, which is an analog
multiplier. This PD can be analyzed to understand the basic principles of all
PD:s.

Assuming that the two input signals to the PD are given by u,(t) =
A, sin(wit + ;) and ua(t) = Ajcos(wst + @2), then the PD produces the
output

ug(t) = uq(t)ua(t)

and trigonometrics gives

walt) = Ka(sin((w1 — wa)t + p1 — ) + sin((ws + wa)t + @1 + 22))

where Ky = #4142 js the amplitude dependent gain of the PD. The amplitude
dependence can be removed by taking the sign of the input signals to the PD,
but this will introduce higher order harmonics. If w; & w; and if the sinusoid
with the frequency w; + w; is filtered out by the loop filter, the average output
from the PD is given by

ﬂd(t) = Kd sin(gol — (,02) = Kd sin 05 ~ Kd0e
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Figure 10. (2) An implementation of the type 2 phase detector. (b) Average
output signal as a function of phase error for the PD type 2.

which is true if the phase error is small. This is the main principle of all PD:s.
The PD produces a signal with the frequency difference and frequency sum of
the two input signals. The sinusoid with the frequency w; + w, is filtered out
by the loop filter and left is the term which is proportional to the phase error.

Other types of PD:s presented in [1] is the PD type 2 (also called the
XOR-PD) and the PD type 4. Common for these both PD:s is that they are
built from latches and that all signals working on the latches are square wave
signals. These square wave signals can be obtained by taking the sign of the
input signal u;(t) and the VCO signal u,(t). A PD build from these principles
is called a digital PD, and both PD type 2 and PD type 4 are members of this
category.

An implementation of the type 2 PD is shown in Figure 10(a) and by
definition the phase error is zero when the phase shift between u;(t) and u(t)
is w /2. It it easily shown that the average output from this type of PD is given
by

'U,_d(t) = Kdoe

in the range —7/2 < 0, < 7/2 (see Figure 10(b)). Any type of loop filter can
be used with this PD.

The type 4 PD is superior to type 2 PD in every regard except in sim-
plicity. One special characteristic is that when the PLL isn’t locked the PD
type 4 produces an average signal that is approximately proportional to the
frequency error, i.e

() = Kjw,

where K is a new gain constant for the PD. Therefore the PD type 4 is also
called a frequency/phase detector.
In the locked state the average output signal from the PD type 4 is given
by
ug(t) = Kb,

which is valid in the range —27 < 0, < 27. Notice, however, that K; # KJ.
The frequency/phase detector is thus linear for a larger range of phase errors
which justifies the linear approximation of the PLL made above. It is important
to understand that the PLL’s behavior is dependent on the type of PD used.

An alternative to the digital PD:s mentioned above is the all digital PD,
which samples the input signal to the PLL and via software calculates the
phase error.
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Summary

In this section the basic theory for the phase-locked loop was presented. The
three building blocks of a PLL are the phase detector, the loop filter and
the voltage controlled oscillator. In order to analyze the PLL mathematically,
some approximations had to be made. First the average output from the phase
detector was assumed to be directly proportional to the phase error, and sec-
ondly the phase error was assumed to be small. Under these assumptions, the
PLL could be transformed from the sinusoidal signal domain into the phase
signal domain. This transformation simplified the analysis of the PLL.

Some different phase detectors were presented and the basic principle of
these was shown. It was also shown that the loop filter should be an active
low pass filter in order to avoid stationary phase errors.
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Figure 11. (a) Relations in the sinusoidal signal domain. (b) Relations in the
phase signal domain.

6. Model Simplification

The admittance model and the amplitude model presented in Section 2 are
complex. They both use a system of four first order differential equations
to describe the reality. This means that it may be very time consuming to
simulate the systems on a computer. It is therefore interesting to simplify the
models previously derived. It would also be preferable to make a simplification
that makes it possible to connect the PLL and the stack in the phase signal
domain.

Phase Signal Domain Stationary Behavior

In Section 5 a linear model of the PLL was derived. The simplification trans-
formed the problem from the sinusoidal signal domain into the phase signal
domain, which simplified the problem of analyzing the PLL. It would be at-
tractive if the same simplification could be done on the admittance model and
the amplitude model.

Consider the case when a sinusoidal signal is acting on a general linear
time invariant system S, with the transfer function H(s). In stationarity the
output is given by a sinusoidal signal with the same frequency, but with a
different amplitude and a phase shift. The output y(t) of the linear system,
with the input signal u(t) = uo sinwt, is thus given by

y(t) = |H(jw)|uosin(wt + arg{ H (jw)})

This statement can be transformed into the phase signal domain. Let 6,(t) =
wt be the phase of the input signal, and let 0,(t) = wt + arg{ H(jw)} be the
phase of the output signal. Figure 11(a) shows the relations between the input
signal and the output signal in the sinusoidal signal domain, and Figure 11(b)
shows the same relation in the phase signal domain. A new dynamical system
G(8) has been introduced to describe the dynamics of the system S in the
phase signal domain.

With p(w) = arg{H(jw)} the following expression is valid in stationarity

(1) = 0(1) + p(w) (19)

This expression leads to an important statement; if the system S has reached
stationarity, its influence in the phase signal domain is given by the system
in Figure 12, where p(w) is the phase function for the system S. Notice that
this only true when the linear system S has reached stationarity which implies
that the transients in the phase signal domain has disappeared.
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Figure 12. Stationary behavior of the system G(6), where p = £ is the differ-
ential operator.

Approximation of the Phase Signal Domain Dynamics

Still the dynamics of the system G(f), that relates the input phase signal to
the output phase signal in the phase signal domain, is not known. However,
assuming that the dynamics of this system can be neglected, expression (19) is
always true and the system G(6) is approximated by the system in Figure 12,
where ¢(w) is the phase function of the linear system. This gives the following
important approximation; if the dynamics of the system G(0) in the phase
signal domain is neglected, then the influence of the system S in the phase
signal domain can be approzimated by the stationary behavior of S in the phase
signal domain, which is known. The approzimation of G(6) is given by the
system in Figure 12. Observe that the phase function does not contain any
dynamics.

