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1. Introduction

Analysis of relay feedback systems is a classical topic in control theory.
The early work was motivated by relays in electromechanical systems and
simple models for dry friction. An important property of these systems
are their tendency to oscillate. The design of simple relay controllers in
aerospace applications described in Fliigge-Lotz (1953) gave for instance
inspiration to the development of the self-oscillating adaptive controller
in the 1960’s. Recently new interest of relay feedback appeared due to
the idea of using relays for tuning of simple controllers, see Astrém and
Higglund (1984). By simply replacing the controller by a relay, measure
the amplitude and frequency of the possible oscillation, and out of these
derive the controller parameters, a robust control design method is given.
Even if this method is widely spread and accepted in practice, it has not
been theoretically investigated in greater detail. The idea of putting the
plant under relay feedback is also used in other applications. In Smith
and Doyle (1993) perturbation bounds are estimated for robust control
design, and in Lundh and Astrom (1994) it is shown how initialization
of adaptive controllers can be done. More historical comments on relays
in control systems and their applications are given in Tsypkin (1984) and
Astrom (1993).

A linear system under relay feedback is shown in Figure 1. Analysis of
this system is a nontrivial task. Restrictions of the linear dynamics have to
be made. The monograph Andronov et al. (1965) is an early classical ref-
erence (first edition published in Russian in 1937) discussing oscillations
in mostly second-order systems using phase-plane analysis. For some sys-
tems a fruitful approach to get approximate results is the describing func-
tion method, see Atherton (1975) and Mees (1981). In Yakubovich (1973)
a frequency condition is used to give sufficient conditions for a certain
type of oscillation. The major reference about relay control systems Tsyp-
kin (1984) surveys a number of analysis methods. An intuitive stability
condition therein, saying roughly that if a linear process is stable under
arbitrary large proportional feedback it is also stable under relay feedback,
is proved in Anosov (1959). Applicable stability results for a more general
class of nonlinearities is given in Yakubovich (1964).

Even if relay feedback systems have been studied for a long time, they
are far from fully understood. There is, for instance, little known about

- G(s)

Figure 1. Relay feedback of linear system G.
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Figure 2. Sliding modes occur when the high-frequency asymptote of the Nyquist
curve is the negative imaginary axis and fast switches if it is the negative real axis.

globally attractive limit cycles. For second-order processes analysis can
be done in the phase-plane. Stable second-order nonminimum phase pro-
cesses can in this way be shown to have a globally attractive limit cycle.
In Megretski (1996) it is proved that this also holds for processes having
an impulse response sufficiently close in a certain sense to a second-order
nonminimum phase process.

The main contribution of our work is to analyze third-order linear sys-
tems under relay feedback. It is shown that despite the low dimension,
these systems have a rich structure. Sliding modes as well as a type of fast
relay switches can appear. The phenomena can be detected from the high-
frequency asymptote of the Nyquist curve for the linear part of the system,
see Figure 2. If positive steady-state gain is assumed, the high-frequency
asymptote a gives sliding modes, the asymptote b gives fast switches, while
¢ and d do not. Furthermore, a method for analysing relay feedback sys-
tems based on convergence of switch plane intersections is also introduced
in this paper.

The outline is as follows. Some notations and the definition of a limit
cycle are given in Section 2. Section 3 discusses sliding modes in third-order
relay feedback systems and Section 4 considers fast switches. A method for
global analysis of limit cycles is introduced in Section 5, followed by a new
result on convergence in Section 6. Finally, concluding remarks are given in
Section 7. Some of the proofs are collected in an appendix. A short version
of this paper is published as Johansson and Rantzer (1996).

2. Preliminaries

Consider the relay feedback system in Figure 1. The process G is a stable
and strictly proper linear transfer function with scalar input u and scalar
output y. In state-space form G is given by

x = Ax + Bu

y = Cx (1)



where x € IR" and A is a Hurwitz matrix, that is, all eigenvalues of A lie
in the open left half plane. The relay feedback is defined by

-1 if y>0

2
1 if y<0 @

o= wseny = {

The switch plane S is the hyperplane of dimension n — 1 where the output
vanishes, that is, § := {x : Cx = 0}. On either side of § the feedback
system is linear. If Cx > 0 the dynamics are given by * = Ax — B, and if
Cx < 0 we have x = Ax + B. We also introduce the notation §, := {x € §:
CAx + CB > 0}. If nothing else is mentioned, we assume the process G to
have positive steady-state gain. Since the linear dynamics on each side of
S have fixed points equal to A1 B, positive steady-state gain guarantees
that the trajectories do not tend to any of these two fixed points, and thus
ensures a relay switch to occur. The differential equation (1)—(2) is only
valid outside the switch plane. By letting u € [-1, 1] for x € §, the solution
can still be a continuous function which satisfies (1)—(2) everywhere, see
Filippov (1988) and Yakubovich (1973).