Summary

In this section a very important approximation was introduced. This approx-
imation will later simplify the analysis of the PLL connected to a linear time
invariant system. It can be expected that the validity of the approximation
will be better for a damped system than a badly damped system, since the
transients in the damped system will disappear much faster than the transients
in the badly damped system.
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Figure 13. The existing setup of the PLL and the ultrasonic system.

7. Using the PLL with the Admittance Model

As mentioned earlier it is known that when the system works at its resonance
frequency, the complex valued load seen from the generator becomes real val-
ued. Thus the phase shift between the current and the voltage at the output
of the generator becomes zero. A possible control strategy is to use a PLL to
keep the phase difference between the current and the voltage small, forcing
the frequency of the generator to reach the resonance frequency of the system.
When the phase shift between the current and the voltage is zero, all power
produced by the generator will be delivered into the system. If the generator
is working at the resonance frequency of the system, the current from the
generator will become minimal, which can be seen in Figure 3.

Setup of the PLL with the Admittance Model

Figure 13 shows how to connect the PLL to the system. An extra output has
been added to the PLIL, which is used to control the frequency of the generator.
The generator then produces a sinusoidal voltage U(t) to the system with the
frequency decided by the PLL. The resulting current I(t) is thought of as the
output signal from the system and input signal to the PLL, and a feedback
is thus introduced. This is the strategy used to control the frequency of the
generator in the existing equipment, and it has some advantages. First both
the current and the voltage from the generator are easy to measure. Next
there is no need to make any measurements at the stack, which works in an
unfriendly environment. There are, however, some major drawbacks with this
solution, which will be discussed later.

Transformation of the PLL/Admittance Model Setup

The new system has to be analyzed to see if there are any problems with
stability due to the feedback. This analysis is very complicated because of the

3 Observe that this is true only when the generator and stack are perfectly matched,
which is an unrealistic assumption. See the discussion later in Section 7.
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Figure 14. Linear model of the PLL connected to the ultrasonic system (in the
phase signal domain).

lack of knowledge of the dynamics of the phase signals acting in the system.
Although the dynamics of the system is known when sinusoidal voltage sig-
nals are used as input signals, the dynamics of the system in the phase signal
domain is hard to determine analytically. Introducing G(8) to describe the
dynamics in the phase signal domain, the setup in Figure 13 can be trans-
formed into the phase signal domain according to the discussion in Section 6.
With w = w, + Aw the resulting system is shown in Figure 14, where p = %
is the differential operator, w, is the center frequency of the PLL and Aw is
the frequency deviation from w.. Once again the phase error is assumed to be
small, so the average output of the PD is approximately linear. In practice the
center frequency is chosen as the nominal resonance frequency of the system,
ie. w, = wq.

Selection of the Loop Filter

There is one conclusion that can be drawn from studying the model of the
PLL connected to the admittance model in Figure 14. First the assumption
that the new feedback did not introduce any stability problems is made. Next
it is assumed that the system G(6) has reached stationarity. Rewriting (19)
and introducing the phase error gives

0.(t) = 02(t) — 61(t) = pu1(w)

Recalling the discussion i Section 5, where it was shown that the phase error
in steady state depended on the type of loop filter used, it is now easy to
choose loop filter. Since the filter of type 1 introduced a steady state phase
error the phase shift @y (w) cannot equal zero. Instead pyr(w) = 6.(c0) # 0
which implies that w(co) # wp. Therefore an active loop filter of type 3 is
chosen and used from now on. Since 6.(00) = 0 for this filter, no steady state
frequency error will be introduced and w(t) — wy when £ — oo. Notice that
this is true only if L, is correctly chosen, i.e. the generator and the stack are
perfectly matched.

Approximation of the PLL/Admittance Model Setup

If the approximation of the system G(6) from Section 6 is applied to the
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Figure 15. Block scheme for the frequency deviation behavior of the PLL.

system in Figure 14, a new simpler system is obtained. The approximation
said that the system G(6) could be replaced by the system in Figure 12. Since
¢ur(w) only depends on the frequency, not the phase, decided by the PLL,
the integrator can be removed from the block scheme in Figure 14. For the
same reason the differentiation p in G(6) is also removed. This gives a new
block scheme that governs the behavior of the frequency deviation Aw in the
PLL/Admittance model setup, see Figure 15. From the new block scheme it
is seen that the nonlinear differential equation for Aw is given by

Aw — KoK F(p)orr(w. + Aw) =0

A very important interpretation of this approximation is that the behavior
of the PLL is decided from the phase function of the system. If the phase
Junction is positive the PLL decreases the frequency of the generator, and if
the phase function is negative the frequency is increased. This statement makes
it possible to predict the PLL’s behavior by examining the phase function of
the system to which the PLL is connected.

Problems with the PLL/Admittance Model Setup

Three major problems appear when using the PLL together with the system.

The first one has to do with the matching of the generator and stack.
It was shown in Section 2 how to choose L, in order to get zero phase shift
between the current and the voltage from the generator at the resonance fre-
quency. The expression included three, in practice, time varying parameters.
Due to this variation in parameters the generator will never be well matched,
i.e. the phase shift between voltage and current will not be zero at the sys-
tem’s resonance frequency. Instead the phase shift will become zero at some
other frequency, and it is at this frequency the PLL will lock. This implies that
the generator will not work at the system’s resonance frequency, although the
phase shift between the current and voltage from the generator is zero.

The second problem occurs when the system is working under high pres-
sure, causing R to increase. The pressure is an important parameter that
affects the quality of the sealing. Mostly high pressure is wanted, which cor-
responds to a high R. For high R the phase function will degenerate, which
makes it impossible for the PLL to find the resonance frequency. The degen-
erated phase function is shown in Figure 16, and it is seen that the slope of
the phase function has changed sign. Because of this the PLL will drift either
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Figure 16. Degenerated phase function due to high pressure, and the PLL
will never be able to lock. Parameter values used: Cy = 15.8 nF, C = 2.18 nF,
R =13000, L =29.TmH and Lo = 3.6 mH.
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Figure 17. Phase function when R is small. The badly chosen Lo daes not affect
the resonance frequency, and the PLL will always be able to lock. Parameter values
used: Cp = 15.8 nF, C = 2.18 nF, L = 29.7 mH, R = 100 © and Lo = 3.64+10%

mH.

towards lower or higher frequencies, depending on the frequency of the VCO
when the phase function degenerated.

If the two problems are combined, i.e. L, is badly chosen and R is high,
the problem with the mismatched generator becomes worse. The system now
tolerates much less deviation of Ly. In Figure 17 the phase function is shown for
a fixed small R. The coil L, is varied £10% around its nominal value. It is seen
that the resonance frequency is not affected by L,. If R is increased, problems
will occur. This phenomena is shown in Figure 18 where the phase function
is drawn for several different L, with a constant high R. L, is varied +10%
around its nominal value, and it is clearly seen that for some combinations
of Ly and R the PLL will not be able to lock since the phase function never
reaches zero. These cases are drawn in a dashed line style.

Practical experience shows that these problems do occur, specially when
the stack is started up. The stack is then very damped, i.e. R is high, and the
problems described above prevents successful frequency control. If, however,
none of the problems presented above are present during the start up of the
stack, the PLL will mostly have no problem to control the frequency of the
generator. An interpretation of this is that when the stack is in motion, R is
decreased and the problems presented above will not occur.
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Figure 18. Degenerated phase function due to high pressure and mismatched
Lo. The solid curves shows the cases where the PLL is able to lock, and the dashed
curves shows the cases where the PLL is not able to lock. Parameter values used:
Cp =15.8 nF, C = 2.18 nF, L = 29.7 mH, R = 1000 Q and Ly = 3.6+10% mH.

The third problem treats the start up frequency of the PLL. If the start
up frequency is chosen outside the two resonances of the admittance, the PLL
will never be able to lock. If the start up frequency was chosen too high, the
PLL will drift towards higher frequencies and if the frequency is chosen to low
the PLL will drift towards lower frequencies. This can be seen in Figure 17.

Sumimary

In this section the existing solution to the control problem was examined. First
the PLL and the admittance model was transformed into the phase signal
domain. This transformation lead to the choice of an active loop filter. Via the
transformation an important approximation were derived; the phase function
of the system, to which the PLL is connected, can be used to determine the

total system’s behavior.
This approximation made it possible to discuss some of the problems with

the existing equipment, and the problems discussed were

Mismatched generator and stack

Degeneration of the phase function due to high R
The combination of the mismatch and high R

The startup frequency of the generator

Since the solution of the frequency control problem presented above is
implemented, some practical experience exists. The major problem is that the
solution works well for small R, but it is preferable to operate the system
under conditions when R is high. In practice problems when R has become to
high has been encountered. It is therefore preferable to find a new solution to
the frequency control problem of the generator, which works well for high R.
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Figure 19. Amplitude feedback via the PLL.

8. Using the PLL with the Amplitude Model

It was shown in Section 7 that there were two major problems when using
the PLL with the admittance model, badly chosen L, and the change of sign
of i‘fi’wﬂ when R was high. There were also a third problem with the start up
frequency of the generator. One possible way to get around these problems is
to measure the amplitude of the converter. It is realistic to assume that this
measurement will give more information about the system than only measuring
the generator current. Some of the problems presented previously will therefore
hopefully be avoided.

The control strategy is to use a PLL to keep the phase shift between the
output voltage from the generator and the amplitude of the converter small.
In Figure 4 it is seen that the phase shift i zero at the resonance frequency
(if Ly is correctly chosen), and the PLL will guide the generator towards the
resonance frequency of the system.

Setup of the PLL with the Amplitude Model

Figure 19 shows how to connect the PLL when using the amplitude of the
converter as feedback. The PLL is used to control the frequency of the output
voltage from the generator. If the phase shift between the generator voltage
and the amplitude of the converter is zero, the generator is working at the
system’s resonance frequency. Notice that this is true only if the generator
and stack are perfectly matched. Otherwise the frequency point where the
phase shift is zero will not be the resonance frequency, instead the phase shift
will be zero when w = \/ﬁ This new setup has several advantages to the
admittance setup and these will be discussed later. The disadvantage of this

method is mainly the need to measure the amplitude of the converter, which

may be a nontrivial task.

It is worth noticing that it is irrelevant if the acceleration, velocity or the
amplitude of the converter is measured. Their phase functions only differ by
7 /2 radians, which can be compensated for in the PLL.

For practical reasons it may be difficult to make the measurements at
the physical point which corresponds to the point in the model, for which the
amplitude model is derived. This means that the measurements may have to
be made at some distance from the desired measurement point.
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Figure 20. Phase function of -Hya(s) for different R. Solid line: R = 70 Q,
dashed line: R = 700 2 and dashed-dotted line: R = 7000 Q.

Properties of the Amplitude Model

The relation between the voltage of the generator and the amplitude of the
converter was previously derived, and the resulting transfer function is given
by (8). This model has some interesting properties. Assuming that the gener-
ator and the stack are perfectly matched, the calculations in Section 2 showed
that Hy 4(s) was independent of R at the resonance frequency. This may seem
like a paradox, but the admittance model shows that the generator has to in-
crease the current delivered to the system to maintain the constant amplitude
of the converter. In Figure 20 the phase function of —Hy 4(s) is plotted for
different R.

Furthermore the sign of slope of the phase function for Hy4(s) is inde-
pendent of R (see Figure 20), so that problem is removed. This means that
a PLL can be used to keep ¢y a(w) small, thus forcing the frequency of the
generator to reach the resonance frequency of the system. If the phase detector
of the PLL is able to handle phase errors in the range —7 < 8, < 7, the PLL
will always find the point where the phase curve is zero, independent of the
start up frequency of the PLL.