Let the Poincaré map g = g(x) : S, — S, map a point x to next switch
plane intersection of the trajectory starting at x and reflect the intersection
in the origin. We have

g(x) 1= —e*hWy 4 (AP _)AT'B (3)

where A (x) is the switch time, that is, the unique time it takes between the
two intersections x and g (x). Recall that C B = 0 if and only if the relative
degree of G is greater than one. If the steady-state gain G(0) = -CA-B
is positive, then CB < 0 if and only if the relative degree is one and G
has an odd number of zeros in the right half plane.

3. Sliding Modes

It is well-known that sliding modes (or Filippov solutions) can occur in
relay feedback systems, see Filippov (1988). This can easily be understood
from studying y = CAx + CB close to S. We see that depending on the
value of CB a classification of the directions of the trajectories divide the
switch plane into two or three regions.

EXAMPLE 1

Consider the process
Bs+1

O 6+

with state-space representation
(v %)= o)
x u
1 -3 B
y = [0 1) x

Then S equals the x;-axis, see Figure 3. The points p;2, where the trajec-
tories change directions, are given by the solutions of

x

CAxxCB =0
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Figure 3. The switch plane § and the trajectories for the system in Example 1.
If CB > 0 there exist sliding modes.

that is, p1 = (=5,0) and pg = (3,0). For CB = 8 > 0 there exist sliding
modes, while for CB < 0 the region between p; and p2 is repelling. The
region vanishes if CB = 0.

Applying nonsmooth Lyapunov stability theory, it is shown in an exam-
ple in Shevitz and Paden (1994) that all solutions converge to the origin if
CB > 0. ]

The condition in the example for existence of sliding modes directly gener-
alizes to processes of order n > 2. Then p; and ps denotes hyperplane of
order n — 2, still separating the switch plane into two or three regions. It
follows that a sliding mode can occur if and only if CB > 0.

It is well-known that oscillations can occur in mechanical control sys-
tems due to friction. The oscillation may include a stick-slip motion, that
is, the mechanical device is moving only a part of each period. A fifth-order
system is reported to behave this way in Atherton et al. (1985), but the
following example shows that third-order dynamics are sufficient.

EXAMPLE 2
Consider

6(s) = —2~%) (@)

(s+1)(s®2+s+1)

with state-space representation

0 0 -1 0
x=110 -2|x+|-C|u
01 -2 1

y=[0 0 l]x

Figure 4 shows the (clockwise) limit cycle is for { = 1. The fixed points
of x = Ax — B and x = Ax + B are marked with asterisks and lie on
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Figure 4. Limit cycle with sliding mode.

the boundary of the sliding mode region {x € S : |CAx| < CB} (dashed
lines). The sliding mode part of each period decreases with increasing ¢,
so that £ = 10 gives a smooth limit cycle. The intersection of the Nyquist
curve of (4) with the negative real axis does not correspond to the true
period of the oscillation. Hence, the first-order harmonic balance solution
(the describing function method) gives an erroneous estimate of the limit
cycle period for this example, see Mees (1981). O

4. Fast Switches

In this section a necessary and sufficient condition for the occurrence of fast
relay switches similar to sliding modes is proved. From previous section
it is obvious that if CB > 0 there exist sliding modes and if CB < 0
there cannot exist any arbitrarily fast relay switches. Therefore consider
a third-order system with CB = 0. Figure 5 shows trajectories close to
{x € §: CAx = 0} for examples with CAB > 0 and CAB < 0. The tick
marks indicate CA2y; — CAB = 0 and CA%y; + CAB = 0, that is, where
# = 0on {x € S : CAx = 0}. Solid trajectories are above the switch plane
(Cx > 0) and dashed under. The figure suggests that the switch times A(')
can be arbitrarily short if CAB > 0. A proof will be given next.

THEOREM 1
Consider the relay feedback system (1)-(2) with n = 3, CB = 0, and
CAB # 0. Then inf,es, h(x) + h(g(x)) = 0 if and only if CAB > 0.