Transformation of the PLL/Amplitude Model Setup

Recalling the discussion in Section 6 and assuming that the generator and
stack are perfectly matched, the system in Figure 19 can be transformed into
the phase signal domain analogously with the transformation in Section 7. This
gives the system shown in Figure 21, where G,(p) contains the transformed
PLL, i.e.

KoK 1
Gi(p) = _,O'I_d + Top
71 p
and (see Section 7)
w=w,+ Aw

The equation describing the frequency deviation is given by

Aw — G1(p)pra(w. + Aw) =0
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Figure 21. Transformation of the PLL/amplitude system into the phase signal
domain.

This system could be simplified by a linearization of ¢y 4(w) around

Co+C
LCC,

0 _ ., —
Wy = w, =

The derivative of the phase function in this point is given by

dey 4
dw

= ——2RCO

and the linearization of @y 4(w) is thus given by
Pra(w) = —2RCow

With this linear function the differential equation that describes the frequency
deviation turns into

dAw

—_T
dt KoK.RCo + 72

(we+ Aw) =0

This equation gives a rough estimation of the frequency deviation Aw of the
amplitude model. It can also be used to give a hint about how to choose
the parameters in the PLL. It is easily seen that the differential equation’s
behavior is decided by the pole

e (20)

. S
K.K.RC, T T2

and the system will be stable for s < 0. Notice, however, that pole placement
will not give unique parameters in the PLL since only one constraint is used
to determine the three parameters K, 71 and 7.

Adaptation of the Coil L,

Still the problem with the mismatch of the generator and the stack, due to
parameter variations, exists. The PLL will regulate the frequency towards the
frequency where ppy4(w) =0, i.e.
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Figure 22. Influence of Ly on pua(w) when Lo is varied +10% around its
nominal value 3.6 mH. Parameter values used: Cp = 15.8 nF, C = 2.18 nF,
R =1000 Q and L = 29.7 mH.

If L, is not correctly chosen this w will not be the resonance frequency of the
system. The problem with mismatched generator and stack has even become
worse compared to the PLL/admittance model setup, where the problem only
become obvoius when R was high (see Figure 17 and Figure 18). The frequency
deviation from the resonance frequency is now independent of R, which means
that the problem is present for all R. In Figure 22 the influence of different
Ly on ¢y a(w) is shown. L, is varied +10% around its nominal value. This
figure shows that it is preferable to adjust the coil L, in some way so that the
generator will be well matched to the stack during the whole sealing cycle.
Since the current from the generator is not used for frequency regulation
any longer, this signal can be used to adjust Ly. It can be expected that it
will be nessecary to adjust Ly +10% due to the temperature dependence in
Co. Measuring the phase shift between the current and the voltage from the
generator gives an indication of how well matched the generator and the stack
are. This phase shift can be used to adjust L, in such a way that the phase shift
becomes smaller. At the same time the amplitude feedback via the PLL will
regulate the frequency of the generator. The new setup is shown in Figure 23.

Transformation of the L, Adjustment Setup

In order to analyze the setup in Figure 23 the system has to be transformed into
the phase signal domain. Introduce G,(s) to describe the dynamics of the PLL
and G(s) to describe the dynamics of the not yet determined update law of L,
consisting of the low pass filter and the adjustment of L,. The approximation
introduced in Section 6 gives the transformed system in Figure 24. This new
setup includes two nonlinear functions, ¢yr(w, Lo) and ¢y 4(w, Lo).

Investigation of Equilibrium Points

The adjustment of L, and the amplitude feedback via the PLL will affect each
other, and it is important to prove that the adjustment of L, does not intro-
duce any stability problems. Because of the complex mathematical structure
of this problem this is not easily done. There are however one nessecary con-
dition for stability that can be checked. If the frequency regulation and the L,
adjustment is succesfull, the system must reach an equilibrium point where

34



PD
y

Filter

J, ou(t)
Adjustment of L, !

Generator >l Lo | Stack
A(t)

————=| PLL [<

Figure 23. Amplitude feedback via the PLL with adjustment of L.

both the phase shift between the amplitude and the voltage and the current
and the voltage is zero, i.e.

{ pur(w, Lo) = arg {Hyr(jw)} = 0 (21)

pralw, Lo) = arg {~Hya(jw)} =0

The point where this constraint is fulfilled should be

—wl = 4/ CO C
Ww=wy =

CL
LO:ngco-i'C

which is the point where the generator and stack are perfectly matched and
the generator is working at the resonance frequency of the system.
Rewriting the admittance transfer function (1) gives

sy e o BieE
et (3 +zst LCCO)

4 4 R A LotL | o2 Jid 1
s+ st (LC + CuLLn) 8°+ Gorg, 8 + ceiL,

HUI(S) =

which can be compared to the transfer function (8) of the amplitude model.
Subtracting the two equations in (21) from each other gives

arg {Hy;(jw)} — arg {—Hya(jw)} =0

Since the denominators of Hyy(jw) and —Hy4(jw) are equal, the problem
turns into determining the frequencies w where

. ) R Co+C 1
arg{yw ((]w)2+f]w+ I?C'C’o >} —arg{—cuL} =0
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Figure 24. Transformation of the PLL/adaptive amplitude model into the
phase signal domain.

which can be simplified to

R Co+C T
. 2 s 0 _
arg { (jw)* + Fio+ 2 =
Introducing the resonance frequency wy = ,/%% and the damping { = ﬁ

it is realized that the phase shift is /2 at the resonance frequency as long as
the damping ¢ < 1, that is

<1 = R<?2 II(CO—-l_CZ

¢= 2Lw, CC,

and under this condition there exists only one equilibrium point. For a normal
system the constraint gives R < 8 - 10%, which can be regarded as a very high
R. If ¢ > 1 there will still be a frequency point where the phase shift equals
m /2 but that point will not be the resonance frequency.
Left to show is that there is only one L, that fulfills (22). This is done by
solving for Ly in
ua(wg, Lo) = 0

which gives
1 0y2 _
LOCO (w0) =0
which have the unique solution
CL
= = I
°=CotC o

Thus the existence of an unique equilibrium point (wg, L) is guaranteed if the
constraint on R is fulfilled. Observe that the constraint on R is only a nessecary

condition for stability. The system may be unstable even if the constraint on
R is fulfilled.

Linearization of the PLL/Adaptive Amplitude Model Setup

Figure 25 shows the two phase functions ppr(w, Lo) and pya(w, Lo), and it
is seen that these functions are almost linear around the equilibrium point. If
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Figure 25. Motivation of the linearization. pur(w,Lo) is shown in the up-

per plot and pua(w,Lo) is shown in the lower plot. Parameter values used:
Co =15.8 nF, C = 2.18 nF, R = 50 f and L = 29.7 mH. This gives wg = 132574

rad/s and L§ = 3.6 mH.

the system in Figure 24 is linearized around the equilibrium point (22), i.e.

the two nonlinear functions pyr(w, Lo) and pya(w, Lo) are linearized around
(wl, LY), a new linear system i obtained. Introduce the gain matrix

_aSDUA

_ ki1 kg . Ow
B k21 k22 - _OSDUI
ow

and the transfer function matrix

G(s) = [

Opua RCowy
— T 2RC,
0L | _ ° L
_ 8(,0U1 N _2L - C'O.R2 RCowg
0L R L
Gl(S) 0
0 Gz(S)

The linearization of the system in Figure 24 is then given by Figure 26, where
some new signals has been introduced. Their Laplace transforms are given by

N(s) = L{n(t)} = [ a3

N;(s) ]

Oua(s) ]

G)(s) = [’{e(t)} = |: ®UI(3)

Lo(s) = L{Lo(t)}
Q(s) = L{w(t)}
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Figure 26. Linearization of the PLL/amplitude model setup with adjustment
of Log.

where 0(t) = [ 6y a(t) Oyr(t) |T contains the two phase errors in the system,
and n(t) = [ ni(t) mny(t) ]T is an external signal only used to analyze this
setup. It will later be set equal to zero. This gives the following relation between
the input signal and the error

E(s) = N(s)— O(s) = N(s)— KG(s)E(s)

or

B(s) = (I + KG(s)"'N(s)
With G1(s) = Bi(s)/A1(s) and G,(s) = B,(s)/Az(s) matrix calculations gives

(s) -1
B _ -1 _ ii(:) 0
(8)=(I+KG(s))"'N(s) = [T+ K| 5 5, N(s)
A2(2) (23)
1 A Ay + ka2 Ay By —k12 A1 B, N(s)
a(s) —k21 A2 By A1As + k11 A2 B,

where
a(s) = A1 Ay + k2 A1 By + k11 A3 By + (kyakas — ki2k21)B; B

Assuming that (23) is stable the final value theorem can be applied. Let n(t)
be a step disturbance (N(s) = L{n(t)} = AN/s), and the stationary error is
given by

Jim e(t) = lim s(I + KG(s)) 2N - lim(I + KG(s)) AN
—00 §— S §—
where AN =[ AN; AN, |T. Assuming that the limit exists gives

A;(0)A2(0) + k224,(0)B;(0) —k12A4(0)B,(0) AN

— k1 45(0) B, (0) A1(0)A5(0) + k1142(0)B1(0) | a(0)

e(o0) =

It is now seen that if both G.(s) and G,(s) contains an integrator then
A;(0) = 0and A;(0) = 0 and the limit turns into

ljme(t):l:gl

t—oo
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Figure 27. Reorganization of the PLL/amplitude setup with Lo adjustment.
The reorganization is made to be able to choose G2(s).

There will be no stationary phase error if integrators are inserted into G;(s)
and G,(s). If these two transfer functions does not contain any integrators, a
stationary phase error will occur. In the limit the value of a(0) # 0 because
B;(0)B5(0) # 0, which shows that the matrix inversion made previously is
valid. The result shows that G;(s) must include an integrator, i.e. the PLL
must have an active loop filter, as stated in Section 7.

The main characteristics of this multivariable system is given by the poles
of the system, which can be determined from

a(s)=0

or

Ay Ay + kA1 By + k11 Ay By + (kiikaz — kizks1)B1By = 0 (24)

Design of the L, Adjustment Controller

Still there is a need to choose G5(s) = Ba(s)/Aa(s) so that the total system will
behave in a desired way. The only constraint on G(s) is that it has to contain
an integrator. If the transfer function from Lo(s) to Oy;(s) is calculated an
ordinary SISO system is obtained, and G2(s) can be designed with standard
control theory design methods.

Once again the system is reorganized in a way that is convenient for the
problem formulation. This new form is shown in Figure 27. It is known that

Oua(s) | _ 3 Qs) | B k11Q(8) + k12Lo(s)
[ Oue(s) ] == [ Lo(s) ] N l ka1 Q2(s) + kazLo(s) (25)

and Figure 27 gives
Q(s) = G1(5)Oua(s) = —G1(s)(k1192(3) + k12 Lo(s))

or

klzG)(s)
Qs) = ————~—
(s) 1+ ky1G1(8)
Substituting this expression for ((s) into (25) gives the dynamics between
Lo(s) and Oy (s),

Lo(s)

kwknGl(S)

Ous(s) = k210(s) + k22Lo(s) = <_ 1+ k11G1(s)

n kzz) Lo(s) = G(5)Lo(s)
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Figure 28. Bode plot for G(s) with R = 70 € (solid line) and R = 700 Q
(dashed line). Other parameter values used: C; = 15.8 nF, C = 2.18 nF,
Lo = 3.6 mH and L = 29.7 mH.