Proof: Let ¢_(t,x) denote the trajectory of £ = Ax— B at time ¢ starting in
x at time ¢ = 0. Consider xp € S such that CAxp = 0 and CA%xo— CAB <
0. It follows directly that

Co_(t,x0) = (CA%x — CAB)g +0(t% (5)

Hence, C¢_(to,x0) < O for ¢ sufficiently small. Furthermore, for this ¢
we have C¢_(tg,x) < O for x € S, with |x — xo| sufficiently small. It
follows for x € S, that h(x) - 0 as x — xo, and also that g(x) = —xo.



Figure 5. Illustration of Theorem 1. Fast relay switches occur if CAB > 0.

A symmetric argument with g(x) gives h(g(x)) = 0 as x — x if xo also
satisfies CA%xy + CAB > 0. Hence, sufficiency follows, since for CAB > 0
there exists x € S, such that |CA%x| < CAB.

If

CA%xy— CAB >0 (6)

for xo € S and CAxy = 0, then (5) gives that C¢_(to,x0) > 0 for o
sufficiently small. Hence, C¢_(to,x) > 0 for x € S, and |x — xo| sufficiently
small, and thus k(x) > to. If CA%2xg — CAB < 0 and

CA%xy + CAB <0 (7

then in the same way there exists ¢; > 0 such that A(g(x)) > ¢1 for |x — xo|
sufficiently small. If CAB < 0 one of the two inequalities (6) and (7) most
hold for x¢ € S satisfying C Axg = 0 and thus necessity follows. O

EXAMPLE 3
Consider the third-order process

__b-s
GE) = Fsv 1

with state-space representation

-1 0 O 1+1/¢

X = [ 1 -1 0 ]x+ [—1—2/C]u

1 1 -1 0
(0 01 ) «
The limit cycle period 2% is in Figure 6 shown as a function of the zero (.
The dashed line corresponds to the limit cycle for the process 1/(s + 1)3.

The relay feedback system is stable if { € (-3,0). The convergence to limit
cycle is quite different depending on if { < =3 or ¢ > 0. This illustration

Y
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Figure 6. The limit cycle period as a function of zero location in Example 3.

CAB >0

1+

Figure 7. Two types of convergence to limit cycle.

of the result in Theorem 1 is shown in Figure 7. Two trajectories starting
close to the origin are shown for { = —4 and { = 1, respectively. The
asterisks in the switch plane indicates limit cycle intersections. The speed
of convergence in number of switches is much lower for the minimum phase
system (CAB = —-1/{ > 0) compared to the nonminimum phase system
(CAB < 0). o



5. Global Analysis of Limit Cycles

We now derive a method for analyzing relay feedback system using the
Poincaré map g in (3). Let ¢(¢,xo) denote the trajectory of (1)—(2) that
starts at xg. A closed orbit is a trajectory such that ¢(¢1,x0) = ¢(¢2,x0) for
some #1 < t2. A point p is said to be a limit point of the trajectory if there
exists a sequence {t;}, with t, — oo as k — oo, such that ¢(¢;, %) — p
as k — oo. The set of all limit points is the limit set of the trajectory and
is denoted £. A limit set that is a closed orbit is called a limit cycle. The
limit cycle is called simple if it has exactly two intersections with the switch
plane S. It is said to be globally attractive if it is the limit set of all possible
trajectories.

An obvious question is if it exists relay feedback systems not having a
unique stable limit cycle. For higher order systems, the answer is yes as
shown by the following example.

EXAMPLE 4
Let

(s +1)2
(s +0.1)3(s + 7)2
Depending on the initial conditions, the relay feedback system tends to
either a slow or a fast limit cycle. In Figure 8 the relay output u is shown
for the two cases after the initial transient has disappeared. Analysis shows
that the limit cycles are locally stable. O

G(s) =

Denote k successive mappings by g*(x). If ¢* (¢, xo) is part of a stable simple
limit cycle, and thus ¢*(¢,x0) € £ for all ¢ > 0, then the intersections with
S equals +x* € L, where x* is a fixed point of g: x* = g(x"). Hence, solving
the equation x = g(x) gives candidates for simple limit cycle intersections
with S.. The solution is given by

x = (A + )71 (e - NA7'B

The following proposition gives necessary conditions for existence of a sim-
ple stable limit cycle, see Tsypkin (1984) and Astrém (1993).

1
u o
| s i
0 10 20 30 40 50
N —
u ot
-1t i s I I -
0 i0 20 30 40 50

time

Figure 8. Two stable limit cycles for the system in Example 4.
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Figure 9. The left-hand side of (8) as a function of A* in Example 5.

PROPOSITION 1
Consider the relay feedback system (1)—(2). If there exists a simple limit
cycle with switch plane intersections £x* and period time 2h*, then

Ce + D) 1A -NDAT'B =0 (8)

The limit cycle is stable if all eigenvalues of

dg . _ (Ax* + B)C | ap
ax®) = = Glaz+ B ®)
are in the open unit disc. O

Notice that the trivial solution h* = 0 always satisfies (8). It is easy to
show that this is the only solution for first-order and second-order stable
processes with no zeros. Hence, these processes exhibit no simple limit
cycles under relay feedback.

EXAMPLE 5

Consider the relay feedback system in Example 4. Figure 9 shows the left-
hand side of (8) as a function of &*. The zero-crossings are at 0.66, 3.32,
and 12.80. The maximum eigenvalues of (9) for the three cases are 0.60,
1.42, and 0.64, respectively. Only the first and third zero-crossings thus
come from a locally stable limit cycle. Notice that we cannot draw any
conclusions about convergence. O

A numerical method for analyzing convergence to limit cycles is given
by letting
Xo={xeS:CAx=0}u{x €S, :|x| = R}

for a sufficiently large R and studying the set recursion X; = g(X;-1).
Remark that since |u| < 1 and A is Hurwitz, the existence of a globally
attractive and invariant ball {x : |x| < R} is trivial, compare Hsu (1990).
For systems of order three and less the method is easy to visualize.
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Figure 10. Convergence to limit cycle illustrated with a numerical method.
EXAMPLE 6

Consider the process

-1 0 0 1
x=]1-1 -2 0 |x+|1|u
3 -3 -3 0

y=[o 0 1]x

Hence, S = {x : x3 = 0} and §, = {x € §: x1 > x2}. Let X, be a
semicircle disc with radius 80. Figure 10 shows the set recursion under
four iterations. The first diagram shows X together with X; (drawn with
thicker lines), the second X7 and X3, etc. In the last diagram the fixed point
x* = (0.45,0.30,0) is marked by an asterisk. The contraction is remarkably
fast, in particular during the first two iterations. This agrees with the

behavior noted also when using relay feedback in practice, see Astrém and
Higglund (1984). a

By applying local stability analysis around x* for a given system, it is
possible to prove global convergence to a stable limit cycle with the method
described above.

6. Area Contraction

For a class of processes we are able to prove global area contraction.

DEFINITION 1
A subset ¥ c S, is called globally attractive, if for all x € S, there exists

k such that gk(x) € V. If g(x) € V for all x € V, then V is invariant.

10



The area of a measurable set X is denoted by A(X) = [dX. The map
g = g(x) : 8, = 8, is called area contractive, if there exist constants
¢ € R and p € [0,1) such that

A@kX)) <co®, k20

for all compact sets X c S,. O

Area contraction is weaker than ordinary contraction. For instance, the ex-
istence of a unique fixed point for g is not guaranteed. Still it improves the
understanding of the behavior of some relay feedback systems. It is possi-
ble to show area contraction for a class of third-order processes including
the one in Example 6. The following theorem states that the switch plane
intersections of all solutions of (1)—(2) converge to a region with vanishing
area.

THEOREM 2
Let A, B, C satisfy

K

“1p _
CI-A)7B = T+ Aa) o+ As)’

K>0, A3>A3>41>0
(10)

and consider the set recursion X, = g(X;-1) with g as in (3) and X a
compact subset of S, . Then, for {X}} there exist ¢ € IR and p € (0,1) such
that

AX) <cp®, k20

O

The proof of Theorem 2 is divided into two lemmas, which are proved in
Appendix. Lemma 1 gives area contraction a geometric interpretation.

LeMMA 1
Assume A + AT < 0. If CB = 0, then g is area contractive in every
invariant compact subset of

U:={xeS,:BTAx < 0}

O
LEMMA 2
For A, B, C as in (10), there exist £, R > 0 such that
g*(x) e{x eS8, :BTAx < 0,CAx > ¢,|x| <R} =: V (11)
forallx € S5, and & 2 3. a

The compact set ¥ is illustrated in Figure 11.