In Figure 28 the bode plot for G(s) is shown for two different R.
It is now possible to derive a design method for determination of G,(s)
and G»(s). Since the structure of G;(s) is known and given by

_ KoKl +ms dl-{—Tzs
oo s s

G1(8)

only the constants d = Ko K4/m and 7; has to be determined. This can be done
by tuning these parameters for the system without any adaptation of Ly. The
behavior of that system is given by the location of the pole in expression (20).
Now G(s) is completely known and G,(s) can be designed so that the closed
loop system in Figure 27 will behave in a specified manner. The only constraint
on G,(s) is that it has to include an integrator. The locations of the poles of
the closed loop system is given by (24).
One choice of the update law of L is
dLy

w0 Y0u14(t)

or

Lo(t) = 7 /0 b1y (1)dr + Lo(0)

where 0y14(t) is the low pass filtered phase error between the current and
voltage from the generator, 7y is the adjustment gain and Lo(0) is the initial
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Figure 29. Root locus when using the first update law. R is varied in steps
of 50 Q2 from R = 1 Q to R = 2000 . Parameter values used: Ko, = 10000,
K4 =2/x, 71 =0.001, 7, = 1075, a = 1/0.0007, 4, = 0.001 and ~; = 0.08.

value of L. With this update law and with the low pass filter, G5(s) is given
by

a v
G’z(s) - s+ a,;
It is seen that G,(s) contains an integrator. With this choice of G(s) the closed
loop system will behave well when the system is working under pressure. If R
becomes to small instability problems will occur. This can be seen in Figure 29
where the locations of the poles, given by (24), is plotted for different R. In
the plot R is varied from R =1  to R = 2000 {2 in steps of 50 Q. For small
R there are two poles in the right half plane, indicating that the linearized
system is unstable. When R grows, the poles are moved into the left half plane
and the system becomes stable. The third pole of the system is located far into
the left half plane and omitted from the plot.
One way to get around the instability problem is to choose another update
law. If the previous update law of L, is modified with a proportional term, a
new update law is given by

Lo(t) = 710u14(t) + 72 /Ot fy1s(T)dT + Lo(0)

or
dL, dfy 1,

% "o + 720014 (t) (26)

where v, and v, are adjustment gains. This update law (with the low pass
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Figure 30. Root locus when using the modified update law. R is varied in
steps of 50 2 from R =1 0 to R = 2000 . Parameter values used: K, = 10000,
K,;=2/%, 71 =0.001, 5 = 1075, ¢ = 1/0.0007, v; = 0.01 and 2 = 0.8.

filter after the PD included) will give

a
Ga(s) = 15 (1 + 2)

which contains an integrator. The instability problem for small R is now re-
moved, which can be seen in the root locus in Figure 30. In this root locus
the poles are always located in the left half plane, even for small R which cor-
respond to the complex conjugated poles. When R is increased the poles will
approach the real axis. The third pole is now located near the origin, which
is better seen in Figure 31. It is seen that the location of the pole does not
dependent much on R, and it is this pole that will dominate the behavior of
the system.

The discussion on how to choose G;(s) shows that the choice of G(s) is
of great importance for the behavior of the total system. It is probably easy
to find a G,(s) that will give the total system a better performance than the
G2(s) chosen above.

Summary

In this section a new approach to the control problem was taken. A feedback
from the amplitude of the converter via a PLL was introduced. This feedback
eliminated the problems with the degenerated phase function and startup
frequency.

The problem with the mismatched generator and stack was however not
removed. With amplitude feedback it has become even worse, since the prob-
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Figure 31. Magnified root locus when using the modified update law. The third
pole is now seen and it is not much affected by R. As before R is varied in steps
of 50 2 from R = 1 Q to R = 2000 2. Parameter values used: Ky, = 10000,
Ki=2/m, 7 =0.001, 7, = 10~%, @ = 1/0.0007, 71 = 0.01 and 7z = 0.8.

lem is now present for all R. Therefore an update law for L, was introduced,
which should try to adjust Ly in such a way that the generator and stack al-
ways are well matched. The update of L, was based on the phase shift between
the current and voltage from the generator, which gives an indication of how
well matched the generator and stack are.

A design method was derived, which consisted of two steps. First the pa-
rameters of the PLL was chosen independent of the adjustment of Ly. Secondly
an update law was chosen, regarding the parameters in the PLL as fixed. One
important constraint on the design is that both the PLL and the update law
of Ly has to include an integrator, in order to avoid stationary phase errors.

All analysis and design was made in the phase signal domain with the two
phase functions linearized around the resonance frequency and the nominal
value of L.

Two different update laws were proposed, and it was shown that there
will be stability problems with the first one if R is to small. Under normal
working conditions it will however work satisfactory. With the second update
law of Ly the instability problem with small R was removed. The reason for
investigation of two different G3(s) is to show that it is important how G,(s)
is chosen. More work is needed to find an optimal G(s) for implementation.
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Figure 32. Simulations of L¢ and w (so].id ].ines) with the complete model and
desired Lo and w (dashed lines). Initial values used: Lo = 3.4 - 10~% H and
w = 134484 ra.d/s, i.e. 6% error in Ly and 300 Hz error in w. Parameter val-
ues used: R = 70 Q, Cy = 15.8 nF, C = 2.18 nF, L = 2.97 mH, v = 0.01,
vz = 0.8, Ky = 10000, 7, = 0.001, 7 = 10~ and a = 1/0.0007.

9. Simulations

In previous sections theory for the ultrasonic system has been presented. Some
statements about its asymptotic behavior has also been stated. It is of great
importance to verify these statements by simulations on a computer. The sim-
ulations can also be done without the limiting assumptions made for the math-
ematical analysis. If the simulated results are consistent with the analytical
results, this would validate the approximations and simplifications previously
made.

The simulations were made in OmSim, an object oriented simulation pro-
gram for simulation of dynamical systems.

Simulation of the PLL/Amplitude Setup with L, Adjustment

When the ultrasonic system is simulated, the state space description (6) is
used. This model, which will be referred to as the complete model, has two
advantages. First it is simple to implement in OmSim, and secondly it contains
states for both the generator current z;3(t) and the amplitude of the converter
z1(t). These states can easily be used for feedback.

In order to verify the theoretical results derived in Section 8, simulation
of the system in Figure 23 is made. The generator is simulated with a ramped
sinusoidal output signal. It takes 10 ms for the amplitude of the generator
voltage to reach its maximum value. Phase detectors are simulated with analog
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Figure 33. Simulations of Ly and w (solid lines) with the complete model and
desired Lo and w (dashed ]ines). Initial values used: Ly = 3.4 -10~2 H and
w = 134484 rad/s, i.e. 6% error in Lg and 300 Hz error in w. Parameter val-
ues used: R = 700 ?, Cp = 15.8 nF, C = 2.18 nF, L = 297 mH, v, = 0.01,
v2 = 0.8, Ko = 10000, 7, = 0.001, 7, = 10™° and a = 1/0.000T7.

multipliers (PD type 1) acting on square wave signals, followed by either an
active or a passive low pass filter. These filters are given by (17) or (18), and
the PLL is simulated with an active loop filter. The adjustment of L, is made
with the second update law, given by (26), and the adjustment is delayed 5
ms to avoid that transients affects the L, adjustment.

In Figure 32 simulations of the complete model with amplitude feedback
and adjustment of Lg is shown for R = 70 Q. Figure 33 shows a simulation of
the same system, but this time R = 700 Q. It is seen that the system reaches
its equilibrium point (22). The reason for the thick lines in the figure, is that
the signals contains high frequencies. These frequencies are introduced by the
phase detectors, and makes the simulations very time consuming. It is possible
to reduce the influence of these high frequencies by introducing higher order
low pass filters after the phase detectors. Worth noticing is that there is a
transient in the L, signal in Figure 32 at ¢ = 10 ms. This transient is due to
the end of the ramping of the generator voltage. No transient is however seen
in Figure 33 because that is a simulation of a system with better damping
(R =700 Q).

The OmSin-code used for this simulation is found in Appendix A, Listing 2.
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Figure 34. Simulations of Lo and w (solid lines) with the simplified model
and desired Lo and w (dashed lines). Initial values used: Lo = 3.4-1072 H and
w = 134484 rad/s, i.e. 6% error in Lo and 300 Hz error in w. Parameter values
used: R =70 2, Co = 15.8 nF, C = 2.18 nF, L = 2.97 mH, v; = 0.01, 2 = 0.8,
Ko = 10000, 71 = 0.001, 72 = 10~® and a = 1/0.0007.

Simulation of the Simplified System

Simulation of the complete system is very time consuming, due to the high
frequencies acting in the system. It would therefore be preferable to use the
simplified model derived in Section 6, which would speed up the simulations
considerably. It is however important to be aware of that this is only an ap-
proximation of the real system, and it has to be verified that the simplified
model gives reasonable results. This is done in Figure 34 (R = 70 Q) and Fig-
ure 35 (R = 700 Q) where the same simulation is made of the simplified model
(Figure 24) that was made with the complete model previously. The simula-
tion shows that the main characteristics of the complete system is captured
by the simplified model (compare Figure 32-33). This motivates the approxi-
mation introduced in Section 6 and it justifies the use of this approximation
in Section 7 and Section 8.

The OmSim-code used for this simulation is found in Appendix A, Listing 1.
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Figure 35. Simulations of Lo and w (solid lines) with the simplified model
and desired Lo and w (dashed lines). Initial values used: Lo = 3.4 -10™® H and
w = 134484 ra.d/s, i.e. 6% error in Ly and 300 Hz error in w. Parameter values
used: R =700 Q, Cp = 15.8 nF, C = 2.18 nF, L = 2.97 mH, +; = 0.01, v» = 0.8,
K, = 10000, 7y = 0.001, 7, = 107° and « = 1/0.0007.

Summary

In this section the theoretical results derived previously in this thesis have
been verified by simulations on a computer. The simulations shows that the
simplification introduced in Section 6 is valid, both for small and for high R. It
was also shown that the theoretical results derived in Section 8 were valid, i.e.

the simulation of the setup with amplitude feedback via a PLL and adjustment
of Ly was succesfull.
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10. Concluding Discussion

In this thesis much theory has been presented and a concluding discussion is
needed.

Summary

Section 2 dealt with the derivation of two different mathematical models of the
ultrasonic sealing unit. The first one, called the admittance model, described
the relationship between the voltage and the current of the generator. This is
a previously well known model. The second model described the relationship
between the voltage of the generator and the amplitude of the converter.

The amplitude model was not previously known, and measurements had
to be made to validate the model. This was done in Section 3, and the results
showed that the model described the ultrasonic system well.

Once a model of the ultrasonic system was derived, this model could be
used to find a solution to the frequency control problem. In Section 4 a recur-
sive least square estimator was used to estimate the resonance frequency of the
ultrasonic system. For simplicity only a second order system was considered.
A number of possible problems with the RLS approach were presented.

Next an examination of the existing equipment was made, and presented
in Section 7. This solution included a phase-locked loop, and the theory for
the PLL was presented in Section 5. In order to be able to analyze the PLL,
it was transformed into the phase signal domain. When the transformed PLL
should be connected to the ultrasonic system, the ultrasonic system also had
to be transformed into the phase signal domain. This could be done by an
approximation introduced in Section 6, which said that the transients in the
phase signal domain could be neglected. With this approximation it was pos-
sible to analyze the existing solution, which consisted of a PLL to keep the
phase error between the voltage and the generator small, and it was shown
that there were some major problems with this solution.