Proof of Theorem 2: For each compact set Xy < S, Lemma 2 gives that
there exists a globally attractive and invariant compact set V. This follows
from considering g*(x), & > 3, since g3(x) € ¥V and for each g#(x) € V
it holds that g*¥*1(x) € 7, & > 3. The proof is completed by applying
Lemma 1 and the definition of area contraction. O

The top left diagram in Figure 10 shows that g(Xo) is a subset of U in
Example 6. Notice that BTAx = 0 corresponds to xg = —x3.

11



Figure 11. The compact set V. On the solid line CAx = 0 and on the dashed
line BTAx = 0.

7. Conclusions

The problem of oscillations in linear systems under relay feedback has
been addressed. Some heuristics were given, and it was shown that also
for third-order systems several important phenomena can arise. It was
shown that the existence of arbitrarily fast switches and sliding modes
can be detected from the high-frequency asymptote of the Nyquist curve.
The second part of the paper introduced a method for global analysis of
relay feedback systems based on the Poincaré map between switch plane
intersections. In particular, for a certain class of processes it was proved
that the intersection points converge to a region with vanishing area.
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9. Appendix

In this section we prove Lemmas 1 and 2.

Proof of Lemma 1: Consider the switch plane intersection x in a compact
invariant set X ¢ U and denote the surrounding disc

Be(x):={zeX:|z—-x| <€}

Let ®_(¢t, B) be the set B after time ¢ following the dynamics x = Ax — B.
The trajectories intersecting B, (x) pass through the hyperplane A, (x) :=
{z : vT(z — x) = 0}. In particular, define

H_(x, Be(x)) 1= {Nax-B(x) nO_(¢t, Be(x)),t € R},

13
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Ay
Figure 12. Illustration of area contraction in the proof of Lemma 1.

see Figure 12. The notation {-}, means that the set should be restricted to
the connected component including x. Hence, € small implies that ¢ in the
set above belongs to a small interval around zero. Introduce the projection
matrix P, := I — vvT /(vTv). Then,

A(H_(x,B:(x))) = A(Pax-BB:(x))(1 + O(¢€))
Furthermore,

Ay := A(Pax-BBe(x)) = A(B:(x)) cos 6(x)
A(Psz+BBe(x)) = A(Be(x)) cos x(x)
and
cosf(x) |Ax + B|
cosa(x) |Ax— B
where 6(x) is the angle of refraction and a(x) the angle of incidence for a
trajectory passing through § at x. Introduce

Ay := A(@_(h(x), H-(x, B:(x)))) Az := A(H-(-g(x), —g(Be(x))))

and let ¢ be the angle between the surfaces defined by A and A3 as in
Figure 12, so that 4y > Azcos ¢(x) = A3(1l + O(g)). Then, for € > 0
sufficiently small

Ay = A(H_(x, Be(x))) deteA® < A(H_(x, Be(x)))
= A(Pax-B:(x))(1 + O(¢))

and hence

A(Pag(x)+BE(Be(%))) = A(Pa(-g(x))-B(—8(B:(x)))) = A3(1 + O(¢))
< A(Pax-BBe(x))(1+ O(¢))

Since X is an invariant compact subset of U, there exists ¥ € (0,1) such
that cos 8(x)/cosax(x) < «x for all x € X. Hence, there exists p € (0,1)
independent of x and £, > 0 depending on x so that

A(Ppg(x)+BE (Be(x))) < pPA(ParsBBe(x)), forallx eX,e < &,
For k mappings thus
A(g*(Be(x))) cos 8(g*(x)) = A(P pgi(ay+ 58" (Be(x))) < P*A(ParsBe(x))

14



which gives that there exists ¢ € IR such that
A(g*(Be(x))) < cp*

The proof is completed by noting that it is possible to select a finite number
of these discs B; to cover any compact set. O

The following three lemmas are used in the proof of Lemma 2. It is assumed
that A, B, C satisfy (10) and without restriction A = — diag{11, 12, A3}. We
use the notation ¢_ (¢, x) for the trajectory of x = Ax — B at time £ starting
in x at time ¢ = 0.