Therefore a new approach to the frequency control problem was taken in
Section 8. Now the amplitude of the converter was used as the feedback signal
via a PLL. This new setup removed many of the problems with the existing
equipment, but the problem with mismatched generator and stack still existed.
This problem was removed by introducing an update law of L, which adjusted
Lo in such way that the phase error between the voltage and the current of
the generator always remained small, i.e. the generator and stack was always
well matched. Both theory and simulations showed that this solution could be
expected to work well in practice.

Conclusions

In this thesis two major results have been presented. The first important result
is the transformation of a linear time invariant system into the phase signal
domain, and the approximation of the dynamics of the system in this domain.
This approximation is presented in Section 6 and it makes it possible to sim-
plify the mathematical analysis and the simulations of a PLL connected to a
linear time invariant system.
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The second, and more important, result is the setup with feedback from
the amplitude of the converter combined with adjustment of L,. Theory for
this setup is presented in Section 8 and verified by simulations in Section 9.
The new setup eliminates the known problems with the existing setup, and it
would have been very interesting to implement this solution in practice. There
was however no time to do this, but this thesis shows that it is realistic to
assume that the new solution to the frequency control problem will work well
in practice.
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Appendix A. OmSim programs

LIBRARY ultrasonic;
olin2 ISA Base::Model WITH

KO ISA Parameter With default :
Kd ISA Parameter WITH default :
taul ISA Parameter WITH default :
tau2 ISA Paremeter WITH default :
tau ISA Parameter WITH default :

10000; END; % VCO gain
0.6366; END; %
0.001; END; %
1e-5; END; %
0.0007; END; %

PD gain

Filter constant

Filter constant

Filter constant

CO ISA Parameter WITH default := 15.8e-9; END; %
C ISA Parameter WITH default := 2.18e-9; END;

ISA Parameter WITH default := 70; END;
L 1ISA Parameter WITH default := 29.7e-3; END;

Process parameters

t0 ISA Parameter WITH default := 0.005; END; %

: Start time of adapt.
gammal ISA Parameter WITH default := 0.01; END; %

Adjustment gain

gamma2 ISA Parameter WITH default := 0.8; END; % Adjustment gain
N, fiI, z, LO, L0O, t TYPE REAL; % Variables for the LO-adjustment
w, w0, fiA, zl1, z2 TYPE REAL; % Veriables for the PLL

w0 := sqrt ((CO0+C)/C/CO/L); % Resonant frequency

t := Base::Time;

% ========= L0 adjustment

N := (R/L#*w)"2+(w0"2-w"2)"2;

£iI := -atan(L/R/w*(w0"2-w"2)+C0"2+L"2/R*N* (w*L0-1/%/C0));

z' = 1/taux(-z + £iI); % Passive PD filter
L0’ = if t+ < t0 then 0 else gammal*z’+gamma2*z; % Update LO

L00 := CxL/(C0+C); % Wanted value of LO

% ======== Phase-locked loop section

fiA = -atan(R/L*w*(1/L0/C0-w"2)/(w"4-(1/L/C+(LO+L)/CO/L/L0)
*¥"2+1/C0/C/LO/L));

z2’ = 1/taul*fi; % Active loop filter for the PLL
zl = 22 + tau2/taul*fil;

w = Kd*KO0*z1+w0; % Frequency output from the VCOD
END;

Listing 1. Simplified model implemented in OmSim.



LIBRARY ultrasonic;

II

PLListate ISA Base::Model WITH

uo ISA Parameter WITH default :
Ko ISA Paremeter WITH default :
taul ISA Parameter WITH default :
tau2 ISA Parameter WITH default :
tau ISA Parameter WITH default :

1600; END; % Voltage amplitude
10000; END; % VCO gain

0.001; END; % Filter constant
le-5; END; % Filter constant
0.0007; END; % Filter constant

CO ISA Parameter WITH default := 15.8e-9; END; %
C ISA Parameter WITH default := 2.18e-9; END;
R ISA Parameter WITH default := 70; END;
L ISA Parameter WITH default := 29.7e-3; END;

Process parameters

t0 ISA Parameter WITH default :

0.005; END; % Start time of adapt.

t1 ISA Parameter WITH default := 0.010; END; % Ramp time
gl ISA Parameter WITH default := 0.01; END; % Adjustment gain 1
g2 ISA Parameter WITH default := 0.8; END; % Adjustment gain 2

x1, x2, x3, x4, i, u, w0, uref, te, LO TYPE REAL;
z1l, z2, t, th TYPE REAL;

isign, usign, w TYPE REAL;

i1, PD, PD2, L0OO, thetae TYPE REAL;

% ========= L0 adjustment
PD2 := sign(il)*usign; % PD between the current and voltage.
thetae’ = 1/tau*(-thetae + PD2); % Passive PD filter

L0’ = if Base::Time < t0 then 0 else gi*thetae’+g2*thetas; ¥ Update LO

LOO := CxL/(CO+C); % Wanted value of LO

% ======== Phase-locked loop section

isign := sign(i); % Take the sign of the input ..
usign := sign(yi); % .. signals to get an amplitude ..

% .. independent PD gain.

PD := isign#usign; % Phase detector in the PLL

z2’ = 1/taul#*PD; % Active loop filter for the PLL

zl := z2 + tau2/taul*PD;

te := z1%3.1415/2; % Calculate the phase error from the PLL
th’ = KO*te; % Integrator in the PLL

y1 := cos(wO0*t + th);
y2 := sin(w0*t + th);



% State space description of the 4:th order admittance model.

xi’ = x2;

x2’ = -1/L/C%x1  -R/L#*x2 +1/L*x4;

x3’ = -1/L0%x4 + 1/LO%u;

x4’ = -1/C0*x2 + 1/C0#x3;

i= -x1; % Electrical analogy for the amplitude

i1 := x3; % Feedback to the phase detector for LO adjustment

t := Base::Time;

IF t+ < $1 then t/t1%UO#%y2 ELSE UO#*y2; % Output voltage ..
% .. from the generator.

[
]

END;

Listing 2. Complete model implemented in OmSim.

III