LEMMA 3

BTAg(x) <0, for all x € S,
Proof: We show that for all £ > 0
¢_(t,x0) £ {x:Cx > 0,CAPx < 0,BTAPx <0} =: W

where the projection matrix P := Por = I — CTC/(CCT). The set W is
hence a cone in the state-space. Notice that {x € §: BTAx < 0, CAx < 0}
is a subset of W. Cauchy-Schwartz’ inequality on C T and ACT gives

ccT.cA*cT > (CACT)
and on (—A)Y2CT and (-A)~12CT gives
cAcT . cA™eT > (ccT)y?

Thus, CAPACT > 0 and CAPA™1CT < 0. There exists 7;,0; € R, i =
1,2, 3, such that

CAPA = 7.C + 79CAP + 13BTAP (12)
BTAPA = 61C + 62CAP + 03BTAP (13)

hold and 71,01 > 0 and 73,09 < 0. This follows from multiplying (12) from
right by CT and B and (13) by CT and A~1CT:

0 < CAPACT = 7;CCT

0 < CA%B = 73BTAB

0 < CA%B = o,CCT

0= 01CA'CT + 6,CAPA™ICT

The existence of 7;, 0; implies that for all x

Cx>0
CAPx =0 = CAPx > CAPAx >0
BTAPx <0
and
Cx>0
CAPx <0 = BTAPx > BTAPAx >0
BTAPx =0
It thus holds that no trajectories enter %/ through neither the hyperplane
{x: CAPx = 0} nor {x: BTAPx = 0}. O
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LEMMA 4
There exists £ > 0 such that

|g%(x)] > &, forallx e,

Proof: Given €1 > 0, assume that |g(x)| < £1. Lemma 3 gives that for all
x € S, there exists 7 € IR such that TCAg(x) + CA2%g(x) > 0. It follows
from Taylor expansion that

0 = Co_(t,g(x)) = tCAg(x) + §0A2g(x) +0(t)

or

it

0= CAg(x) + %CAzg(x) +0(t%) 2 (1 -Z

) CAg(x) + O(t?)

For sufficiently small ¢ this contradicts the inequality CAg(x) > 0. Hence,
there exists a to > 0 such that (g (x)) > ¢o for all g(x) satisfying |g(x)| <
€1. Furthermore, since A < —A11, it follows that

lg2(x)| = |9-(h(g(x)),g(x))] 2 |A7'B| - [eA*EE) (g (x) - A71B)]
> |ATIB|(1 - e7Mito) — |g(x)| > &1

for £; = |A71B|(1 — e~*1%) /2. Hence, |g2(x)| > €1 if |g(x)| < &1. If instead
lg(x)| = €1, assume g2(x) = 0. Then

h(g(x))
Cg(x) = C(I - e~AME(M)A-1B = / Ce A'Bdt (14)
0

and forz > 0

1 1 1
-At = -1 . . .
e 5 S L {K s—A1 s—2A9 s—/'l,a}

= KeMt xet2t xehst > 0
where £~ denotes the inverse Laplace transform and * convolution. The
right hand side of (14) is thus a strictly increasing function in 4(g(x)), so
we have a contradiction. By continuity we get that there exists €2 > 0 such

that |g(x)] > & implies |g2(x)| > &£2. The proof is completed by choosing
£ = min(£1,£2). O

LEMMA 5
There exists & > 0 such that

CAgi(x) > &, forall x € S,

Proof: Consider a point go € .S such that CAge = 0 and CA2%g; > 0, and
thus BTAgg < 0. Then, for —gj it holds that

2
Co_(¢,—go) = —ECAzgo +O(t%)
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so that C¢_(—t9, —go) < 0 for ¢y > 0 sufficiently small. For such ¢;, we have
Cop_(—to,—g(2)) < 0 and h(z) < ¢, for z € S, with |g(z) — go| sufficiently
small. Hence, h(z) —» 0 and BTAz - —-BTAgy > 0 as |g(z) — go| = O.
In particular, there is a disc D < § around go such that BTAz > 0 if
g(2) € D. Moreover, for all £ > 0 and R > &, it is possible to cover the line

{xeS:CAx = 0,BTAx < 0,¢ < |x| < R}

with a finite number of such discs D, £ = 1,...,N. From Lemma 4 we
know that there exists £ > 0 so that |g%(x)| > €. Now assume that there
exists a k such that g3(x) € D;. Then, BTAg%(x) > 0. Lemma 3 says
however that this cannot be true. We have a contradiction and the proof is
complete. (N

Proof of Lemma 2: The existence of R is trivial and the existence of ¢ is
an immediate consequence of Lemmas 3-5. O
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